]> git.saurik.com Git - apple/icu.git/blame - icuSources/i18n/number_decimalquantity.h
ICU-64260.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / number_decimalquantity.h
CommitLineData
0f5d89e8
A
1// © 2017 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3
4#include "unicode/utypes.h"
5
6#if !UCONFIG_NO_FORMATTING
7#ifndef __NUMBER_DECIMALQUANTITY_H__
8#define __NUMBER_DECIMALQUANTITY_H__
9
10#include <cstdint>
11#include "unicode/umachine.h"
12#include "standardplural.h"
13#include "plurrule_impl.h"
14#include "number_types.h"
15
16U_NAMESPACE_BEGIN namespace number {
17namespace impl {
18
19// Forward-declare (maybe don't want number_utils.h included here):
20class DecNum;
21
22/**
23 * An class for representing a number to be processed by the decimal formatting pipeline. Includes
24 * methods for rounding, plural rules, and decimal digit extraction.
25 *
26 * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27 * object holding state during a pass through the decimal formatting pipeline.
28 *
29 * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30 *
31 * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32 */
33class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34 public:
35 /** Copy constructor. */
36 DecimalQuantity(const DecimalQuantity &other);
37
38 /** Move constructor. */
39 DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT;
40
41 DecimalQuantity();
42
43 ~DecimalQuantity() override;
44
45 /**
46 * Sets this instance to be equal to another instance.
47 *
48 * @param other The instance to copy from.
49 */
50 DecimalQuantity &operator=(const DecimalQuantity &other);
51
52 /** Move assignment */
53 DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT;
54
55 /**
3d1f044b 56 * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
0f5d89e8
A
57 * This method does not perform rounding.
58 *
59 * @param minInt The minimum number of integer digits.
0f5d89e8 60 */
3d1f044b 61 void setMinInteger(int32_t minInt);
0f5d89e8
A
62
63 /**
3d1f044b 64 * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
0f5d89e8
A
65 * This method does not perform rounding.
66 *
67 * @param minFrac The minimum number of fraction digits.
0f5d89e8 68 */
3d1f044b
A
69 void setMinFraction(int32_t minFrac);
70
71 /**
72 * Truncates digits from the upper magnitude of the number in order to satisfy the
73 * specified maximum number of integer digits.
74 *
75 * @param maxInt The maximum number of integer digits.
76 */
77 void applyMaxInteger(int32_t maxInt);
0f5d89e8
A
78
79 /**
80 * Rounds the number to a specified interval, such as 0.05.
81 *
82 * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
83 *
84 * @param roundingIncrement The increment to which to round.
3d1f044b 85 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
0f5d89e8
A
86 */
87 void roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
3d1f044b 88 UErrorCode& status);
0f5d89e8
A
89
90 /** Removes all fraction digits. */
91 void truncate();
92
3d1f044b
A
93 /**
94 * Rounds the number to the nearest multiple of 5 at the specified magnitude.
95 * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
96 *
97 * @param magnitude The magnitude at which the digit should become either 0 or 5.
98 * @param roundingMode Rounding strategy.
99 */
100 void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
101
0f5d89e8
A
102 /**
103 * Rounds the number to a specified magnitude (power of ten).
104 *
105 * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
106 * round to 2 decimal places.
3d1f044b 107 * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
0f5d89e8
A
108 */
109 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
110
111 /**
112 * Rounds the number to an infinite number of decimal points. This has no effect except for
113 * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
114 */
115 void roundToInfinity();
116
117 /**
118 * Multiply the internal value. Uses decNumber.
119 *
120 * @param multiplicand The value by which to multiply.
121 */
122 void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
123
124 /**
125 * Divide the internal value. Uses decNumber.
126 *
127 * @param multiplicand The value by which to multiply.
128 */
129 void divideBy(const DecNum& divisor, UErrorCode& status);
130
131 /** Flips the sign from positive to negative and back. */
132 void negate();
133
134 /**
135 * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
136 * this method with delta=-3 will change the value to "1.23456".
137 *
138 * @param delta The number of magnitudes of ten to change by.
139 * @return true if integer overflow occured; false otherwise.
140 */
141 bool adjustMagnitude(int32_t delta);
142
143 /**
144 * @return The power of ten corresponding to the most significant nonzero digit.
145 * The number must not be zero.
146 */
147 int32_t getMagnitude() const;
148
149 /** @return Whether the value represented by this {@link DecimalQuantity} is zero. */
150 bool isZero() const;
151
152 /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
153 bool isNegative() const;
154
155 /** @return -1 if the value is negative; 1 if positive; or 0 if zero. */
156 int8_t signum() const;
157
158 /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
159 bool isInfinite() const U_OVERRIDE;
160
161 /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
162 bool isNaN() const U_OVERRIDE;
163
164 /** @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. */
165 int64_t toLong(bool truncateIfOverflow = false) const;
166
167 uint64_t toFractionLong(bool includeTrailingZeros) const;
168
169 /**
170 * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
171 * @param ignoreFraction if true, silently ignore digits after the decimal place.
172 */
173 bool fitsInLong(bool ignoreFraction = false) const;
174
175 /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
176 double toDouble() const;
177
178 /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
179 void toDecNum(DecNum& output, UErrorCode& status) const;
180
181 DecimalQuantity &setToInt(int32_t n);
182
183 DecimalQuantity &setToLong(int64_t n);
184
185 DecimalQuantity &setToDouble(double n);
186
187 /** decNumber is similar to BigDecimal in Java. */
188 DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
189
190 /** Internal method if the caller already has a DecNum. */
191 DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
192
193 /**
194 * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
195 * by this DecimalQuantity.
196 *
197 * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
198 * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
199 *
200 * @param value The digit to append.
201 * @param leadingZeros The number of zeros to append before the digit. For example, if the value
202 * in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
203 * 12.304.
204 * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
205 * new digit. If false, append to the end like a fraction digit. If true, there must not be
206 * any fraction digits already in the number.
207 * @internal
208 * @deprecated This API is ICU internal only.
209 */
210 void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
211
212 double getPluralOperand(PluralOperand operand) const U_OVERRIDE;
213
214 bool hasIntegerValue() const U_OVERRIDE;
215
216 /**
217 * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
218 * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
219 *
220 * @param magnitude The magnitude of the digit.
221 * @return The digit at the specified magnitude.
222 */
223 int8_t getDigit(int32_t magnitude) const;
224
225 /**
226 * Gets the largest power of ten that needs to be displayed. The value returned by this function
227 * will be bounded between minInt and maxInt.
228 *
229 * @return The highest-magnitude digit to be displayed.
230 */
231 int32_t getUpperDisplayMagnitude() const;
232
233 /**
234 * Gets the smallest power of ten that needs to be displayed. The value returned by this function
235 * will be bounded between -minFrac and -maxFrac.
236 *
237 * @return The lowest-magnitude digit to be displayed.
238 */
239 int32_t getLowerDisplayMagnitude() const;
240
241 int32_t fractionCount() const;
242
243 int32_t fractionCountWithoutTrailingZeros() const;
244
245 void clear();
246
247 /** This method is for internal testing only. */
248 uint64_t getPositionFingerprint() const;
249
250// /**
251// * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
252// * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
253// * happens.
254// *
255// * @param fp The {@link UFieldPosition} to populate.
256// */
257// void populateUFieldPosition(FieldPosition fp);
258
259 /**
260 * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
261 *
262 * @return An error message if this instance is invalid, or null if this instance is healthy.
263 */
264 const char16_t* checkHealth() const;
265
266 UnicodeString toString() const;
267
268 /** Returns the string in standard exponential notation. */
269 UnicodeString toScientificString() const;
270
271 /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
272 UnicodeString toPlainString() const;
273
274 /** Visible for testing */
275 inline bool isUsingBytes() { return usingBytes; }
276
277 /** Visible for testing */
3d1f044b 278 inline bool isExplicitExactDouble() { return explicitExactDouble; }
0f5d89e8
A
279
280 bool operator==(const DecimalQuantity& other) const;
281
282 inline bool operator!=(const DecimalQuantity& other) const {
283 return !(*this == other);
284 }
285
286 /**
287 * Bogus flag for when a DecimalQuantity is stored on the stack.
288 */
289 bool bogus = false;
290
291 private:
292 /**
293 * The power of ten corresponding to the least significant digit in the BCD. For example, if this
294 * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
295 *
296 * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
297 * digits after the decimal place, which is the negative of our definition of scale.
298 */
299 int32_t scale;
300
301 /**
302 * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
303 * maximum precision is 16 since a long can hold only 16 digits.
304 *
305 * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
306 * #computePrecisionAndCompact()}.
307 */
308 int32_t precision;
309
310 /**
311 * A bitmask of properties relating to the number represented by this object.
312 *
313 * @see #NEGATIVE_FLAG
314 * @see #INFINITY_FLAG
315 * @see #NAN_FLAG
316 */
317 int8_t flags;
318
319 // The following three fields relate to the double-to-ascii fast path algorithm.
320 // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
321 // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
322 // of rounding the number ensures that the converted digits are correct, falling back to a slow-
323 // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it
324 // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
325 // you don't round, assertions will fail in certain other methods if you try calling them.
326
327 /**
328 * Whether the value in the BCD comes from the double fast path without having been rounded to
329 * ensure correctness
330 */
331 UBool isApproximate;
332
333 /**
334 * The original number provided by the user and which is represented in BCD. Used when we need to
335 * re-compute the BCD for an exact double representation.
336 */
337 double origDouble;
338
339 /**
340 * The change in magnitude relative to the original double. Used when we need to re-compute the
341 * BCD for an exact double representation.
342 */
343 int32_t origDelta;
344
3d1f044b
A
345 // Positions to keep track of leading and trailing zeros.
346 // lReqPos is the magnitude of the first required leading zero.
347 // rReqPos is the magnitude of the last required trailing zero.
0f5d89e8
A
348 int32_t lReqPos = 0;
349 int32_t rReqPos = 0;
0f5d89e8
A
350
351 /**
352 * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
353 * to one digit. For example, the number "12345" in BCD is "0x12345".
354 *
355 * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
356 * like setting the digit to zero.
357 */
358 union {
359 struct {
360 int8_t *ptr;
361 int32_t len;
362 } bcdBytes;
363 uint64_t bcdLong;
364 } fBCD;
365
366 bool usingBytes = false;
367
368 /**
369 * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
370 * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
371 * Used for testing.
372 */
373 bool explicitExactDouble = false;
374
3d1f044b
A
375 void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
376
0f5d89e8
A
377 /**
378 * Returns a single digit from the BCD list. No internal state is changed by calling this method.
379 *
380 * @param position The position of the digit to pop, counted in BCD units from the least
381 * significant digit. If outside the range supported by the implementation, zero is returned.
382 * @return The digit at the specified location.
383 */
384 int8_t getDigitPos(int32_t position) const;
385
386 /**
387 * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
388 * responsibility to call {@link #compact} after setting the digit.
389 *
390 * @param position The position of the digit to pop, counted in BCD units from the least
391 * significant digit. If outside the range supported by the implementation, an AssertionError
392 * is thrown.
393 * @param value The digit to set at the specified location.
394 */
395 void setDigitPos(int32_t position, int8_t value);
396
397 /**
398 * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
399 * the caller's responsibility to do further manipulation and then call {@link #compact}.
400 *
401 * @param numDigits The number of zeros to add.
402 */
403 void shiftLeft(int32_t numDigits);
404
3d1f044b
A
405 /**
406 * Directly removes digits from the end of the BCD list.
407 * Updates the scale and precision.
408 *
409 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
410 */
0f5d89e8
A
411 void shiftRight(int32_t numDigits);
412
3d1f044b
A
413 /**
414 * Directly removes digits from the front of the BCD list.
415 * Updates precision.
416 *
417 * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
418 */
419 void popFromLeft(int32_t numDigits);
420
0f5d89e8
A
421 /**
422 * Sets the internal representation to zero. Clears any values stored in scale, precision,
423 * hasDouble, origDouble, origDelta, and BCD data.
424 */
425 void setBcdToZero();
426
427 /**
428 * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
429 * be either positive. The internal state is guaranteed to be empty when this method is called.
430 *
431 * @param n The value to consume.
432 */
433 void readIntToBcd(int32_t n);
434
435 /**
436 * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
437 * be either positive. The internal state is guaranteed to be empty when this method is called.
438 *
439 * @param n The value to consume.
440 */
441 void readLongToBcd(int64_t n);
442
443 void readDecNumberToBcd(const DecNum& dn);
444
445 void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
446
447 void copyFieldsFrom(const DecimalQuantity& other);
448
449 void copyBcdFrom(const DecimalQuantity &other);
450
451 void moveBcdFrom(DecimalQuantity& src);
452
453 /**
454 * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
455 * precision. The precision is the number of digits in the number up through the greatest nonzero
456 * digit.
457 *
458 * <p>This method must always be called when bcd changes in order for assumptions to be correct in
459 * methods like {@link #fractionCount()}.
460 */
461 void compact();
462
463 void _setToInt(int32_t n);
464
465 void _setToLong(int64_t n);
466
467 void _setToDoubleFast(double n);
468
469 void _setToDecNum(const DecNum& dn, UErrorCode& status);
470
471 void convertToAccurateDouble();
472
473 /** Ensure that a byte array of at least 40 digits is allocated. */
474 void ensureCapacity();
475
476 void ensureCapacity(int32_t capacity);
477
478 /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
479 void switchStorage();
480};
481
482} // namespace impl
483} // namespace number
484U_NAMESPACE_END
485
486
487#endif //__NUMBER_DECIMALQUANTITY_H__
488
489#endif /* #if !UCONFIG_NO_FORMATTING */