]>
Commit | Line | Data |
---|---|---|
0f5d89e8 A |
1 | // © 2018 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | // | |
4 | // From the double-conversion library. Original license: | |
5 | // | |
6 | // Copyright 2012 the V8 project authors. All rights reserved. | |
7 | // Redistribution and use in source and binary forms, with or without | |
8 | // modification, are permitted provided that the following conditions are | |
9 | // met: | |
10 | // | |
11 | // * Redistributions of source code must retain the above copyright | |
12 | // notice, this list of conditions and the following disclaimer. | |
13 | // * Redistributions in binary form must reproduce the above | |
14 | // copyright notice, this list of conditions and the following | |
15 | // disclaimer in the documentation and/or other materials provided | |
16 | // with the distribution. | |
17 | // * Neither the name of Google Inc. nor the names of its | |
18 | // contributors may be used to endorse or promote products derived | |
19 | // from this software without specific prior written permission. | |
20 | // | |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
32 | ||
33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING | |
34 | #include "unicode/utypes.h" | |
35 | #if !UCONFIG_NO_FORMATTING | |
36 | ||
37 | #ifndef DOUBLE_CONVERSION_DOUBLE_H_ | |
38 | #define DOUBLE_CONVERSION_DOUBLE_H_ | |
39 | ||
40 | // ICU PATCH: Customize header file paths for ICU. | |
41 | ||
42 | #include "double-conversion-diy-fp.h" | |
43 | ||
44 | // ICU PATCH: Wrap in ICU namespace | |
45 | U_NAMESPACE_BEGIN | |
46 | ||
47 | namespace double_conversion { | |
48 | ||
49 | // We assume that doubles and uint64_t have the same endianness. | |
50 | static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } | |
51 | static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } | |
52 | static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } | |
53 | static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } | |
54 | ||
55 | // Helper functions for doubles. | |
56 | class Double { | |
57 | public: | |
58 | static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); | |
59 | static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); | |
60 | static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); | |
61 | static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); | |
62 | static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. | |
63 | static const int kSignificandSize = 53; | |
64 | ||
65 | Double() : d64_(0) {} | |
66 | explicit Double(double d) : d64_(double_to_uint64(d)) {} | |
67 | explicit Double(uint64_t d64) : d64_(d64) {} | |
68 | explicit Double(DiyFp diy_fp) | |
69 | : d64_(DiyFpToUint64(diy_fp)) {} | |
70 | ||
71 | // The value encoded by this Double must be greater or equal to +0.0. | |
72 | // It must not be special (infinity, or NaN). | |
73 | DiyFp AsDiyFp() const { | |
74 | ASSERT(Sign() > 0); | |
75 | ASSERT(!IsSpecial()); | |
76 | return DiyFp(Significand(), Exponent()); | |
77 | } | |
78 | ||
79 | // The value encoded by this Double must be strictly greater than 0. | |
80 | DiyFp AsNormalizedDiyFp() const { | |
81 | ASSERT(value() > 0.0); | |
82 | uint64_t f = Significand(); | |
83 | int e = Exponent(); | |
84 | ||
85 | // The current double could be a denormal. | |
86 | while ((f & kHiddenBit) == 0) { | |
87 | f <<= 1; | |
88 | e--; | |
89 | } | |
90 | // Do the final shifts in one go. | |
91 | f <<= DiyFp::kSignificandSize - kSignificandSize; | |
92 | e -= DiyFp::kSignificandSize - kSignificandSize; | |
93 | return DiyFp(f, e); | |
94 | } | |
95 | ||
96 | // Returns the double's bit as uint64. | |
97 | uint64_t AsUint64() const { | |
98 | return d64_; | |
99 | } | |
100 | ||
101 | // Returns the next greater double. Returns +infinity on input +infinity. | |
102 | double NextDouble() const { | |
103 | if (d64_ == kInfinity) return Double(kInfinity).value(); | |
104 | if (Sign() < 0 && Significand() == 0) { | |
105 | // -0.0 | |
106 | return 0.0; | |
107 | } | |
108 | if (Sign() < 0) { | |
109 | return Double(d64_ - 1).value(); | |
110 | } else { | |
111 | return Double(d64_ + 1).value(); | |
112 | } | |
113 | } | |
114 | ||
115 | double PreviousDouble() const { | |
116 | if (d64_ == (kInfinity | kSignMask)) return -Infinity(); | |
117 | if (Sign() < 0) { | |
118 | return Double(d64_ + 1).value(); | |
119 | } else { | |
120 | if (Significand() == 0) return -0.0; | |
121 | return Double(d64_ - 1).value(); | |
122 | } | |
123 | } | |
124 | ||
125 | int Exponent() const { | |
126 | if (IsDenormal()) return kDenormalExponent; | |
127 | ||
128 | uint64_t d64 = AsUint64(); | |
129 | int biased_e = | |
130 | static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); | |
131 | return biased_e - kExponentBias; | |
132 | } | |
133 | ||
134 | uint64_t Significand() const { | |
135 | uint64_t d64 = AsUint64(); | |
136 | uint64_t significand = d64 & kSignificandMask; | |
137 | if (!IsDenormal()) { | |
138 | return significand + kHiddenBit; | |
139 | } else { | |
140 | return significand; | |
141 | } | |
142 | } | |
143 | ||
144 | // Returns true if the double is a denormal. | |
145 | bool IsDenormal() const { | |
146 | uint64_t d64 = AsUint64(); | |
147 | return (d64 & kExponentMask) == 0; | |
148 | } | |
149 | ||
150 | // We consider denormals not to be special. | |
151 | // Hence only Infinity and NaN are special. | |
152 | bool IsSpecial() const { | |
153 | uint64_t d64 = AsUint64(); | |
154 | return (d64 & kExponentMask) == kExponentMask; | |
155 | } | |
156 | ||
157 | bool IsNan() const { | |
158 | uint64_t d64 = AsUint64(); | |
159 | return ((d64 & kExponentMask) == kExponentMask) && | |
160 | ((d64 & kSignificandMask) != 0); | |
161 | } | |
162 | ||
163 | bool IsInfinite() const { | |
164 | uint64_t d64 = AsUint64(); | |
165 | return ((d64 & kExponentMask) == kExponentMask) && | |
166 | ((d64 & kSignificandMask) == 0); | |
167 | } | |
168 | ||
169 | int Sign() const { | |
170 | uint64_t d64 = AsUint64(); | |
171 | return (d64 & kSignMask) == 0? 1: -1; | |
172 | } | |
173 | ||
174 | // Precondition: the value encoded by this Double must be greater or equal | |
175 | // than +0.0. | |
176 | DiyFp UpperBoundary() const { | |
177 | ASSERT(Sign() > 0); | |
178 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); | |
179 | } | |
180 | ||
181 | // Computes the two boundaries of this. | |
182 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same | |
183 | // exponent as m_plus. | |
184 | // Precondition: the value encoded by this Double must be greater than 0. | |
185 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |
186 | ASSERT(value() > 0.0); | |
187 | DiyFp v = this->AsDiyFp(); | |
188 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |
189 | DiyFp m_minus; | |
190 | if (LowerBoundaryIsCloser()) { | |
191 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |
192 | } else { | |
193 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |
194 | } | |
195 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |
196 | m_minus.set_e(m_plus.e()); | |
197 | *out_m_plus = m_plus; | |
198 | *out_m_minus = m_minus; | |
199 | } | |
200 | ||
201 | bool LowerBoundaryIsCloser() const { | |
202 | // The boundary is closer if the significand is of the form f == 2^p-1 then | |
203 | // the lower boundary is closer. | |
204 | // Think of v = 1000e10 and v- = 9999e9. | |
205 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |
206 | // at a distance of 1e8. | |
207 | // The only exception is for the smallest normal: the largest denormal is | |
208 | // at the same distance as its successor. | |
209 | // Note: denormals have the same exponent as the smallest normals. | |
210 | bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); | |
211 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); | |
212 | } | |
213 | ||
214 | double value() const { return uint64_to_double(d64_); } | |
215 | ||
216 | // Returns the significand size for a given order of magnitude. | |
217 | // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. | |
218 | // This function returns the number of significant binary digits v will have | |
219 | // once it's encoded into a double. In almost all cases this is equal to | |
220 | // kSignificandSize. The only exceptions are denormals. They start with | |
221 | // leading zeroes and their effective significand-size is hence smaller. | |
222 | static int SignificandSizeForOrderOfMagnitude(int order) { | |
223 | if (order >= (kDenormalExponent + kSignificandSize)) { | |
224 | return kSignificandSize; | |
225 | } | |
226 | if (order <= kDenormalExponent) return 0; | |
227 | return order - kDenormalExponent; | |
228 | } | |
229 | ||
230 | static double Infinity() { | |
231 | return Double(kInfinity).value(); | |
232 | } | |
233 | ||
234 | static double NaN() { | |
235 | return Double(kNaN).value(); | |
236 | } | |
237 | ||
238 | private: | |
239 | static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; | |
240 | static const int kDenormalExponent = -kExponentBias + 1; | |
241 | static const int kMaxExponent = 0x7FF - kExponentBias; | |
242 | static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); | |
243 | static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); | |
244 | ||
245 | const uint64_t d64_; | |
246 | ||
247 | static uint64_t DiyFpToUint64(DiyFp diy_fp) { | |
248 | uint64_t significand = diy_fp.f(); | |
249 | int exponent = diy_fp.e(); | |
250 | while (significand > kHiddenBit + kSignificandMask) { | |
251 | significand >>= 1; | |
252 | exponent++; | |
253 | } | |
254 | if (exponent >= kMaxExponent) { | |
255 | return kInfinity; | |
256 | } | |
257 | if (exponent < kDenormalExponent) { | |
258 | return 0; | |
259 | } | |
260 | while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { | |
261 | significand <<= 1; | |
262 | exponent--; | |
263 | } | |
264 | uint64_t biased_exponent; | |
265 | if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { | |
266 | biased_exponent = 0; | |
267 | } else { | |
268 | biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); | |
269 | } | |
270 | return (significand & kSignificandMask) | | |
271 | (biased_exponent << kPhysicalSignificandSize); | |
272 | } | |
273 | ||
3d1f044b | 274 | DC_DISALLOW_COPY_AND_ASSIGN(Double); |
0f5d89e8 A |
275 | }; |
276 | ||
277 | class Single { | |
278 | public: | |
279 | static const uint32_t kSignMask = 0x80000000; | |
280 | static const uint32_t kExponentMask = 0x7F800000; | |
281 | static const uint32_t kSignificandMask = 0x007FFFFF; | |
282 | static const uint32_t kHiddenBit = 0x00800000; | |
283 | static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. | |
284 | static const int kSignificandSize = 24; | |
285 | ||
286 | Single() : d32_(0) {} | |
287 | explicit Single(float f) : d32_(float_to_uint32(f)) {} | |
288 | explicit Single(uint32_t d32) : d32_(d32) {} | |
289 | ||
290 | // The value encoded by this Single must be greater or equal to +0.0. | |
291 | // It must not be special (infinity, or NaN). | |
292 | DiyFp AsDiyFp() const { | |
293 | ASSERT(Sign() > 0); | |
294 | ASSERT(!IsSpecial()); | |
295 | return DiyFp(Significand(), Exponent()); | |
296 | } | |
297 | ||
298 | // Returns the single's bit as uint64. | |
299 | uint32_t AsUint32() const { | |
300 | return d32_; | |
301 | } | |
302 | ||
303 | int Exponent() const { | |
304 | if (IsDenormal()) return kDenormalExponent; | |
305 | ||
306 | uint32_t d32 = AsUint32(); | |
307 | int biased_e = | |
308 | static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); | |
309 | return biased_e - kExponentBias; | |
310 | } | |
311 | ||
312 | uint32_t Significand() const { | |
313 | uint32_t d32 = AsUint32(); | |
314 | uint32_t significand = d32 & kSignificandMask; | |
315 | if (!IsDenormal()) { | |
316 | return significand + kHiddenBit; | |
317 | } else { | |
318 | return significand; | |
319 | } | |
320 | } | |
321 | ||
322 | // Returns true if the single is a denormal. | |
323 | bool IsDenormal() const { | |
324 | uint32_t d32 = AsUint32(); | |
325 | return (d32 & kExponentMask) == 0; | |
326 | } | |
327 | ||
328 | // We consider denormals not to be special. | |
329 | // Hence only Infinity and NaN are special. | |
330 | bool IsSpecial() const { | |
331 | uint32_t d32 = AsUint32(); | |
332 | return (d32 & kExponentMask) == kExponentMask; | |
333 | } | |
334 | ||
335 | bool IsNan() const { | |
336 | uint32_t d32 = AsUint32(); | |
337 | return ((d32 & kExponentMask) == kExponentMask) && | |
338 | ((d32 & kSignificandMask) != 0); | |
339 | } | |
340 | ||
341 | bool IsInfinite() const { | |
342 | uint32_t d32 = AsUint32(); | |
343 | return ((d32 & kExponentMask) == kExponentMask) && | |
344 | ((d32 & kSignificandMask) == 0); | |
345 | } | |
346 | ||
347 | int Sign() const { | |
348 | uint32_t d32 = AsUint32(); | |
349 | return (d32 & kSignMask) == 0? 1: -1; | |
350 | } | |
351 | ||
352 | // Computes the two boundaries of this. | |
353 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same | |
354 | // exponent as m_plus. | |
355 | // Precondition: the value encoded by this Single must be greater than 0. | |
356 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |
357 | ASSERT(value() > 0.0); | |
358 | DiyFp v = this->AsDiyFp(); | |
359 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |
360 | DiyFp m_minus; | |
361 | if (LowerBoundaryIsCloser()) { | |
362 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |
363 | } else { | |
364 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |
365 | } | |
366 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |
367 | m_minus.set_e(m_plus.e()); | |
368 | *out_m_plus = m_plus; | |
369 | *out_m_minus = m_minus; | |
370 | } | |
371 | ||
372 | // Precondition: the value encoded by this Single must be greater or equal | |
373 | // than +0.0. | |
374 | DiyFp UpperBoundary() const { | |
375 | ASSERT(Sign() > 0); | |
376 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); | |
377 | } | |
378 | ||
379 | bool LowerBoundaryIsCloser() const { | |
380 | // The boundary is closer if the significand is of the form f == 2^p-1 then | |
381 | // the lower boundary is closer. | |
382 | // Think of v = 1000e10 and v- = 9999e9. | |
383 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |
384 | // at a distance of 1e8. | |
385 | // The only exception is for the smallest normal: the largest denormal is | |
386 | // at the same distance as its successor. | |
387 | // Note: denormals have the same exponent as the smallest normals. | |
388 | bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); | |
389 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); | |
390 | } | |
391 | ||
392 | float value() const { return uint32_to_float(d32_); } | |
393 | ||
394 | static float Infinity() { | |
395 | return Single(kInfinity).value(); | |
396 | } | |
397 | ||
398 | static float NaN() { | |
399 | return Single(kNaN).value(); | |
400 | } | |
401 | ||
402 | private: | |
403 | static const int kExponentBias = 0x7F + kPhysicalSignificandSize; | |
404 | static const int kDenormalExponent = -kExponentBias + 1; | |
405 | static const int kMaxExponent = 0xFF - kExponentBias; | |
406 | static const uint32_t kInfinity = 0x7F800000; | |
407 | static const uint32_t kNaN = 0x7FC00000; | |
408 | ||
409 | const uint32_t d32_; | |
410 | ||
3d1f044b | 411 | DC_DISALLOW_COPY_AND_ASSIGN(Single); |
0f5d89e8 A |
412 | }; |
413 | ||
414 | } // namespace double_conversion | |
415 | ||
416 | // ICU PATCH: Close ICU namespace | |
417 | U_NAMESPACE_END | |
418 | ||
419 | #endif // DOUBLE_CONVERSION_DOUBLE_H_ | |
420 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |