]>
Commit | Line | Data |
---|---|---|
0f5d89e8 A |
1 | // © 2018 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | // | |
4 | // From the double-conversion library. Original license: | |
5 | // | |
6 | // Copyright 2010 the V8 project authors. All rights reserved. | |
7 | // Redistribution and use in source and binary forms, with or without | |
8 | // modification, are permitted provided that the following conditions are | |
9 | // met: | |
10 | // | |
11 | // * Redistributions of source code must retain the above copyright | |
12 | // notice, this list of conditions and the following disclaimer. | |
13 | // * Redistributions in binary form must reproduce the above | |
14 | // copyright notice, this list of conditions and the following | |
15 | // disclaimer in the documentation and/or other materials provided | |
16 | // with the distribution. | |
17 | // * Neither the name of Google Inc. nor the names of its | |
18 | // contributors may be used to endorse or promote products derived | |
19 | // from this software without specific prior written permission. | |
20 | // | |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
32 | ||
33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING | |
34 | #include "unicode/utypes.h" | |
35 | #if !UCONFIG_NO_FORMATTING | |
36 | ||
3d1f044b A |
37 | // ICU PATCH: Do not include std::locale. |
38 | ||
39 | #include <climits> | |
40 | //#include <locale> | |
41 | #include <cmath> | |
0f5d89e8 A |
42 | |
43 | // ICU PATCH: Customize header file paths for ICU. | |
44 | // The file fixed-dtoa.h is not needed. | |
45 | ||
46 | #include "double-conversion.h" | |
47 | ||
48 | #include "double-conversion-bignum-dtoa.h" | |
49 | #include "double-conversion-fast-dtoa.h" | |
50 | #include "double-conversion-ieee.h" | |
51 | #include "double-conversion-strtod.h" | |
52 | #include "double-conversion-utils.h" | |
53 | ||
54 | // ICU PATCH: Wrap in ICU namespace | |
55 | U_NAMESPACE_BEGIN | |
56 | ||
57 | namespace double_conversion { | |
58 | ||
59 | #if 0 // not needed for ICU | |
60 | const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { | |
61 | int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; | |
62 | static DoubleToStringConverter converter(flags, | |
63 | "Infinity", | |
64 | "NaN", | |
65 | 'e', | |
66 | -6, 21, | |
67 | 6, 0); | |
68 | return converter; | |
69 | } | |
70 | ||
71 | ||
72 | bool DoubleToStringConverter::HandleSpecialValues( | |
73 | double value, | |
74 | StringBuilder* result_builder) const { | |
75 | Double double_inspect(value); | |
76 | if (double_inspect.IsInfinite()) { | |
77 | if (infinity_symbol_ == NULL) return false; | |
78 | if (value < 0) { | |
79 | result_builder->AddCharacter('-'); | |
80 | } | |
81 | result_builder->AddString(infinity_symbol_); | |
82 | return true; | |
83 | } | |
84 | if (double_inspect.IsNan()) { | |
85 | if (nan_symbol_ == NULL) return false; | |
86 | result_builder->AddString(nan_symbol_); | |
87 | return true; | |
88 | } | |
89 | return false; | |
90 | } | |
91 | ||
92 | ||
93 | void DoubleToStringConverter::CreateExponentialRepresentation( | |
94 | const char* decimal_digits, | |
95 | int length, | |
96 | int exponent, | |
97 | StringBuilder* result_builder) const { | |
98 | ASSERT(length != 0); | |
99 | result_builder->AddCharacter(decimal_digits[0]); | |
100 | if (length != 1) { | |
101 | result_builder->AddCharacter('.'); | |
102 | result_builder->AddSubstring(&decimal_digits[1], length-1); | |
103 | } | |
104 | result_builder->AddCharacter(exponent_character_); | |
105 | if (exponent < 0) { | |
106 | result_builder->AddCharacter('-'); | |
107 | exponent = -exponent; | |
108 | } else { | |
109 | if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { | |
110 | result_builder->AddCharacter('+'); | |
111 | } | |
112 | } | |
113 | if (exponent == 0) { | |
114 | result_builder->AddCharacter('0'); | |
115 | return; | |
116 | } | |
117 | ASSERT(exponent < 1e4); | |
118 | const int kMaxExponentLength = 5; | |
119 | char buffer[kMaxExponentLength + 1]; | |
120 | buffer[kMaxExponentLength] = '\0'; | |
121 | int first_char_pos = kMaxExponentLength; | |
122 | while (exponent > 0) { | |
123 | buffer[--first_char_pos] = '0' + (exponent % 10); | |
124 | exponent /= 10; | |
125 | } | |
126 | result_builder->AddSubstring(&buffer[first_char_pos], | |
127 | kMaxExponentLength - first_char_pos); | |
128 | } | |
129 | ||
130 | ||
131 | void DoubleToStringConverter::CreateDecimalRepresentation( | |
132 | const char* decimal_digits, | |
133 | int length, | |
134 | int decimal_point, | |
135 | int digits_after_point, | |
136 | StringBuilder* result_builder) const { | |
137 | // Create a representation that is padded with zeros if needed. | |
138 | if (decimal_point <= 0) { | |
139 | // "0.00000decimal_rep" or "0.000decimal_rep00". | |
140 | result_builder->AddCharacter('0'); | |
141 | if (digits_after_point > 0) { | |
142 | result_builder->AddCharacter('.'); | |
143 | result_builder->AddPadding('0', -decimal_point); | |
144 | ASSERT(length <= digits_after_point - (-decimal_point)); | |
145 | result_builder->AddSubstring(decimal_digits, length); | |
146 | int remaining_digits = digits_after_point - (-decimal_point) - length; | |
147 | result_builder->AddPadding('0', remaining_digits); | |
148 | } | |
149 | } else if (decimal_point >= length) { | |
150 | // "decimal_rep0000.00000" or "decimal_rep.0000". | |
151 | result_builder->AddSubstring(decimal_digits, length); | |
152 | result_builder->AddPadding('0', decimal_point - length); | |
153 | if (digits_after_point > 0) { | |
154 | result_builder->AddCharacter('.'); | |
155 | result_builder->AddPadding('0', digits_after_point); | |
156 | } | |
157 | } else { | |
158 | // "decima.l_rep000". | |
159 | ASSERT(digits_after_point > 0); | |
160 | result_builder->AddSubstring(decimal_digits, decimal_point); | |
161 | result_builder->AddCharacter('.'); | |
162 | ASSERT(length - decimal_point <= digits_after_point); | |
163 | result_builder->AddSubstring(&decimal_digits[decimal_point], | |
164 | length - decimal_point); | |
165 | int remaining_digits = digits_after_point - (length - decimal_point); | |
166 | result_builder->AddPadding('0', remaining_digits); | |
167 | } | |
168 | if (digits_after_point == 0) { | |
169 | if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { | |
170 | result_builder->AddCharacter('.'); | |
171 | } | |
172 | if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { | |
173 | result_builder->AddCharacter('0'); | |
174 | } | |
175 | } | |
176 | } | |
177 | ||
178 | ||
179 | bool DoubleToStringConverter::ToShortestIeeeNumber( | |
180 | double value, | |
181 | StringBuilder* result_builder, | |
182 | DoubleToStringConverter::DtoaMode mode) const { | |
183 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); | |
184 | if (Double(value).IsSpecial()) { | |
185 | return HandleSpecialValues(value, result_builder); | |
186 | } | |
187 | ||
188 | int decimal_point; | |
189 | bool sign; | |
190 | const int kDecimalRepCapacity = kBase10MaximalLength + 1; | |
191 | char decimal_rep[kDecimalRepCapacity]; | |
192 | int decimal_rep_length; | |
193 | ||
194 | DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, | |
195 | &sign, &decimal_rep_length, &decimal_point); | |
196 | ||
197 | bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; | |
198 | if (sign && (value != 0.0 || !unique_zero)) { | |
199 | result_builder->AddCharacter('-'); | |
200 | } | |
201 | ||
202 | int exponent = decimal_point - 1; | |
203 | if ((decimal_in_shortest_low_ <= exponent) && | |
204 | (exponent < decimal_in_shortest_high_)) { | |
205 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, | |
206 | decimal_point, | |
207 | Max(0, decimal_rep_length - decimal_point), | |
208 | result_builder); | |
209 | } else { | |
210 | CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, | |
211 | result_builder); | |
212 | } | |
213 | return true; | |
214 | } | |
215 | ||
216 | ||
217 | bool DoubleToStringConverter::ToFixed(double value, | |
218 | int requested_digits, | |
219 | StringBuilder* result_builder) const { | |
220 | ASSERT(kMaxFixedDigitsBeforePoint == 60); | |
221 | const double kFirstNonFixed = 1e60; | |
222 | ||
223 | if (Double(value).IsSpecial()) { | |
224 | return HandleSpecialValues(value, result_builder); | |
225 | } | |
226 | ||
227 | if (requested_digits > kMaxFixedDigitsAfterPoint) return false; | |
228 | if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; | |
229 | ||
230 | // Find a sufficiently precise decimal representation of n. | |
231 | int decimal_point; | |
232 | bool sign; | |
233 | // Add space for the '\0' byte. | |
234 | const int kDecimalRepCapacity = | |
235 | kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; | |
236 | char decimal_rep[kDecimalRepCapacity]; | |
237 | int decimal_rep_length; | |
238 | DoubleToAscii(value, FIXED, requested_digits, | |
239 | decimal_rep, kDecimalRepCapacity, | |
240 | &sign, &decimal_rep_length, &decimal_point); | |
241 | ||
242 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |
243 | if (sign && (value != 0.0 || !unique_zero)) { | |
244 | result_builder->AddCharacter('-'); | |
245 | } | |
246 | ||
247 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, | |
248 | requested_digits, result_builder); | |
249 | return true; | |
250 | } | |
251 | ||
252 | ||
253 | bool DoubleToStringConverter::ToExponential( | |
254 | double value, | |
255 | int requested_digits, | |
256 | StringBuilder* result_builder) const { | |
257 | if (Double(value).IsSpecial()) { | |
258 | return HandleSpecialValues(value, result_builder); | |
259 | } | |
260 | ||
261 | if (requested_digits < -1) return false; | |
262 | if (requested_digits > kMaxExponentialDigits) return false; | |
263 | ||
264 | int decimal_point; | |
265 | bool sign; | |
266 | // Add space for digit before the decimal point and the '\0' character. | |
267 | const int kDecimalRepCapacity = kMaxExponentialDigits + 2; | |
268 | ASSERT(kDecimalRepCapacity > kBase10MaximalLength); | |
269 | char decimal_rep[kDecimalRepCapacity]; | |
270 | int decimal_rep_length; | |
271 | ||
272 | if (requested_digits == -1) { | |
273 | DoubleToAscii(value, SHORTEST, 0, | |
274 | decimal_rep, kDecimalRepCapacity, | |
275 | &sign, &decimal_rep_length, &decimal_point); | |
276 | } else { | |
277 | DoubleToAscii(value, PRECISION, requested_digits + 1, | |
278 | decimal_rep, kDecimalRepCapacity, | |
279 | &sign, &decimal_rep_length, &decimal_point); | |
280 | ASSERT(decimal_rep_length <= requested_digits + 1); | |
281 | ||
282 | for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { | |
283 | decimal_rep[i] = '0'; | |
284 | } | |
285 | decimal_rep_length = requested_digits + 1; | |
286 | } | |
287 | ||
288 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |
289 | if (sign && (value != 0.0 || !unique_zero)) { | |
290 | result_builder->AddCharacter('-'); | |
291 | } | |
292 | ||
293 | int exponent = decimal_point - 1; | |
294 | CreateExponentialRepresentation(decimal_rep, | |
295 | decimal_rep_length, | |
296 | exponent, | |
297 | result_builder); | |
298 | return true; | |
299 | } | |
300 | ||
301 | ||
302 | bool DoubleToStringConverter::ToPrecision(double value, | |
303 | int precision, | |
304 | StringBuilder* result_builder) const { | |
305 | if (Double(value).IsSpecial()) { | |
306 | return HandleSpecialValues(value, result_builder); | |
307 | } | |
308 | ||
309 | if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { | |
310 | return false; | |
311 | } | |
312 | ||
313 | // Find a sufficiently precise decimal representation of n. | |
314 | int decimal_point; | |
315 | bool sign; | |
316 | // Add one for the terminating null character. | |
317 | const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; | |
318 | char decimal_rep[kDecimalRepCapacity]; | |
319 | int decimal_rep_length; | |
320 | ||
321 | DoubleToAscii(value, PRECISION, precision, | |
322 | decimal_rep, kDecimalRepCapacity, | |
323 | &sign, &decimal_rep_length, &decimal_point); | |
324 | ASSERT(decimal_rep_length <= precision); | |
325 | ||
326 | bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |
327 | if (sign && (value != 0.0 || !unique_zero)) { | |
328 | result_builder->AddCharacter('-'); | |
329 | } | |
330 | ||
331 | // The exponent if we print the number as x.xxeyyy. That is with the | |
332 | // decimal point after the first digit. | |
333 | int exponent = decimal_point - 1; | |
334 | ||
335 | int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; | |
336 | if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || | |
337 | (decimal_point - precision + extra_zero > | |
338 | max_trailing_padding_zeroes_in_precision_mode_)) { | |
339 | // Fill buffer to contain 'precision' digits. | |
340 | // Usually the buffer is already at the correct length, but 'DoubleToAscii' | |
341 | // is allowed to return less characters. | |
342 | for (int i = decimal_rep_length; i < precision; ++i) { | |
343 | decimal_rep[i] = '0'; | |
344 | } | |
345 | ||
346 | CreateExponentialRepresentation(decimal_rep, | |
347 | precision, | |
348 | exponent, | |
349 | result_builder); | |
350 | } else { | |
351 | CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, | |
352 | Max(0, precision - decimal_point), | |
353 | result_builder); | |
354 | } | |
355 | return true; | |
356 | } | |
357 | #endif // not needed for ICU | |
358 | ||
359 | ||
360 | static BignumDtoaMode DtoaToBignumDtoaMode( | |
361 | DoubleToStringConverter::DtoaMode dtoa_mode) { | |
362 | switch (dtoa_mode) { | |
363 | case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST; | |
364 | case DoubleToStringConverter::SHORTEST_SINGLE: | |
365 | return BIGNUM_DTOA_SHORTEST_SINGLE; | |
366 | case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; | |
367 | case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; | |
368 | default: | |
369 | UNREACHABLE(); | |
370 | } | |
371 | } | |
372 | ||
373 | ||
374 | void DoubleToStringConverter::DoubleToAscii(double v, | |
375 | DtoaMode mode, | |
376 | int requested_digits, | |
377 | char* buffer, | |
378 | int buffer_length, | |
379 | bool* sign, | |
380 | int* length, | |
381 | int* point) { | |
382 | Vector<char> vector(buffer, buffer_length); | |
383 | ASSERT(!Double(v).IsSpecial()); | |
384 | ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); | |
385 | ||
386 | if (Double(v).Sign() < 0) { | |
387 | *sign = true; | |
388 | v = -v; | |
389 | } else { | |
390 | *sign = false; | |
391 | } | |
392 | ||
393 | if (mode == PRECISION && requested_digits == 0) { | |
394 | vector[0] = '\0'; | |
395 | *length = 0; | |
396 | return; | |
397 | } | |
398 | ||
399 | if (v == 0) { | |
400 | vector[0] = '0'; | |
401 | vector[1] = '\0'; | |
402 | *length = 1; | |
403 | *point = 1; | |
404 | return; | |
405 | } | |
406 | ||
407 | bool fast_worked; | |
408 | switch (mode) { | |
409 | case SHORTEST: | |
410 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); | |
411 | break; | |
412 | #if 0 // not needed for ICU | |
413 | case SHORTEST_SINGLE: | |
414 | fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, | |
415 | vector, length, point); | |
416 | break; | |
417 | case FIXED: | |
418 | fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); | |
419 | break; | |
420 | case PRECISION: | |
421 | fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, | |
422 | vector, length, point); | |
423 | break; | |
424 | #endif // not needed for ICU | |
425 | default: | |
426 | fast_worked = false; | |
427 | UNREACHABLE(); | |
428 | } | |
429 | if (fast_worked) return; | |
430 | ||
431 | // If the fast dtoa didn't succeed use the slower bignum version. | |
432 | BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); | |
433 | BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); | |
434 | vector[*length] = '\0'; | |
435 | } | |
436 | ||
437 | ||
3d1f044b A |
438 | namespace { |
439 | ||
440 | inline char ToLower(char ch) { | |
441 | #if 0 // do not include std::locale in ICU | |
442 | static const std::ctype<char>& cType = | |
443 | std::use_facet<std::ctype<char> >(std::locale::classic()); | |
444 | return cType.tolower(ch); | |
445 | #else | |
446 | (void)ch; | |
447 | UNREACHABLE(); | |
448 | #endif | |
449 | } | |
450 | ||
451 | inline char Pass(char ch) { | |
452 | return ch; | |
453 | } | |
454 | ||
455 | template <class Iterator, class Converter> | |
456 | static inline bool ConsumeSubStringImpl(Iterator* current, | |
457 | Iterator end, | |
458 | const char* substring, | |
459 | Converter converter) { | |
460 | ASSERT(converter(**current) == *substring); | |
461 | for (substring++; *substring != '\0'; substring++) { | |
462 | ++*current; | |
463 | if (*current == end || converter(**current) != *substring) { | |
464 | return false; | |
465 | } | |
466 | } | |
467 | ++*current; | |
468 | return true; | |
469 | } | |
470 | ||
0f5d89e8 A |
471 | // Consumes the given substring from the iterator. |
472 | // Returns false, if the substring does not match. | |
473 | template <class Iterator> | |
474 | static bool ConsumeSubString(Iterator* current, | |
475 | Iterator end, | |
3d1f044b A |
476 | const char* substring, |
477 | bool allow_case_insensibility) { | |
478 | if (allow_case_insensibility) { | |
479 | return ConsumeSubStringImpl(current, end, substring, ToLower); | |
480 | } else { | |
481 | return ConsumeSubStringImpl(current, end, substring, Pass); | |
0f5d89e8 | 482 | } |
0f5d89e8 A |
483 | } |
484 | ||
3d1f044b A |
485 | // Consumes first character of the str is equal to ch |
486 | inline bool ConsumeFirstCharacter(char ch, | |
487 | const char* str, | |
488 | bool case_insensibility) { | |
489 | return case_insensibility ? ToLower(ch) == str[0] : ch == str[0]; | |
490 | } | |
491 | } // namespace | |
0f5d89e8 A |
492 | |
493 | // Maximum number of significant digits in decimal representation. | |
494 | // The longest possible double in decimal representation is | |
495 | // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 | |
496 | // (768 digits). If we parse a number whose first digits are equal to a | |
497 | // mean of 2 adjacent doubles (that could have up to 769 digits) the result | |
498 | // must be rounded to the bigger one unless the tail consists of zeros, so | |
499 | // we don't need to preserve all the digits. | |
500 | const int kMaxSignificantDigits = 772; | |
501 | ||
502 | ||
503 | static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 }; | |
504 | static const int kWhitespaceTable7Length = ARRAY_SIZE(kWhitespaceTable7); | |
505 | ||
506 | ||
507 | static const uc16 kWhitespaceTable16[] = { | |
508 | 160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195, | |
509 | 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279 | |
510 | }; | |
511 | static const int kWhitespaceTable16Length = ARRAY_SIZE(kWhitespaceTable16); | |
512 | ||
513 | ||
514 | ||
515 | static bool isWhitespace(int x) { | |
516 | if (x < 128) { | |
517 | for (int i = 0; i < kWhitespaceTable7Length; i++) { | |
518 | if (kWhitespaceTable7[i] == x) return true; | |
519 | } | |
520 | } else { | |
521 | for (int i = 0; i < kWhitespaceTable16Length; i++) { | |
522 | if (kWhitespaceTable16[i] == x) return true; | |
523 | } | |
524 | } | |
525 | return false; | |
526 | } | |
527 | ||
528 | ||
529 | // Returns true if a nonspace found and false if the end has reached. | |
530 | template <class Iterator> | |
531 | static inline bool AdvanceToNonspace(Iterator* current, Iterator end) { | |
532 | while (*current != end) { | |
533 | if (!isWhitespace(**current)) return true; | |
534 | ++*current; | |
535 | } | |
536 | return false; | |
537 | } | |
538 | ||
539 | ||
540 | static bool isDigit(int x, int radix) { | |
541 | return (x >= '0' && x <= '9' && x < '0' + radix) | |
542 | || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) | |
543 | || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); | |
544 | } | |
545 | ||
546 | ||
547 | static double SignedZero(bool sign) { | |
548 | return sign ? -0.0 : 0.0; | |
549 | } | |
550 | ||
551 | ||
552 | // Returns true if 'c' is a decimal digit that is valid for the given radix. | |
553 | // | |
554 | // The function is small and could be inlined, but VS2012 emitted a warning | |
555 | // because it constant-propagated the radix and concluded that the last | |
556 | // condition was always true. By moving it into a separate function the | |
557 | // compiler wouldn't warn anymore. | |
3d1f044b | 558 | #ifdef _MSC_VER |
0f5d89e8 A |
559 | #pragma optimize("",off) |
560 | static bool IsDecimalDigitForRadix(int c, int radix) { | |
561 | return '0' <= c && c <= '9' && (c - '0') < radix; | |
562 | } | |
563 | #pragma optimize("",on) | |
564 | #else | |
565 | static bool inline IsDecimalDigitForRadix(int c, int radix) { | |
3d1f044b | 566 | return '0' <= c && c <= '9' && (c - '0') < radix; |
0f5d89e8 A |
567 | } |
568 | #endif | |
569 | // Returns true if 'c' is a character digit that is valid for the given radix. | |
570 | // The 'a_character' should be 'a' or 'A'. | |
571 | // | |
572 | // The function is small and could be inlined, but VS2012 emitted a warning | |
573 | // because it constant-propagated the radix and concluded that the first | |
574 | // condition was always false. By moving it into a separate function the | |
575 | // compiler wouldn't warn anymore. | |
576 | static bool IsCharacterDigitForRadix(int c, int radix, char a_character) { | |
577 | return radix > 10 && c >= a_character && c < a_character + radix - 10; | |
578 | } | |
579 | ||
3d1f044b A |
580 | // Returns true, when the iterator is equal to end. |
581 | template<class Iterator> | |
582 | static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) { | |
583 | if (separator == StringToDoubleConverter::kNoSeparator) { | |
584 | ++(*it); | |
585 | return *it == end; | |
586 | } | |
587 | if (!isDigit(**it, base)) { | |
588 | ++(*it); | |
589 | return *it == end; | |
590 | } | |
591 | ++(*it); | |
592 | if (*it == end) return true; | |
593 | if (*it + 1 == end) return false; | |
594 | if (**it == separator && isDigit(*(*it + 1), base)) { | |
595 | ++(*it); | |
596 | } | |
597 | return *it == end; | |
598 | } | |
599 | ||
600 | // Checks whether the string in the range start-end is a hex-float string. | |
601 | // This function assumes that the leading '0x'/'0X' is already consumed. | |
602 | // | |
603 | // Hex float strings are of one of the following forms: | |
604 | // - hex_digits+ 'p' ('+'|'-')? exponent_digits+ | |
605 | // - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+ | |
606 | // - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+ | |
607 | template<class Iterator> | |
608 | static bool IsHexFloatString(Iterator start, | |
609 | Iterator end, | |
610 | uc16 separator, | |
611 | bool allow_trailing_junk) { | |
612 | ASSERT(start != end); | |
613 | ||
614 | Iterator current = start; | |
615 | ||
616 | bool saw_digit = false; | |
617 | while (isDigit(*current, 16)) { | |
618 | saw_digit = true; | |
619 | if (Advance(¤t, separator, 16, end)) return false; | |
620 | } | |
621 | if (*current == '.') { | |
622 | if (Advance(¤t, separator, 16, end)) return false; | |
623 | while (isDigit(*current, 16)) { | |
624 | saw_digit = true; | |
625 | if (Advance(¤t, separator, 16, end)) return false; | |
626 | } | |
627 | if (!saw_digit) return false; // Only the '.', but no digits. | |
628 | } | |
629 | if (*current != 'p' && *current != 'P') return false; | |
630 | if (Advance(¤t, separator, 16, end)) return false; | |
631 | if (*current == '+' || *current == '-') { | |
632 | if (Advance(¤t, separator, 16, end)) return false; | |
633 | } | |
634 | if (!isDigit(*current, 10)) return false; | |
635 | if (Advance(¤t, separator, 16, end)) return true; | |
636 | while (isDigit(*current, 10)) { | |
637 | if (Advance(¤t, separator, 16, end)) return true; | |
638 | } | |
639 | return allow_trailing_junk || !AdvanceToNonspace(¤t, end); | |
640 | } | |
641 | ||
0f5d89e8 A |
642 | |
643 | // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. | |
3d1f044b A |
644 | // |
645 | // If parse_as_hex_float is true, then the string must be a valid | |
646 | // hex-float. | |
0f5d89e8 A |
647 | template <int radix_log_2, class Iterator> |
648 | static double RadixStringToIeee(Iterator* current, | |
649 | Iterator end, | |
650 | bool sign, | |
3d1f044b A |
651 | uc16 separator, |
652 | bool parse_as_hex_float, | |
0f5d89e8 A |
653 | bool allow_trailing_junk, |
654 | double junk_string_value, | |
655 | bool read_as_double, | |
656 | bool* result_is_junk) { | |
657 | ASSERT(*current != end); | |
3d1f044b A |
658 | ASSERT(!parse_as_hex_float || |
659 | IsHexFloatString(*current, end, separator, allow_trailing_junk)); | |
0f5d89e8 A |
660 | |
661 | const int kDoubleSize = Double::kSignificandSize; | |
662 | const int kSingleSize = Single::kSignificandSize; | |
663 | const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; | |
664 | ||
665 | *result_is_junk = true; | |
666 | ||
3d1f044b A |
667 | int64_t number = 0; |
668 | int exponent = 0; | |
669 | const int radix = (1 << radix_log_2); | |
670 | // Whether we have encountered a '.' and are parsing the decimal digits. | |
671 | // Only relevant if parse_as_hex_float is true. | |
672 | bool post_decimal = false; | |
673 | ||
0f5d89e8 A |
674 | // Skip leading 0s. |
675 | while (**current == '0') { | |
3d1f044b | 676 | if (Advance(current, separator, radix, end)) { |
0f5d89e8 A |
677 | *result_is_junk = false; |
678 | return SignedZero(sign); | |
679 | } | |
680 | } | |
681 | ||
3d1f044b | 682 | while (true) { |
0f5d89e8 A |
683 | int digit; |
684 | if (IsDecimalDigitForRadix(**current, radix)) { | |
685 | digit = static_cast<char>(**current) - '0'; | |
3d1f044b | 686 | if (post_decimal) exponent -= radix_log_2; |
0f5d89e8 A |
687 | } else if (IsCharacterDigitForRadix(**current, radix, 'a')) { |
688 | digit = static_cast<char>(**current) - 'a' + 10; | |
3d1f044b | 689 | if (post_decimal) exponent -= radix_log_2; |
0f5d89e8 A |
690 | } else if (IsCharacterDigitForRadix(**current, radix, 'A')) { |
691 | digit = static_cast<char>(**current) - 'A' + 10; | |
3d1f044b A |
692 | if (post_decimal) exponent -= radix_log_2; |
693 | } else if (parse_as_hex_float && **current == '.') { | |
694 | post_decimal = true; | |
695 | Advance(current, separator, radix, end); | |
696 | ASSERT(*current != end); | |
697 | continue; | |
698 | } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) { | |
699 | break; | |
0f5d89e8 A |
700 | } else { |
701 | if (allow_trailing_junk || !AdvanceToNonspace(current, end)) { | |
702 | break; | |
703 | } else { | |
704 | return junk_string_value; | |
705 | } | |
706 | } | |
707 | ||
708 | number = number * radix + digit; | |
709 | int overflow = static_cast<int>(number >> kSignificandSize); | |
710 | if (overflow != 0) { | |
711 | // Overflow occurred. Need to determine which direction to round the | |
712 | // result. | |
713 | int overflow_bits_count = 1; | |
714 | while (overflow > 1) { | |
715 | overflow_bits_count++; | |
716 | overflow >>= 1; | |
717 | } | |
718 | ||
719 | int dropped_bits_mask = ((1 << overflow_bits_count) - 1); | |
720 | int dropped_bits = static_cast<int>(number) & dropped_bits_mask; | |
721 | number >>= overflow_bits_count; | |
3d1f044b | 722 | exponent += overflow_bits_count; |
0f5d89e8 A |
723 | |
724 | bool zero_tail = true; | |
725 | for (;;) { | |
3d1f044b A |
726 | if (Advance(current, separator, radix, end)) break; |
727 | if (parse_as_hex_float && **current == '.') { | |
728 | // Just run over the '.'. We are just trying to see whether there is | |
729 | // a non-zero digit somewhere. | |
730 | Advance(current, separator, radix, end); | |
731 | ASSERT(*current != end); | |
732 | post_decimal = true; | |
733 | } | |
734 | if (!isDigit(**current, radix)) break; | |
0f5d89e8 | 735 | zero_tail = zero_tail && **current == '0'; |
3d1f044b | 736 | if (!post_decimal) exponent += radix_log_2; |
0f5d89e8 A |
737 | } |
738 | ||
3d1f044b A |
739 | if (!parse_as_hex_float && |
740 | !allow_trailing_junk && | |
741 | AdvanceToNonspace(current, end)) { | |
0f5d89e8 A |
742 | return junk_string_value; |
743 | } | |
744 | ||
745 | int middle_value = (1 << (overflow_bits_count - 1)); | |
746 | if (dropped_bits > middle_value) { | |
747 | number++; // Rounding up. | |
748 | } else if (dropped_bits == middle_value) { | |
749 | // Rounding to even to consistency with decimals: half-way case rounds | |
750 | // up if significant part is odd and down otherwise. | |
751 | if ((number & 1) != 0 || !zero_tail) { | |
752 | number++; // Rounding up. | |
753 | } | |
754 | } | |
755 | ||
756 | // Rounding up may cause overflow. | |
757 | if ((number & ((int64_t)1 << kSignificandSize)) != 0) { | |
758 | exponent++; | |
759 | number >>= 1; | |
760 | } | |
761 | break; | |
762 | } | |
3d1f044b A |
763 | if (Advance(current, separator, radix, end)) break; |
764 | } | |
0f5d89e8 A |
765 | |
766 | ASSERT(number < ((int64_t)1 << kSignificandSize)); | |
767 | ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); | |
768 | ||
769 | *result_is_junk = false; | |
770 | ||
3d1f044b A |
771 | if (parse_as_hex_float) { |
772 | ASSERT(**current == 'p' || **current == 'P'); | |
773 | Advance(current, separator, radix, end); | |
774 | ASSERT(*current != end); | |
775 | bool is_negative = false; | |
776 | if (**current == '+') { | |
777 | Advance(current, separator, radix, end); | |
778 | ASSERT(*current != end); | |
779 | } else if (**current == '-') { | |
780 | is_negative = true; | |
781 | Advance(current, separator, radix, end); | |
782 | ASSERT(*current != end); | |
783 | } | |
784 | int written_exponent = 0; | |
785 | while (IsDecimalDigitForRadix(**current, 10)) { | |
786 | written_exponent = 10 * written_exponent + **current - '0'; | |
787 | if (Advance(current, separator, radix, end)) break; | |
788 | } | |
789 | if (is_negative) written_exponent = -written_exponent; | |
790 | exponent += written_exponent; | |
791 | } | |
792 | ||
793 | if (exponent == 0 || number == 0) { | |
0f5d89e8 A |
794 | if (sign) { |
795 | if (number == 0) return -0.0; | |
796 | number = -number; | |
797 | } | |
798 | return static_cast<double>(number); | |
799 | } | |
800 | ||
801 | ASSERT(number != 0); | |
3d1f044b A |
802 | double result = Double(DiyFp(number, exponent)).value(); |
803 | return sign ? -result : result; | |
0f5d89e8 A |
804 | } |
805 | ||
806 | template <class Iterator> | |
807 | double StringToDoubleConverter::StringToIeee( | |
808 | Iterator input, | |
809 | int length, | |
810 | bool read_as_double, | |
811 | int* processed_characters_count) const { | |
812 | Iterator current = input; | |
813 | Iterator end = input + length; | |
814 | ||
815 | *processed_characters_count = 0; | |
816 | ||
817 | const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; | |
818 | const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; | |
819 | const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; | |
820 | const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; | |
3d1f044b | 821 | const bool allow_case_insensibility = (flags_ & ALLOW_CASE_INSENSIBILITY) != 0; |
0f5d89e8 A |
822 | |
823 | // To make sure that iterator dereferencing is valid the following | |
824 | // convention is used: | |
825 | // 1. Each '++current' statement is followed by check for equality to 'end'. | |
826 | // 2. If AdvanceToNonspace returned false then current == end. | |
827 | // 3. If 'current' becomes equal to 'end' the function returns or goes to | |
828 | // 'parsing_done'. | |
829 | // 4. 'current' is not dereferenced after the 'parsing_done' label. | |
830 | // 5. Code before 'parsing_done' may rely on 'current != end'. | |
831 | if (current == end) return empty_string_value_; | |
832 | ||
833 | if (allow_leading_spaces || allow_trailing_spaces) { | |
834 | if (!AdvanceToNonspace(¤t, end)) { | |
835 | *processed_characters_count = static_cast<int>(current - input); | |
836 | return empty_string_value_; | |
837 | } | |
838 | if (!allow_leading_spaces && (input != current)) { | |
839 | // No leading spaces allowed, but AdvanceToNonspace moved forward. | |
840 | return junk_string_value_; | |
841 | } | |
842 | } | |
843 | ||
844 | // The longest form of simplified number is: "-<significant digits>.1eXXX\0". | |
845 | const int kBufferSize = kMaxSignificantDigits + 10; | |
846 | char buffer[kBufferSize]; // NOLINT: size is known at compile time. | |
847 | int buffer_pos = 0; | |
848 | ||
849 | // Exponent will be adjusted if insignificant digits of the integer part | |
850 | // or insignificant leading zeros of the fractional part are dropped. | |
851 | int exponent = 0; | |
852 | int significant_digits = 0; | |
853 | int insignificant_digits = 0; | |
854 | bool nonzero_digit_dropped = false; | |
855 | ||
856 | bool sign = false; | |
857 | ||
858 | if (*current == '+' || *current == '-') { | |
859 | sign = (*current == '-'); | |
860 | ++current; | |
861 | Iterator next_non_space = current; | |
862 | // Skip following spaces (if allowed). | |
863 | if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; | |
864 | if (!allow_spaces_after_sign && (current != next_non_space)) { | |
865 | return junk_string_value_; | |
866 | } | |
867 | current = next_non_space; | |
868 | } | |
869 | ||
870 | if (infinity_symbol_ != NULL) { | |
3d1f044b A |
871 | if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensibility)) { |
872 | if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensibility)) { | |
0f5d89e8 A |
873 | return junk_string_value_; |
874 | } | |
875 | ||
876 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { | |
877 | return junk_string_value_; | |
878 | } | |
879 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |
880 | return junk_string_value_; | |
881 | } | |
882 | ||
883 | ASSERT(buffer_pos == 0); | |
884 | *processed_characters_count = static_cast<int>(current - input); | |
885 | return sign ? -Double::Infinity() : Double::Infinity(); | |
886 | } | |
887 | } | |
888 | ||
889 | if (nan_symbol_ != NULL) { | |
3d1f044b A |
890 | if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensibility)) { |
891 | if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensibility)) { | |
0f5d89e8 A |
892 | return junk_string_value_; |
893 | } | |
894 | ||
895 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { | |
896 | return junk_string_value_; | |
897 | } | |
898 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |
899 | return junk_string_value_; | |
900 | } | |
901 | ||
902 | ASSERT(buffer_pos == 0); | |
903 | *processed_characters_count = static_cast<int>(current - input); | |
904 | return sign ? -Double::NaN() : Double::NaN(); | |
905 | } | |
906 | } | |
907 | ||
908 | bool leading_zero = false; | |
909 | if (*current == '0') { | |
3d1f044b | 910 | if (Advance(¤t, separator_, 10, end)) { |
0f5d89e8 A |
911 | *processed_characters_count = static_cast<int>(current - input); |
912 | return SignedZero(sign); | |
913 | } | |
914 | ||
915 | leading_zero = true; | |
916 | ||
917 | // It could be hexadecimal value. | |
3d1f044b A |
918 | if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) && |
919 | (*current == 'x' || *current == 'X')) { | |
0f5d89e8 | 920 | ++current; |
3d1f044b A |
921 | |
922 | bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) && | |
923 | IsHexFloatString(current, end, separator_, allow_trailing_junk); | |
924 | ||
925 | if (current == end) return junk_string_value_; // "0x" | |
926 | if (!parse_as_hex_float && !isDigit(*current, 16)) { | |
927 | return junk_string_value_; | |
0f5d89e8 A |
928 | } |
929 | ||
930 | bool result_is_junk; | |
931 | double result = RadixStringToIeee<4>(¤t, | |
932 | end, | |
933 | sign, | |
3d1f044b A |
934 | separator_, |
935 | parse_as_hex_float, | |
0f5d89e8 A |
936 | allow_trailing_junk, |
937 | junk_string_value_, | |
938 | read_as_double, | |
939 | &result_is_junk); | |
940 | if (!result_is_junk) { | |
941 | if (allow_trailing_spaces) AdvanceToNonspace(¤t, end); | |
942 | *processed_characters_count = static_cast<int>(current - input); | |
943 | } | |
944 | return result; | |
945 | } | |
946 | ||
947 | // Ignore leading zeros in the integer part. | |
948 | while (*current == '0') { | |
3d1f044b | 949 | if (Advance(¤t, separator_, 10, end)) { |
0f5d89e8 A |
950 | *processed_characters_count = static_cast<int>(current - input); |
951 | return SignedZero(sign); | |
952 | } | |
953 | } | |
954 | } | |
955 | ||
956 | bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; | |
957 | ||
958 | // Copy significant digits of the integer part (if any) to the buffer. | |
959 | while (*current >= '0' && *current <= '9') { | |
960 | if (significant_digits < kMaxSignificantDigits) { | |
961 | ASSERT(buffer_pos < kBufferSize); | |
962 | buffer[buffer_pos++] = static_cast<char>(*current); | |
963 | significant_digits++; | |
964 | // Will later check if it's an octal in the buffer. | |
965 | } else { | |
966 | insignificant_digits++; // Move the digit into the exponential part. | |
967 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |
968 | } | |
969 | octal = octal && *current < '8'; | |
3d1f044b | 970 | if (Advance(¤t, separator_, 10, end)) goto parsing_done; |
0f5d89e8 A |
971 | } |
972 | ||
973 | if (significant_digits == 0) { | |
974 | octal = false; | |
975 | } | |
976 | ||
977 | if (*current == '.') { | |
978 | if (octal && !allow_trailing_junk) return junk_string_value_; | |
979 | if (octal) goto parsing_done; | |
980 | ||
3d1f044b | 981 | if (Advance(¤t, separator_, 10, end)) { |
0f5d89e8 A |
982 | if (significant_digits == 0 && !leading_zero) { |
983 | return junk_string_value_; | |
984 | } else { | |
985 | goto parsing_done; | |
986 | } | |
987 | } | |
988 | ||
989 | if (significant_digits == 0) { | |
990 | // octal = false; | |
991 | // Integer part consists of 0 or is absent. Significant digits start after | |
992 | // leading zeros (if any). | |
993 | while (*current == '0') { | |
3d1f044b | 994 | if (Advance(¤t, separator_, 10, end)) { |
0f5d89e8 A |
995 | *processed_characters_count = static_cast<int>(current - input); |
996 | return SignedZero(sign); | |
997 | } | |
998 | exponent--; // Move this 0 into the exponent. | |
999 | } | |
1000 | } | |
1001 | ||
1002 | // There is a fractional part. | |
1003 | // We don't emit a '.', but adjust the exponent instead. | |
1004 | while (*current >= '0' && *current <= '9') { | |
1005 | if (significant_digits < kMaxSignificantDigits) { | |
1006 | ASSERT(buffer_pos < kBufferSize); | |
1007 | buffer[buffer_pos++] = static_cast<char>(*current); | |
1008 | significant_digits++; | |
1009 | exponent--; | |
1010 | } else { | |
1011 | // Ignore insignificant digits in the fractional part. | |
1012 | nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |
1013 | } | |
3d1f044b | 1014 | if (Advance(¤t, separator_, 10, end)) goto parsing_done; |
0f5d89e8 A |
1015 | } |
1016 | } | |
1017 | ||
1018 | if (!leading_zero && exponent == 0 && significant_digits == 0) { | |
1019 | // If leading_zeros is true then the string contains zeros. | |
1020 | // If exponent < 0 then string was [+-]\.0*... | |
1021 | // If significant_digits != 0 the string is not equal to 0. | |
1022 | // Otherwise there are no digits in the string. | |
1023 | return junk_string_value_; | |
1024 | } | |
1025 | ||
1026 | // Parse exponential part. | |
1027 | if (*current == 'e' || *current == 'E') { | |
1028 | if (octal && !allow_trailing_junk) return junk_string_value_; | |
1029 | if (octal) goto parsing_done; | |
3d1f044b | 1030 | Iterator junk_begin = current; |
0f5d89e8 A |
1031 | ++current; |
1032 | if (current == end) { | |
1033 | if (allow_trailing_junk) { | |
3d1f044b | 1034 | current = junk_begin; |
0f5d89e8 A |
1035 | goto parsing_done; |
1036 | } else { | |
1037 | return junk_string_value_; | |
1038 | } | |
1039 | } | |
1040 | char exponen_sign = '+'; | |
1041 | if (*current == '+' || *current == '-') { | |
1042 | exponen_sign = static_cast<char>(*current); | |
1043 | ++current; | |
1044 | if (current == end) { | |
1045 | if (allow_trailing_junk) { | |
3d1f044b | 1046 | current = junk_begin; |
0f5d89e8 A |
1047 | goto parsing_done; |
1048 | } else { | |
1049 | return junk_string_value_; | |
1050 | } | |
1051 | } | |
1052 | } | |
1053 | ||
1054 | if (current == end || *current < '0' || *current > '9') { | |
1055 | if (allow_trailing_junk) { | |
3d1f044b | 1056 | current = junk_begin; |
0f5d89e8 A |
1057 | goto parsing_done; |
1058 | } else { | |
1059 | return junk_string_value_; | |
1060 | } | |
1061 | } | |
1062 | ||
1063 | const int max_exponent = INT_MAX / 2; | |
1064 | ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); | |
1065 | int num = 0; | |
1066 | do { | |
1067 | // Check overflow. | |
1068 | int digit = *current - '0'; | |
1069 | if (num >= max_exponent / 10 | |
1070 | && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { | |
1071 | num = max_exponent; | |
1072 | } else { | |
1073 | num = num * 10 + digit; | |
1074 | } | |
1075 | ++current; | |
1076 | } while (current != end && *current >= '0' && *current <= '9'); | |
1077 | ||
1078 | exponent += (exponen_sign == '-' ? -num : num); | |
1079 | } | |
1080 | ||
1081 | if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { | |
1082 | return junk_string_value_; | |
1083 | } | |
1084 | if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { | |
1085 | return junk_string_value_; | |
1086 | } | |
1087 | if (allow_trailing_spaces) { | |
1088 | AdvanceToNonspace(¤t, end); | |
1089 | } | |
1090 | ||
1091 | parsing_done: | |
1092 | exponent += insignificant_digits; | |
1093 | ||
1094 | if (octal) { | |
1095 | double result; | |
1096 | bool result_is_junk; | |
1097 | char* start = buffer; | |
1098 | result = RadixStringToIeee<3>(&start, | |
1099 | buffer + buffer_pos, | |
1100 | sign, | |
3d1f044b A |
1101 | separator_, |
1102 | false, // Don't parse as hex_float. | |
0f5d89e8 A |
1103 | allow_trailing_junk, |
1104 | junk_string_value_, | |
1105 | read_as_double, | |
1106 | &result_is_junk); | |
1107 | ASSERT(!result_is_junk); | |
1108 | *processed_characters_count = static_cast<int>(current - input); | |
1109 | return result; | |
1110 | } | |
1111 | ||
1112 | if (nonzero_digit_dropped) { | |
1113 | buffer[buffer_pos++] = '1'; | |
1114 | exponent--; | |
1115 | } | |
1116 | ||
1117 | ASSERT(buffer_pos < kBufferSize); | |
1118 | buffer[buffer_pos] = '\0'; | |
1119 | ||
1120 | double converted; | |
1121 | if (read_as_double) { | |
1122 | converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); | |
1123 | } else { | |
1124 | converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); | |
1125 | } | |
1126 | *processed_characters_count = static_cast<int>(current - input); | |
1127 | return sign? -converted: converted; | |
1128 | } | |
1129 | ||
1130 | ||
1131 | double StringToDoubleConverter::StringToDouble( | |
1132 | const char* buffer, | |
1133 | int length, | |
1134 | int* processed_characters_count) const { | |
1135 | return StringToIeee(buffer, length, true, processed_characters_count); | |
1136 | } | |
1137 | ||
1138 | ||
1139 | double StringToDoubleConverter::StringToDouble( | |
1140 | const uc16* buffer, | |
1141 | int length, | |
1142 | int* processed_characters_count) const { | |
1143 | return StringToIeee(buffer, length, true, processed_characters_count); | |
1144 | } | |
1145 | ||
1146 | ||
1147 | float StringToDoubleConverter::StringToFloat( | |
1148 | const char* buffer, | |
1149 | int length, | |
1150 | int* processed_characters_count) const { | |
1151 | return static_cast<float>(StringToIeee(buffer, length, false, | |
1152 | processed_characters_count)); | |
1153 | } | |
1154 | ||
1155 | ||
1156 | float StringToDoubleConverter::StringToFloat( | |
1157 | const uc16* buffer, | |
1158 | int length, | |
1159 | int* processed_characters_count) const { | |
1160 | return static_cast<float>(StringToIeee(buffer, length, false, | |
1161 | processed_characters_count)); | |
1162 | } | |
1163 | ||
1164 | } // namespace double_conversion | |
1165 | ||
1166 | // ICU PATCH: Close ICU namespace | |
1167 | U_NAMESPACE_END | |
1168 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |