]>
Commit | Line | Data |
---|---|---|
46f4442e A |
1 | /* |
2 | ****************************************************************************** | |
3 | * | |
51004dcb | 4 | * Copyright (C) 2007-2012, International Business Machines |
46f4442e A |
5 | * Corporation and others. All Rights Reserved. |
6 | * | |
7 | ****************************************************************************** | |
8 | * file name: unisetspan.cpp | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2007mar01 | |
14 | * created by: Markus W. Scherer | |
15 | */ | |
16 | ||
17 | #include "unicode/utypes.h" | |
18 | #include "unicode/uniset.h" | |
19 | #include "unicode/ustring.h" | |
4388f060 A |
20 | #include "unicode/utf8.h" |
21 | #include "unicode/utf16.h" | |
46f4442e A |
22 | #include "cmemory.h" |
23 | #include "uvector.h" | |
24 | #include "unisetspan.h" | |
25 | ||
26 | U_NAMESPACE_BEGIN | |
27 | ||
28 | /* | |
29 | * List of offsets from the current position from where to try matching | |
30 | * a code point or a string. | |
31 | * Store offsets rather than indexes to simplify the code and use the same list | |
32 | * for both increments (in span()) and decrements (in spanBack()). | |
33 | * | |
34 | * Assumption: The maximum offset is limited, and the offsets that are stored | |
35 | * at any one time are relatively dense, that is, there are normally no gaps of | |
36 | * hundreds or thousands of offset values. | |
37 | * | |
38 | * The implementation uses a circular buffer of byte flags, | |
39 | * each indicating whether the corresponding offset is in the list. | |
40 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and | |
41 | * physically moving part of the list. | |
42 | * | |
43 | * Note: In principle, the caller should setMaxLength() to the maximum of the | |
44 | * max string length and U16_LENGTH/U8_LENGTH to account for | |
45 | * "long" single code points. | |
46 | * However, this implementation uses at least a staticList with more than | |
47 | * U8_LENGTH entries anyway. | |
48 | * | |
49 | * Note: If maxLength were guaranteed to be no more than 32 or 64, | |
50 | * the list could be stored as bit flags in a single integer. | |
51 | * Rather than handling a circular buffer with a start list index, | |
52 | * the integer would simply be shifted when lower offsets are removed. | |
53 | * UnicodeSet does not have a limit on the lengths of strings. | |
54 | */ | |
55 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. | |
56 | public: | |
57 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} | |
58 | ||
59 | ~OffsetList() { | |
60 | if(list!=staticList) { | |
61 | uprv_free(list); | |
62 | } | |
63 | } | |
64 | ||
65 | // Call exactly once if the list is to be used. | |
66 | void setMaxLength(int32_t maxLength) { | |
67 | if(maxLength<=(int32_t)sizeof(staticList)) { | |
68 | capacity=(int32_t)sizeof(staticList); | |
69 | } else { | |
70 | UBool *l=(UBool *)uprv_malloc(maxLength); | |
71 | if(l!=NULL) { | |
72 | list=l; | |
73 | capacity=maxLength; | |
74 | } | |
75 | } | |
76 | uprv_memset(list, 0, capacity); | |
77 | } | |
78 | ||
79 | void clear() { | |
80 | uprv_memset(list, 0, capacity); | |
81 | start=length=0; | |
82 | } | |
83 | ||
84 | UBool isEmpty() const { | |
85 | return (UBool)(length==0); | |
86 | } | |
87 | ||
88 | // Reduce all stored offsets by delta, used when the current position | |
89 | // moves by delta. | |
90 | // There must not be any offsets lower than delta. | |
91 | // If there is an offset equal to delta, it is removed. | |
92 | // delta=[1..maxLength] | |
93 | void shift(int32_t delta) { | |
94 | int32_t i=start+delta; | |
95 | if(i>=capacity) { | |
96 | i-=capacity; | |
97 | } | |
98 | if(list[i]) { | |
99 | list[i]=FALSE; | |
100 | --length; | |
101 | } | |
102 | start=i; | |
103 | } | |
104 | ||
105 | // Add an offset. The list must not contain it yet. | |
106 | // offset=[1..maxLength] | |
107 | void addOffset(int32_t offset) { | |
108 | int32_t i=start+offset; | |
109 | if(i>=capacity) { | |
110 | i-=capacity; | |
111 | } | |
112 | list[i]=TRUE; | |
113 | ++length; | |
114 | } | |
115 | ||
116 | // offset=[1..maxLength] | |
117 | UBool containsOffset(int32_t offset) const { | |
118 | int32_t i=start+offset; | |
119 | if(i>=capacity) { | |
120 | i-=capacity; | |
121 | } | |
122 | return list[i]; | |
123 | } | |
124 | ||
125 | // Find the lowest stored offset from a non-empty list, remove it, | |
126 | // and reduce all other offsets by this minimum. | |
127 | // Returns [1..maxLength]. | |
128 | int32_t popMinimum() { | |
129 | // Look for the next offset in list[start+1..capacity-1]. | |
130 | int32_t i=start, result; | |
131 | while(++i<capacity) { | |
132 | if(list[i]) { | |
133 | list[i]=FALSE; | |
134 | --length; | |
135 | result=i-start; | |
136 | start=i; | |
137 | return result; | |
138 | } | |
139 | } | |
140 | // i==capacity | |
141 | ||
142 | // Wrap around and look for the next offset in list[0..start]. | |
143 | // Since the list is not empty, there will be one. | |
144 | result=capacity-start; | |
145 | i=0; | |
146 | while(!list[i]) { | |
147 | ++i; | |
148 | } | |
149 | list[i]=FALSE; | |
150 | --length; | |
151 | start=i; | |
152 | return result+=i; | |
153 | } | |
154 | ||
155 | private: | |
156 | UBool *list; | |
157 | int32_t capacity; | |
158 | int32_t length; | |
159 | int32_t start; | |
160 | ||
161 | UBool staticList[16]; | |
162 | }; | |
163 | ||
164 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. | |
165 | static int32_t | |
166 | getUTF8Length(const UChar *s, int32_t length) { | |
167 | UErrorCode errorCode=U_ZERO_ERROR; | |
168 | int32_t length8=0; | |
169 | u_strToUTF8(NULL, 0, &length8, s, length, &errorCode); | |
170 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { | |
171 | return length8; | |
172 | } else { | |
173 | // The string contains an unpaired surrogate. | |
174 | // Ignore this string. | |
175 | return 0; | |
176 | } | |
177 | } | |
178 | ||
179 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. | |
180 | static int32_t | |
181 | appendUTF8(const UChar *s, int32_t length, uint8_t *t, int32_t capacity) { | |
182 | UErrorCode errorCode=U_ZERO_ERROR; | |
183 | int32_t length8=0; | |
184 | u_strToUTF8((char *)t, capacity, &length8, s, length, &errorCode); | |
185 | if(U_SUCCESS(errorCode)) { | |
186 | return length8; | |
187 | } else { | |
188 | // The string contains an unpaired surrogate. | |
189 | // Ignore this string. | |
190 | return 0; | |
191 | } | |
192 | } | |
193 | ||
194 | static inline uint8_t | |
195 | makeSpanLengthByte(int32_t spanLength) { | |
196 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN | |
197 | return spanLength<0xfe ? (uint8_t)spanLength : (uint8_t)0xfe; | |
198 | } | |
199 | ||
200 | // Construct for all variants of span(), or only for any one variant. | |
201 | // Initialize as little as possible, for single use. | |
202 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, | |
203 | const UVector &setStrings, | |
204 | uint32_t which) | |
205 | : spanSet(0, 0x10ffff), pSpanNotSet(NULL), strings(setStrings), | |
206 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), | |
207 | utf8Length(0), | |
208 | maxLength16(0), maxLength8(0), | |
209 | all((UBool)(which==ALL)) { | |
210 | spanSet.retainAll(set); | |
211 | if(which&NOT_CONTAINED) { | |
212 | // Default to the same sets. | |
213 | // addToSpanNotSet() will create a separate set if necessary. | |
214 | pSpanNotSet=&spanSet; | |
215 | } | |
216 | ||
217 | // Determine if the strings even need to be taken into account at all for span() etc. | |
218 | // If any string is relevant, then all strings need to be used for | |
219 | // span(longest match) but only the relevant ones for span(while contained). | |
220 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH | |
221 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. | |
222 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) | |
223 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. | |
224 | int32_t stringsLength=strings.size(); | |
225 | ||
226 | int32_t i, spanLength; | |
227 | UBool someRelevant=FALSE; | |
228 | for(i=0; i<stringsLength; ++i) { | |
229 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
230 | const UChar *s16=string.getBuffer(); | |
231 | int32_t length16=string.length(); | |
232 | UBool thisRelevant; | |
233 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |
234 | if(spanLength<length16) { // Relevant string. | |
235 | someRelevant=thisRelevant=TRUE; | |
236 | } else { | |
237 | thisRelevant=FALSE; | |
238 | } | |
239 | if((which&UTF16) && length16>maxLength16) { | |
240 | maxLength16=length16; | |
241 | } | |
242 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { | |
243 | int32_t length8=getUTF8Length(s16, length16); | |
244 | utf8Length+=length8; | |
245 | if(length8>maxLength8) { | |
246 | maxLength8=length8; | |
247 | } | |
248 | } | |
249 | } | |
250 | if(!someRelevant) { | |
251 | maxLength16=maxLength8=0; | |
252 | return; | |
253 | } | |
254 | ||
255 | // Freeze after checking for the need to use strings at all because freezing | |
256 | // a set takes some time and memory which are wasted if there are no relevant strings. | |
257 | if(all) { | |
258 | spanSet.freeze(); | |
259 | } | |
260 | ||
261 | uint8_t *spanBackLengths; | |
262 | uint8_t *spanUTF8Lengths; | |
263 | uint8_t *spanBackUTF8Lengths; | |
264 | ||
265 | // Allocate a block of meta data. | |
266 | int32_t allocSize; | |
267 | if(all) { | |
268 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |
269 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |
270 | } else { | |
271 | allocSize=stringsLength; // One set of span lengths. | |
272 | if(which&UTF8) { | |
273 | // UTF-8 lengths and UTF-8 strings. | |
274 | allocSize+=stringsLength*4+utf8Length; | |
275 | } | |
276 | } | |
277 | if(allocSize<=(int32_t)sizeof(staticLengths)) { | |
278 | utf8Lengths=staticLengths; | |
279 | } else { | |
280 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); | |
281 | if(utf8Lengths==NULL) { | |
282 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. | |
283 | return; // Out of memory. | |
284 | } | |
285 | } | |
286 | ||
287 | if(all) { | |
288 | // Store span lengths for all span() variants. | |
289 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); | |
290 | spanBackLengths=spanLengths+stringsLength; | |
291 | spanUTF8Lengths=spanBackLengths+stringsLength; | |
292 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; | |
293 | utf8=spanBackUTF8Lengths+stringsLength; | |
294 | } else { | |
295 | // Store span lengths for only one span() variant. | |
296 | if(which&UTF8) { | |
297 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); | |
298 | utf8=spanLengths+stringsLength; | |
299 | } else { | |
300 | spanLengths=(uint8_t *)utf8Lengths; | |
301 | } | |
302 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; | |
303 | } | |
304 | ||
305 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. | |
306 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. | |
307 | ||
308 | for(i=0; i<stringsLength; ++i) { | |
309 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
310 | const UChar *s16=string.getBuffer(); | |
311 | int32_t length16=string.length(); | |
312 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |
313 | if(spanLength<length16) { // Relevant string. | |
314 | if(which&UTF16) { | |
315 | if(which&CONTAINED) { | |
316 | if(which&FWD) { | |
317 | spanLengths[i]=makeSpanLengthByte(spanLength); | |
318 | } | |
319 | if(which&BACK) { | |
320 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); | |
321 | spanBackLengths[i]=makeSpanLengthByte(spanLength); | |
322 | } | |
323 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |
324 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. | |
325 | } | |
326 | } | |
327 | if(which&UTF8) { | |
328 | uint8_t *s8=utf8+utf8Count; | |
329 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |
330 | utf8Count+=utf8Lengths[i]=length8; | |
331 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. | |
332 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=(uint8_t)ALL_CP_CONTAINED; | |
333 | } else { // Relevant for UTF-8. | |
334 | if(which&CONTAINED) { | |
335 | if(which&FWD) { | |
336 | spanLength=spanSet.spanUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); | |
337 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |
338 | } | |
339 | if(which&BACK) { | |
340 | spanLength=length8-spanSet.spanBackUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); | |
341 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |
342 | } | |
343 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |
344 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. | |
345 | } | |
346 | } | |
347 | } | |
348 | if(which&NOT_CONTAINED) { | |
349 | // Add string start and end code points to the spanNotSet so that | |
350 | // a span(while not contained) stops before any string. | |
351 | UChar32 c; | |
352 | if(which&FWD) { | |
353 | int32_t len=0; | |
354 | U16_NEXT(s16, len, length16, c); | |
355 | addToSpanNotSet(c); | |
356 | } | |
357 | if(which&BACK) { | |
358 | int32_t len=length16; | |
359 | U16_PREV(s16, 0, len, c); | |
360 | addToSpanNotSet(c); | |
361 | } | |
362 | } | |
363 | } else { // Irrelevant string. | |
364 | if(which&UTF8) { | |
365 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. | |
366 | uint8_t *s8=utf8+utf8Count; | |
367 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |
368 | utf8Count+=utf8Lengths[i]=length8; | |
369 | } else { | |
370 | utf8Lengths[i]=0; | |
371 | } | |
372 | } | |
373 | if(all) { | |
374 | spanLengths[i]=spanBackLengths[i]= | |
375 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= | |
376 | (uint8_t)ALL_CP_CONTAINED; | |
377 | } else { | |
378 | // All spanXYZLengths pointers contain the same address. | |
379 | spanLengths[i]=(uint8_t)ALL_CP_CONTAINED; | |
380 | } | |
381 | } | |
382 | } | |
383 | ||
384 | // Finish. | |
385 | if(all) { | |
386 | pSpanNotSet->freeze(); | |
387 | } | |
388 | } | |
389 | ||
390 | // Copy constructor. Assumes which==ALL for a frozen set. | |
391 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, | |
392 | const UVector &newParentSetStrings) | |
393 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(NULL), strings(newParentSetStrings), | |
394 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), | |
395 | utf8Length(otherStringSpan.utf8Length), | |
396 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), | |
397 | all(TRUE) { | |
398 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { | |
399 | pSpanNotSet=&spanSet; | |
400 | } else { | |
401 | pSpanNotSet=(UnicodeSet *)otherStringSpan.pSpanNotSet->clone(); | |
402 | } | |
403 | ||
404 | // Allocate a block of meta data. | |
405 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |
406 | int32_t stringsLength=strings.size(); | |
407 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |
408 | if(allocSize<=(int32_t)sizeof(staticLengths)) { | |
409 | utf8Lengths=staticLengths; | |
410 | } else { | |
411 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); | |
412 | if(utf8Lengths==NULL) { | |
413 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. | |
414 | return; // Out of memory. | |
415 | } | |
416 | } | |
417 | ||
418 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); | |
419 | utf8=spanLengths+stringsLength*4; | |
420 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize); | |
421 | } | |
422 | ||
423 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { | |
424 | if(pSpanNotSet!=NULL && pSpanNotSet!=&spanSet) { | |
425 | delete pSpanNotSet; | |
426 | } | |
427 | if(utf8Lengths!=NULL && utf8Lengths!=staticLengths) { | |
428 | uprv_free(utf8Lengths); | |
429 | } | |
430 | } | |
431 | ||
432 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { | |
433 | if(pSpanNotSet==NULL || pSpanNotSet==&spanSet) { | |
434 | if(spanSet.contains(c)) { | |
435 | return; // Nothing to do. | |
436 | } | |
437 | UnicodeSet *newSet=(UnicodeSet *)spanSet.cloneAsThawed(); | |
438 | if(newSet==NULL) { | |
439 | return; // Out of memory. | |
440 | } else { | |
441 | pSpanNotSet=newSet; | |
442 | } | |
443 | } | |
444 | pSpanNotSet->add(c); | |
445 | } | |
446 | ||
447 | // Compare strings without any argument checks. Requires length>0. | |
448 | static inline UBool | |
449 | matches16(const UChar *s, const UChar *t, int32_t length) { | |
450 | do { | |
451 | if(*s++!=*t++) { | |
452 | return FALSE; | |
453 | } | |
454 | } while(--length>0); | |
455 | return TRUE; | |
456 | } | |
457 | ||
458 | static inline UBool | |
459 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { | |
460 | do { | |
461 | if(*s++!=*t++) { | |
462 | return FALSE; | |
463 | } | |
464 | } while(--length>0); | |
465 | return TRUE; | |
466 | } | |
467 | ||
468 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) | |
469 | // at code point boundaries. | |
470 | // That is, each edge of a match must not be in the middle of a surrogate pair. | |
471 | static inline UBool | |
472 | matches16CPB(const UChar *s, int32_t start, int32_t limit, const UChar *t, int32_t length) { | |
473 | s+=start; | |
474 | limit-=start; | |
475 | return matches16(s, t, length) && | |
476 | !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && | |
477 | !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); | |
478 | } | |
479 | ||
480 | // Does the set contain the next code point? | |
481 | // If so, return its length; otherwise return its negative length. | |
482 | static inline int32_t | |
483 | spanOne(const UnicodeSet &set, const UChar *s, int32_t length) { | |
484 | UChar c=*s, c2; | |
485 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])) { | |
486 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)) ? 2 : -2; | |
487 | } | |
488 | return set.contains(c) ? 1 : -1; | |
489 | } | |
490 | ||
491 | static inline int32_t | |
492 | spanOneBack(const UnicodeSet &set, const UChar *s, int32_t length) { | |
493 | UChar c=s[length-1], c2; | |
494 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])) { | |
495 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)) ? 2 : -2; | |
496 | } | |
497 | return set.contains(c) ? 1 : -1; | |
498 | } | |
499 | ||
500 | static inline int32_t | |
501 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |
502 | UChar32 c=*s; | |
503 | if((int8_t)c>=0) { | |
504 | return set.contains(c) ? 1 : -1; | |
505 | } | |
51004dcb | 506 | // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). |
46f4442e | 507 | int32_t i=0; |
51004dcb | 508 | U8_NEXT_OR_FFFD(s, i, length, c); |
46f4442e A |
509 | return set.contains(c) ? i : -i; |
510 | } | |
511 | ||
512 | static inline int32_t | |
513 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |
514 | UChar32 c=s[length-1]; | |
515 | if((int8_t)c>=0) { | |
516 | return set.contains(c) ? 1 : -1; | |
517 | } | |
518 | int32_t i=length-1; | |
51004dcb | 519 | c=utf8_prevCharSafeBody(s, 0, &i, c, -3); |
46f4442e A |
520 | length-=i; |
521 | return set.contains(c) ? length : -length; | |
522 | } | |
523 | ||
524 | /* | |
525 | * Note: In span() when spanLength==0 (after a string match, or at the beginning | |
526 | * after an empty code point span) and in spanNot() and spanNotUTF8(), | |
527 | * string matching could use a binary search | |
528 | * because all string matches are done from the same start index. | |
529 | * | |
530 | * For UTF-8, this would require a comparison function that returns UTF-16 order. | |
531 | * | |
532 | * This optimization should not be necessary for normal UnicodeSets because | |
533 | * most sets have no strings, and most sets with strings have | |
534 | * very few very short strings. | |
535 | * For cases with many strings, it might be better to use a different API | |
536 | * and implementation with a DFA (state machine). | |
537 | */ | |
538 | ||
539 | /* | |
540 | * Algorithm for span(USET_SPAN_CONTAINED) | |
541 | * | |
542 | * Theoretical algorithm: | |
543 | * - Iterate through the string, and at each code point boundary: | |
544 | * + If the code point there is in the set, then remember to continue after it. | |
545 | * + If a set string matches at the current position, then remember to continue after it. | |
546 | * + Either recursively span for each code point or string match, | |
547 | * or recursively span for all but the shortest one and | |
548 | * iteratively continue the span with the shortest local match. | |
549 | * + Remember the longest recursive span (the farthest end point). | |
550 | * + If there is no match at the current position, neither for the code point there | |
551 | * nor for any set string, then stop and return the longest recursive span length. | |
552 | * | |
553 | * Optimized implementation: | |
554 | * | |
555 | * (We assume that most sets will have very few very short strings. | |
556 | * A span using a string-less set is extremely fast.) | |
557 | * | |
558 | * Create and cache a spanSet which contains all of the single code points | |
559 | * of the original set but none of its strings. | |
560 | * | |
561 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
562 | * - Loop: | |
563 | * + Try to match each set string at the end of the spanLength. | |
564 | * ~ Set strings that start with set-contained code points must be matched | |
565 | * with a partial overlap because the recursive algorithm would have tried | |
566 | * to match them at every position. | |
567 | * ~ Set strings that entirely consist of set-contained code points | |
568 | * are irrelevant for span(USET_SPAN_CONTAINED) because the | |
569 | * recursive algorithm would continue after them anyway | |
570 | * and find the longest recursive match from their end. | |
571 | * ~ Rather than recursing, note each end point of a set string match. | |
572 | * + If no set string matched after spanSet.span(), then return | |
573 | * with where the spanSet.span() ended. | |
574 | * + If at least one set string matched after spanSet.span(), then | |
575 | * pop the shortest string match end point and continue | |
576 | * the loop, trying to match all set strings from there. | |
577 | * + If at least one more set string matched after a previous string match, | |
578 | * then test if the code point after the previous string match is also | |
579 | * contained in the set. | |
580 | * Continue the loop with the shortest end point of either this code point | |
581 | * or a matching set string. | |
582 | * + If no more set string matched after a previous string match, | |
583 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
584 | * Stop if spanLength==0, otherwise continue the loop. | |
585 | * | |
586 | * By noting each end point of a set string match, | |
587 | * the function visits each string position at most once and finishes | |
588 | * in linear time. | |
589 | * | |
590 | * The recursive algorithm may visit the same string position many times | |
591 | * if multiple paths lead to it and finishes in exponential time. | |
592 | */ | |
593 | ||
594 | /* | |
595 | * Algorithm for span(USET_SPAN_SIMPLE) | |
596 | * | |
597 | * Theoretical algorithm: | |
598 | * - Iterate through the string, and at each code point boundary: | |
599 | * + If the code point there is in the set, then remember to continue after it. | |
600 | * + If a set string matches at the current position, then remember to continue after it. | |
601 | * + Continue from the farthest match position and ignore all others. | |
602 | * + If there is no match at the current position, | |
603 | * then stop and return the current position. | |
604 | * | |
605 | * Optimized implementation: | |
606 | * | |
607 | * (Same assumption and spanSet as above.) | |
608 | * | |
609 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
610 | * - Loop: | |
611 | * + Try to match each set string at the end of the spanLength. | |
612 | * ~ Set strings that start with set-contained code points must be matched | |
613 | * with a partial overlap because the standard algorithm would have tried | |
614 | * to match them earlier. | |
615 | * ~ Set strings that entirely consist of set-contained code points | |
616 | * must be matched with a full overlap because the longest-match algorithm | |
617 | * would hide set string matches that end earlier. | |
618 | * Such set strings need not be matched earlier inside the code point span | |
619 | * because the standard algorithm would then have continued after | |
620 | * the set string match anyway. | |
621 | * ~ Remember the longest set string match (farthest end point) from the earliest | |
622 | * starting point. | |
623 | * + If no set string matched after spanSet.span(), then return | |
624 | * with where the spanSet.span() ended. | |
625 | * + If at least one set string matched, then continue the loop after the | |
626 | * longest match from the earliest position. | |
627 | * + If no more set string matched after a previous string match, | |
628 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
629 | * Stop if spanLength==0, otherwise continue the loop. | |
630 | */ | |
631 | ||
632 | int32_t UnicodeSetStringSpan::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { | |
633 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
634 | return spanNot(s, length); | |
635 | } | |
636 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); | |
637 | if(spanLength==length) { | |
638 | return length; | |
639 | } | |
640 | ||
641 | // Consider strings; they may overlap with the span. | |
642 | OffsetList offsets; | |
643 | if(spanCondition==USET_SPAN_CONTAINED) { | |
644 | // Use offset list to try all possibilities. | |
645 | offsets.setMaxLength(maxLength16); | |
646 | } | |
647 | int32_t pos=spanLength, rest=length-pos; | |
648 | int32_t i, stringsLength=strings.size(); | |
649 | for(;;) { | |
650 | if(spanCondition==USET_SPAN_CONTAINED) { | |
651 | for(i=0; i<stringsLength; ++i) { | |
652 | int32_t overlap=spanLengths[i]; | |
653 | if(overlap==ALL_CP_CONTAINED) { | |
654 | continue; // Irrelevant string. | |
655 | } | |
656 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
657 | const UChar *s16=string.getBuffer(); | |
658 | int32_t length16=string.length(); | |
659 | ||
660 | // Try to match this string at pos-overlap..pos. | |
661 | if(overlap>=LONG_SPAN) { | |
662 | overlap=length16; | |
663 | // While contained: No point matching fully inside the code point span. | |
664 | U16_BACK_1(s16, 0, overlap); // Length of the string minus the last code point. | |
665 | } | |
666 | if(overlap>spanLength) { | |
667 | overlap=spanLength; | |
668 | } | |
669 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |
670 | for(;;) { | |
671 | if(inc>rest) { | |
672 | break; | |
673 | } | |
674 | // Try to match if the increment is not listed already. | |
675 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { | |
676 | if(inc==rest) { | |
677 | return length; // Reached the end of the string. | |
678 | } | |
679 | offsets.addOffset(inc); | |
680 | } | |
681 | if(overlap==0) { | |
682 | break; | |
683 | } | |
684 | --overlap; | |
685 | ++inc; | |
686 | } | |
687 | } | |
688 | } else /* USET_SPAN_SIMPLE */ { | |
689 | int32_t maxInc=0, maxOverlap=0; | |
690 | for(i=0; i<stringsLength; ++i) { | |
691 | int32_t overlap=spanLengths[i]; | |
692 | // For longest match, we do need to try to match even an all-contained string | |
693 | // to find the match from the earliest start. | |
694 | ||
695 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
696 | const UChar *s16=string.getBuffer(); | |
697 | int32_t length16=string.length(); | |
698 | ||
699 | // Try to match this string at pos-overlap..pos. | |
700 | if(overlap>=LONG_SPAN) { | |
701 | overlap=length16; | |
702 | // Longest match: Need to match fully inside the code point span | |
703 | // to find the match from the earliest start. | |
704 | } | |
705 | if(overlap>spanLength) { | |
706 | overlap=spanLength; | |
707 | } | |
708 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |
709 | for(;;) { | |
710 | if(inc>rest || overlap<maxOverlap) { | |
711 | break; | |
712 | } | |
713 | // Try to match if the string is longer or starts earlier. | |
714 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && | |
715 | matches16CPB(s, pos-overlap, length, s16, length16) | |
716 | ) { | |
717 | maxInc=inc; // Longest match from earliest start. | |
718 | maxOverlap=overlap; | |
719 | break; | |
720 | } | |
721 | --overlap; | |
722 | ++inc; | |
723 | } | |
724 | } | |
725 | ||
726 | if(maxInc!=0 || maxOverlap!=0) { | |
727 | // Longest-match algorithm, and there was a string match. | |
728 | // Simply continue after it. | |
729 | pos+=maxInc; | |
730 | rest-=maxInc; | |
731 | if(rest==0) { | |
732 | return length; // Reached the end of the string. | |
733 | } | |
734 | spanLength=0; // Match strings from after a string match. | |
735 | continue; | |
736 | } | |
737 | } | |
738 | // Finished trying to match all strings at pos. | |
739 | ||
740 | if(spanLength!=0 || pos==0) { | |
741 | // The position is after an unlimited code point span (spanLength!=0), | |
742 | // not after a string match. | |
743 | // The only position where spanLength==0 after a span is pos==0. | |
744 | // Otherwise, an unlimited code point span is only tried again when no | |
745 | // strings match, and if such a non-initial span fails we stop. | |
746 | if(offsets.isEmpty()) { | |
747 | return pos; // No strings matched after a span. | |
748 | } | |
749 | // Match strings from after the next string match. | |
750 | } else { | |
751 | // The position is after a string match (or a single code point). | |
752 | if(offsets.isEmpty()) { | |
753 | // No more strings matched after a previous string match. | |
754 | // Try another code point span from after the last string match. | |
755 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); | |
756 | if( spanLength==rest || // Reached the end of the string, or | |
757 | spanLength==0 // neither strings nor span progressed. | |
758 | ) { | |
759 | return pos+spanLength; | |
760 | } | |
761 | pos+=spanLength; | |
762 | rest-=spanLength; | |
763 | continue; // spanLength>0: Match strings from after a span. | |
764 | } else { | |
765 | // Try to match only one code point from after a string match if some | |
766 | // string matched beyond it, so that we try all possible positions | |
767 | // and don't overshoot. | |
768 | spanLength=spanOne(spanSet, s+pos, rest); | |
769 | if(spanLength>0) { | |
770 | if(spanLength==rest) { | |
771 | return length; // Reached the end of the string. | |
772 | } | |
773 | // Match strings after this code point. | |
774 | // There cannot be any increments below it because UnicodeSet strings | |
775 | // contain multiple code points. | |
776 | pos+=spanLength; | |
777 | rest-=spanLength; | |
778 | offsets.shift(spanLength); | |
779 | spanLength=0; | |
780 | continue; // Match strings from after a single code point. | |
781 | } | |
782 | // Match strings from after the next string match. | |
783 | } | |
784 | } | |
785 | int32_t minOffset=offsets.popMinimum(); | |
786 | pos+=minOffset; | |
787 | rest-=minOffset; | |
788 | spanLength=0; // Match strings from after a string match. | |
789 | } | |
790 | } | |
791 | ||
792 | int32_t UnicodeSetStringSpan::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { | |
793 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
794 | return spanNotBack(s, length); | |
795 | } | |
796 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); | |
797 | if(pos==0) { | |
798 | return 0; | |
799 | } | |
800 | int32_t spanLength=length-pos; | |
801 | ||
802 | // Consider strings; they may overlap with the span. | |
803 | OffsetList offsets; | |
804 | if(spanCondition==USET_SPAN_CONTAINED) { | |
805 | // Use offset list to try all possibilities. | |
806 | offsets.setMaxLength(maxLength16); | |
807 | } | |
808 | int32_t i, stringsLength=strings.size(); | |
809 | uint8_t *spanBackLengths=spanLengths; | |
810 | if(all) { | |
811 | spanBackLengths+=stringsLength; | |
812 | } | |
813 | for(;;) { | |
814 | if(spanCondition==USET_SPAN_CONTAINED) { | |
815 | for(i=0; i<stringsLength; ++i) { | |
816 | int32_t overlap=spanBackLengths[i]; | |
817 | if(overlap==ALL_CP_CONTAINED) { | |
818 | continue; // Irrelevant string. | |
819 | } | |
820 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
821 | const UChar *s16=string.getBuffer(); | |
822 | int32_t length16=string.length(); | |
823 | ||
824 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |
825 | if(overlap>=LONG_SPAN) { | |
826 | overlap=length16; | |
827 | // While contained: No point matching fully inside the code point span. | |
828 | int32_t len1=0; | |
829 | U16_FWD_1(s16, len1, overlap); | |
830 | overlap-=len1; // Length of the string minus the first code point. | |
831 | } | |
832 | if(overlap>spanLength) { | |
833 | overlap=spanLength; | |
834 | } | |
835 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |
836 | for(;;) { | |
837 | if(dec>pos) { | |
838 | break; | |
839 | } | |
840 | // Try to match if the decrement is not listed already. | |
841 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { | |
842 | if(dec==pos) { | |
843 | return 0; // Reached the start of the string. | |
844 | } | |
845 | offsets.addOffset(dec); | |
846 | } | |
847 | if(overlap==0) { | |
848 | break; | |
849 | } | |
850 | --overlap; | |
851 | ++dec; | |
852 | } | |
853 | } | |
854 | } else /* USET_SPAN_SIMPLE */ { | |
855 | int32_t maxDec=0, maxOverlap=0; | |
856 | for(i=0; i<stringsLength; ++i) { | |
857 | int32_t overlap=spanBackLengths[i]; | |
858 | // For longest match, we do need to try to match even an all-contained string | |
859 | // to find the match from the latest end. | |
860 | ||
861 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
862 | const UChar *s16=string.getBuffer(); | |
863 | int32_t length16=string.length(); | |
864 | ||
865 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |
866 | if(overlap>=LONG_SPAN) { | |
867 | overlap=length16; | |
868 | // Longest match: Need to match fully inside the code point span | |
869 | // to find the match from the latest end. | |
870 | } | |
871 | if(overlap>spanLength) { | |
872 | overlap=spanLength; | |
873 | } | |
874 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |
875 | for(;;) { | |
876 | if(dec>pos || overlap<maxOverlap) { | |
877 | break; | |
878 | } | |
879 | // Try to match if the string is longer or ends later. | |
880 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |
881 | matches16CPB(s, pos-dec, length, s16, length16) | |
882 | ) { | |
883 | maxDec=dec; // Longest match from latest end. | |
884 | maxOverlap=overlap; | |
885 | break; | |
886 | } | |
887 | --overlap; | |
888 | ++dec; | |
889 | } | |
890 | } | |
891 | ||
892 | if(maxDec!=0 || maxOverlap!=0) { | |
893 | // Longest-match algorithm, and there was a string match. | |
894 | // Simply continue before it. | |
895 | pos-=maxDec; | |
896 | if(pos==0) { | |
897 | return 0; // Reached the start of the string. | |
898 | } | |
899 | spanLength=0; // Match strings from before a string match. | |
900 | continue; | |
901 | } | |
902 | } | |
903 | // Finished trying to match all strings at pos. | |
904 | ||
905 | if(spanLength!=0 || pos==length) { | |
906 | // The position is before an unlimited code point span (spanLength!=0), | |
907 | // not before a string match. | |
908 | // The only position where spanLength==0 before a span is pos==length. | |
909 | // Otherwise, an unlimited code point span is only tried again when no | |
910 | // strings match, and if such a non-initial span fails we stop. | |
911 | if(offsets.isEmpty()) { | |
912 | return pos; // No strings matched before a span. | |
913 | } | |
914 | // Match strings from before the next string match. | |
915 | } else { | |
916 | // The position is before a string match (or a single code point). | |
917 | if(offsets.isEmpty()) { | |
918 | // No more strings matched before a previous string match. | |
919 | // Try another code point span from before the last string match. | |
920 | int32_t oldPos=pos; | |
921 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); | |
922 | spanLength=oldPos-pos; | |
923 | if( pos==0 || // Reached the start of the string, or | |
924 | spanLength==0 // neither strings nor span progressed. | |
925 | ) { | |
926 | return pos; | |
927 | } | |
928 | continue; // spanLength>0: Match strings from before a span. | |
929 | } else { | |
930 | // Try to match only one code point from before a string match if some | |
931 | // string matched beyond it, so that we try all possible positions | |
932 | // and don't overshoot. | |
933 | spanLength=spanOneBack(spanSet, s, pos); | |
934 | if(spanLength>0) { | |
935 | if(spanLength==pos) { | |
936 | return 0; // Reached the start of the string. | |
937 | } | |
938 | // Match strings before this code point. | |
939 | // There cannot be any decrements below it because UnicodeSet strings | |
940 | // contain multiple code points. | |
941 | pos-=spanLength; | |
942 | offsets.shift(spanLength); | |
943 | spanLength=0; | |
944 | continue; // Match strings from before a single code point. | |
945 | } | |
946 | // Match strings from before the next string match. | |
947 | } | |
948 | } | |
949 | pos-=offsets.popMinimum(); | |
950 | spanLength=0; // Match strings from before a string match. | |
951 | } | |
952 | } | |
953 | ||
954 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |
955 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
956 | return spanNotUTF8(s, length); | |
957 | } | |
958 | int32_t spanLength=spanSet.spanUTF8((const char *)s, length, USET_SPAN_CONTAINED); | |
959 | if(spanLength==length) { | |
960 | return length; | |
961 | } | |
962 | ||
963 | // Consider strings; they may overlap with the span. | |
964 | OffsetList offsets; | |
965 | if(spanCondition==USET_SPAN_CONTAINED) { | |
966 | // Use offset list to try all possibilities. | |
967 | offsets.setMaxLength(maxLength8); | |
968 | } | |
969 | int32_t pos=spanLength, rest=length-pos; | |
970 | int32_t i, stringsLength=strings.size(); | |
971 | uint8_t *spanUTF8Lengths=spanLengths; | |
972 | if(all) { | |
973 | spanUTF8Lengths+=2*stringsLength; | |
974 | } | |
975 | for(;;) { | |
976 | const uint8_t *s8=utf8; | |
977 | int32_t length8; | |
978 | if(spanCondition==USET_SPAN_CONTAINED) { | |
979 | for(i=0; i<stringsLength; ++i) { | |
980 | length8=utf8Lengths[i]; | |
981 | if(length8==0) { | |
982 | continue; // String not representable in UTF-8. | |
983 | } | |
984 | int32_t overlap=spanUTF8Lengths[i]; | |
985 | if(overlap==ALL_CP_CONTAINED) { | |
986 | s8+=length8; | |
987 | continue; // Irrelevant string. | |
988 | } | |
989 | ||
990 | // Try to match this string at pos-overlap..pos. | |
991 | if(overlap>=LONG_SPAN) { | |
992 | overlap=length8; | |
993 | // While contained: No point matching fully inside the code point span. | |
994 | U8_BACK_1(s8, 0, overlap); // Length of the string minus the last code point. | |
995 | } | |
996 | if(overlap>spanLength) { | |
997 | overlap=spanLength; | |
998 | } | |
999 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |
1000 | for(;;) { | |
1001 | if(inc>rest) { | |
1002 | break; | |
1003 | } | |
1004 | // Try to match if the increment is not listed already. | |
1005 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1006 | // from UTF-16 and are guaranteed to be well-formed.) | |
1007 | if( !U8_IS_TRAIL(s[pos-overlap]) && | |
1008 | !offsets.containsOffset(inc) && | |
1009 | matches8(s+pos-overlap, s8, length8) | |
1010 | ||
1011 | ) { | |
1012 | if(inc==rest) { | |
1013 | return length; // Reached the end of the string. | |
1014 | } | |
1015 | offsets.addOffset(inc); | |
1016 | } | |
1017 | if(overlap==0) { | |
1018 | break; | |
1019 | } | |
1020 | --overlap; | |
1021 | ++inc; | |
1022 | } | |
1023 | s8+=length8; | |
1024 | } | |
1025 | } else /* USET_SPAN_SIMPLE */ { | |
1026 | int32_t maxInc=0, maxOverlap=0; | |
1027 | for(i=0; i<stringsLength; ++i) { | |
1028 | length8=utf8Lengths[i]; | |
1029 | if(length8==0) { | |
1030 | continue; // String not representable in UTF-8. | |
1031 | } | |
1032 | int32_t overlap=spanUTF8Lengths[i]; | |
1033 | // For longest match, we do need to try to match even an all-contained string | |
1034 | // to find the match from the earliest start. | |
1035 | ||
1036 | // Try to match this string at pos-overlap..pos. | |
1037 | if(overlap>=LONG_SPAN) { | |
1038 | overlap=length8; | |
1039 | // Longest match: Need to match fully inside the code point span | |
1040 | // to find the match from the earliest start. | |
1041 | } | |
1042 | if(overlap>spanLength) { | |
1043 | overlap=spanLength; | |
1044 | } | |
1045 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |
1046 | for(;;) { | |
1047 | if(inc>rest || overlap<maxOverlap) { | |
1048 | break; | |
1049 | } | |
1050 | // Try to match if the string is longer or starts earlier. | |
1051 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1052 | // from UTF-16 and are guaranteed to be well-formed.) | |
1053 | if( !U8_IS_TRAIL(s[pos-overlap]) && | |
1054 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && | |
1055 | matches8(s+pos-overlap, s8, length8) | |
1056 | ||
1057 | ) { | |
1058 | maxInc=inc; // Longest match from earliest start. | |
1059 | maxOverlap=overlap; | |
1060 | break; | |
1061 | } | |
1062 | --overlap; | |
1063 | ++inc; | |
1064 | } | |
1065 | s8+=length8; | |
1066 | } | |
1067 | ||
1068 | if(maxInc!=0 || maxOverlap!=0) { | |
1069 | // Longest-match algorithm, and there was a string match. | |
1070 | // Simply continue after it. | |
1071 | pos+=maxInc; | |
1072 | rest-=maxInc; | |
1073 | if(rest==0) { | |
1074 | return length; // Reached the end of the string. | |
1075 | } | |
1076 | spanLength=0; // Match strings from after a string match. | |
1077 | continue; | |
1078 | } | |
1079 | } | |
1080 | // Finished trying to match all strings at pos. | |
1081 | ||
1082 | if(spanLength!=0 || pos==0) { | |
1083 | // The position is after an unlimited code point span (spanLength!=0), | |
1084 | // not after a string match. | |
1085 | // The only position where spanLength==0 after a span is pos==0. | |
1086 | // Otherwise, an unlimited code point span is only tried again when no | |
1087 | // strings match, and if such a non-initial span fails we stop. | |
1088 | if(offsets.isEmpty()) { | |
1089 | return pos; // No strings matched after a span. | |
1090 | } | |
1091 | // Match strings from after the next string match. | |
1092 | } else { | |
1093 | // The position is after a string match (or a single code point). | |
1094 | if(offsets.isEmpty()) { | |
1095 | // No more strings matched after a previous string match. | |
1096 | // Try another code point span from after the last string match. | |
1097 | spanLength=spanSet.spanUTF8((const char *)s+pos, rest, USET_SPAN_CONTAINED); | |
1098 | if( spanLength==rest || // Reached the end of the string, or | |
1099 | spanLength==0 // neither strings nor span progressed. | |
1100 | ) { | |
1101 | return pos+spanLength; | |
1102 | } | |
1103 | pos+=spanLength; | |
1104 | rest-=spanLength; | |
1105 | continue; // spanLength>0: Match strings from after a span. | |
1106 | } else { | |
1107 | // Try to match only one code point from after a string match if some | |
1108 | // string matched beyond it, so that we try all possible positions | |
1109 | // and don't overshoot. | |
1110 | spanLength=spanOneUTF8(spanSet, s+pos, rest); | |
1111 | if(spanLength>0) { | |
1112 | if(spanLength==rest) { | |
1113 | return length; // Reached the end of the string. | |
1114 | } | |
1115 | // Match strings after this code point. | |
1116 | // There cannot be any increments below it because UnicodeSet strings | |
1117 | // contain multiple code points. | |
1118 | pos+=spanLength; | |
1119 | rest-=spanLength; | |
1120 | offsets.shift(spanLength); | |
1121 | spanLength=0; | |
1122 | continue; // Match strings from after a single code point. | |
1123 | } | |
1124 | // Match strings from after the next string match. | |
1125 | } | |
1126 | } | |
1127 | int32_t minOffset=offsets.popMinimum(); | |
1128 | pos+=minOffset; | |
1129 | rest-=minOffset; | |
1130 | spanLength=0; // Match strings from after a string match. | |
1131 | } | |
1132 | } | |
1133 | ||
1134 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |
1135 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
1136 | return spanNotBackUTF8(s, length); | |
1137 | } | |
1138 | int32_t pos=spanSet.spanBackUTF8((const char *)s, length, USET_SPAN_CONTAINED); | |
1139 | if(pos==0) { | |
1140 | return 0; | |
1141 | } | |
1142 | int32_t spanLength=length-pos; | |
1143 | ||
1144 | // Consider strings; they may overlap with the span. | |
1145 | OffsetList offsets; | |
1146 | if(spanCondition==USET_SPAN_CONTAINED) { | |
1147 | // Use offset list to try all possibilities. | |
1148 | offsets.setMaxLength(maxLength8); | |
1149 | } | |
1150 | int32_t i, stringsLength=strings.size(); | |
1151 | uint8_t *spanBackUTF8Lengths=spanLengths; | |
1152 | if(all) { | |
1153 | spanBackUTF8Lengths+=3*stringsLength; | |
1154 | } | |
1155 | for(;;) { | |
1156 | const uint8_t *s8=utf8; | |
1157 | int32_t length8; | |
1158 | if(spanCondition==USET_SPAN_CONTAINED) { | |
1159 | for(i=0; i<stringsLength; ++i) { | |
1160 | length8=utf8Lengths[i]; | |
1161 | if(length8==0) { | |
1162 | continue; // String not representable in UTF-8. | |
1163 | } | |
1164 | int32_t overlap=spanBackUTF8Lengths[i]; | |
1165 | if(overlap==ALL_CP_CONTAINED) { | |
1166 | s8+=length8; | |
1167 | continue; // Irrelevant string. | |
1168 | } | |
1169 | ||
1170 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |
1171 | if(overlap>=LONG_SPAN) { | |
1172 | overlap=length8; | |
1173 | // While contained: No point matching fully inside the code point span. | |
1174 | int32_t len1=0; | |
1175 | U8_FWD_1(s8, len1, overlap); | |
1176 | overlap-=len1; // Length of the string minus the first code point. | |
1177 | } | |
1178 | if(overlap>spanLength) { | |
1179 | overlap=spanLength; | |
1180 | } | |
1181 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |
1182 | for(;;) { | |
1183 | if(dec>pos) { | |
1184 | break; | |
1185 | } | |
1186 | // Try to match if the decrement is not listed already. | |
1187 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1188 | // from UTF-16 and are guaranteed to be well-formed.) | |
1189 | if( !U8_IS_TRAIL(s[pos-dec]) && | |
1190 | !offsets.containsOffset(dec) && | |
1191 | matches8(s+pos-dec, s8, length8) | |
1192 | ) { | |
1193 | if(dec==pos) { | |
1194 | return 0; // Reached the start of the string. | |
1195 | } | |
1196 | offsets.addOffset(dec); | |
1197 | } | |
1198 | if(overlap==0) { | |
1199 | break; | |
1200 | } | |
1201 | --overlap; | |
1202 | ++dec; | |
1203 | } | |
1204 | s8+=length8; | |
1205 | } | |
1206 | } else /* USET_SPAN_SIMPLE */ { | |
1207 | int32_t maxDec=0, maxOverlap=0; | |
1208 | for(i=0; i<stringsLength; ++i) { | |
1209 | length8=utf8Lengths[i]; | |
1210 | if(length8==0) { | |
1211 | continue; // String not representable in UTF-8. | |
1212 | } | |
1213 | int32_t overlap=spanBackUTF8Lengths[i]; | |
1214 | // For longest match, we do need to try to match even an all-contained string | |
1215 | // to find the match from the latest end. | |
1216 | ||
1217 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |
1218 | if(overlap>=LONG_SPAN) { | |
1219 | overlap=length8; | |
1220 | // Longest match: Need to match fully inside the code point span | |
1221 | // to find the match from the latest end. | |
1222 | } | |
1223 | if(overlap>spanLength) { | |
1224 | overlap=spanLength; | |
1225 | } | |
1226 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |
1227 | for(;;) { | |
1228 | if(dec>pos || overlap<maxOverlap) { | |
1229 | break; | |
1230 | } | |
1231 | // Try to match if the string is longer or ends later. | |
1232 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1233 | // from UTF-16 and are guaranteed to be well-formed.) | |
1234 | if( !U8_IS_TRAIL(s[pos-dec]) && | |
1235 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |
1236 | matches8(s+pos-dec, s8, length8) | |
1237 | ) { | |
1238 | maxDec=dec; // Longest match from latest end. | |
1239 | maxOverlap=overlap; | |
1240 | break; | |
1241 | } | |
1242 | --overlap; | |
1243 | ++dec; | |
1244 | } | |
1245 | s8+=length8; | |
1246 | } | |
1247 | ||
1248 | if(maxDec!=0 || maxOverlap!=0) { | |
1249 | // Longest-match algorithm, and there was a string match. | |
1250 | // Simply continue before it. | |
1251 | pos-=maxDec; | |
1252 | if(pos==0) { | |
1253 | return 0; // Reached the start of the string. | |
1254 | } | |
1255 | spanLength=0; // Match strings from before a string match. | |
1256 | continue; | |
1257 | } | |
1258 | } | |
1259 | // Finished trying to match all strings at pos. | |
1260 | ||
1261 | if(spanLength!=0 || pos==length) { | |
1262 | // The position is before an unlimited code point span (spanLength!=0), | |
1263 | // not before a string match. | |
1264 | // The only position where spanLength==0 before a span is pos==length. | |
1265 | // Otherwise, an unlimited code point span is only tried again when no | |
1266 | // strings match, and if such a non-initial span fails we stop. | |
1267 | if(offsets.isEmpty()) { | |
1268 | return pos; // No strings matched before a span. | |
1269 | } | |
1270 | // Match strings from before the next string match. | |
1271 | } else { | |
1272 | // The position is before a string match (or a single code point). | |
1273 | if(offsets.isEmpty()) { | |
1274 | // No more strings matched before a previous string match. | |
1275 | // Try another code point span from before the last string match. | |
1276 | int32_t oldPos=pos; | |
1277 | pos=spanSet.spanBackUTF8((const char *)s, oldPos, USET_SPAN_CONTAINED); | |
1278 | spanLength=oldPos-pos; | |
1279 | if( pos==0 || // Reached the start of the string, or | |
1280 | spanLength==0 // neither strings nor span progressed. | |
1281 | ) { | |
1282 | return pos; | |
1283 | } | |
1284 | continue; // spanLength>0: Match strings from before a span. | |
1285 | } else { | |
1286 | // Try to match only one code point from before a string match if some | |
1287 | // string matched beyond it, so that we try all possible positions | |
1288 | // and don't overshoot. | |
1289 | spanLength=spanOneBackUTF8(spanSet, s, pos); | |
1290 | if(spanLength>0) { | |
1291 | if(spanLength==pos) { | |
1292 | return 0; // Reached the start of the string. | |
1293 | } | |
1294 | // Match strings before this code point. | |
1295 | // There cannot be any decrements below it because UnicodeSet strings | |
1296 | // contain multiple code points. | |
1297 | pos-=spanLength; | |
1298 | offsets.shift(spanLength); | |
1299 | spanLength=0; | |
1300 | continue; // Match strings from before a single code point. | |
1301 | } | |
1302 | // Match strings from before the next string match. | |
1303 | } | |
1304 | } | |
1305 | pos-=offsets.popMinimum(); | |
1306 | spanLength=0; // Match strings from before a string match. | |
1307 | } | |
1308 | } | |
1309 | ||
1310 | /* | |
1311 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) | |
1312 | * | |
1313 | * Theoretical algorithm: | |
1314 | * - Iterate through the string, and at each code point boundary: | |
1315 | * + If the code point there is in the set, then return with the current position. | |
1316 | * + If a set string matches at the current position, then return with the current position. | |
1317 | * | |
1318 | * Optimized implementation: | |
1319 | * | |
1320 | * (Same assumption as for span() above.) | |
1321 | * | |
1322 | * Create and cache a spanNotSet which contains all of the single code points | |
1323 | * of the original set but none of its strings. | |
1324 | * For each set string add its initial code point to the spanNotSet. | |
1325 | * (Also add its final code point for spanNotBack().) | |
1326 | * | |
1327 | * - Loop: | |
1328 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). | |
1329 | * + If the current code point is in the original set, then | |
1330 | * return the current position. | |
1331 | * + If any set string matches at the current position, then | |
1332 | * return the current position. | |
1333 | * + If there is no match at the current position, neither for the code point there | |
1334 | * nor for any set string, then skip this code point and continue the loop. | |
1335 | * This happens for set-string-initial code points that were added to spanNotSet | |
1336 | * when there is not actually a match for such a set string. | |
1337 | */ | |
1338 | ||
1339 | int32_t UnicodeSetStringSpan::spanNot(const UChar *s, int32_t length) const { | |
1340 | int32_t pos=0, rest=length; | |
1341 | int32_t i, stringsLength=strings.size(); | |
1342 | do { | |
1343 | // Span until we find a code point from the set, | |
1344 | // or a code point that starts or ends some string. | |
1345 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); | |
1346 | if(i==rest) { | |
1347 | return length; // Reached the end of the string. | |
1348 | } | |
1349 | pos+=i; | |
1350 | rest-=i; | |
1351 | ||
1352 | // Check whether the current code point is in the original set, | |
1353 | // without the string starts and ends. | |
1354 | int32_t cpLength=spanOne(spanSet, s+pos, rest); | |
1355 | if(cpLength>0) { | |
1356 | return pos; // There is a set element at pos. | |
1357 | } | |
1358 | ||
1359 | // Try to match the strings at pos. | |
1360 | for(i=0; i<stringsLength; ++i) { | |
1361 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |
1362 | continue; // Irrelevant string. | |
1363 | } | |
1364 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
1365 | const UChar *s16=string.getBuffer(); | |
1366 | int32_t length16=string.length(); | |
1367 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { | |
1368 | return pos; // There is a set element at pos. | |
1369 | } | |
1370 | } | |
1371 | ||
1372 | // The span(while not contained) ended on a string start/end which is | |
1373 | // not in the original set. Skip this code point and continue. | |
1374 | // cpLength<0 | |
1375 | pos-=cpLength; | |
1376 | rest+=cpLength; | |
1377 | } while(rest!=0); | |
1378 | return length; // Reached the end of the string. | |
1379 | } | |
1380 | ||
1381 | int32_t UnicodeSetStringSpan::spanNotBack(const UChar *s, int32_t length) const { | |
1382 | int32_t pos=length; | |
1383 | int32_t i, stringsLength=strings.size(); | |
1384 | do { | |
1385 | // Span until we find a code point from the set, | |
1386 | // or a code point that starts or ends some string. | |
1387 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); | |
1388 | if(pos==0) { | |
1389 | return 0; // Reached the start of the string. | |
1390 | } | |
1391 | ||
1392 | // Check whether the current code point is in the original set, | |
1393 | // without the string starts and ends. | |
1394 | int32_t cpLength=spanOneBack(spanSet, s, pos); | |
1395 | if(cpLength>0) { | |
1396 | return pos; // There is a set element at pos. | |
1397 | } | |
1398 | ||
1399 | // Try to match the strings at pos. | |
1400 | for(i=0; i<stringsLength; ++i) { | |
1401 | // Use spanLengths rather than a spanBackLengths pointer because | |
1402 | // it is easier and we only need to know whether the string is irrelevant | |
1403 | // which is the same in either array. | |
1404 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |
1405 | continue; // Irrelevant string. | |
1406 | } | |
1407 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
1408 | const UChar *s16=string.getBuffer(); | |
1409 | int32_t length16=string.length(); | |
1410 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { | |
1411 | return pos; // There is a set element at pos. | |
1412 | } | |
1413 | } | |
1414 | ||
1415 | // The span(while not contained) ended on a string start/end which is | |
1416 | // not in the original set. Skip this code point and continue. | |
1417 | // cpLength<0 | |
1418 | pos+=cpLength; | |
1419 | } while(pos!=0); | |
1420 | return 0; // Reached the start of the string. | |
1421 | } | |
1422 | ||
1423 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { | |
1424 | int32_t pos=0, rest=length; | |
1425 | int32_t i, stringsLength=strings.size(); | |
1426 | uint8_t *spanUTF8Lengths=spanLengths; | |
1427 | if(all) { | |
1428 | spanUTF8Lengths+=2*stringsLength; | |
1429 | } | |
1430 | do { | |
1431 | // Span until we find a code point from the set, | |
1432 | // or a code point that starts or ends some string. | |
1433 | i=pSpanNotSet->spanUTF8((const char *)s+pos, rest, USET_SPAN_NOT_CONTAINED); | |
1434 | if(i==rest) { | |
1435 | return length; // Reached the end of the string. | |
1436 | } | |
1437 | pos+=i; | |
1438 | rest-=i; | |
1439 | ||
1440 | // Check whether the current code point is in the original set, | |
1441 | // without the string starts and ends. | |
1442 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); | |
1443 | if(cpLength>0) { | |
1444 | return pos; // There is a set element at pos. | |
1445 | } | |
1446 | ||
1447 | // Try to match the strings at pos. | |
1448 | const uint8_t *s8=utf8; | |
1449 | int32_t length8; | |
1450 | for(i=0; i<stringsLength; ++i) { | |
1451 | length8=utf8Lengths[i]; | |
1452 | // ALL_CP_CONTAINED: Irrelevant string. | |
1453 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { | |
1454 | return pos; // There is a set element at pos. | |
1455 | } | |
1456 | s8+=length8; | |
1457 | } | |
1458 | ||
1459 | // The span(while not contained) ended on a string start/end which is | |
1460 | // not in the original set. Skip this code point and continue. | |
1461 | // cpLength<0 | |
1462 | pos-=cpLength; | |
1463 | rest+=cpLength; | |
1464 | } while(rest!=0); | |
1465 | return length; // Reached the end of the string. | |
1466 | } | |
1467 | ||
1468 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { | |
1469 | int32_t pos=length; | |
1470 | int32_t i, stringsLength=strings.size(); | |
1471 | uint8_t *spanBackUTF8Lengths=spanLengths; | |
1472 | if(all) { | |
1473 | spanBackUTF8Lengths+=3*stringsLength; | |
1474 | } | |
1475 | do { | |
1476 | // Span until we find a code point from the set, | |
1477 | // or a code point that starts or ends some string. | |
1478 | pos=pSpanNotSet->spanBackUTF8((const char *)s, pos, USET_SPAN_NOT_CONTAINED); | |
1479 | if(pos==0) { | |
1480 | return 0; // Reached the start of the string. | |
1481 | } | |
1482 | ||
1483 | // Check whether the current code point is in the original set, | |
1484 | // without the string starts and ends. | |
1485 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); | |
1486 | if(cpLength>0) { | |
1487 | return pos; // There is a set element at pos. | |
1488 | } | |
1489 | ||
1490 | // Try to match the strings at pos. | |
1491 | const uint8_t *s8=utf8; | |
1492 | int32_t length8; | |
1493 | for(i=0; i<stringsLength; ++i) { | |
1494 | length8=utf8Lengths[i]; | |
1495 | // ALL_CP_CONTAINED: Irrelevant string. | |
1496 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { | |
1497 | return pos; // There is a set element at pos. | |
1498 | } | |
1499 | s8+=length8; | |
1500 | } | |
1501 | ||
1502 | // The span(while not contained) ended on a string start/end which is | |
1503 | // not in the original set. Skip this code point and continue. | |
1504 | // cpLength<0 | |
1505 | pos+=cpLength; | |
1506 | } while(pos!=0); | |
1507 | return 0; // Reached the start of the string. | |
1508 | } | |
1509 | ||
1510 | U_NAMESPACE_END |