]>
Commit | Line | Data |
---|---|---|
729e4ab9 A |
1 | /* |
2 | ******************************************************************************* | |
3 | * | |
4388f060 | 4 | * Copyright (C) 2009-2012, International Business Machines |
729e4ab9 A |
5 | * Corporation and others. All Rights Reserved. |
6 | * | |
7 | ******************************************************************************* | |
8 | * file name: normalizer2impl.cpp | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2009nov22 | |
14 | * created by: Markus W. Scherer | |
15 | */ | |
16 | ||
17 | #include "unicode/utypes.h" | |
18 | ||
19 | #if !UCONFIG_NO_NORMALIZATION | |
20 | ||
21 | #include "unicode/normalizer2.h" | |
22 | #include "unicode/udata.h" | |
23 | #include "unicode/ustring.h" | |
4388f060 | 24 | #include "unicode/utf16.h" |
729e4ab9 A |
25 | #include "cmemory.h" |
26 | #include "mutex.h" | |
27 | #include "normalizer2impl.h" | |
4388f060 | 28 | #include "putilimp.h" |
729e4ab9 | 29 | #include "uassert.h" |
729e4ab9 A |
30 | #include "uset_imp.h" |
31 | #include "utrie2.h" | |
32 | #include "uvector.h" | |
33 | ||
34 | U_NAMESPACE_BEGIN | |
35 | ||
36 | // ReorderingBuffer -------------------------------------------------------- *** | |
37 | ||
38 | UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { | |
39 | int32_t length=str.length(); | |
40 | start=str.getBuffer(destCapacity); | |
41 | if(start==NULL) { | |
42 | // getBuffer() already did str.setToBogus() | |
43 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
44 | return FALSE; | |
45 | } | |
46 | limit=start+length; | |
47 | remainingCapacity=str.getCapacity()-length; | |
48 | reorderStart=start; | |
49 | if(start==limit) { | |
50 | lastCC=0; | |
51 | } else { | |
52 | setIterator(); | |
53 | lastCC=previousCC(); | |
54 | // Set reorderStart after the last code point with cc<=1 if there is one. | |
55 | if(lastCC>1) { | |
56 | while(previousCC()>1) {} | |
57 | } | |
58 | reorderStart=codePointLimit; | |
59 | } | |
60 | return TRUE; | |
61 | } | |
62 | ||
63 | UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { | |
64 | int32_t length=(int32_t)(limit-start); | |
65 | return | |
66 | length==(int32_t)(otherLimit-otherStart) && | |
67 | 0==u_memcmp(start, otherStart, length); | |
68 | } | |
69 | ||
70 | UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { | |
71 | if(remainingCapacity<2 && !resize(2, errorCode)) { | |
72 | return FALSE; | |
73 | } | |
74 | if(lastCC<=cc || cc==0) { | |
75 | limit[0]=U16_LEAD(c); | |
76 | limit[1]=U16_TRAIL(c); | |
77 | limit+=2; | |
78 | lastCC=cc; | |
79 | if(cc<=1) { | |
80 | reorderStart=limit; | |
81 | } | |
82 | } else { | |
83 | insert(c, cc); | |
84 | } | |
85 | remainingCapacity-=2; | |
86 | return TRUE; | |
87 | } | |
88 | ||
89 | UBool ReorderingBuffer::append(const UChar *s, int32_t length, | |
90 | uint8_t leadCC, uint8_t trailCC, | |
91 | UErrorCode &errorCode) { | |
92 | if(length==0) { | |
93 | return TRUE; | |
94 | } | |
95 | if(remainingCapacity<length && !resize(length, errorCode)) { | |
96 | return FALSE; | |
97 | } | |
98 | remainingCapacity-=length; | |
99 | if(lastCC<=leadCC || leadCC==0) { | |
100 | if(trailCC<=1) { | |
101 | reorderStart=limit+length; | |
102 | } else if(leadCC<=1) { | |
103 | reorderStart=limit+1; // Ok if not a code point boundary. | |
104 | } | |
105 | const UChar *sLimit=s+length; | |
106 | do { *limit++=*s++; } while(s!=sLimit); | |
107 | lastCC=trailCC; | |
108 | } else { | |
109 | int32_t i=0; | |
110 | UChar32 c; | |
111 | U16_NEXT(s, i, length, c); | |
112 | insert(c, leadCC); // insert first code point | |
113 | while(i<length) { | |
114 | U16_NEXT(s, i, length, c); | |
115 | if(i<length) { | |
116 | // s must be in NFD, otherwise we need to use getCC(). | |
117 | leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); | |
118 | } else { | |
119 | leadCC=trailCC; | |
120 | } | |
121 | append(c, leadCC, errorCode); | |
122 | } | |
123 | } | |
124 | return TRUE; | |
125 | } | |
126 | ||
127 | UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { | |
128 | int32_t cpLength=U16_LENGTH(c); | |
129 | if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { | |
130 | return FALSE; | |
131 | } | |
132 | remainingCapacity-=cpLength; | |
133 | if(cpLength==1) { | |
134 | *limit++=(UChar)c; | |
135 | } else { | |
136 | limit[0]=U16_LEAD(c); | |
137 | limit[1]=U16_TRAIL(c); | |
138 | limit+=2; | |
139 | } | |
140 | lastCC=0; | |
141 | reorderStart=limit; | |
142 | return TRUE; | |
143 | } | |
144 | ||
145 | UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { | |
146 | if(s==sLimit) { | |
147 | return TRUE; | |
148 | } | |
149 | int32_t length=(int32_t)(sLimit-s); | |
150 | if(remainingCapacity<length && !resize(length, errorCode)) { | |
151 | return FALSE; | |
152 | } | |
153 | u_memcpy(limit, s, length); | |
154 | limit+=length; | |
155 | remainingCapacity-=length; | |
156 | lastCC=0; | |
157 | reorderStart=limit; | |
158 | return TRUE; | |
159 | } | |
160 | ||
161 | void ReorderingBuffer::remove() { | |
162 | reorderStart=limit=start; | |
163 | remainingCapacity=str.getCapacity(); | |
164 | lastCC=0; | |
165 | } | |
166 | ||
167 | void ReorderingBuffer::removeSuffix(int32_t suffixLength) { | |
168 | if(suffixLength<(limit-start)) { | |
169 | limit-=suffixLength; | |
170 | remainingCapacity+=suffixLength; | |
171 | } else { | |
172 | limit=start; | |
173 | remainingCapacity=str.getCapacity(); | |
174 | } | |
175 | lastCC=0; | |
176 | reorderStart=limit; | |
177 | } | |
178 | ||
179 | UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { | |
180 | int32_t reorderStartIndex=(int32_t)(reorderStart-start); | |
181 | int32_t length=(int32_t)(limit-start); | |
182 | str.releaseBuffer(length); | |
183 | int32_t newCapacity=length+appendLength; | |
184 | int32_t doubleCapacity=2*str.getCapacity(); | |
185 | if(newCapacity<doubleCapacity) { | |
186 | newCapacity=doubleCapacity; | |
187 | } | |
188 | if(newCapacity<256) { | |
189 | newCapacity=256; | |
190 | } | |
191 | start=str.getBuffer(newCapacity); | |
192 | if(start==NULL) { | |
193 | // getBuffer() already did str.setToBogus() | |
194 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
195 | return FALSE; | |
196 | } | |
197 | reorderStart=start+reorderStartIndex; | |
198 | limit=start+length; | |
199 | remainingCapacity=str.getCapacity()-length; | |
200 | return TRUE; | |
201 | } | |
202 | ||
203 | void ReorderingBuffer::skipPrevious() { | |
204 | codePointLimit=codePointStart; | |
205 | UChar c=*--codePointStart; | |
206 | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { | |
207 | --codePointStart; | |
208 | } | |
209 | } | |
210 | ||
211 | uint8_t ReorderingBuffer::previousCC() { | |
212 | codePointLimit=codePointStart; | |
213 | if(reorderStart>=codePointStart) { | |
214 | return 0; | |
215 | } | |
216 | UChar32 c=*--codePointStart; | |
217 | if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { | |
218 | return 0; | |
219 | } | |
220 | ||
221 | UChar c2; | |
222 | if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { | |
223 | --codePointStart; | |
224 | c=U16_GET_SUPPLEMENTARY(c2, c); | |
225 | } | |
226 | return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); | |
227 | } | |
228 | ||
229 | // Inserts c somewhere before the last character. | |
230 | // Requires 0<cc<lastCC which implies reorderStart<limit. | |
231 | void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { | |
232 | for(setIterator(), skipPrevious(); previousCC()>cc;) {} | |
233 | // insert c at codePointLimit, after the character with prevCC<=cc | |
234 | UChar *q=limit; | |
235 | UChar *r=limit+=U16_LENGTH(c); | |
236 | do { | |
237 | *--r=*--q; | |
238 | } while(codePointLimit!=q); | |
239 | writeCodePoint(q, c); | |
240 | if(cc<=1) { | |
241 | reorderStart=r; | |
242 | } | |
243 | } | |
244 | ||
245 | // Normalizer2Impl --------------------------------------------------------- *** | |
246 | ||
247 | struct CanonIterData : public UMemory { | |
248 | CanonIterData(UErrorCode &errorCode); | |
249 | ~CanonIterData(); | |
250 | void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); | |
251 | UTrie2 *trie; | |
252 | UVector canonStartSets; // contains UnicodeSet * | |
253 | }; | |
254 | ||
255 | Normalizer2Impl::~Normalizer2Impl() { | |
256 | udata_close(memory); | |
257 | utrie2_close(normTrie); | |
729e4ab9 A |
258 | delete (CanonIterData *)canonIterDataSingleton.fInstance; |
259 | } | |
260 | ||
261 | UBool U_CALLCONV | |
262 | Normalizer2Impl::isAcceptable(void *context, | |
263 | const char * /* type */, const char * /*name*/, | |
264 | const UDataInfo *pInfo) { | |
265 | if( | |
266 | pInfo->size>=20 && | |
267 | pInfo->isBigEndian==U_IS_BIG_ENDIAN && | |
268 | pInfo->charsetFamily==U_CHARSET_FAMILY && | |
269 | pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ | |
270 | pInfo->dataFormat[1]==0x72 && | |
271 | pInfo->dataFormat[2]==0x6d && | |
272 | pInfo->dataFormat[3]==0x32 && | |
4388f060 | 273 | pInfo->formatVersion[0]==2 |
729e4ab9 A |
274 | ) { |
275 | Normalizer2Impl *me=(Normalizer2Impl *)context; | |
276 | uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4); | |
277 | return TRUE; | |
278 | } else { | |
279 | return FALSE; | |
280 | } | |
281 | } | |
282 | ||
283 | void | |
284 | Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) { | |
285 | if(U_FAILURE(errorCode)) { | |
286 | return; | |
287 | } | |
288 | memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode); | |
289 | if(U_FAILURE(errorCode)) { | |
290 | return; | |
291 | } | |
292 | const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory); | |
293 | const int32_t *inIndexes=(const int32_t *)inBytes; | |
294 | int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4; | |
295 | if(indexesLength<=IX_MIN_MAYBE_YES) { | |
296 | errorCode=U_INVALID_FORMAT_ERROR; // Not enough indexes. | |
297 | return; | |
298 | } | |
299 | ||
300 | minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; | |
301 | minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; | |
302 | ||
303 | minYesNo=inIndexes[IX_MIN_YES_NO]; | |
4388f060 | 304 | minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; |
729e4ab9 A |
305 | minNoNo=inIndexes[IX_MIN_NO_NO]; |
306 | limitNoNo=inIndexes[IX_LIMIT_NO_NO]; | |
307 | minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; | |
308 | ||
309 | int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET]; | |
310 | int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET]; | |
311 | normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, | |
312 | inBytes+offset, nextOffset-offset, NULL, | |
313 | &errorCode); | |
314 | if(U_FAILURE(errorCode)) { | |
315 | return; | |
316 | } | |
317 | ||
318 | offset=nextOffset; | |
4388f060 | 319 | nextOffset=inIndexes[IX_SMALL_FCD_OFFSET]; |
729e4ab9 A |
320 | maybeYesCompositions=(const uint16_t *)(inBytes+offset); |
321 | extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); | |
4388f060 A |
322 | |
323 | // smallFCD: new in formatVersion 2 | |
324 | offset=nextOffset; | |
325 | smallFCD=inBytes+offset; | |
326 | ||
327 | // Build tccc180[]. | |
328 | // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300. | |
329 | uint8_t bits=0; | |
330 | for(UChar c=0; c<0x180; bits>>=1) { | |
331 | if((c&0xff)==0) { | |
332 | bits=smallFCD[c>>8]; // one byte per 0x100 code points | |
333 | } | |
334 | if(bits&1) { | |
335 | for(int i=0; i<0x20; ++i, ++c) { | |
336 | tccc180[c]=(uint8_t)getFCD16FromNormData(c); | |
337 | } | |
338 | } else { | |
339 | uprv_memset(tccc180+c, 0, 0x20); | |
340 | c+=0x20; | |
341 | } | |
342 | } | |
729e4ab9 A |
343 | } |
344 | ||
345 | uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const { | |
346 | UChar32 c; | |
347 | if(cpStart==(cpLimit-1)) { | |
348 | c=*cpStart; | |
349 | } else { | |
350 | c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); | |
351 | } | |
352 | uint16_t prevNorm16=getNorm16(c); | |
353 | if(prevNorm16<=minYesNo) { | |
354 | return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 | |
355 | } else { | |
356 | return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo | |
357 | } | |
358 | } | |
359 | ||
360 | U_CDECL_BEGIN | |
361 | ||
362 | static UBool U_CALLCONV | |
363 | enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { | |
364 | /* add the start code point to the USet */ | |
365 | const USetAdder *sa=(const USetAdder *)context; | |
366 | sa->add(sa->set, start); | |
367 | return TRUE; | |
368 | } | |
369 | ||
370 | static uint32_t U_CALLCONV | |
371 | segmentStarterMapper(const void * /*context*/, uint32_t value) { | |
372 | return value&CANON_NOT_SEGMENT_STARTER; | |
373 | } | |
374 | ||
375 | U_CDECL_END | |
376 | ||
377 | void | |
378 | Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { | |
379 | /* add the start code point of each same-value range of each trie */ | |
380 | utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa); | |
381 | ||
382 | /* add Hangul LV syllables and LV+1 because of skippables */ | |
383 | for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { | |
384 | sa->add(sa->set, c); | |
385 | sa->add(sa->set, c+1); | |
386 | } | |
387 | sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ | |
388 | } | |
389 | ||
390 | void | |
391 | Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { | |
392 | /* add the start code point of each same-value range of the canonical iterator data trie */ | |
393 | if(ensureCanonIterData(errorCode)) { | |
394 | // currently only used for the SEGMENT_STARTER property | |
395 | utrie2_enum(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, | |
396 | segmentStarterMapper, enumPropertyStartsRange, sa); | |
397 | } | |
398 | } | |
399 | ||
400 | const UChar * | |
401 | Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, | |
402 | UChar32 minNeedDataCP, | |
403 | ReorderingBuffer *buffer, | |
404 | UErrorCode &errorCode) const { | |
405 | // Make some effort to support NUL-terminated strings reasonably. | |
406 | // Take the part of the fast quick check loop that does not look up | |
407 | // data and check the first part of the string. | |
408 | // After this prefix, determine the string length to simplify the rest | |
409 | // of the code. | |
410 | const UChar *prevSrc=src; | |
411 | UChar c; | |
412 | while((c=*src++)<minNeedDataCP && c!=0) {} | |
413 | // Back out the last character for full processing. | |
414 | // Copy this prefix. | |
415 | if(--src!=prevSrc) { | |
416 | if(buffer!=NULL) { | |
417 | buffer->appendZeroCC(prevSrc, src, errorCode); | |
418 | } | |
419 | } | |
420 | return src; | |
421 | } | |
422 | ||
423 | // Dual functionality: | |
424 | // buffer!=NULL: normalize | |
425 | // buffer==NULL: isNormalized/spanQuickCheckYes | |
426 | const UChar * | |
427 | Normalizer2Impl::decompose(const UChar *src, const UChar *limit, | |
428 | ReorderingBuffer *buffer, | |
429 | UErrorCode &errorCode) const { | |
430 | UChar32 minNoCP=minDecompNoCP; | |
431 | if(limit==NULL) { | |
432 | src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); | |
433 | if(U_FAILURE(errorCode)) { | |
434 | return src; | |
435 | } | |
436 | limit=u_strchr(src, 0); | |
437 | } | |
438 | ||
439 | const UChar *prevSrc; | |
440 | UChar32 c=0; | |
441 | uint16_t norm16=0; | |
442 | ||
443 | // only for quick check | |
444 | const UChar *prevBoundary=src; | |
445 | uint8_t prevCC=0; | |
446 | ||
447 | for(;;) { | |
448 | // count code units below the minimum or with irrelevant data for the quick check | |
449 | for(prevSrc=src; src!=limit;) { | |
450 | if( (c=*src)<minNoCP || | |
451 | isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) | |
452 | ) { | |
453 | ++src; | |
454 | } else if(!U16_IS_SURROGATE(c)) { | |
455 | break; | |
456 | } else { | |
457 | UChar c2; | |
458 | if(U16_IS_SURROGATE_LEAD(c)) { | |
459 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { | |
460 | c=U16_GET_SUPPLEMENTARY(c, c2); | |
461 | } | |
462 | } else /* trail surrogate */ { | |
463 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { | |
464 | --src; | |
465 | c=U16_GET_SUPPLEMENTARY(c2, c); | |
466 | } | |
467 | } | |
468 | if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { | |
469 | src+=U16_LENGTH(c); | |
470 | } else { | |
471 | break; | |
472 | } | |
473 | } | |
474 | } | |
475 | // copy these code units all at once | |
476 | if(src!=prevSrc) { | |
477 | if(buffer!=NULL) { | |
478 | if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { | |
479 | break; | |
480 | } | |
481 | } else { | |
482 | prevCC=0; | |
483 | prevBoundary=src; | |
484 | } | |
485 | } | |
486 | if(src==limit) { | |
487 | break; | |
488 | } | |
489 | ||
490 | // Check one above-minimum, relevant code point. | |
491 | src+=U16_LENGTH(c); | |
492 | if(buffer!=NULL) { | |
493 | if(!decompose(c, norm16, *buffer, errorCode)) { | |
494 | break; | |
495 | } | |
496 | } else { | |
497 | if(isDecompYes(norm16)) { | |
498 | uint8_t cc=getCCFromYesOrMaybe(norm16); | |
499 | if(prevCC<=cc || cc==0) { | |
500 | prevCC=cc; | |
501 | if(cc<=1) { | |
502 | prevBoundary=src; | |
503 | } | |
504 | continue; | |
505 | } | |
506 | } | |
507 | return prevBoundary; // "no" or cc out of order | |
508 | } | |
509 | } | |
510 | return src; | |
511 | } | |
512 | ||
513 | // Decompose a short piece of text which is likely to contain characters that | |
514 | // fail the quick check loop and/or where the quick check loop's overhead | |
515 | // is unlikely to be amortized. | |
516 | // Called by the compose() and makeFCD() implementations. | |
517 | UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, | |
518 | ReorderingBuffer &buffer, | |
519 | UErrorCode &errorCode) const { | |
520 | while(src<limit) { | |
521 | UChar32 c; | |
522 | uint16_t norm16; | |
523 | UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); | |
524 | if(!decompose(c, norm16, buffer, errorCode)) { | |
525 | return FALSE; | |
526 | } | |
527 | } | |
528 | return TRUE; | |
529 | } | |
530 | ||
531 | UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, | |
532 | ReorderingBuffer &buffer, | |
533 | UErrorCode &errorCode) const { | |
534 | // Only loops for 1:1 algorithmic mappings. | |
535 | for(;;) { | |
536 | // get the decomposition and the lead and trail cc's | |
537 | if(isDecompYes(norm16)) { | |
538 | // c does not decompose | |
539 | return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); | |
540 | } else if(isHangul(norm16)) { | |
541 | // Hangul syllable: decompose algorithmically | |
542 | UChar jamos[3]; | |
543 | return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); | |
544 | } else if(isDecompNoAlgorithmic(norm16)) { | |
545 | c=mapAlgorithmic(c, norm16); | |
546 | norm16=getNorm16(c); | |
547 | } else { | |
548 | // c decomposes, get everything from the variable-length extra data | |
549 | const uint16_t *mapping=getMapping(norm16); | |
4388f060 | 550 | uint16_t firstUnit=*mapping; |
729e4ab9 A |
551 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
552 | uint8_t leadCC, trailCC; | |
553 | trailCC=(uint8_t)(firstUnit>>8); | |
554 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { | |
4388f060 | 555 | leadCC=(uint8_t)(*(mapping-1)>>8); |
729e4ab9 A |
556 | } else { |
557 | leadCC=0; | |
558 | } | |
4388f060 | 559 | return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode); |
729e4ab9 A |
560 | } |
561 | } | |
562 | } | |
563 | ||
564 | const UChar * | |
565 | Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { | |
566 | const UChar *decomp=NULL; | |
567 | uint16_t norm16; | |
568 | for(;;) { | |
569 | if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { | |
570 | // c does not decompose | |
571 | return decomp; | |
572 | } else if(isHangul(norm16)) { | |
573 | // Hangul syllable: decompose algorithmically | |
574 | length=Hangul::decompose(c, buffer); | |
575 | return buffer; | |
576 | } else if(isDecompNoAlgorithmic(norm16)) { | |
577 | c=mapAlgorithmic(c, norm16); | |
578 | decomp=buffer; | |
579 | length=0; | |
580 | U16_APPEND_UNSAFE(buffer, length, c); | |
581 | } else { | |
582 | // c decomposes, get everything from the variable-length extra data | |
583 | const uint16_t *mapping=getMapping(norm16); | |
4388f060 A |
584 | length=*mapping&MAPPING_LENGTH_MASK; |
585 | return (const UChar *)mapping+1; | |
586 | } | |
587 | } | |
588 | } | |
589 | ||
590 | // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 | |
591 | // so that a raw mapping fits that consists of one unit ("rm0") | |
592 | // plus all but the first two code units of the normal mapping. | |
593 | // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. | |
594 | const UChar * | |
595 | Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { | |
596 | // We do not loop in this method because an algorithmic mapping itself | |
597 | // becomes a final result rather than having to be decomposed recursively. | |
598 | uint16_t norm16; | |
599 | if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { | |
600 | // c does not decompose | |
601 | return NULL; | |
602 | } else if(isHangul(norm16)) { | |
603 | // Hangul syllable: decompose algorithmically | |
604 | Hangul::getRawDecomposition(c, buffer); | |
605 | length=2; | |
606 | return buffer; | |
607 | } else if(isDecompNoAlgorithmic(norm16)) { | |
608 | c=mapAlgorithmic(c, norm16); | |
609 | length=0; | |
610 | U16_APPEND_UNSAFE(buffer, length, c); | |
611 | return buffer; | |
612 | } else { | |
613 | // c decomposes, get everything from the variable-length extra data | |
614 | const uint16_t *mapping=getMapping(norm16); | |
615 | uint16_t firstUnit=*mapping; | |
616 | int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping | |
617 | if(firstUnit&MAPPING_HAS_RAW_MAPPING) { | |
618 | // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. | |
619 | // Bit 7=MAPPING_HAS_CCC_LCCC_WORD | |
620 | const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; | |
621 | uint16_t rm0=*rawMapping; | |
622 | if(rm0<=MAPPING_LENGTH_MASK) { | |
623 | length=rm0; | |
624 | return (const UChar *)rawMapping-rm0; | |
625 | } else { | |
626 | // Copy the normal mapping and replace its first two code units with rm0. | |
627 | buffer[0]=(UChar)rm0; | |
628 | u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); | |
629 | length=mLength-1; | |
630 | return buffer; | |
729e4ab9 | 631 | } |
4388f060 A |
632 | } else { |
633 | length=mLength; | |
634 | return (const UChar *)mapping+1; | |
729e4ab9 A |
635 | } |
636 | } | |
637 | } | |
638 | ||
639 | void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, | |
640 | UBool doDecompose, | |
4388f060 | 641 | UnicodeString &safeMiddle, |
729e4ab9 A |
642 | ReorderingBuffer &buffer, |
643 | UErrorCode &errorCode) const { | |
4388f060 | 644 | buffer.copyReorderableSuffixTo(safeMiddle); |
729e4ab9 A |
645 | if(doDecompose) { |
646 | decompose(src, limit, &buffer, errorCode); | |
647 | return; | |
648 | } | |
649 | // Just merge the strings at the boundary. | |
650 | ForwardUTrie2StringIterator iter(normTrie, src, limit); | |
651 | uint8_t firstCC, prevCC, cc; | |
652 | firstCC=prevCC=cc=getCC(iter.next16()); | |
653 | while(cc!=0) { | |
654 | prevCC=cc; | |
655 | cc=getCC(iter.next16()); | |
656 | }; | |
4388f060 A |
657 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
658 | limit=u_strchr(iter.codePointStart, 0); | |
659 | } | |
729e4ab9 A |
660 | buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode) && |
661 | buffer.appendZeroCC(iter.codePointStart, limit, errorCode); | |
662 | } | |
663 | ||
664 | // Note: hasDecompBoundary() could be implemented as aliases to | |
665 | // hasFCDBoundaryBefore() and hasFCDBoundaryAfter() | |
666 | // at the cost of building the FCD trie for a decomposition normalizer. | |
667 | UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { | |
668 | for(;;) { | |
669 | if(c<minDecompNoCP) { | |
670 | return TRUE; | |
671 | } | |
672 | uint16_t norm16=getNorm16(c); | |
673 | if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { | |
674 | return TRUE; | |
675 | } else if(norm16>MIN_NORMAL_MAYBE_YES) { | |
676 | return FALSE; // ccc!=0 | |
677 | } else if(isDecompNoAlgorithmic(norm16)) { | |
678 | c=mapAlgorithmic(c, norm16); | |
679 | } else { | |
680 | // c decomposes, get everything from the variable-length extra data | |
681 | const uint16_t *mapping=getMapping(norm16); | |
4388f060 | 682 | uint16_t firstUnit=*mapping; |
729e4ab9 A |
683 | if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
684 | return FALSE; | |
685 | } | |
686 | if(!before) { | |
687 | // decomp after-boundary: same as hasFCDBoundaryAfter(), | |
688 | // fcd16<=1 || trailCC==0 | |
689 | if(firstUnit>0x1ff) { | |
690 | return FALSE; // trailCC>1 | |
691 | } | |
692 | if(firstUnit<=0xff) { | |
693 | return TRUE; // trailCC==0 | |
694 | } | |
695 | // if(trailCC==1) test leadCC==0, same as checking for before-boundary | |
696 | } | |
697 | // TRUE if leadCC==0 (hasFCDBoundaryBefore()) | |
4388f060 | 698 | return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
729e4ab9 A |
699 | } |
700 | } | |
701 | } | |
702 | ||
703 | /* | |
704 | * Finds the recomposition result for | |
705 | * a forward-combining "lead" character, | |
706 | * specified with a pointer to its compositions list, | |
707 | * and a backward-combining "trail" character. | |
708 | * | |
709 | * If the lead and trail characters combine, then this function returns | |
710 | * the following "compositeAndFwd" value: | |
711 | * Bits 21..1 composite character | |
712 | * Bit 0 set if the composite is a forward-combining starter | |
713 | * otherwise it returns -1. | |
714 | * | |
715 | * The compositions list has (trail, compositeAndFwd) pair entries, | |
716 | * encoded as either pairs or triples of 16-bit units. | |
717 | * The last entry has the high bit of its first unit set. | |
718 | * | |
719 | * The list is sorted by ascending trail characters (there are no duplicates). | |
720 | * A linear search is used. | |
721 | * | |
722 | * See normalizer2impl.h for a more detailed description | |
723 | * of the compositions list format. | |
724 | */ | |
725 | int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { | |
726 | uint16_t key1, firstUnit; | |
727 | if(trail<COMP_1_TRAIL_LIMIT) { | |
728 | // trail character is 0..33FF | |
729 | // result entry may have 2 or 3 units | |
730 | key1=(uint16_t)(trail<<1); | |
731 | while(key1>(firstUnit=*list)) { | |
732 | list+=2+(firstUnit&COMP_1_TRIPLE); | |
733 | } | |
734 | if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { | |
735 | if(firstUnit&COMP_1_TRIPLE) { | |
736 | return ((int32_t)list[1]<<16)|list[2]; | |
737 | } else { | |
738 | return list[1]; | |
739 | } | |
740 | } | |
741 | } else { | |
742 | // trail character is 3400..10FFFF | |
743 | // result entry has 3 units | |
744 | key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ | |
745 | (((trail>>COMP_1_TRAIL_SHIFT))& | |
746 | ~COMP_1_TRIPLE)); | |
747 | uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); | |
748 | uint16_t secondUnit; | |
749 | for(;;) { | |
750 | if(key1>(firstUnit=*list)) { | |
751 | list+=2+(firstUnit&COMP_1_TRIPLE); | |
752 | } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { | |
753 | if(key2>(secondUnit=list[1])) { | |
754 | if(firstUnit&COMP_1_LAST_TUPLE) { | |
755 | break; | |
756 | } else { | |
757 | list+=3; | |
758 | } | |
759 | } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { | |
760 | return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; | |
761 | } else { | |
762 | break; | |
763 | } | |
764 | } else { | |
765 | break; | |
766 | } | |
767 | } | |
768 | } | |
769 | return -1; | |
770 | } | |
771 | ||
772 | /** | |
773 | * @param list some character's compositions list | |
774 | * @param set recursively receives the composites from these compositions | |
775 | */ | |
776 | void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { | |
777 | uint16_t firstUnit; | |
778 | int32_t compositeAndFwd; | |
779 | do { | |
780 | firstUnit=*list; | |
781 | if((firstUnit&COMP_1_TRIPLE)==0) { | |
782 | compositeAndFwd=list[1]; | |
783 | list+=2; | |
784 | } else { | |
785 | compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; | |
786 | list+=3; | |
787 | } | |
788 | UChar32 composite=compositeAndFwd>>1; | |
789 | if((compositeAndFwd&1)!=0) { | |
790 | addComposites(getCompositionsListForComposite(getNorm16(composite)), set); | |
791 | } | |
792 | set.add(composite); | |
793 | } while((firstUnit&COMP_1_LAST_TUPLE)==0); | |
794 | } | |
795 | ||
796 | /* | |
797 | * Recomposes the buffer text starting at recomposeStartIndex | |
798 | * (which is in NFD - decomposed and canonically ordered), | |
799 | * and truncates the buffer contents. | |
800 | * | |
801 | * Note that recomposition never lengthens the text: | |
802 | * Any character consists of either one or two code units; | |
803 | * a composition may contain at most one more code unit than the original starter, | |
804 | * while the combining mark that is removed has at least one code unit. | |
805 | */ | |
806 | void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, | |
807 | UBool onlyContiguous) const { | |
808 | UChar *p=buffer.getStart()+recomposeStartIndex; | |
809 | UChar *limit=buffer.getLimit(); | |
810 | if(p==limit) { | |
811 | return; | |
812 | } | |
813 | ||
814 | UChar *starter, *pRemove, *q, *r; | |
815 | const uint16_t *compositionsList; | |
816 | UChar32 c, compositeAndFwd; | |
817 | uint16_t norm16; | |
818 | uint8_t cc, prevCC; | |
819 | UBool starterIsSupplementary; | |
820 | ||
821 | // Some of the following variables are not used until we have a forward-combining starter | |
822 | // and are only initialized now to avoid compiler warnings. | |
823 | compositionsList=NULL; // used as indicator for whether we have a forward-combining starter | |
824 | starter=NULL; | |
825 | starterIsSupplementary=FALSE; | |
826 | prevCC=0; | |
827 | ||
828 | for(;;) { | |
829 | UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); | |
830 | cc=getCCFromYesOrMaybe(norm16); | |
831 | if( // this character combines backward and | |
832 | isMaybe(norm16) && | |
833 | // we have seen a starter that combines forward and | |
834 | compositionsList!=NULL && | |
835 | // the backward-combining character is not blocked | |
836 | (prevCC<cc || prevCC==0) | |
837 | ) { | |
838 | if(isJamoVT(norm16)) { | |
839 | // c is a Jamo V/T, see if we can compose it with the previous character. | |
840 | if(c<Hangul::JAMO_T_BASE) { | |
841 | // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. | |
842 | UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); | |
843 | if(prev<Hangul::JAMO_L_COUNT) { | |
844 | pRemove=p-1; | |
845 | UChar syllable=(UChar) | |
846 | (Hangul::HANGUL_BASE+ | |
847 | (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* | |
848 | Hangul::JAMO_T_COUNT); | |
849 | UChar t; | |
850 | if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { | |
851 | ++p; | |
852 | syllable+=t; // The next character was a Jamo T. | |
853 | } | |
854 | *starter=syllable; | |
855 | // remove the Jamo V/T | |
856 | q=pRemove; | |
857 | r=p; | |
858 | while(r<limit) { | |
859 | *q++=*r++; | |
860 | } | |
861 | limit=q; | |
862 | p=pRemove; | |
863 | } | |
864 | } | |
865 | /* | |
866 | * No "else" for Jamo T: | |
867 | * Since the input is in NFD, there are no Hangul LV syllables that | |
868 | * a Jamo T could combine with. | |
869 | * All Jamo Ts are combined above when handling Jamo Vs. | |
870 | */ | |
871 | if(p==limit) { | |
872 | break; | |
873 | } | |
874 | compositionsList=NULL; | |
875 | continue; | |
876 | } else if((compositeAndFwd=combine(compositionsList, c))>=0) { | |
877 | // The starter and the combining mark (c) do combine. | |
878 | UChar32 composite=compositeAndFwd>>1; | |
879 | ||
880 | // Replace the starter with the composite, remove the combining mark. | |
881 | pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark | |
882 | if(starterIsSupplementary) { | |
883 | if(U_IS_SUPPLEMENTARY(composite)) { | |
884 | // both are supplementary | |
885 | starter[0]=U16_LEAD(composite); | |
886 | starter[1]=U16_TRAIL(composite); | |
887 | } else { | |
888 | *starter=(UChar)composite; | |
889 | // The composite is shorter than the starter, | |
890 | // move the intermediate characters forward one. | |
891 | starterIsSupplementary=FALSE; | |
892 | q=starter+1; | |
893 | r=q+1; | |
894 | while(r<pRemove) { | |
895 | *q++=*r++; | |
896 | } | |
897 | --pRemove; | |
898 | } | |
899 | } else if(U_IS_SUPPLEMENTARY(composite)) { | |
900 | // The composite is longer than the starter, | |
901 | // move the intermediate characters back one. | |
902 | starterIsSupplementary=TRUE; | |
903 | ++starter; // temporarily increment for the loop boundary | |
904 | q=pRemove; | |
905 | r=++pRemove; | |
906 | while(starter<q) { | |
907 | *--r=*--q; | |
908 | } | |
909 | *starter=U16_TRAIL(composite); | |
910 | *--starter=U16_LEAD(composite); // undo the temporary increment | |
911 | } else { | |
912 | // both are on the BMP | |
913 | *starter=(UChar)composite; | |
914 | } | |
915 | ||
916 | /* remove the combining mark by moving the following text over it */ | |
917 | if(pRemove<p) { | |
918 | q=pRemove; | |
919 | r=p; | |
920 | while(r<limit) { | |
921 | *q++=*r++; | |
922 | } | |
923 | limit=q; | |
924 | p=pRemove; | |
925 | } | |
926 | // Keep prevCC because we removed the combining mark. | |
927 | ||
928 | if(p==limit) { | |
929 | break; | |
930 | } | |
931 | // Is the composite a starter that combines forward? | |
932 | if(compositeAndFwd&1) { | |
933 | compositionsList= | |
934 | getCompositionsListForComposite(getNorm16(composite)); | |
935 | } else { | |
936 | compositionsList=NULL; | |
937 | } | |
938 | ||
939 | // We combined; continue with looking for compositions. | |
940 | continue; | |
941 | } | |
942 | } | |
943 | ||
944 | // no combination this time | |
945 | prevCC=cc; | |
946 | if(p==limit) { | |
947 | break; | |
948 | } | |
949 | ||
950 | // If c did not combine, then check if it is a starter. | |
951 | if(cc==0) { | |
952 | // Found a new starter. | |
953 | if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { | |
954 | // It may combine with something, prepare for it. | |
955 | if(U_IS_BMP(c)) { | |
956 | starterIsSupplementary=FALSE; | |
957 | starter=p-1; | |
958 | } else { | |
959 | starterIsSupplementary=TRUE; | |
960 | starter=p-2; | |
961 | } | |
962 | } | |
963 | } else if(onlyContiguous) { | |
964 | // FCC: no discontiguous compositions; any intervening character blocks. | |
965 | compositionsList=NULL; | |
966 | } | |
967 | } | |
968 | buffer.setReorderingLimit(limit); | |
969 | } | |
970 | ||
4388f060 A |
971 | UChar32 |
972 | Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { | |
973 | uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0 | |
974 | const uint16_t *list; | |
975 | if(isInert(norm16)) { | |
976 | return U_SENTINEL; | |
977 | } else if(norm16<minYesNoMappingsOnly) { | |
978 | if(isJamoL(norm16)) { | |
979 | b-=Hangul::JAMO_V_BASE; | |
980 | if(0<=b && b<Hangul::JAMO_V_COUNT) { | |
981 | return | |
982 | (Hangul::HANGUL_BASE+ | |
983 | ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* | |
984 | Hangul::JAMO_T_COUNT); | |
985 | } else { | |
986 | return U_SENTINEL; | |
987 | } | |
988 | } else if(isHangul(norm16)) { | |
989 | b-=Hangul::JAMO_T_BASE; | |
990 | if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! | |
991 | return a+b; | |
992 | } else { | |
993 | return U_SENTINEL; | |
994 | } | |
995 | } else { | |
996 | // 'a' has a compositions list in extraData | |
997 | list=extraData+norm16; | |
998 | if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list | |
999 | list+= // mapping pointer | |
1000 | 1+ // +1 to skip the first unit with the mapping lenth | |
1001 | (*list&MAPPING_LENGTH_MASK); // + mapping length | |
1002 | } | |
1003 | } | |
1004 | } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { | |
1005 | return U_SENTINEL; | |
1006 | } else { | |
1007 | list=maybeYesCompositions+norm16-minMaybeYes; | |
1008 | } | |
1009 | if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b | |
1010 | return U_SENTINEL; | |
1011 | } | |
1012 | #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC | |
1013 | return combine(list, b)>>1; | |
1014 | #else | |
1015 | int32_t compositeAndFwd=combine(list, b); | |
1016 | return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; | |
1017 | #endif | |
1018 | } | |
1019 | ||
729e4ab9 A |
1020 | // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
1021 | // doCompose: normalize | |
1022 | // !doCompose: isNormalized (buffer must be empty and initialized) | |
1023 | UBool | |
1024 | Normalizer2Impl::compose(const UChar *src, const UChar *limit, | |
1025 | UBool onlyContiguous, | |
1026 | UBool doCompose, | |
1027 | ReorderingBuffer &buffer, | |
1028 | UErrorCode &errorCode) const { | |
1029 | /* | |
1030 | * prevBoundary points to the last character before the current one | |
1031 | * that has a composition boundary before it with ccc==0 and quick check "yes". | |
1032 | * Keeping track of prevBoundary saves us looking for a composition boundary | |
1033 | * when we find a "no" or "maybe". | |
1034 | * | |
1035 | * When we back out from prevSrc back to prevBoundary, | |
1036 | * then we also remove those same characters (which had been simply copied | |
1037 | * or canonically-order-inserted) from the ReorderingBuffer. | |
1038 | * Therefore, at all times, the [prevBoundary..prevSrc[ source units | |
1039 | * must correspond 1:1 to destination units at the end of the destination buffer. | |
1040 | */ | |
1041 | const UChar *prevBoundary=src; | |
1042 | UChar32 minNoMaybeCP=minCompNoMaybeCP; | |
1043 | if(limit==NULL) { | |
1044 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, | |
1045 | doCompose ? &buffer : NULL, | |
1046 | errorCode); | |
1047 | if(U_FAILURE(errorCode)) { | |
1048 | return FALSE; | |
1049 | } | |
1050 | if(prevBoundary<src) { | |
1051 | // Set prevBoundary to the last character in the prefix. | |
1052 | prevBoundary=src-1; | |
1053 | } | |
1054 | limit=u_strchr(src, 0); | |
1055 | } | |
1056 | ||
1057 | const UChar *prevSrc; | |
1058 | UChar32 c=0; | |
1059 | uint16_t norm16=0; | |
1060 | ||
1061 | // only for isNormalized | |
1062 | uint8_t prevCC=0; | |
1063 | ||
1064 | for(;;) { | |
1065 | // count code units below the minimum or with irrelevant data for the quick check | |
1066 | for(prevSrc=src; src!=limit;) { | |
1067 | if( (c=*src)<minNoMaybeCP || | |
1068 | isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) | |
1069 | ) { | |
1070 | ++src; | |
1071 | } else if(!U16_IS_SURROGATE(c)) { | |
1072 | break; | |
1073 | } else { | |
1074 | UChar c2; | |
1075 | if(U16_IS_SURROGATE_LEAD(c)) { | |
1076 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { | |
1077 | c=U16_GET_SUPPLEMENTARY(c, c2); | |
1078 | } | |
1079 | } else /* trail surrogate */ { | |
1080 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { | |
1081 | --src; | |
1082 | c=U16_GET_SUPPLEMENTARY(c2, c); | |
1083 | } | |
1084 | } | |
1085 | if(isCompYesAndZeroCC(norm16=getNorm16(c))) { | |
1086 | src+=U16_LENGTH(c); | |
1087 | } else { | |
1088 | break; | |
1089 | } | |
1090 | } | |
1091 | } | |
1092 | // copy these code units all at once | |
1093 | if(src!=prevSrc) { | |
1094 | if(doCompose) { | |
1095 | if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { | |
1096 | break; | |
1097 | } | |
1098 | } else { | |
1099 | prevCC=0; | |
1100 | } | |
1101 | if(src==limit) { | |
1102 | break; | |
1103 | } | |
1104 | // Set prevBoundary to the last character in the quick check loop. | |
1105 | prevBoundary=src-1; | |
1106 | if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && | |
1107 | U16_IS_LEAD(*(prevBoundary-1)) | |
1108 | ) { | |
1109 | --prevBoundary; | |
1110 | } | |
1111 | // The start of the current character (c). | |
1112 | prevSrc=src; | |
1113 | } else if(src==limit) { | |
1114 | break; | |
1115 | } | |
1116 | ||
1117 | src+=U16_LENGTH(c); | |
1118 | /* | |
1119 | * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. | |
1120 | * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) | |
1121 | * or has ccc!=0. | |
1122 | * Check for Jamo V/T, then for regular characters. | |
1123 | * c is not a Hangul syllable or Jamo L because those have "yes" properties. | |
1124 | */ | |
1125 | if(isJamoVT(norm16) && prevBoundary!=prevSrc) { | |
1126 | UChar prev=*(prevSrc-1); | |
1127 | UBool needToDecompose=FALSE; | |
1128 | if(c<Hangul::JAMO_T_BASE) { | |
1129 | // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. | |
1130 | prev=(UChar)(prev-Hangul::JAMO_L_BASE); | |
1131 | if(prev<Hangul::JAMO_L_COUNT) { | |
1132 | if(!doCompose) { | |
1133 | return FALSE; | |
1134 | } | |
1135 | UChar syllable=(UChar) | |
1136 | (Hangul::HANGUL_BASE+ | |
1137 | (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* | |
1138 | Hangul::JAMO_T_COUNT); | |
1139 | UChar t; | |
1140 | if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { | |
1141 | ++src; | |
1142 | syllable+=t; // The next character was a Jamo T. | |
1143 | prevBoundary=src; | |
1144 | buffer.setLastChar(syllable); | |
1145 | continue; | |
1146 | } | |
1147 | // If we see L+V+x where x!=T then we drop to the slow path, | |
1148 | // decompose and recompose. | |
1149 | // This is to deal with NFKC finding normal L and V but a | |
1150 | // compatibility variant of a T. We need to either fully compose that | |
1151 | // combination here (which would complicate the code and may not work | |
1152 | // with strange custom data) or use the slow path -- or else our replacing | |
1153 | // two input characters (L+V) with one output character (LV syllable) | |
1154 | // would violate the invariant that [prevBoundary..prevSrc[ has the same | |
1155 | // length as what we appended to the buffer since prevBoundary. | |
1156 | needToDecompose=TRUE; | |
1157 | } | |
1158 | } else if(Hangul::isHangulWithoutJamoT(prev)) { | |
1159 | // c is a Jamo Trailing consonant, | |
1160 | // compose with previous Hangul LV that does not contain a Jamo T. | |
1161 | if(!doCompose) { | |
1162 | return FALSE; | |
1163 | } | |
1164 | buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); | |
1165 | prevBoundary=src; | |
1166 | continue; | |
1167 | } | |
1168 | if(!needToDecompose) { | |
1169 | // The Jamo V/T did not compose into a Hangul syllable. | |
1170 | if(doCompose) { | |
1171 | if(!buffer.appendBMP((UChar)c, 0, errorCode)) { | |
1172 | break; | |
1173 | } | |
1174 | } else { | |
1175 | prevCC=0; | |
1176 | } | |
1177 | continue; | |
1178 | } | |
1179 | } | |
1180 | /* | |
1181 | * Source buffer pointers: | |
1182 | * | |
1183 | * all done quick check current char not yet | |
1184 | * "yes" but (c) processed | |
1185 | * may combine | |
1186 | * forward | |
1187 | * [-------------[-------------[-------------[-------------[ | |
1188 | * | | | | | | |
1189 | * orig. src prevBoundary prevSrc src limit | |
1190 | * | |
1191 | * | |
1192 | * Destination buffer pointers inside the ReorderingBuffer: | |
1193 | * | |
1194 | * all done might take not filled yet | |
1195 | * characters for | |
1196 | * reordering | |
1197 | * [-------------[-------------[-------------[ | |
1198 | * | | | | | |
1199 | * start reorderStart limit | | |
1200 | * +remainingCap.+ | |
1201 | */ | |
1202 | if(norm16>=MIN_YES_YES_WITH_CC) { | |
1203 | uint8_t cc=(uint8_t)norm16; // cc!=0 | |
1204 | if( onlyContiguous && // FCC | |
1205 | (doCompose ? buffer.getLastCC() : prevCC)==0 && | |
1206 | prevBoundary<prevSrc && | |
1207 | // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that | |
1208 | // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) | |
1209 | // passed the quick check "yes && ccc==0" test. | |
1210 | // Check whether the last character was a "yesYes" or a "yesNo". | |
1211 | // If a "yesNo", then we get its trailing ccc from its | |
1212 | // mapping and check for canonical order. | |
1213 | // All other cases are ok. | |
1214 | getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc | |
1215 | ) { | |
1216 | // Fails FCD test, need to decompose and contiguously recompose. | |
1217 | if(!doCompose) { | |
1218 | return FALSE; | |
1219 | } | |
1220 | } else if(doCompose) { | |
1221 | if(!buffer.append(c, cc, errorCode)) { | |
1222 | break; | |
1223 | } | |
1224 | continue; | |
1225 | } else if(prevCC<=cc) { | |
1226 | prevCC=cc; | |
1227 | continue; | |
1228 | } else { | |
1229 | return FALSE; | |
1230 | } | |
1231 | } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { | |
1232 | return FALSE; | |
1233 | } | |
1234 | ||
1235 | /* | |
1236 | * Find appropriate boundaries around this character, | |
1237 | * decompose the source text from between the boundaries, | |
1238 | * and recompose it. | |
1239 | * | |
1240 | * We may need to remove the last few characters from the ReorderingBuffer | |
1241 | * to account for source text that was copied or appended | |
1242 | * but needs to take part in the recomposition. | |
1243 | */ | |
1244 | ||
1245 | /* | |
1246 | * Find the last composition boundary in [prevBoundary..src[. | |
1247 | * It is either the decomposition of the current character (at prevSrc), | |
1248 | * or prevBoundary. | |
1249 | */ | |
1250 | if(hasCompBoundaryBefore(c, norm16)) { | |
1251 | prevBoundary=prevSrc; | |
1252 | } else if(doCompose) { | |
1253 | buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); | |
1254 | } | |
1255 | ||
1256 | // Find the next composition boundary in [src..limit[ - | |
1257 | // modifies src to point to the next starter. | |
1258 | src=(UChar *)findNextCompBoundary(src, limit); | |
1259 | ||
1260 | // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. | |
1261 | int32_t recomposeStartIndex=buffer.length(); | |
1262 | if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { | |
1263 | break; | |
1264 | } | |
1265 | recompose(buffer, recomposeStartIndex, onlyContiguous); | |
1266 | if(!doCompose) { | |
1267 | if(!buffer.equals(prevBoundary, src)) { | |
1268 | return FALSE; | |
1269 | } | |
1270 | buffer.remove(); | |
1271 | prevCC=0; | |
1272 | } | |
1273 | ||
1274 | // Move to the next starter. We never need to look back before this point again. | |
1275 | prevBoundary=src; | |
1276 | } | |
1277 | return TRUE; | |
1278 | } | |
1279 | ||
1280 | // Very similar to compose(): Make the same changes in both places if relevant. | |
1281 | // pQCResult==NULL: spanQuickCheckYes | |
1282 | // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) | |
1283 | const UChar * | |
1284 | Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, | |
1285 | UBool onlyContiguous, | |
1286 | UNormalizationCheckResult *pQCResult) const { | |
1287 | /* | |
1288 | * prevBoundary points to the last character before the current one | |
1289 | * that has a composition boundary before it with ccc==0 and quick check "yes". | |
1290 | */ | |
1291 | const UChar *prevBoundary=src; | |
1292 | UChar32 minNoMaybeCP=minCompNoMaybeCP; | |
1293 | if(limit==NULL) { | |
1294 | UErrorCode errorCode=U_ZERO_ERROR; | |
1295 | src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); | |
1296 | if(prevBoundary<src) { | |
1297 | // Set prevBoundary to the last character in the prefix. | |
1298 | prevBoundary=src-1; | |
1299 | } | |
1300 | limit=u_strchr(src, 0); | |
1301 | } | |
1302 | ||
1303 | const UChar *prevSrc; | |
1304 | UChar32 c=0; | |
1305 | uint16_t norm16=0; | |
1306 | uint8_t prevCC=0; | |
1307 | ||
1308 | for(;;) { | |
1309 | // count code units below the minimum or with irrelevant data for the quick check | |
1310 | for(prevSrc=src;;) { | |
1311 | if(src==limit) { | |
1312 | return src; | |
1313 | } | |
1314 | if( (c=*src)<minNoMaybeCP || | |
1315 | isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) | |
1316 | ) { | |
1317 | ++src; | |
1318 | } else if(!U16_IS_SURROGATE(c)) { | |
1319 | break; | |
1320 | } else { | |
1321 | UChar c2; | |
1322 | if(U16_IS_SURROGATE_LEAD(c)) { | |
1323 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { | |
1324 | c=U16_GET_SUPPLEMENTARY(c, c2); | |
1325 | } | |
1326 | } else /* trail surrogate */ { | |
1327 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { | |
1328 | --src; | |
1329 | c=U16_GET_SUPPLEMENTARY(c2, c); | |
1330 | } | |
1331 | } | |
1332 | if(isCompYesAndZeroCC(norm16=getNorm16(c))) { | |
1333 | src+=U16_LENGTH(c); | |
1334 | } else { | |
1335 | break; | |
1336 | } | |
1337 | } | |
1338 | } | |
1339 | if(src!=prevSrc) { | |
1340 | // Set prevBoundary to the last character in the quick check loop. | |
1341 | prevBoundary=src-1; | |
1342 | if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && | |
1343 | U16_IS_LEAD(*(prevBoundary-1)) | |
1344 | ) { | |
1345 | --prevBoundary; | |
1346 | } | |
1347 | prevCC=0; | |
1348 | // The start of the current character (c). | |
1349 | prevSrc=src; | |
1350 | } | |
1351 | ||
1352 | src+=U16_LENGTH(c); | |
1353 | /* | |
1354 | * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. | |
1355 | * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) | |
1356 | * or has ccc!=0. | |
1357 | */ | |
1358 | if(isMaybeOrNonZeroCC(norm16)) { | |
1359 | uint8_t cc=getCCFromYesOrMaybe(norm16); | |
1360 | if( onlyContiguous && // FCC | |
1361 | cc!=0 && | |
1362 | prevCC==0 && | |
1363 | prevBoundary<prevSrc && | |
1364 | // prevCC==0 && prevBoundary<prevSrc tell us that | |
1365 | // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) | |
1366 | // passed the quick check "yes && ccc==0" test. | |
1367 | // Check whether the last character was a "yesYes" or a "yesNo". | |
1368 | // If a "yesNo", then we get its trailing ccc from its | |
1369 | // mapping and check for canonical order. | |
1370 | // All other cases are ok. | |
1371 | getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc | |
1372 | ) { | |
1373 | // Fails FCD test. | |
1374 | } else if(prevCC<=cc || cc==0) { | |
1375 | prevCC=cc; | |
1376 | if(norm16<MIN_YES_YES_WITH_CC) { | |
1377 | if(pQCResult!=NULL) { | |
1378 | *pQCResult=UNORM_MAYBE; | |
1379 | } else { | |
1380 | return prevBoundary; | |
1381 | } | |
1382 | } | |
1383 | continue; | |
1384 | } | |
1385 | } | |
1386 | if(pQCResult!=NULL) { | |
1387 | *pQCResult=UNORM_NO; | |
1388 | } | |
1389 | return prevBoundary; | |
1390 | } | |
1391 | } | |
1392 | ||
1393 | void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, | |
1394 | UBool doCompose, | |
1395 | UBool onlyContiguous, | |
4388f060 | 1396 | UnicodeString &safeMiddle, |
729e4ab9 A |
1397 | ReorderingBuffer &buffer, |
1398 | UErrorCode &errorCode) const { | |
1399 | if(!buffer.isEmpty()) { | |
1400 | const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); | |
1401 | if(src!=firstStarterInSrc) { | |
1402 | const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), | |
1403 | buffer.getLimit()); | |
4388f060 A |
1404 | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); |
1405 | UnicodeString middle(lastStarterInDest, destSuffixLength); | |
1406 | buffer.removeSuffix(destSuffixLength); | |
1407 | safeMiddle=middle; | |
729e4ab9 A |
1408 | middle.append(src, (int32_t)(firstStarterInSrc-src)); |
1409 | const UChar *middleStart=middle.getBuffer(); | |
1410 | compose(middleStart, middleStart+middle.length(), onlyContiguous, | |
1411 | TRUE, buffer, errorCode); | |
1412 | if(U_FAILURE(errorCode)) { | |
1413 | return; | |
1414 | } | |
1415 | src=firstStarterInSrc; | |
1416 | } | |
1417 | } | |
1418 | if(doCompose) { | |
1419 | compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); | |
1420 | } else { | |
4388f060 A |
1421 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
1422 | limit=u_strchr(src, 0); | |
1423 | } | |
729e4ab9 A |
1424 | buffer.appendZeroCC(src, limit, errorCode); |
1425 | } | |
1426 | } | |
1427 | ||
1428 | /** | |
1429 | * Does c have a composition boundary before it? | |
1430 | * True if its decomposition begins with a character that has | |
1431 | * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). | |
1432 | * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes | |
1433 | * (isCompYesAndZeroCC()) so we need not decompose. | |
1434 | */ | |
1435 | UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { | |
1436 | for(;;) { | |
1437 | if(isCompYesAndZeroCC(norm16)) { | |
1438 | return TRUE; | |
1439 | } else if(isMaybeOrNonZeroCC(norm16)) { | |
1440 | return FALSE; | |
1441 | } else if(isDecompNoAlgorithmic(norm16)) { | |
1442 | c=mapAlgorithmic(c, norm16); | |
1443 | norm16=getNorm16(c); | |
1444 | } else { | |
1445 | // c decomposes, get everything from the variable-length extra data | |
1446 | const uint16_t *mapping=getMapping(norm16); | |
4388f060 | 1447 | uint16_t firstUnit=*mapping; |
729e4ab9 A |
1448 | if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
1449 | return FALSE; | |
1450 | } | |
4388f060 | 1451 | if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) { |
729e4ab9 A |
1452 | return FALSE; // non-zero leadCC |
1453 | } | |
4388f060 | 1454 | int32_t i=1; // skip over the firstUnit |
729e4ab9 A |
1455 | UChar32 c; |
1456 | U16_NEXT_UNSAFE(mapping, i, c); | |
1457 | return isCompYesAndZeroCC(getNorm16(c)); | |
1458 | } | |
1459 | } | |
1460 | } | |
1461 | ||
1462 | UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const { | |
1463 | for(;;) { | |
1464 | uint16_t norm16=getNorm16(c); | |
1465 | if(isInert(norm16)) { | |
1466 | return TRUE; | |
1467 | } else if(norm16<=minYesNo) { | |
4388f060 A |
1468 | // Hangul: norm16==minYesNo |
1469 | // Hangul LVT has a boundary after it. | |
729e4ab9 A |
1470 | // Hangul LV and non-inert yesYes characters combine forward. |
1471 | return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); | |
1472 | } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { | |
1473 | return FALSE; | |
1474 | } else if(isDecompNoAlgorithmic(norm16)) { | |
1475 | c=mapAlgorithmic(c, norm16); | |
1476 | } else { | |
1477 | // c decomposes, get everything from the variable-length extra data. | |
1478 | // If testInert, then c must be a yesNo character which has lccc=0, | |
1479 | // otherwise it could be a noNo. | |
1480 | const uint16_t *mapping=getMapping(norm16); | |
1481 | uint16_t firstUnit=*mapping; | |
1482 | // TRUE if | |
4388f060 A |
1483 | // not MAPPING_NO_COMP_BOUNDARY_AFTER |
1484 | // (which is set if | |
1485 | // c is not deleted, and | |
1486 | // it and its decomposition do not combine forward, and it has a starter) | |
1487 | // and if FCC then trailCC<=1 | |
729e4ab9 | 1488 | return |
4388f060 | 1489 | (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 && |
729e4ab9 A |
1490 | (!onlyContiguous || firstUnit<=0x1ff); |
1491 | } | |
1492 | } | |
1493 | } | |
1494 | ||
1495 | const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const { | |
1496 | BackwardUTrie2StringIterator iter(normTrie, start, p); | |
1497 | uint16_t norm16; | |
1498 | do { | |
1499 | norm16=iter.previous16(); | |
1500 | } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); | |
1501 | // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, | |
1502 | // but that's probably not worth the extra cost. | |
1503 | return iter.codePointStart; | |
1504 | } | |
1505 | ||
1506 | const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const { | |
1507 | ForwardUTrie2StringIterator iter(normTrie, p, limit); | |
1508 | uint16_t norm16; | |
1509 | do { | |
1510 | norm16=iter.next16(); | |
1511 | } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); | |
1512 | return iter.codePointStart; | |
1513 | } | |
1514 | ||
4388f060 A |
1515 | // Note: normalizer2impl.cpp r30982 (2011-nov-27) |
1516 | // still had getFCDTrie() which built and cached an FCD trie. | |
1517 | // That provided faster access to FCD data than getFCD16FromNormData() | |
1518 | // but required synchronization and consumed some 10kB of heap memory | |
1519 | // in any process that uses FCD (e.g., via collation). | |
1520 | // tccc180[] and smallFCD[] are intended to help with any loss of performance, | |
1521 | // at least for Latin & CJK. | |
729e4ab9 | 1522 | |
4388f060 A |
1523 | // Gets the FCD value from the regular normalization data. |
1524 | uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { | |
729e4ab9 A |
1525 | // Only loops for 1:1 algorithmic mappings. |
1526 | for(;;) { | |
4388f060 A |
1527 | uint16_t norm16=getNorm16(c); |
1528 | if(norm16<=minYesNo) { | |
729e4ab9 | 1529 | // no decomposition or Hangul syllable, all zeros |
4388f060 A |
1530 | return 0; |
1531 | } else if(norm16>=MIN_NORMAL_MAYBE_YES) { | |
1532 | // combining mark | |
1533 | norm16&=0xff; | |
1534 | return norm16|(norm16<<8); | |
1535 | } else if(norm16>=minMaybeYes) { | |
1536 | return 0; | |
1537 | } else if(isDecompNoAlgorithmic(norm16)) { | |
1538 | c=mapAlgorithmic(c, norm16); | |
729e4ab9 A |
1539 | } else { |
1540 | // c decomposes, get everything from the variable-length extra data | |
1541 | const uint16_t *mapping=getMapping(norm16); | |
1542 | uint16_t firstUnit=*mapping; | |
1543 | if((firstUnit&MAPPING_LENGTH_MASK)==0) { | |
1544 | // A character that is deleted (maps to an empty string) must | |
1545 | // get the worst-case lccc and tccc values because arbitrary | |
1546 | // characters on both sides will become adjacent. | |
4388f060 | 1547 | return 0x1ff; |
729e4ab9 | 1548 | } else { |
4388f060 | 1549 | norm16=firstUnit>>8; // tccc |
729e4ab9 | 1550 | if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
4388f060 | 1551 | norm16|=*(mapping-1)&0xff00; // lccc |
729e4ab9 | 1552 | } |
4388f060 | 1553 | return norm16; |
729e4ab9 A |
1554 | } |
1555 | } | |
729e4ab9 A |
1556 | } |
1557 | } | |
1558 | ||
729e4ab9 A |
1559 | // Dual functionality: |
1560 | // buffer!=NULL: normalize | |
1561 | // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes | |
1562 | const UChar * | |
1563 | Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, | |
1564 | ReorderingBuffer *buffer, | |
1565 | UErrorCode &errorCode) const { | |
1566 | // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. | |
1567 | // Similar to the prevBoundary in the compose() implementation. | |
1568 | const UChar *prevBoundary=src; | |
1569 | int32_t prevFCD16=0; | |
1570 | if(limit==NULL) { | |
1571 | src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode); | |
1572 | if(U_FAILURE(errorCode)) { | |
1573 | return src; | |
1574 | } | |
1575 | if(prevBoundary<src) { | |
1576 | prevBoundary=src; | |
1577 | // We know that the previous character's lccc==0. | |
1578 | // Fetching the fcd16 value was deferred for this below-U+0300 code point. | |
4388f060 | 1579 | prevFCD16=getFCD16(*(src-1)); |
729e4ab9 A |
1580 | if(prevFCD16>1) { |
1581 | --prevBoundary; | |
1582 | } | |
1583 | } | |
1584 | limit=u_strchr(src, 0); | |
1585 | } | |
1586 | ||
1587 | // Note: In this function we use buffer->appendZeroCC() because we track | |
1588 | // the lead and trail combining classes here, rather than leaving it to | |
1589 | // the ReorderingBuffer. | |
1590 | // The exception is the call to decomposeShort() which uses the buffer | |
1591 | // in the normal way. | |
1592 | ||
729e4ab9 A |
1593 | const UChar *prevSrc; |
1594 | UChar32 c=0; | |
1595 | uint16_t fcd16=0; | |
1596 | ||
1597 | for(;;) { | |
1598 | // count code units with lccc==0 | |
1599 | for(prevSrc=src; src!=limit;) { | |
1600 | if((c=*src)<MIN_CCC_LCCC_CP) { | |
1601 | prevFCD16=~c; | |
1602 | ++src; | |
4388f060 A |
1603 | } else if(!singleLeadMightHaveNonZeroFCD16(c)) { |
1604 | prevFCD16=0; | |
729e4ab9 | 1605 | ++src; |
729e4ab9 | 1606 | } else { |
4388f060 A |
1607 | if(U16_IS_SURROGATE(c)) { |
1608 | UChar c2; | |
1609 | if(U16_IS_SURROGATE_LEAD(c)) { | |
1610 | if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { | |
1611 | c=U16_GET_SUPPLEMENTARY(c, c2); | |
1612 | } | |
1613 | } else /* trail surrogate */ { | |
1614 | if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { | |
1615 | --src; | |
1616 | c=U16_GET_SUPPLEMENTARY(c2, c); | |
1617 | } | |
729e4ab9 A |
1618 | } |
1619 | } | |
4388f060 | 1620 | if((fcd16=getFCD16FromNormData(c))<=0xff) { |
729e4ab9 A |
1621 | prevFCD16=fcd16; |
1622 | src+=U16_LENGTH(c); | |
1623 | } else { | |
1624 | break; | |
1625 | } | |
1626 | } | |
1627 | } | |
1628 | // copy these code units all at once | |
1629 | if(src!=prevSrc) { | |
1630 | if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { | |
1631 | break; | |
1632 | } | |
1633 | if(src==limit) { | |
1634 | break; | |
1635 | } | |
1636 | prevBoundary=src; | |
1637 | // We know that the previous character's lccc==0. | |
1638 | if(prevFCD16<0) { | |
1639 | // Fetching the fcd16 value was deferred for this below-U+0300 code point. | |
4388f060 A |
1640 | UChar32 prev=~prevFCD16; |
1641 | prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev); | |
729e4ab9 A |
1642 | if(prevFCD16>1) { |
1643 | --prevBoundary; | |
1644 | } | |
1645 | } else { | |
1646 | const UChar *p=src-1; | |
1647 | if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { | |
1648 | --p; | |
1649 | // Need to fetch the previous character's FCD value because | |
1650 | // prevFCD16 was just for the trail surrogate code point. | |
4388f060 | 1651 | prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); |
729e4ab9 A |
1652 | // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
1653 | } | |
1654 | if(prevFCD16>1) { | |
1655 | prevBoundary=p; | |
1656 | } | |
1657 | } | |
1658 | // The start of the current character (c). | |
1659 | prevSrc=src; | |
1660 | } else if(src==limit) { | |
1661 | break; | |
1662 | } | |
1663 | ||
1664 | src+=U16_LENGTH(c); | |
1665 | // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. | |
1666 | // Check for proper order, and decompose locally if necessary. | |
1667 | if((prevFCD16&0xff)<=(fcd16>>8)) { | |
1668 | // proper order: prev tccc <= current lccc | |
1669 | if((fcd16&0xff)<=1) { | |
1670 | prevBoundary=src; | |
1671 | } | |
1672 | if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { | |
1673 | break; | |
1674 | } | |
1675 | prevFCD16=fcd16; | |
1676 | continue; | |
1677 | } else if(buffer==NULL) { | |
1678 | return prevBoundary; // quick check "no" | |
1679 | } else { | |
1680 | /* | |
1681 | * Back out the part of the source that we copied or appended | |
1682 | * already but is now going to be decomposed. | |
1683 | * prevSrc is set to after what was copied/appended. | |
1684 | */ | |
1685 | buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); | |
1686 | /* | |
1687 | * Find the part of the source that needs to be decomposed, | |
1688 | * up to the next safe boundary. | |
1689 | */ | |
1690 | src=findNextFCDBoundary(src, limit); | |
1691 | /* | |
1692 | * The source text does not fulfill the conditions for FCD. | |
1693 | * Decompose and reorder a limited piece of the text. | |
1694 | */ | |
1695 | if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { | |
1696 | break; | |
1697 | } | |
1698 | prevBoundary=src; | |
1699 | prevFCD16=0; | |
1700 | } | |
1701 | } | |
1702 | return src; | |
1703 | } | |
1704 | ||
1705 | void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, | |
1706 | UBool doMakeFCD, | |
4388f060 | 1707 | UnicodeString &safeMiddle, |
729e4ab9 A |
1708 | ReorderingBuffer &buffer, |
1709 | UErrorCode &errorCode) const { | |
1710 | if(!buffer.isEmpty()) { | |
1711 | const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); | |
1712 | if(src!=firstBoundaryInSrc) { | |
1713 | const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), | |
1714 | buffer.getLimit()); | |
4388f060 A |
1715 | int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); |
1716 | UnicodeString middle(lastBoundaryInDest, destSuffixLength); | |
1717 | buffer.removeSuffix(destSuffixLength); | |
1718 | safeMiddle=middle; | |
729e4ab9 A |
1719 | middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
1720 | const UChar *middleStart=middle.getBuffer(); | |
1721 | makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); | |
1722 | if(U_FAILURE(errorCode)) { | |
1723 | return; | |
1724 | } | |
1725 | src=firstBoundaryInSrc; | |
1726 | } | |
1727 | } | |
1728 | if(doMakeFCD) { | |
1729 | makeFCD(src, limit, &buffer, errorCode); | |
1730 | } else { | |
4388f060 A |
1731 | if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
1732 | limit=u_strchr(src, 0); | |
1733 | } | |
729e4ab9 A |
1734 | buffer.appendZeroCC(src, limit, errorCode); |
1735 | } | |
1736 | } | |
1737 | ||
1738 | const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { | |
4388f060 A |
1739 | while(start<p && previousFCD16(start, p)>0xff) {} |
1740 | return p; | |
729e4ab9 A |
1741 | } |
1742 | ||
1743 | const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { | |
4388f060 A |
1744 | while(p<limit) { |
1745 | const UChar *codePointStart=p; | |
1746 | if(nextFCD16(p, limit)<=0xff) { | |
1747 | return codePointStart; | |
1748 | } | |
1749 | } | |
1750 | return p; | |
729e4ab9 A |
1751 | } |
1752 | ||
1753 | // CanonicalIterator data -------------------------------------------------- *** | |
1754 | ||
1755 | CanonIterData::CanonIterData(UErrorCode &errorCode) : | |
1756 | trie(utrie2_open(0, 0, &errorCode)), | |
4388f060 | 1757 | canonStartSets(uprv_deleteUObject, NULL, errorCode) {} |
729e4ab9 A |
1758 | |
1759 | CanonIterData::~CanonIterData() { | |
1760 | utrie2_close(trie); | |
1761 | } | |
1762 | ||
1763 | void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { | |
1764 | uint32_t canonValue=utrie2_get32(trie, decompLead); | |
1765 | if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { | |
1766 | // origin is the first character whose decomposition starts with | |
1767 | // the character for which we are setting the value. | |
1768 | utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); | |
1769 | } else { | |
1770 | // origin is not the first character, or it is U+0000. | |
1771 | UnicodeSet *set; | |
1772 | if((canonValue&CANON_HAS_SET)==0) { | |
1773 | set=new UnicodeSet; | |
1774 | if(set==NULL) { | |
1775 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
1776 | return; | |
1777 | } | |
1778 | UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); | |
1779 | canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); | |
1780 | utrie2_set32(trie, decompLead, canonValue, &errorCode); | |
1781 | canonStartSets.addElement(set, errorCode); | |
1782 | if(firstOrigin!=0) { | |
1783 | set->add(firstOrigin); | |
1784 | } | |
1785 | } else { | |
1786 | set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; | |
1787 | } | |
1788 | set->add(origin); | |
1789 | } | |
1790 | } | |
1791 | ||
1792 | class CanonIterDataSingleton { | |
1793 | public: | |
1794 | CanonIterDataSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) : | |
1795 | singleton(s), impl(ni), errorCode(ec) {} | |
1796 | CanonIterData *getInstance(UErrorCode &errorCode) { | |
1797 | void *duplicate; | |
1798 | CanonIterData *instance= | |
1799 | (CanonIterData *)singleton.getInstance(createInstance, this, duplicate, errorCode); | |
1800 | delete (CanonIterData *)duplicate; | |
1801 | return instance; | |
1802 | } | |
1803 | static void *createInstance(const void *context, UErrorCode &errorCode); | |
1804 | UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { | |
1805 | if(value!=0) { | |
1806 | impl.makeCanonIterDataFromNorm16(start, end, (uint16_t)value, *newData, errorCode); | |
1807 | } | |
1808 | return U_SUCCESS(errorCode); | |
1809 | } | |
1810 | ||
1811 | private: | |
1812 | SimpleSingleton &singleton; | |
1813 | Normalizer2Impl &impl; | |
1814 | CanonIterData *newData; | |
1815 | UErrorCode &errorCode; | |
1816 | }; | |
1817 | ||
1818 | U_CDECL_BEGIN | |
1819 | ||
1820 | // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. | |
1821 | static UBool U_CALLCONV | |
1822 | enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { | |
1823 | return ((CanonIterDataSingleton *)context)->rangeHandler(start, end, value); | |
1824 | } | |
1825 | ||
1826 | U_CDECL_END | |
1827 | ||
1828 | void *CanonIterDataSingleton::createInstance(const void *context, UErrorCode &errorCode) { | |
1829 | CanonIterDataSingleton *me=(CanonIterDataSingleton *)context; | |
1830 | me->newData=new CanonIterData(errorCode); | |
1831 | if(me->newData==NULL) { | |
1832 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
1833 | return NULL; | |
1834 | } | |
1835 | if(U_SUCCESS(errorCode)) { | |
1836 | utrie2_enum(me->impl.getNormTrie(), NULL, enumCIDRangeHandler, me); | |
1837 | utrie2_freeze(me->newData->trie, UTRIE2_32_VALUE_BITS, &errorCode); | |
1838 | if(U_SUCCESS(errorCode)) { | |
1839 | return me->newData; | |
1840 | } | |
1841 | } | |
1842 | delete me->newData; | |
1843 | return NULL; | |
1844 | } | |
1845 | ||
1846 | void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16, | |
1847 | CanonIterData &newData, | |
1848 | UErrorCode &errorCode) const { | |
1849 | if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { | |
1850 | // Inert, or 2-way mapping (including Hangul syllable). | |
1851 | // We do not write a canonStartSet for any yesNo character. | |
1852 | // Composites from 2-way mappings are added at runtime from the | |
1853 | // starter's compositions list, and the other characters in | |
1854 | // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are | |
1855 | // "maybe" characters. | |
1856 | return; | |
1857 | } | |
1858 | for(UChar32 c=start; c<=end; ++c) { | |
1859 | uint32_t oldValue=utrie2_get32(newData.trie, c); | |
1860 | uint32_t newValue=oldValue; | |
1861 | if(norm16>=minMaybeYes) { | |
1862 | // not a segment starter if it occurs in a decomposition or has cc!=0 | |
1863 | newValue|=CANON_NOT_SEGMENT_STARTER; | |
1864 | if(norm16<MIN_NORMAL_MAYBE_YES) { | |
1865 | newValue|=CANON_HAS_COMPOSITIONS; | |
1866 | } | |
1867 | } else if(norm16<minYesNo) { | |
1868 | newValue|=CANON_HAS_COMPOSITIONS; | |
1869 | } else { | |
1870 | // c has a one-way decomposition | |
1871 | UChar32 c2=c; | |
1872 | uint16_t norm16_2=norm16; | |
1873 | while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { | |
1874 | c2=mapAlgorithmic(c2, norm16_2); | |
1875 | norm16_2=getNorm16(c2); | |
1876 | } | |
1877 | if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { | |
1878 | // c decomposes, get everything from the variable-length extra data | |
1879 | const uint16_t *mapping=getMapping(norm16_2); | |
4388f060 | 1880 | uint16_t firstUnit=*mapping; |
729e4ab9 A |
1881 | int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
1882 | if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { | |
4388f060 | 1883 | if(c==c2 && (*(mapping-1)&0xff)!=0) { |
729e4ab9 A |
1884 | newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
1885 | } | |
729e4ab9 A |
1886 | } |
1887 | // Skip empty mappings (no characters in the decomposition). | |
1888 | if(length!=0) { | |
4388f060 | 1889 | ++mapping; // skip over the firstUnit |
729e4ab9 A |
1890 | // add c to first code point's start set |
1891 | int32_t i=0; | |
1892 | U16_NEXT_UNSAFE(mapping, i, c2); | |
1893 | newData.addToStartSet(c, c2, errorCode); | |
1894 | // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a | |
1895 | // one-way mapping. A 2-way mapping is possible here after | |
1896 | // intermediate algorithmic mapping. | |
1897 | if(norm16_2>=minNoNo) { | |
1898 | while(i<length) { | |
1899 | U16_NEXT_UNSAFE(mapping, i, c2); | |
1900 | uint32_t c2Value=utrie2_get32(newData.trie, c2); | |
1901 | if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { | |
1902 | utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, | |
1903 | &errorCode); | |
1904 | } | |
1905 | } | |
1906 | } | |
1907 | } | |
1908 | } else { | |
1909 | // c decomposed to c2 algorithmically; c has cc==0 | |
1910 | newData.addToStartSet(c, c2, errorCode); | |
1911 | } | |
1912 | } | |
1913 | if(newValue!=oldValue) { | |
1914 | utrie2_set32(newData.trie, c, newValue, &errorCode); | |
1915 | } | |
1916 | } | |
1917 | } | |
1918 | ||
1919 | UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { | |
1920 | // Logically const: Synchronized instantiation. | |
1921 | Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); | |
1922 | CanonIterDataSingleton(me->canonIterDataSingleton, *me, errorCode).getInstance(errorCode); | |
1923 | return U_SUCCESS(errorCode); | |
1924 | } | |
1925 | ||
1926 | int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { | |
1927 | return (int32_t)utrie2_get32(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, c); | |
1928 | } | |
1929 | ||
1930 | const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { | |
1931 | return *(const UnicodeSet *)( | |
1932 | ((CanonIterData *)canonIterDataSingleton.fInstance)->canonStartSets[n]); | |
1933 | } | |
1934 | ||
1935 | UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { | |
1936 | return getCanonValue(c)>=0; | |
1937 | } | |
1938 | ||
1939 | UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { | |
1940 | int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; | |
1941 | if(canonValue==0) { | |
1942 | return FALSE; | |
1943 | } | |
1944 | set.clear(); | |
1945 | int32_t value=canonValue&CANON_VALUE_MASK; | |
1946 | if((canonValue&CANON_HAS_SET)!=0) { | |
1947 | set.addAll(getCanonStartSet(value)); | |
1948 | } else if(value!=0) { | |
1949 | set.add(value); | |
1950 | } | |
1951 | if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { | |
1952 | uint16_t norm16=getNorm16(c); | |
1953 | if(norm16==JAMO_L) { | |
1954 | UChar32 syllable= | |
1955 | (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); | |
1956 | set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); | |
1957 | } else { | |
1958 | addComposites(getCompositionsList(norm16), set); | |
1959 | } | |
1960 | } | |
1961 | return TRUE; | |
1962 | } | |
1963 | ||
1964 | U_NAMESPACE_END | |
1965 | ||
1966 | // Normalizer2 data swapping ----------------------------------------------- *** | |
1967 | ||
1968 | U_NAMESPACE_USE | |
1969 | ||
1970 | U_CAPI int32_t U_EXPORT2 | |
1971 | unorm2_swap(const UDataSwapper *ds, | |
1972 | const void *inData, int32_t length, void *outData, | |
1973 | UErrorCode *pErrorCode) { | |
1974 | const UDataInfo *pInfo; | |
1975 | int32_t headerSize; | |
1976 | ||
1977 | const uint8_t *inBytes; | |
1978 | uint8_t *outBytes; | |
1979 | ||
1980 | const int32_t *inIndexes; | |
1981 | int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; | |
1982 | ||
1983 | int32_t i, offset, nextOffset, size; | |
1984 | ||
1985 | /* udata_swapDataHeader checks the arguments */ | |
1986 | headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); | |
1987 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
1988 | return 0; | |
1989 | } | |
1990 | ||
1991 | /* check data format and format version */ | |
1992 | pInfo=(const UDataInfo *)((const char *)inData+4); | |
1993 | if(!( | |
1994 | pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ | |
1995 | pInfo->dataFormat[1]==0x72 && | |
1996 | pInfo->dataFormat[2]==0x6d && | |
1997 | pInfo->dataFormat[3]==0x32 && | |
4388f060 | 1998 | (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2) |
729e4ab9 A |
1999 | )) { |
2000 | udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", | |
2001 | pInfo->dataFormat[0], pInfo->dataFormat[1], | |
2002 | pInfo->dataFormat[2], pInfo->dataFormat[3], | |
2003 | pInfo->formatVersion[0]); | |
2004 | *pErrorCode=U_UNSUPPORTED_ERROR; | |
2005 | return 0; | |
2006 | } | |
2007 | ||
2008 | inBytes=(const uint8_t *)inData+headerSize; | |
2009 | outBytes=(uint8_t *)outData+headerSize; | |
2010 | ||
2011 | inIndexes=(const int32_t *)inBytes; | |
2012 | ||
2013 | if(length>=0) { | |
2014 | length-=headerSize; | |
2015 | if(length<(int32_t)sizeof(indexes)) { | |
2016 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", | |
2017 | length); | |
2018 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
2019 | return 0; | |
2020 | } | |
2021 | } | |
2022 | ||
2023 | /* read the first few indexes */ | |
2024 | for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { | |
2025 | indexes[i]=udata_readInt32(ds, inIndexes[i]); | |
2026 | } | |
2027 | ||
2028 | /* get the total length of the data */ | |
2029 | size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; | |
2030 | ||
2031 | if(length>=0) { | |
2032 | if(length<size) { | |
2033 | udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", | |
2034 | length); | |
2035 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
2036 | return 0; | |
2037 | } | |
2038 | ||
2039 | /* copy the data for inaccessible bytes */ | |
2040 | if(inBytes!=outBytes) { | |
2041 | uprv_memcpy(outBytes, inBytes, size); | |
2042 | } | |
2043 | ||
2044 | offset=0; | |
2045 | ||
2046 | /* swap the int32_t indexes[] */ | |
2047 | nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; | |
2048 | ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); | |
2049 | offset=nextOffset; | |
2050 | ||
2051 | /* swap the UTrie2 */ | |
2052 | nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; | |
2053 | utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); | |
2054 | offset=nextOffset; | |
2055 | ||
2056 | /* swap the uint16_t extraData[] */ | |
4388f060 | 2057 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; |
729e4ab9 A |
2058 | ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
2059 | offset=nextOffset; | |
2060 | ||
4388f060 A |
2061 | /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ |
2062 | nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; | |
2063 | offset=nextOffset; | |
2064 | ||
729e4ab9 A |
2065 | U_ASSERT(offset==size); |
2066 | } | |
2067 | ||
2068 | return headerSize+size; | |
2069 | } | |
2070 | ||
2071 | #endif // !UCONFIG_NO_NORMALIZATION |