]>
Commit | Line | Data |
---|---|---|
0f5d89e8 A |
1 | // © 2018 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | // | |
4 | // From the double-conversion library. Original license: | |
5 | // | |
6 | // Copyright 2010 the V8 project authors. All rights reserved. | |
7 | // Redistribution and use in source and binary forms, with or without | |
8 | // modification, are permitted provided that the following conditions are | |
9 | // met: | |
10 | // | |
11 | // * Redistributions of source code must retain the above copyright | |
12 | // notice, this list of conditions and the following disclaimer. | |
13 | // * Redistributions in binary form must reproduce the above | |
14 | // copyright notice, this list of conditions and the following | |
15 | // disclaimer in the documentation and/or other materials provided | |
16 | // with the distribution. | |
17 | // * Neither the name of Google Inc. nor the names of its | |
18 | // contributors may be used to endorse or promote products derived | |
19 | // from this software without specific prior written permission. | |
20 | // | |
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
32 | ||
33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING | |
34 | #include "unicode/utypes.h" | |
35 | #if !UCONFIG_NO_FORMATTING | |
36 | ||
37 | #include <stdarg.h> | |
38 | #include <limits.h> | |
39 | ||
40 | // ICU PATCH: Customize header file paths for ICU. | |
41 | // The file fixed-dtoa.h is not needed. | |
42 | ||
43 | #include "double-conversion-strtod.h" | |
44 | #include "double-conversion-bignum.h" | |
45 | #include "double-conversion-cached-powers.h" | |
46 | #include "double-conversion-ieee.h" | |
47 | ||
48 | // ICU PATCH: Wrap in ICU namespace | |
49 | U_NAMESPACE_BEGIN | |
50 | ||
51 | namespace double_conversion { | |
52 | ||
53 | // 2^53 = 9007199254740992. | |
54 | // Any integer with at most 15 decimal digits will hence fit into a double | |
55 | // (which has a 53bit significand) without loss of precision. | |
56 | static const int kMaxExactDoubleIntegerDecimalDigits = 15; | |
57 | // 2^64 = 18446744073709551616 > 10^19 | |
58 | static const int kMaxUint64DecimalDigits = 19; | |
59 | ||
60 | // Max double: 1.7976931348623157 x 10^308 | |
61 | // Min non-zero double: 4.9406564584124654 x 10^-324 | |
62 | // Any x >= 10^309 is interpreted as +infinity. | |
63 | // Any x <= 10^-324 is interpreted as 0. | |
64 | // Note that 2.5e-324 (despite being smaller than the min double) will be read | |
65 | // as non-zero (equal to the min non-zero double). | |
66 | static const int kMaxDecimalPower = 309; | |
67 | static const int kMinDecimalPower = -324; | |
68 | ||
69 | // 2^64 = 18446744073709551616 | |
70 | static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); | |
71 | ||
72 | ||
73 | static const double exact_powers_of_ten[] = { | |
74 | 1.0, // 10^0 | |
75 | 10.0, | |
76 | 100.0, | |
77 | 1000.0, | |
78 | 10000.0, | |
79 | 100000.0, | |
80 | 1000000.0, | |
81 | 10000000.0, | |
82 | 100000000.0, | |
83 | 1000000000.0, | |
84 | 10000000000.0, // 10^10 | |
85 | 100000000000.0, | |
86 | 1000000000000.0, | |
87 | 10000000000000.0, | |
88 | 100000000000000.0, | |
89 | 1000000000000000.0, | |
90 | 10000000000000000.0, | |
91 | 100000000000000000.0, | |
92 | 1000000000000000000.0, | |
93 | 10000000000000000000.0, | |
94 | 100000000000000000000.0, // 10^20 | |
95 | 1000000000000000000000.0, | |
96 | // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 | |
97 | 10000000000000000000000.0 | |
98 | }; | |
99 | static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); | |
100 | ||
101 | // Maximum number of significant digits in the decimal representation. | |
102 | // In fact the value is 772 (see conversions.cc), but to give us some margin | |
103 | // we round up to 780. | |
104 | static const int kMaxSignificantDecimalDigits = 780; | |
105 | ||
106 | static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { | |
107 | for (int i = 0; i < buffer.length(); i++) { | |
108 | if (buffer[i] != '0') { | |
109 | return buffer.SubVector(i, buffer.length()); | |
110 | } | |
111 | } | |
112 | return Vector<const char>(buffer.start(), 0); | |
113 | } | |
114 | ||
115 | ||
116 | static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { | |
117 | for (int i = buffer.length() - 1; i >= 0; --i) { | |
118 | if (buffer[i] != '0') { | |
119 | return buffer.SubVector(0, i + 1); | |
120 | } | |
121 | } | |
122 | return Vector<const char>(buffer.start(), 0); | |
123 | } | |
124 | ||
125 | ||
126 | static void CutToMaxSignificantDigits(Vector<const char> buffer, | |
127 | int exponent, | |
128 | char* significant_buffer, | |
129 | int* significant_exponent) { | |
130 | for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { | |
131 | significant_buffer[i] = buffer[i]; | |
132 | } | |
133 | // The input buffer has been trimmed. Therefore the last digit must be | |
134 | // different from '0'. | |
135 | ASSERT(buffer[buffer.length() - 1] != '0'); | |
136 | // Set the last digit to be non-zero. This is sufficient to guarantee | |
137 | // correct rounding. | |
138 | significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; | |
139 | *significant_exponent = | |
140 | exponent + (buffer.length() - kMaxSignificantDecimalDigits); | |
141 | } | |
142 | ||
143 | ||
144 | // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. | |
145 | // If possible the input-buffer is reused, but if the buffer needs to be | |
146 | // modified (due to cutting), then the input needs to be copied into the | |
147 | // buffer_copy_space. | |
148 | static void TrimAndCut(Vector<const char> buffer, int exponent, | |
149 | char* buffer_copy_space, int space_size, | |
150 | Vector<const char>* trimmed, int* updated_exponent) { | |
151 | Vector<const char> left_trimmed = TrimLeadingZeros(buffer); | |
152 | Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed); | |
153 | exponent += left_trimmed.length() - right_trimmed.length(); | |
154 | if (right_trimmed.length() > kMaxSignificantDecimalDigits) { | |
155 | (void) space_size; // Mark variable as used. | |
156 | ASSERT(space_size >= kMaxSignificantDecimalDigits); | |
157 | CutToMaxSignificantDigits(right_trimmed, exponent, | |
158 | buffer_copy_space, updated_exponent); | |
159 | *trimmed = Vector<const char>(buffer_copy_space, | |
160 | kMaxSignificantDecimalDigits); | |
161 | } else { | |
162 | *trimmed = right_trimmed; | |
163 | *updated_exponent = exponent; | |
164 | } | |
165 | } | |
166 | ||
167 | ||
168 | // Reads digits from the buffer and converts them to a uint64. | |
169 | // Reads in as many digits as fit into a uint64. | |
170 | // When the string starts with "1844674407370955161" no further digit is read. | |
171 | // Since 2^64 = 18446744073709551616 it would still be possible read another | |
172 | // digit if it was less or equal than 6, but this would complicate the code. | |
173 | static uint64_t ReadUint64(Vector<const char> buffer, | |
174 | int* number_of_read_digits) { | |
175 | uint64_t result = 0; | |
176 | int i = 0; | |
177 | while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { | |
178 | int digit = buffer[i++] - '0'; | |
179 | ASSERT(0 <= digit && digit <= 9); | |
180 | result = 10 * result + digit; | |
181 | } | |
182 | *number_of_read_digits = i; | |
183 | return result; | |
184 | } | |
185 | ||
186 | ||
187 | // Reads a DiyFp from the buffer. | |
188 | // The returned DiyFp is not necessarily normalized. | |
189 | // If remaining_decimals is zero then the returned DiyFp is accurate. | |
190 | // Otherwise it has been rounded and has error of at most 1/2 ulp. | |
191 | static void ReadDiyFp(Vector<const char> buffer, | |
192 | DiyFp* result, | |
193 | int* remaining_decimals) { | |
194 | int read_digits; | |
195 | uint64_t significand = ReadUint64(buffer, &read_digits); | |
196 | if (buffer.length() == read_digits) { | |
197 | *result = DiyFp(significand, 0); | |
198 | *remaining_decimals = 0; | |
199 | } else { | |
200 | // Round the significand. | |
201 | if (buffer[read_digits] >= '5') { | |
202 | significand++; | |
203 | } | |
204 | // Compute the binary exponent. | |
205 | int exponent = 0; | |
206 | *result = DiyFp(significand, exponent); | |
207 | *remaining_decimals = buffer.length() - read_digits; | |
208 | } | |
209 | } | |
210 | ||
211 | ||
212 | static bool DoubleStrtod(Vector<const char> trimmed, | |
213 | int exponent, | |
214 | double* result) { | |
215 | #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | |
216 | // On x86 the floating-point stack can be 64 or 80 bits wide. If it is | |
217 | // 80 bits wide (as is the case on Linux) then double-rounding occurs and the | |
218 | // result is not accurate. | |
219 | // We know that Windows32 uses 64 bits and is therefore accurate. | |
220 | // Note that the ARM simulator is compiled for 32bits. It therefore exhibits | |
221 | // the same problem. | |
222 | return false; | |
223 | #endif | |
224 | if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { | |
225 | int read_digits; | |
226 | // The trimmed input fits into a double. | |
227 | // If the 10^exponent (resp. 10^-exponent) fits into a double too then we | |
228 | // can compute the result-double simply by multiplying (resp. dividing) the | |
229 | // two numbers. | |
230 | // This is possible because IEEE guarantees that floating-point operations | |
231 | // return the best possible approximation. | |
232 | if (exponent < 0 && -exponent < kExactPowersOfTenSize) { | |
233 | // 10^-exponent fits into a double. | |
234 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | |
235 | ASSERT(read_digits == trimmed.length()); | |
236 | *result /= exact_powers_of_ten[-exponent]; | |
237 | return true; | |
238 | } | |
239 | if (0 <= exponent && exponent < kExactPowersOfTenSize) { | |
240 | // 10^exponent fits into a double. | |
241 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | |
242 | ASSERT(read_digits == trimmed.length()); | |
243 | *result *= exact_powers_of_ten[exponent]; | |
244 | return true; | |
245 | } | |
246 | int remaining_digits = | |
247 | kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); | |
248 | if ((0 <= exponent) && | |
249 | (exponent - remaining_digits < kExactPowersOfTenSize)) { | |
250 | // The trimmed string was short and we can multiply it with | |
251 | // 10^remaining_digits. As a result the remaining exponent now fits | |
252 | // into a double too. | |
253 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | |
254 | ASSERT(read_digits == trimmed.length()); | |
255 | *result *= exact_powers_of_ten[remaining_digits]; | |
256 | *result *= exact_powers_of_ten[exponent - remaining_digits]; | |
257 | return true; | |
258 | } | |
259 | } | |
260 | return false; | |
261 | } | |
262 | ||
263 | ||
264 | // Returns 10^exponent as an exact DiyFp. | |
265 | // The given exponent must be in the range [1; kDecimalExponentDistance[. | |
266 | static DiyFp AdjustmentPowerOfTen(int exponent) { | |
267 | ASSERT(0 < exponent); | |
268 | ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); | |
269 | // Simply hardcode the remaining powers for the given decimal exponent | |
270 | // distance. | |
271 | ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); | |
272 | switch (exponent) { | |
273 | case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); | |
274 | case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); | |
275 | case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); | |
276 | case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); | |
277 | case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); | |
278 | case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); | |
279 | case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); | |
280 | default: | |
281 | UNREACHABLE(); | |
282 | } | |
283 | } | |
284 | ||
285 | ||
286 | // If the function returns true then the result is the correct double. | |
287 | // Otherwise it is either the correct double or the double that is just below | |
288 | // the correct double. | |
289 | static bool DiyFpStrtod(Vector<const char> buffer, | |
290 | int exponent, | |
291 | double* result) { | |
292 | DiyFp input; | |
293 | int remaining_decimals; | |
294 | ReadDiyFp(buffer, &input, &remaining_decimals); | |
295 | // Since we may have dropped some digits the input is not accurate. | |
296 | // If remaining_decimals is different than 0 than the error is at most | |
297 | // .5 ulp (unit in the last place). | |
298 | // We don't want to deal with fractions and therefore keep a common | |
299 | // denominator. | |
300 | const int kDenominatorLog = 3; | |
301 | const int kDenominator = 1 << kDenominatorLog; | |
302 | // Move the remaining decimals into the exponent. | |
303 | exponent += remaining_decimals; | |
304 | uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); | |
305 | ||
306 | int old_e = input.e(); | |
307 | input.Normalize(); | |
308 | error <<= old_e - input.e(); | |
309 | ||
310 | ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); | |
311 | if (exponent < PowersOfTenCache::kMinDecimalExponent) { | |
312 | *result = 0.0; | |
313 | return true; | |
314 | } | |
315 | DiyFp cached_power; | |
316 | int cached_decimal_exponent; | |
317 | PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, | |
318 | &cached_power, | |
319 | &cached_decimal_exponent); | |
320 | ||
321 | if (cached_decimal_exponent != exponent) { | |
322 | int adjustment_exponent = exponent - cached_decimal_exponent; | |
323 | DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); | |
324 | input.Multiply(adjustment_power); | |
325 | if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { | |
326 | // The product of input with the adjustment power fits into a 64 bit | |
327 | // integer. | |
328 | ASSERT(DiyFp::kSignificandSize == 64); | |
329 | } else { | |
330 | // The adjustment power is exact. There is hence only an error of 0.5. | |
331 | error += kDenominator / 2; | |
332 | } | |
333 | } | |
334 | ||
335 | input.Multiply(cached_power); | |
336 | // The error introduced by a multiplication of a*b equals | |
337 | // error_a + error_b + error_a*error_b/2^64 + 0.5 | |
338 | // Substituting a with 'input' and b with 'cached_power' we have | |
339 | // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), | |
340 | // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 | |
341 | int error_b = kDenominator / 2; | |
342 | int error_ab = (error == 0 ? 0 : 1); // We round up to 1. | |
343 | int fixed_error = kDenominator / 2; | |
344 | error += error_b + error_ab + fixed_error; | |
345 | ||
346 | old_e = input.e(); | |
347 | input.Normalize(); | |
348 | error <<= old_e - input.e(); | |
349 | ||
350 | // See if the double's significand changes if we add/subtract the error. | |
351 | int order_of_magnitude = DiyFp::kSignificandSize + input.e(); | |
352 | int effective_significand_size = | |
353 | Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); | |
354 | int precision_digits_count = | |
355 | DiyFp::kSignificandSize - effective_significand_size; | |
356 | if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { | |
357 | // This can only happen for very small denormals. In this case the | |
358 | // half-way multiplied by the denominator exceeds the range of an uint64. | |
359 | // Simply shift everything to the right. | |
360 | int shift_amount = (precision_digits_count + kDenominatorLog) - | |
361 | DiyFp::kSignificandSize + 1; | |
362 | input.set_f(input.f() >> shift_amount); | |
363 | input.set_e(input.e() + shift_amount); | |
364 | // We add 1 for the lost precision of error, and kDenominator for | |
365 | // the lost precision of input.f(). | |
366 | error = (error >> shift_amount) + 1 + kDenominator; | |
367 | precision_digits_count -= shift_amount; | |
368 | } | |
369 | // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. | |
370 | ASSERT(DiyFp::kSignificandSize == 64); | |
371 | ASSERT(precision_digits_count < 64); | |
372 | uint64_t one64 = 1; | |
373 | uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; | |
374 | uint64_t precision_bits = input.f() & precision_bits_mask; | |
375 | uint64_t half_way = one64 << (precision_digits_count - 1); | |
376 | precision_bits *= kDenominator; | |
377 | half_way *= kDenominator; | |
378 | DiyFp rounded_input(input.f() >> precision_digits_count, | |
379 | input.e() + precision_digits_count); | |
380 | if (precision_bits >= half_way + error) { | |
381 | rounded_input.set_f(rounded_input.f() + 1); | |
382 | } | |
383 | // If the last_bits are too close to the half-way case than we are too | |
384 | // inaccurate and round down. In this case we return false so that we can | |
385 | // fall back to a more precise algorithm. | |
386 | ||
387 | *result = Double(rounded_input).value(); | |
388 | if (half_way - error < precision_bits && precision_bits < half_way + error) { | |
389 | // Too imprecise. The caller will have to fall back to a slower version. | |
390 | // However the returned number is guaranteed to be either the correct | |
391 | // double, or the next-lower double. | |
392 | return false; | |
393 | } else { | |
394 | return true; | |
395 | } | |
396 | } | |
397 | ||
398 | ||
399 | // Returns | |
400 | // - -1 if buffer*10^exponent < diy_fp. | |
401 | // - 0 if buffer*10^exponent == diy_fp. | |
402 | // - +1 if buffer*10^exponent > diy_fp. | |
403 | // Preconditions: | |
404 | // buffer.length() + exponent <= kMaxDecimalPower + 1 | |
405 | // buffer.length() + exponent > kMinDecimalPower | |
406 | // buffer.length() <= kMaxDecimalSignificantDigits | |
407 | static int CompareBufferWithDiyFp(Vector<const char> buffer, | |
408 | int exponent, | |
409 | DiyFp diy_fp) { | |
410 | ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); | |
411 | ASSERT(buffer.length() + exponent > kMinDecimalPower); | |
412 | ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); | |
413 | // Make sure that the Bignum will be able to hold all our numbers. | |
414 | // Our Bignum implementation has a separate field for exponents. Shifts will | |
415 | // consume at most one bigit (< 64 bits). | |
416 | // ln(10) == 3.3219... | |
417 | ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); | |
418 | Bignum buffer_bignum; | |
419 | Bignum diy_fp_bignum; | |
420 | buffer_bignum.AssignDecimalString(buffer); | |
421 | diy_fp_bignum.AssignUInt64(diy_fp.f()); | |
422 | if (exponent >= 0) { | |
423 | buffer_bignum.MultiplyByPowerOfTen(exponent); | |
424 | } else { | |
425 | diy_fp_bignum.MultiplyByPowerOfTen(-exponent); | |
426 | } | |
427 | if (diy_fp.e() > 0) { | |
428 | diy_fp_bignum.ShiftLeft(diy_fp.e()); | |
429 | } else { | |
430 | buffer_bignum.ShiftLeft(-diy_fp.e()); | |
431 | } | |
432 | return Bignum::Compare(buffer_bignum, diy_fp_bignum); | |
433 | } | |
434 | ||
435 | ||
436 | // Returns true if the guess is the correct double. | |
437 | // Returns false, when guess is either correct or the next-lower double. | |
438 | static bool ComputeGuess(Vector<const char> trimmed, int exponent, | |
439 | double* guess) { | |
440 | if (trimmed.length() == 0) { | |
441 | *guess = 0.0; | |
442 | return true; | |
443 | } | |
444 | if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { | |
445 | *guess = Double::Infinity(); | |
446 | return true; | |
447 | } | |
448 | if (exponent + trimmed.length() <= kMinDecimalPower) { | |
449 | *guess = 0.0; | |
450 | return true; | |
451 | } | |
452 | ||
453 | if (DoubleStrtod(trimmed, exponent, guess) || | |
454 | DiyFpStrtod(trimmed, exponent, guess)) { | |
455 | return true; | |
456 | } | |
457 | if (*guess == Double::Infinity()) { | |
458 | return true; | |
459 | } | |
460 | return false; | |
461 | } | |
462 | ||
463 | double Strtod(Vector<const char> buffer, int exponent) { | |
464 | char copy_buffer[kMaxSignificantDecimalDigits]; | |
465 | Vector<const char> trimmed; | |
466 | int updated_exponent; | |
467 | TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, | |
468 | &trimmed, &updated_exponent); | |
469 | exponent = updated_exponent; | |
470 | ||
471 | double guess; | |
472 | bool is_correct = ComputeGuess(trimmed, exponent, &guess); | |
473 | if (is_correct) return guess; | |
474 | ||
475 | DiyFp upper_boundary = Double(guess).UpperBoundary(); | |
476 | int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); | |
477 | if (comparison < 0) { | |
478 | return guess; | |
479 | } else if (comparison > 0) { | |
480 | return Double(guess).NextDouble(); | |
481 | } else if ((Double(guess).Significand() & 1) == 0) { | |
482 | // Round towards even. | |
483 | return guess; | |
484 | } else { | |
485 | return Double(guess).NextDouble(); | |
486 | } | |
487 | } | |
488 | ||
489 | float Strtof(Vector<const char> buffer, int exponent) { | |
490 | char copy_buffer[kMaxSignificantDecimalDigits]; | |
491 | Vector<const char> trimmed; | |
492 | int updated_exponent; | |
493 | TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, | |
494 | &trimmed, &updated_exponent); | |
495 | exponent = updated_exponent; | |
496 | ||
497 | double double_guess; | |
498 | bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); | |
499 | ||
500 | float float_guess = static_cast<float>(double_guess); | |
501 | if (float_guess == double_guess) { | |
502 | // This shortcut triggers for integer values. | |
503 | return float_guess; | |
504 | } | |
505 | ||
506 | // We must catch double-rounding. Say the double has been rounded up, and is | |
507 | // now a boundary of a float, and rounds up again. This is why we have to | |
508 | // look at previous too. | |
509 | // Example (in decimal numbers): | |
510 | // input: 12349 | |
511 | // high-precision (4 digits): 1235 | |
512 | // low-precision (3 digits): | |
513 | // when read from input: 123 | |
514 | // when rounded from high precision: 124. | |
515 | // To do this we simply look at the neigbors of the correct result and see | |
516 | // if they would round to the same float. If the guess is not correct we have | |
517 | // to look at four values (since two different doubles could be the correct | |
518 | // double). | |
519 | ||
520 | double double_next = Double(double_guess).NextDouble(); | |
521 | double double_previous = Double(double_guess).PreviousDouble(); | |
522 | ||
523 | float f1 = static_cast<float>(double_previous); | |
524 | float f2 = float_guess; | |
525 | float f3 = static_cast<float>(double_next); | |
526 | float f4; | |
527 | if (is_correct) { | |
528 | f4 = f3; | |
529 | } else { | |
530 | double double_next2 = Double(double_next).NextDouble(); | |
531 | f4 = static_cast<float>(double_next2); | |
532 | } | |
533 | (void) f2; // Mark variable as used. | |
534 | ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); | |
535 | ||
536 | // If the guess doesn't lie near a single-precision boundary we can simply | |
537 | // return its float-value. | |
538 | if (f1 == f4) { | |
539 | return float_guess; | |
540 | } | |
541 | ||
542 | ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || | |
543 | (f1 == f2 && f2 != f3 && f3 == f4) || | |
544 | (f1 == f2 && f2 == f3 && f3 != f4)); | |
545 | ||
546 | // guess and next are the two possible canditates (in the same way that | |
547 | // double_guess was the lower candidate for a double-precision guess). | |
548 | float guess = f1; | |
549 | float next = f4; | |
550 | DiyFp upper_boundary; | |
551 | if (guess == 0.0f) { | |
552 | float min_float = 1e-45f; | |
553 | upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); | |
554 | } else { | |
555 | upper_boundary = Single(guess).UpperBoundary(); | |
556 | } | |
557 | int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); | |
558 | if (comparison < 0) { | |
559 | return guess; | |
560 | } else if (comparison > 0) { | |
561 | return next; | |
562 | } else if ((Single(guess).Significand() & 1) == 0) { | |
563 | // Round towards even. | |
564 | return guess; | |
565 | } else { | |
566 | return next; | |
567 | } | |
568 | } | |
569 | ||
570 | } // namespace double_conversion | |
571 | ||
572 | // ICU PATCH: Close ICU namespace | |
573 | U_NAMESPACE_END | |
574 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |