]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
729e4ab9 A |
3 | /* |
4 | ****************************************************************************** | |
5 | * | |
2ca993e8 | 6 | * Copyright (C) 2008-2015, International Business Machines |
729e4ab9 A |
7 | * Corporation and others. All Rights Reserved. |
8 | * | |
9 | ****************************************************************************** | |
10 | * file name: uspoof_conf.cpp | |
f3c0d7a5 | 11 | * encoding: UTF-8 |
729e4ab9 A |
12 | * tab size: 8 (not used) |
13 | * indentation:4 | |
14 | * | |
15 | * created on: 2009Jan05 (refactoring earlier files) | |
16 | * created by: Andy Heninger | |
17 | * | |
18 | * Internal classes for compililing confusable data into its binary (runtime) form. | |
19 | */ | |
20 | ||
21 | #include "unicode/utypes.h" | |
22 | #include "unicode/uspoof.h" | |
23 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS | |
24 | #if !UCONFIG_NO_NORMALIZATION | |
25 | ||
26 | #include "unicode/unorm.h" | |
27 | #include "unicode/uregex.h" | |
28 | #include "unicode/ustring.h" | |
29 | #include "cmemory.h" | |
30 | #include "uspoof_impl.h" | |
31 | #include "uhash.h" | |
32 | #include "uvector.h" | |
33 | #include "uassert.h" | |
34 | #include "uarrsort.h" | |
35 | #include "uspoof_conf.h" | |
36 | ||
37 | U_NAMESPACE_USE | |
38 | ||
39 | ||
40 | //--------------------------------------------------------------------- | |
41 | // | |
42 | // buildConfusableData Compile the source confusable data, as defined by | |
43 | // the Unicode data file confusables.txt, into the binary | |
44 | // structures used by the confusable detector. | |
45 | // | |
46 | // The binary structures are described in uspoof_impl.h | |
47 | // | |
f3c0d7a5 | 48 | // 1. Parse the data, making a hash table mapping from a UChar32 to a String. |
729e4ab9 A |
49 | // |
50 | // 2. Sort all of the strings encountered by length, since they will need to | |
51 | // be stored in that order in the final string table. | |
f3c0d7a5 A |
52 | // TODO: Sorting these strings by length is no longer needed since the removal of |
53 | // the string lengths table. This logic can be removed to save processing time | |
54 | // when building confusables data. | |
729e4ab9 A |
55 | // |
56 | // 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the | |
57 | // list because that will be the ordering of our runtime table. | |
58 | // | |
59 | // 4. Generate the run time string table. This is generated before the key & value | |
60 | // tables because we need the string indexes when building those tables. | |
61 | // | |
62 | // 5. Build the run-time key and value tables. These are parallel tables, and are built | |
63 | // at the same time | |
64 | // | |
65 | ||
66 | SPUString::SPUString(UnicodeString *s) { | |
67 | fStr = s; | |
f3c0d7a5 | 68 | fCharOrStrTableIndex = 0; |
729e4ab9 A |
69 | } |
70 | ||
71 | ||
72 | SPUString::~SPUString() { | |
73 | delete fStr; | |
74 | } | |
75 | ||
76 | ||
77 | SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { | |
78 | fVec = new UVector(status); | |
79 | fHash = uhash_open(uhash_hashUnicodeString, // key hash function | |
80 | uhash_compareUnicodeString, // Key Comparator | |
81 | NULL, // Value Comparator | |
82 | &status); | |
83 | } | |
84 | ||
85 | ||
86 | SPUStringPool::~SPUStringPool() { | |
87 | int i; | |
88 | for (i=fVec->size()-1; i>=0; i--) { | |
89 | SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); | |
90 | delete s; | |
91 | } | |
92 | delete fVec; | |
93 | uhash_close(fHash); | |
94 | } | |
95 | ||
96 | ||
97 | int32_t SPUStringPool::size() { | |
98 | return fVec->size(); | |
99 | } | |
100 | ||
101 | SPUString *SPUStringPool::getByIndex(int32_t index) { | |
102 | SPUString *retString = (SPUString *)fVec->elementAt(index); | |
103 | return retString; | |
104 | } | |
105 | ||
106 | ||
107 | // Comparison function for ordering strings in the string pool. | |
108 | // Compare by length first, then, within a group of the same length, | |
109 | // by code point order. | |
110 | // Conforms to the type signature for a USortComparator in uvector.h | |
111 | ||
112 | static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { | |
113 | const SPUString *sL = const_cast<const SPUString *>( | |
114 | static_cast<SPUString *>(left.pointer)); | |
115 | const SPUString *sR = const_cast<const SPUString *>( | |
116 | static_cast<SPUString *>(right.pointer)); | |
117 | int32_t lenL = sL->fStr->length(); | |
118 | int32_t lenR = sR->fStr->length(); | |
119 | if (lenL < lenR) { | |
120 | return -1; | |
121 | } else if (lenL > lenR) { | |
122 | return 1; | |
123 | } else { | |
124 | return sL->fStr->compare(*(sR->fStr)); | |
125 | } | |
126 | } | |
127 | ||
128 | void SPUStringPool::sort(UErrorCode &status) { | |
129 | fVec->sort(SPUStringCompare, status); | |
130 | } | |
131 | ||
132 | ||
133 | SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { | |
134 | SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); | |
135 | if (hashedString != NULL) { | |
136 | delete src; | |
137 | } else { | |
138 | hashedString = new SPUString(src); | |
139 | uhash_put(fHash, src, hashedString, &status); | |
140 | fVec->addElement(hashedString, status); | |
141 | } | |
142 | return hashedString; | |
143 | } | |
144 | ||
145 | ||
146 | ||
147 | ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : | |
148 | fSpoofImpl(spImpl), | |
149 | fInput(NULL), | |
f3c0d7a5 | 150 | fTable(NULL), |
729e4ab9 A |
151 | fKeySet(NULL), |
152 | fKeyVec(NULL), | |
153 | fValueVec(NULL), | |
154 | fStringTable(NULL), | |
729e4ab9 A |
155 | stringPool(NULL), |
156 | fParseLine(NULL), | |
157 | fParseHexNum(NULL), | |
158 | fLineNum(0) | |
159 | { | |
160 | if (U_FAILURE(status)) { | |
161 | return; | |
162 | } | |
f3c0d7a5 | 163 | fTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
729e4ab9 A |
164 | fKeySet = new UnicodeSet(); |
165 | fKeyVec = new UVector(status); | |
166 | fValueVec = new UVector(status); | |
167 | stringPool = new SPUStringPool(status); | |
168 | } | |
169 | ||
170 | ||
171 | ConfusabledataBuilder::~ConfusabledataBuilder() { | |
172 | uprv_free(fInput); | |
173 | uregex_close(fParseLine); | |
174 | uregex_close(fParseHexNum); | |
f3c0d7a5 | 175 | uhash_close(fTable); |
729e4ab9 A |
176 | delete fKeySet; |
177 | delete fKeyVec; | |
178 | delete fStringTable; | |
729e4ab9 A |
179 | delete fValueVec; |
180 | delete stringPool; | |
181 | } | |
182 | ||
183 | ||
184 | void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, | |
185 | int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { | |
186 | ||
187 | if (U_FAILURE(status)) { | |
188 | return; | |
189 | } | |
190 | ConfusabledataBuilder builder(spImpl, status); | |
191 | builder.build(confusables, confusablesLen, status); | |
192 | if (U_FAILURE(status) && errorType != NULL) { | |
193 | *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; | |
194 | pe->line = builder.fLineNum; | |
195 | } | |
196 | } | |
197 | ||
198 | ||
199 | void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, | |
200 | UErrorCode &status) { | |
201 | ||
202 | // Convert the user input data from UTF-8 to UChar (UTF-16) | |
203 | int32_t inputLen = 0; | |
204 | if (U_FAILURE(status)) { | |
205 | return; | |
206 | } | |
207 | u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); | |
208 | if (status != U_BUFFER_OVERFLOW_ERROR) { | |
209 | return; | |
210 | } | |
211 | status = U_ZERO_ERROR; | |
212 | fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); | |
213 | if (fInput == NULL) { | |
214 | status = U_MEMORY_ALLOCATION_ERROR; | |
4388f060 | 215 | return; |
729e4ab9 A |
216 | } |
217 | u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); | |
218 | ||
219 | ||
220 | // Regular Expression to parse a line from Confusables.txt. The expression will match | |
221 | // any line. What was matched is determined by examining which capture groups have a match. | |
222 | // Capture Group 1: the source char | |
223 | // Capture Group 2: the replacement chars | |
f3c0d7a5 | 224 | // Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated) |
729e4ab9 A |
225 | // Capture Group 7: A blank or comment only line. |
226 | // Capture Group 8: A syntactically invalid line. Anything that didn't match before. | |
227 | // Example Line from the confusables.txt source file: | |
228 | // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " | |
4388f060 | 229 | UnicodeString pattern( |
729e4ab9 A |
230 | "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char |
231 | "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) | |
232 | "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) | |
233 | "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type | |
234 | "[ \\t]*(?:#.*?)?$" // Match any trailing #comment | |
235 | "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment | |
4388f060 A |
236 | "|^(.*?)$", -1, US_INV); // OR match any line, which catches illegal lines. |
237 | // TODO: Why are we using the regex C API here? C++ would just take UnicodeString... | |
238 | fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); | |
729e4ab9 A |
239 | |
240 | // Regular expression for parsing a hex number out of a space-separated list of them. | |
241 | // Capture group 1 gets the number, with spaces removed. | |
4388f060 A |
242 | pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)"); |
243 | fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); | |
729e4ab9 A |
244 | |
245 | // Zap any Byte Order Mark at the start of input. Changing it to a space is benign | |
246 | // given the syntax of the input. | |
247 | if (*fInput == 0xfeff) { | |
248 | *fInput = 0x20; | |
249 | } | |
250 | ||
251 | // Parse the input, one line per iteration of this loop. | |
252 | uregex_setText(fParseLine, fInput, inputLen, &status); | |
253 | while (uregex_findNext(fParseLine, &status)) { | |
254 | fLineNum++; | |
255 | if (uregex_start(fParseLine, 7, &status) >= 0) { | |
256 | // this was a blank or comment line. | |
257 | continue; | |
258 | } | |
259 | if (uregex_start(fParseLine, 8, &status) >= 0) { | |
260 | // input file syntax error. | |
261 | status = U_PARSE_ERROR; | |
262 | return; | |
263 | } | |
264 | ||
265 | // We have a good input line. Extract the key character and mapping string, and | |
266 | // put them into the appropriate mapping table. | |
267 | UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), | |
268 | uregex_end(fParseLine, 1, &status), status); | |
269 | ||
270 | int32_t mapStringStart = uregex_start(fParseLine, 2, &status); | |
271 | int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; | |
272 | uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); | |
273 | ||
274 | UnicodeString *mapString = new UnicodeString(); | |
275 | if (mapString == NULL) { | |
276 | status = U_MEMORY_ALLOCATION_ERROR; | |
277 | return; | |
278 | } | |
279 | while (uregex_findNext(fParseHexNum, &status)) { | |
280 | UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), | |
281 | uregex_end(fParseHexNum, 1, &status), status); | |
282 | mapString->append(c); | |
283 | } | |
284 | U_ASSERT(mapString->length() >= 1); | |
285 | ||
286 | // Put the map (value) string into the string pool | |
287 | // This a little like a Java intern() - any duplicates will be eliminated. | |
288 | SPUString *smapString = stringPool->addString(mapString, status); | |
289 | ||
f3c0d7a5 | 290 | // Add the UChar32 -> string mapping to the table. |
2ca993e8 A |
291 | // For Unicode 8, the SL, SA and ML tables have been discontinued. |
292 | // All input data from confusables.txt is tagged MA. | |
f3c0d7a5 A |
293 | uhash_iput(fTable, keyChar, smapString, &status); |
294 | if (U_FAILURE(status)) { return; } | |
729e4ab9 | 295 | fKeySet->add(keyChar); |
729e4ab9 A |
296 | } |
297 | ||
298 | // Input data is now all parsed and collected. | |
299 | // Now create the run-time binary form of the data. | |
300 | // | |
301 | // This is done in two steps. First the data is assembled into vectors and strings, | |
302 | // for ease of construction, then the contents of these collections are dumped | |
303 | // into the actual raw-bytes data storage. | |
304 | ||
305 | // Build up the string array, and record the index of each string therein | |
306 | // in the (build time only) string pool. | |
307 | // Strings of length one are not entered into the strings array. | |
729e4ab9 A |
308 | // (Strings in the table are sorted by length) |
309 | stringPool->sort(status); | |
310 | fStringTable = new UnicodeString(); | |
729e4ab9 A |
311 | int32_t poolSize = stringPool->size(); |
312 | int32_t i; | |
313 | for (i=0; i<poolSize; i++) { | |
314 | SPUString *s = stringPool->getByIndex(i); | |
315 | int32_t strLen = s->fStr->length(); | |
316 | int32_t strIndex = fStringTable->length(); | |
729e4ab9 A |
317 | if (strLen == 1) { |
318 | // strings of length one do not get an entry in the string table. | |
319 | // Keep the single string character itself here, which is the same | |
320 | // convention that is used in the final run-time string table index. | |
f3c0d7a5 | 321 | s->fCharOrStrTableIndex = s->fStr->charAt(0); |
729e4ab9 | 322 | } else { |
f3c0d7a5 | 323 | s->fCharOrStrTableIndex = strIndex; |
729e4ab9 A |
324 | fStringTable->append(*(s->fStr)); |
325 | } | |
729e4ab9 A |
326 | } |
327 | ||
328 | // Construct the compile-time Key and Value tables | |
329 | // | |
330 | // For each key code point, check which mapping tables it applies to, | |
331 | // and create the final data for the key & value structures. | |
332 | // | |
333 | // The four logical mapping tables are conflated into one combined table. | |
334 | // If multiple logical tables have the same mapping for some key, they | |
335 | // share a single entry in the combined table. | |
336 | // If more than one mapping exists for the same key code point, multiple | |
337 | // entries will be created in the table | |
338 | ||
339 | for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { | |
340 | // It is an oddity of the UnicodeSet API that simply enumerating the contained | |
341 | // code points requires a nested loop. | |
342 | for (UChar32 keyChar=fKeySet->getRangeStart(range); | |
343 | keyChar <= fKeySet->getRangeEnd(range); keyChar++) { | |
f3c0d7a5 A |
344 | SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar)); |
345 | U_ASSERT(targetMapping != NULL); | |
346 | ||
347 | // Set an error code if trying to consume a long string. Otherwise, | |
348 | // codePointAndLengthToKey will abort on a U_ASSERT. | |
349 | if (targetMapping->fStr->length() > 256) { | |
350 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
351 | return; | |
352 | } | |
353 | ||
354 | int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar, | |
355 | targetMapping->fStr->length()); | |
356 | int32_t value = targetMapping->fCharOrStrTableIndex; | |
357 | ||
358 | fKeyVec->addElement(key, status); | |
359 | fValueVec->addElement(value, status); | |
729e4ab9 A |
360 | } |
361 | } | |
362 | ||
363 | // Put the assembled data into the flat runtime array | |
364 | outputData(status); | |
365 | ||
366 | // All of the intermediate allocated data belongs to the ConfusabledataBuilder | |
367 | // object (this), and is deleted in the destructor. | |
368 | return; | |
369 | } | |
370 | ||
371 | // | |
372 | // outputData The confusable data has been compiled and stored in intermediate | |
373 | // collections and strings. Copy it from there to the final flat | |
374 | // binary array. | |
375 | // | |
376 | // Note that as each section is added to the output data, the | |
377 | // expand (reserveSpace() function will likely relocate it in memory. | |
378 | // Be careful with pointers. | |
379 | // | |
380 | void ConfusabledataBuilder::outputData(UErrorCode &status) { | |
381 | ||
382 | U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); | |
383 | ||
384 | // The Key Table | |
385 | // While copying the keys to the runtime array, | |
386 | // also sanity check that they are sorted. | |
387 | ||
388 | int32_t numKeys = fKeyVec->size(); | |
389 | int32_t *keys = | |
390 | static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); | |
391 | if (U_FAILURE(status)) { | |
392 | return; | |
393 | } | |
394 | int i; | |
f3c0d7a5 | 395 | UChar32 previousCodePoint = 0; |
729e4ab9 A |
396 | for (i=0; i<numKeys; i++) { |
397 | int32_t key = fKeyVec->elementAti(i); | |
f3c0d7a5 A |
398 | UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key); |
399 | // strictly greater because there can be only one entry per code point | |
400 | U_ASSERT(codePoint > previousCodePoint); | |
729e4ab9 | 401 | keys[i] = key; |
f3c0d7a5 | 402 | previousCodePoint = codePoint; |
729e4ab9 A |
403 | } |
404 | SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; | |
405 | rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); | |
406 | rawData->fCFUKeysSize = numKeys; | |
407 | fSpoofImpl->fSpoofData->fCFUKeys = keys; | |
408 | ||
409 | ||
410 | // The Value Table, parallels the key table | |
411 | int32_t numValues = fValueVec->size(); | |
412 | U_ASSERT(numKeys == numValues); | |
413 | uint16_t *values = | |
414 | static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); | |
415 | if (U_FAILURE(status)) { | |
416 | return; | |
417 | } | |
418 | for (i=0; i<numValues; i++) { | |
419 | uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); | |
420 | U_ASSERT(value < 0xffff); | |
421 | values[i] = static_cast<uint16_t>(value); | |
422 | } | |
423 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
424 | rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); | |
425 | rawData->fCFUStringIndexSize = numValues; | |
426 | fSpoofImpl->fSpoofData->fCFUValues = values; | |
427 | ||
428 | // The Strings Table. | |
429 | ||
430 | uint32_t stringsLength = fStringTable->length(); | |
431 | // Reserve an extra space so the string will be nul-terminated. This is | |
432 | // only a convenience, for when debugging; it is not needed otherwise. | |
433 | UChar *strings = | |
434 | static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); | |
435 | if (U_FAILURE(status)) { | |
436 | return; | |
437 | } | |
438 | fStringTable->extract(strings, stringsLength+1, status); | |
439 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
440 | U_ASSERT(rawData->fCFUStringTable == 0); | |
441 | rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); | |
442 | rawData->fCFUStringTableLen = stringsLength; | |
443 | fSpoofImpl->fSpoofData->fCFUStrings = strings; | |
729e4ab9 A |
444 | } |
445 | ||
446 | #endif | |
447 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS | |
448 |