]>
Commit | Line | Data |
---|---|---|
729e4ab9 A |
1 | /* |
2 | ****************************************************************************** | |
3 | * | |
4388f060 | 4 | * Copyright (C) 2008-2011, International Business Machines |
729e4ab9 A |
5 | * Corporation and others. All Rights Reserved. |
6 | * | |
7 | ****************************************************************************** | |
8 | * file name: uspoof_conf.cpp | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2009Jan05 (refactoring earlier files) | |
14 | * created by: Andy Heninger | |
15 | * | |
16 | * Internal classes for compililing confusable data into its binary (runtime) form. | |
17 | */ | |
18 | ||
19 | #include "unicode/utypes.h" | |
20 | #include "unicode/uspoof.h" | |
21 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS | |
22 | #if !UCONFIG_NO_NORMALIZATION | |
23 | ||
24 | #include "unicode/unorm.h" | |
25 | #include "unicode/uregex.h" | |
26 | #include "unicode/ustring.h" | |
27 | #include "cmemory.h" | |
28 | #include "uspoof_impl.h" | |
29 | #include "uhash.h" | |
30 | #include "uvector.h" | |
31 | #include "uassert.h" | |
32 | #include "uarrsort.h" | |
33 | #include "uspoof_conf.h" | |
34 | ||
35 | U_NAMESPACE_USE | |
36 | ||
37 | ||
38 | //--------------------------------------------------------------------- | |
39 | // | |
40 | // buildConfusableData Compile the source confusable data, as defined by | |
41 | // the Unicode data file confusables.txt, into the binary | |
42 | // structures used by the confusable detector. | |
43 | // | |
44 | // The binary structures are described in uspoof_impl.h | |
45 | // | |
46 | // 1. parse the data, building 4 hash tables, one each for the SL, SA, ML and MA | |
47 | // tables. Each maps from a UChar32 to a String. | |
48 | // | |
49 | // 2. Sort all of the strings encountered by length, since they will need to | |
50 | // be stored in that order in the final string table. | |
51 | // | |
52 | // 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the | |
53 | // list because that will be the ordering of our runtime table. | |
54 | // | |
55 | // 4. Generate the run time string table. This is generated before the key & value | |
56 | // tables because we need the string indexes when building those tables. | |
57 | // | |
58 | // 5. Build the run-time key and value tables. These are parallel tables, and are built | |
59 | // at the same time | |
60 | // | |
61 | ||
62 | SPUString::SPUString(UnicodeString *s) { | |
63 | fStr = s; | |
64 | fStrTableIndex = 0; | |
65 | } | |
66 | ||
67 | ||
68 | SPUString::~SPUString() { | |
69 | delete fStr; | |
70 | } | |
71 | ||
72 | ||
73 | SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { | |
74 | fVec = new UVector(status); | |
75 | fHash = uhash_open(uhash_hashUnicodeString, // key hash function | |
76 | uhash_compareUnicodeString, // Key Comparator | |
77 | NULL, // Value Comparator | |
78 | &status); | |
79 | } | |
80 | ||
81 | ||
82 | SPUStringPool::~SPUStringPool() { | |
83 | int i; | |
84 | for (i=fVec->size()-1; i>=0; i--) { | |
85 | SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); | |
86 | delete s; | |
87 | } | |
88 | delete fVec; | |
89 | uhash_close(fHash); | |
90 | } | |
91 | ||
92 | ||
93 | int32_t SPUStringPool::size() { | |
94 | return fVec->size(); | |
95 | } | |
96 | ||
97 | SPUString *SPUStringPool::getByIndex(int32_t index) { | |
98 | SPUString *retString = (SPUString *)fVec->elementAt(index); | |
99 | return retString; | |
100 | } | |
101 | ||
102 | ||
103 | // Comparison function for ordering strings in the string pool. | |
104 | // Compare by length first, then, within a group of the same length, | |
105 | // by code point order. | |
106 | // Conforms to the type signature for a USortComparator in uvector.h | |
107 | ||
108 | static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { | |
109 | const SPUString *sL = const_cast<const SPUString *>( | |
110 | static_cast<SPUString *>(left.pointer)); | |
111 | const SPUString *sR = const_cast<const SPUString *>( | |
112 | static_cast<SPUString *>(right.pointer)); | |
113 | int32_t lenL = sL->fStr->length(); | |
114 | int32_t lenR = sR->fStr->length(); | |
115 | if (lenL < lenR) { | |
116 | return -1; | |
117 | } else if (lenL > lenR) { | |
118 | return 1; | |
119 | } else { | |
120 | return sL->fStr->compare(*(sR->fStr)); | |
121 | } | |
122 | } | |
123 | ||
124 | void SPUStringPool::sort(UErrorCode &status) { | |
125 | fVec->sort(SPUStringCompare, status); | |
126 | } | |
127 | ||
128 | ||
129 | SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { | |
130 | SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); | |
131 | if (hashedString != NULL) { | |
132 | delete src; | |
133 | } else { | |
134 | hashedString = new SPUString(src); | |
135 | uhash_put(fHash, src, hashedString, &status); | |
136 | fVec->addElement(hashedString, status); | |
137 | } | |
138 | return hashedString; | |
139 | } | |
140 | ||
141 | ||
142 | ||
143 | ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : | |
144 | fSpoofImpl(spImpl), | |
145 | fInput(NULL), | |
146 | fSLTable(NULL), | |
147 | fSATable(NULL), | |
148 | fMLTable(NULL), | |
149 | fMATable(NULL), | |
150 | fKeySet(NULL), | |
151 | fKeyVec(NULL), | |
152 | fValueVec(NULL), | |
153 | fStringTable(NULL), | |
154 | fStringLengthsTable(NULL), | |
155 | stringPool(NULL), | |
156 | fParseLine(NULL), | |
157 | fParseHexNum(NULL), | |
158 | fLineNum(0) | |
159 | { | |
160 | if (U_FAILURE(status)) { | |
161 | return; | |
162 | } | |
163 | fSLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); | |
164 | fSATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); | |
165 | fMLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); | |
166 | fMATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); | |
167 | fKeySet = new UnicodeSet(); | |
168 | fKeyVec = new UVector(status); | |
169 | fValueVec = new UVector(status); | |
170 | stringPool = new SPUStringPool(status); | |
171 | } | |
172 | ||
173 | ||
174 | ConfusabledataBuilder::~ConfusabledataBuilder() { | |
175 | uprv_free(fInput); | |
176 | uregex_close(fParseLine); | |
177 | uregex_close(fParseHexNum); | |
178 | uhash_close(fSLTable); | |
179 | uhash_close(fSATable); | |
180 | uhash_close(fMLTable); | |
181 | uhash_close(fMATable); | |
182 | delete fKeySet; | |
183 | delete fKeyVec; | |
184 | delete fStringTable; | |
185 | delete fStringLengthsTable; | |
186 | delete fValueVec; | |
187 | delete stringPool; | |
188 | } | |
189 | ||
190 | ||
191 | void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, | |
192 | int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { | |
193 | ||
194 | if (U_FAILURE(status)) { | |
195 | return; | |
196 | } | |
197 | ConfusabledataBuilder builder(spImpl, status); | |
198 | builder.build(confusables, confusablesLen, status); | |
199 | if (U_FAILURE(status) && errorType != NULL) { | |
200 | *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; | |
201 | pe->line = builder.fLineNum; | |
202 | } | |
203 | } | |
204 | ||
205 | ||
206 | void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, | |
207 | UErrorCode &status) { | |
208 | ||
209 | // Convert the user input data from UTF-8 to UChar (UTF-16) | |
210 | int32_t inputLen = 0; | |
211 | if (U_FAILURE(status)) { | |
212 | return; | |
213 | } | |
214 | u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); | |
215 | if (status != U_BUFFER_OVERFLOW_ERROR) { | |
216 | return; | |
217 | } | |
218 | status = U_ZERO_ERROR; | |
219 | fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); | |
220 | if (fInput == NULL) { | |
221 | status = U_MEMORY_ALLOCATION_ERROR; | |
4388f060 | 222 | return; |
729e4ab9 A |
223 | } |
224 | u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); | |
225 | ||
226 | ||
227 | // Regular Expression to parse a line from Confusables.txt. The expression will match | |
228 | // any line. What was matched is determined by examining which capture groups have a match. | |
229 | // Capture Group 1: the source char | |
230 | // Capture Group 2: the replacement chars | |
231 | // Capture Group 3-6 the table type, SL, SA, ML, or MA | |
232 | // Capture Group 7: A blank or comment only line. | |
233 | // Capture Group 8: A syntactically invalid line. Anything that didn't match before. | |
234 | // Example Line from the confusables.txt source file: | |
235 | // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " | |
4388f060 | 236 | UnicodeString pattern( |
729e4ab9 A |
237 | "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char |
238 | "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) | |
239 | "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) | |
240 | "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type | |
241 | "[ \\t]*(?:#.*?)?$" // Match any trailing #comment | |
242 | "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment | |
4388f060 A |
243 | "|^(.*?)$", -1, US_INV); // OR match any line, which catches illegal lines. |
244 | // TODO: Why are we using the regex C API here? C++ would just take UnicodeString... | |
245 | fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); | |
729e4ab9 A |
246 | |
247 | // Regular expression for parsing a hex number out of a space-separated list of them. | |
248 | // Capture group 1 gets the number, with spaces removed. | |
4388f060 A |
249 | pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)"); |
250 | fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); | |
729e4ab9 A |
251 | |
252 | // Zap any Byte Order Mark at the start of input. Changing it to a space is benign | |
253 | // given the syntax of the input. | |
254 | if (*fInput == 0xfeff) { | |
255 | *fInput = 0x20; | |
256 | } | |
257 | ||
258 | // Parse the input, one line per iteration of this loop. | |
259 | uregex_setText(fParseLine, fInput, inputLen, &status); | |
260 | while (uregex_findNext(fParseLine, &status)) { | |
261 | fLineNum++; | |
262 | if (uregex_start(fParseLine, 7, &status) >= 0) { | |
263 | // this was a blank or comment line. | |
264 | continue; | |
265 | } | |
266 | if (uregex_start(fParseLine, 8, &status) >= 0) { | |
267 | // input file syntax error. | |
268 | status = U_PARSE_ERROR; | |
269 | return; | |
270 | } | |
271 | ||
272 | // We have a good input line. Extract the key character and mapping string, and | |
273 | // put them into the appropriate mapping table. | |
274 | UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), | |
275 | uregex_end(fParseLine, 1, &status), status); | |
276 | ||
277 | int32_t mapStringStart = uregex_start(fParseLine, 2, &status); | |
278 | int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; | |
279 | uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); | |
280 | ||
281 | UnicodeString *mapString = new UnicodeString(); | |
282 | if (mapString == NULL) { | |
283 | status = U_MEMORY_ALLOCATION_ERROR; | |
284 | return; | |
285 | } | |
286 | while (uregex_findNext(fParseHexNum, &status)) { | |
287 | UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), | |
288 | uregex_end(fParseHexNum, 1, &status), status); | |
289 | mapString->append(c); | |
290 | } | |
291 | U_ASSERT(mapString->length() >= 1); | |
292 | ||
293 | // Put the map (value) string into the string pool | |
294 | // This a little like a Java intern() - any duplicates will be eliminated. | |
295 | SPUString *smapString = stringPool->addString(mapString, status); | |
296 | ||
297 | // Add the UChar32 -> string mapping to the appropriate table. | |
298 | UHashtable *table = uregex_start(fParseLine, 3, &status) >= 0 ? fSLTable : | |
299 | uregex_start(fParseLine, 4, &status) >= 0 ? fSATable : | |
300 | uregex_start(fParseLine, 5, &status) >= 0 ? fMLTable : | |
301 | uregex_start(fParseLine, 6, &status) >= 0 ? fMATable : | |
302 | NULL; | |
303 | U_ASSERT(table != NULL); | |
304 | uhash_iput(table, keyChar, smapString, &status); | |
305 | fKeySet->add(keyChar); | |
306 | if (U_FAILURE(status)) { | |
307 | return; | |
308 | } | |
309 | } | |
310 | ||
311 | // Input data is now all parsed and collected. | |
312 | // Now create the run-time binary form of the data. | |
313 | // | |
314 | // This is done in two steps. First the data is assembled into vectors and strings, | |
315 | // for ease of construction, then the contents of these collections are dumped | |
316 | // into the actual raw-bytes data storage. | |
317 | ||
318 | // Build up the string array, and record the index of each string therein | |
319 | // in the (build time only) string pool. | |
320 | // Strings of length one are not entered into the strings array. | |
321 | // At the same time, build up the string lengths table, which records the | |
322 | // position in the string table of the first string of each length >= 4. | |
323 | // (Strings in the table are sorted by length) | |
324 | stringPool->sort(status); | |
325 | fStringTable = new UnicodeString(); | |
326 | fStringLengthsTable = new UVector(status); | |
327 | int32_t previousStringLength = 0; | |
328 | int32_t previousStringIndex = 0; | |
329 | int32_t poolSize = stringPool->size(); | |
330 | int32_t i; | |
331 | for (i=0; i<poolSize; i++) { | |
332 | SPUString *s = stringPool->getByIndex(i); | |
333 | int32_t strLen = s->fStr->length(); | |
334 | int32_t strIndex = fStringTable->length(); | |
335 | U_ASSERT(strLen >= previousStringLength); | |
336 | if (strLen == 1) { | |
337 | // strings of length one do not get an entry in the string table. | |
338 | // Keep the single string character itself here, which is the same | |
339 | // convention that is used in the final run-time string table index. | |
340 | s->fStrTableIndex = s->fStr->charAt(0); | |
341 | } else { | |
342 | if ((strLen > previousStringLength) && (previousStringLength >= 4)) { | |
343 | fStringLengthsTable->addElement(previousStringIndex, status); | |
344 | fStringLengthsTable->addElement(previousStringLength, status); | |
345 | } | |
346 | s->fStrTableIndex = strIndex; | |
347 | fStringTable->append(*(s->fStr)); | |
348 | } | |
349 | previousStringLength = strLen; | |
350 | previousStringIndex = strIndex; | |
351 | } | |
352 | // Make the final entry to the string lengths table. | |
353 | // (it holds an entry for the _last_ string of each length, so adding the | |
354 | // final one doesn't happen in the main loop because no longer string was encountered.) | |
355 | if (previousStringLength >= 4) { | |
356 | fStringLengthsTable->addElement(previousStringIndex, status); | |
357 | fStringLengthsTable->addElement(previousStringLength, status); | |
358 | } | |
359 | ||
360 | // Construct the compile-time Key and Value tables | |
361 | // | |
362 | // For each key code point, check which mapping tables it applies to, | |
363 | // and create the final data for the key & value structures. | |
364 | // | |
365 | // The four logical mapping tables are conflated into one combined table. | |
366 | // If multiple logical tables have the same mapping for some key, they | |
367 | // share a single entry in the combined table. | |
368 | // If more than one mapping exists for the same key code point, multiple | |
369 | // entries will be created in the table | |
370 | ||
371 | for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { | |
372 | // It is an oddity of the UnicodeSet API that simply enumerating the contained | |
373 | // code points requires a nested loop. | |
374 | for (UChar32 keyChar=fKeySet->getRangeStart(range); | |
375 | keyChar <= fKeySet->getRangeEnd(range); keyChar++) { | |
376 | addKeyEntry(keyChar, fSLTable, USPOOF_SL_TABLE_FLAG, status); | |
377 | addKeyEntry(keyChar, fSATable, USPOOF_SA_TABLE_FLAG, status); | |
378 | addKeyEntry(keyChar, fMLTable, USPOOF_ML_TABLE_FLAG, status); | |
379 | addKeyEntry(keyChar, fMATable, USPOOF_MA_TABLE_FLAG, status); | |
380 | } | |
381 | } | |
382 | ||
383 | // Put the assembled data into the flat runtime array | |
384 | outputData(status); | |
385 | ||
386 | // All of the intermediate allocated data belongs to the ConfusabledataBuilder | |
387 | // object (this), and is deleted in the destructor. | |
388 | return; | |
389 | } | |
390 | ||
391 | // | |
392 | // outputData The confusable data has been compiled and stored in intermediate | |
393 | // collections and strings. Copy it from there to the final flat | |
394 | // binary array. | |
395 | // | |
396 | // Note that as each section is added to the output data, the | |
397 | // expand (reserveSpace() function will likely relocate it in memory. | |
398 | // Be careful with pointers. | |
399 | // | |
400 | void ConfusabledataBuilder::outputData(UErrorCode &status) { | |
401 | ||
402 | U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); | |
403 | ||
404 | // The Key Table | |
405 | // While copying the keys to the runtime array, | |
406 | // also sanity check that they are sorted. | |
407 | ||
408 | int32_t numKeys = fKeyVec->size(); | |
409 | int32_t *keys = | |
410 | static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); | |
411 | if (U_FAILURE(status)) { | |
412 | return; | |
413 | } | |
414 | int i; | |
415 | int32_t previousKey = 0; | |
416 | for (i=0; i<numKeys; i++) { | |
417 | int32_t key = fKeyVec->elementAti(i); | |
418 | U_ASSERT((key & 0x00ffffff) >= (previousKey & 0x00ffffff)); | |
419 | U_ASSERT((key & 0xff000000) != 0); | |
420 | keys[i] = key; | |
421 | previousKey = key; | |
422 | } | |
423 | SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; | |
424 | rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); | |
425 | rawData->fCFUKeysSize = numKeys; | |
426 | fSpoofImpl->fSpoofData->fCFUKeys = keys; | |
427 | ||
428 | ||
429 | // The Value Table, parallels the key table | |
430 | int32_t numValues = fValueVec->size(); | |
431 | U_ASSERT(numKeys == numValues); | |
432 | uint16_t *values = | |
433 | static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); | |
434 | if (U_FAILURE(status)) { | |
435 | return; | |
436 | } | |
437 | for (i=0; i<numValues; i++) { | |
438 | uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); | |
439 | U_ASSERT(value < 0xffff); | |
440 | values[i] = static_cast<uint16_t>(value); | |
441 | } | |
442 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
443 | rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); | |
444 | rawData->fCFUStringIndexSize = numValues; | |
445 | fSpoofImpl->fSpoofData->fCFUValues = values; | |
446 | ||
447 | // The Strings Table. | |
448 | ||
449 | uint32_t stringsLength = fStringTable->length(); | |
450 | // Reserve an extra space so the string will be nul-terminated. This is | |
451 | // only a convenience, for when debugging; it is not needed otherwise. | |
452 | UChar *strings = | |
453 | static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); | |
454 | if (U_FAILURE(status)) { | |
455 | return; | |
456 | } | |
457 | fStringTable->extract(strings, stringsLength+1, status); | |
458 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
459 | U_ASSERT(rawData->fCFUStringTable == 0); | |
460 | rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); | |
461 | rawData->fCFUStringTableLen = stringsLength; | |
462 | fSpoofImpl->fSpoofData->fCFUStrings = strings; | |
463 | ||
464 | // The String Lengths Table | |
465 | // While copying into the runtime array do some sanity checks on the values | |
466 | // Each complete entry contains two fields, an index and an offset. | |
467 | // Lengths should increase with each entry. | |
468 | // Offsets should be less than the size of the string table. | |
469 | int32_t lengthTableLength = fStringLengthsTable->size(); | |
470 | uint16_t *stringLengths = | |
471 | static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(lengthTableLength*sizeof(uint16_t), status)); | |
472 | if (U_FAILURE(status)) { | |
473 | return; | |
474 | } | |
475 | int32_t destIndex = 0; | |
476 | uint32_t previousLength = 0; | |
477 | for (i=0; i<lengthTableLength; i+=2) { | |
478 | uint32_t offset = static_cast<uint32_t>(fStringLengthsTable->elementAti(i)); | |
479 | uint32_t length = static_cast<uint32_t>(fStringLengthsTable->elementAti(i+1)); | |
480 | U_ASSERT(offset < stringsLength); | |
481 | U_ASSERT(length < 40); | |
482 | U_ASSERT(length > previousLength); | |
483 | stringLengths[destIndex++] = static_cast<uint16_t>(offset); | |
484 | stringLengths[destIndex++] = static_cast<uint16_t>(length); | |
485 | previousLength = length; | |
486 | } | |
487 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
488 | rawData->fCFUStringLengths = (int32_t)((char *)stringLengths - (char *)rawData); | |
489 | // Note: StringLengthsSize in the raw data is the number of complete entries, | |
490 | // each consisting of a pair of 16 bit values, hence the divide by 2. | |
491 | rawData->fCFUStringLengthsSize = lengthTableLength / 2; | |
492 | fSpoofImpl->fSpoofData->fCFUStringLengths = | |
493 | reinterpret_cast<SpoofStringLengthsElement *>(stringLengths); | |
494 | } | |
495 | ||
496 | ||
497 | ||
498 | // addKeyEntry Construction of the confusable Key and Mapping Values tables. | |
499 | // This is an intermediate point in the building process. | |
500 | // We already have the mappings in the hash tables fSLTable, etc. | |
501 | // This function builds corresponding run-time style table entries into | |
502 | // fKeyVec and fValueVec | |
503 | ||
504 | void ConfusabledataBuilder::addKeyEntry( | |
505 | UChar32 keyChar, // The key character | |
506 | UHashtable *table, // The table, one of SATable, MATable, etc. | |
507 | int32_t tableFlag, // One of USPOOF_SA_TABLE_FLAG, etc. | |
508 | UErrorCode &status) { | |
509 | ||
510 | SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(table, keyChar)); | |
511 | if (targetMapping == NULL) { | |
512 | // No mapping for this key character. | |
513 | // (This function is called for all four tables for each key char that | |
514 | // is seen anywhere, so this no entry cases are very much expected.) | |
515 | return; | |
516 | } | |
517 | ||
518 | // Check whether there is already an entry with the correct mapping. | |
519 | // If so, simply set the flag in the keyTable saying that the existing entry | |
520 | // applies to the table that we're doing now. | |
521 | ||
522 | UBool keyHasMultipleValues = FALSE; | |
523 | int32_t i; | |
524 | for (i=fKeyVec->size()-1; i>=0 ; i--) { | |
525 | int32_t key = fKeyVec->elementAti(i); | |
526 | if ((key & 0x0ffffff) != keyChar) { | |
527 | // We have now checked all existing key entries for this key char (if any) | |
528 | // without finding one with the same mapping. | |
529 | break; | |
530 | } | |
531 | UnicodeString mapping = getMapping(i); | |
532 | if (mapping == *(targetMapping->fStr)) { | |
533 | // The run time entry we are currently testing has the correct mapping. | |
534 | // Set the flag in it indicating that it applies to the new table also. | |
535 | key |= tableFlag; | |
536 | fKeyVec->setElementAt(key, i); | |
537 | return; | |
538 | } | |
539 | keyHasMultipleValues = TRUE; | |
540 | } | |
541 | ||
542 | // Need to add a new entry to the binary data being built for this mapping. | |
543 | // Includes adding entries to both the key table and the parallel values table. | |
544 | ||
545 | int32_t newKey = keyChar | tableFlag; | |
546 | if (keyHasMultipleValues) { | |
547 | newKey |= USPOOF_KEY_MULTIPLE_VALUES; | |
548 | } | |
549 | int32_t adjustedMappingLength = targetMapping->fStr->length() - 1; | |
550 | if (adjustedMappingLength>3) { | |
551 | adjustedMappingLength = 3; | |
552 | } | |
553 | newKey |= adjustedMappingLength << USPOOF_KEY_LENGTH_SHIFT; | |
554 | ||
555 | int32_t newData = targetMapping->fStrTableIndex; | |
556 | ||
557 | fKeyVec->addElement(newKey, status); | |
558 | fValueVec->addElement(newData, status); | |
559 | ||
560 | // If the preceding key entry is for the same key character (but with a different mapping) | |
561 | // set the multiple-values flag on it. | |
562 | if (keyHasMultipleValues) { | |
563 | int32_t previousKeyIndex = fKeyVec->size() - 2; | |
564 | int32_t previousKey = fKeyVec->elementAti(previousKeyIndex); | |
565 | previousKey |= USPOOF_KEY_MULTIPLE_VALUES; | |
566 | fKeyVec->setElementAt(previousKey, previousKeyIndex); | |
567 | } | |
568 | } | |
569 | ||
570 | ||
571 | ||
572 | UnicodeString ConfusabledataBuilder::getMapping(int32_t index) { | |
573 | int32_t key = fKeyVec->elementAti(index); | |
574 | int32_t value = fValueVec->elementAti(index); | |
575 | int32_t length = USPOOF_KEY_LENGTH_FIELD(key); | |
576 | int32_t lastIndexWithLen; | |
577 | switch (length) { | |
578 | case 0: | |
579 | return UnicodeString(static_cast<UChar>(value)); | |
580 | case 1: | |
581 | case 2: | |
582 | return UnicodeString(*fStringTable, value, length+1); | |
583 | case 3: | |
584 | length = 0; | |
585 | int32_t i; | |
586 | for (i=0; i<fStringLengthsTable->size(); i+=2) { | |
587 | lastIndexWithLen = fStringLengthsTable->elementAti(i); | |
588 | if (value <= lastIndexWithLen) { | |
589 | length = fStringLengthsTable->elementAti(i+1); | |
590 | break; | |
591 | } | |
592 | } | |
593 | U_ASSERT(length>=3); | |
594 | return UnicodeString(*fStringTable, value, length); | |
595 | default: | |
596 | U_ASSERT(FALSE); | |
597 | } | |
598 | return UnicodeString(); | |
599 | } | |
600 | ||
601 | #endif | |
602 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS | |
603 |