]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
b75a7d8f A |
3 | /* |
4 | ****************************************************************************** | |
5 | * | |
51004dcb | 6 | * Copyright (C) 2001-2012, International Business Machines |
b75a7d8f A |
7 | * Corporation and others. All Rights Reserved. |
8 | * | |
9 | ****************************************************************************** | |
4388f060 | 10 | * file name: utrie.cpp |
f3c0d7a5 | 11 | * encoding: UTF-8 |
b75a7d8f A |
12 | * tab size: 8 (not used) |
13 | * indentation:4 | |
14 | * | |
15 | * created on: 2001oct20 | |
16 | * created by: Markus W. Scherer | |
17 | * | |
18 | * This is a common implementation of a "folded" trie. | |
19 | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with | |
20 | * Unicode code points (0..0x10ffff). | |
21 | */ | |
22 | ||
23 | #ifdef UTRIE_DEBUG | |
24 | # include <stdio.h> | |
25 | #endif | |
26 | ||
27 | #include "unicode/utypes.h" | |
28 | #include "cmemory.h" | |
29 | #include "utrie.h" | |
30 | ||
73c04bcf A |
31 | /* miscellaneous ------------------------------------------------------------ */ |
32 | ||
b75a7d8f A |
33 | #undef ABS |
34 | #define ABS(x) ((x)>=0 ? (x) : -(x)) | |
35 | ||
4388f060 | 36 | static inline UBool |
73c04bcf A |
37 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
38 | while(length>0 && *s==*t) { | |
39 | ++s; | |
40 | ++t; | |
41 | --length; | |
42 | } | |
43 | return (UBool)(length==0); | |
44 | } | |
45 | ||
b75a7d8f A |
46 | /* Building a trie ----------------------------------------------------------*/ |
47 | ||
48 | U_CAPI UNewTrie * U_EXPORT2 | |
49 | utrie_open(UNewTrie *fillIn, | |
50 | uint32_t *aliasData, int32_t maxDataLength, | |
374ca955 A |
51 | uint32_t initialValue, uint32_t leadUnitValue, |
52 | UBool latin1Linear) { | |
b75a7d8f A |
53 | UNewTrie *trie; |
54 | int32_t i, j; | |
55 | ||
56 | if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || | |
57 | (latin1Linear && maxDataLength<1024) | |
58 | ) { | |
59 | return NULL; | |
60 | } | |
61 | ||
62 | if(fillIn!=NULL) { | |
63 | trie=fillIn; | |
64 | } else { | |
65 | trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); | |
66 | if(trie==NULL) { | |
67 | return NULL; | |
68 | } | |
69 | } | |
70 | uprv_memset(trie, 0, sizeof(UNewTrie)); | |
71 | trie->isAllocated= (UBool)(fillIn==NULL); | |
72 | ||
73 | if(aliasData!=NULL) { | |
74 | trie->data=aliasData; | |
75 | trie->isDataAllocated=FALSE; | |
76 | } else { | |
77 | trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); | |
78 | if(trie->data==NULL) { | |
79 | uprv_free(trie); | |
80 | return NULL; | |
81 | } | |
82 | trie->isDataAllocated=TRUE; | |
83 | } | |
84 | ||
85 | /* preallocate and reset the first data block (block index 0) */ | |
86 | j=UTRIE_DATA_BLOCK_LENGTH; | |
87 | ||
88 | if(latin1Linear) { | |
89 | /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ | |
90 | /* made sure above that maxDataLength>=1024 */ | |
91 | ||
92 | /* set indexes to point to consecutive data blocks */ | |
93 | i=0; | |
94 | do { | |
95 | /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ | |
96 | trie->index[i++]=j; | |
97 | j+=UTRIE_DATA_BLOCK_LENGTH; | |
98 | } while(i<(256>>UTRIE_SHIFT)); | |
99 | } | |
100 | ||
101 | /* reset the initially allocated blocks to the initial value */ | |
102 | trie->dataLength=j; | |
103 | while(j>0) { | |
104 | trie->data[--j]=initialValue; | |
105 | } | |
106 | ||
374ca955 | 107 | trie->leadUnitValue=leadUnitValue; |
b75a7d8f A |
108 | trie->indexLength=UTRIE_MAX_INDEX_LENGTH; |
109 | trie->dataCapacity=maxDataLength; | |
110 | trie->isLatin1Linear=latin1Linear; | |
111 | trie->isCompacted=FALSE; | |
112 | return trie; | |
113 | } | |
114 | ||
115 | U_CAPI UNewTrie * U_EXPORT2 | |
116 | utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { | |
117 | UNewTrie *trie; | |
118 | UBool isDataAllocated; | |
119 | ||
120 | /* do not clone if other is not valid or already compacted */ | |
121 | if(other==NULL || other->data==NULL || other->isCompacted) { | |
122 | return NULL; | |
123 | } | |
124 | ||
125 | /* clone data */ | |
126 | if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { | |
127 | isDataAllocated=FALSE; | |
128 | } else { | |
129 | aliasDataCapacity=other->dataCapacity; | |
130 | aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); | |
131 | if(aliasData==NULL) { | |
132 | return NULL; | |
133 | } | |
134 | isDataAllocated=TRUE; | |
135 | } | |
136 | ||
374ca955 A |
137 | trie=utrie_open(fillIn, aliasData, aliasDataCapacity, |
138 | other->data[0], other->leadUnitValue, | |
139 | other->isLatin1Linear); | |
b75a7d8f A |
140 | if(trie==NULL) { |
141 | uprv_free(aliasData); | |
142 | } else { | |
143 | uprv_memcpy(trie->index, other->index, sizeof(trie->index)); | |
a62d09fc | 144 | uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4); |
b75a7d8f A |
145 | trie->dataLength=other->dataLength; |
146 | trie->isDataAllocated=isDataAllocated; | |
147 | } | |
148 | ||
149 | return trie; | |
150 | } | |
151 | ||
152 | U_CAPI void U_EXPORT2 | |
153 | utrie_close(UNewTrie *trie) { | |
154 | if(trie!=NULL) { | |
155 | if(trie->isDataAllocated) { | |
156 | uprv_free(trie->data); | |
157 | trie->data=NULL; | |
158 | } | |
159 | if(trie->isAllocated) { | |
160 | uprv_free(trie); | |
161 | } | |
162 | } | |
163 | } | |
164 | ||
165 | U_CAPI uint32_t * U_EXPORT2 | |
166 | utrie_getData(UNewTrie *trie, int32_t *pLength) { | |
167 | if(trie==NULL || pLength==NULL) { | |
168 | return NULL; | |
169 | } | |
170 | ||
171 | *pLength=trie->dataLength; | |
172 | return trie->data; | |
173 | } | |
174 | ||
374ca955 A |
175 | static int32_t |
176 | utrie_allocDataBlock(UNewTrie *trie) { | |
177 | int32_t newBlock, newTop; | |
178 | ||
179 | newBlock=trie->dataLength; | |
180 | newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; | |
181 | if(newTop>trie->dataCapacity) { | |
182 | /* out of memory in the data array */ | |
183 | return -1; | |
184 | } | |
185 | trie->dataLength=newTop; | |
186 | return newBlock; | |
187 | } | |
188 | ||
b75a7d8f A |
189 | /** |
190 | * No error checking for illegal arguments. | |
191 | * | |
192 | * @return -1 if no new data block available (out of memory in data array) | |
193 | * @internal | |
194 | */ | |
195 | static int32_t | |
196 | utrie_getDataBlock(UNewTrie *trie, UChar32 c) { | |
374ca955 | 197 | int32_t indexValue, newBlock; |
b75a7d8f A |
198 | |
199 | c>>=UTRIE_SHIFT; | |
200 | indexValue=trie->index[c]; | |
201 | if(indexValue>0) { | |
202 | return indexValue; | |
203 | } | |
204 | ||
205 | /* allocate a new data block */ | |
374ca955 A |
206 | newBlock=utrie_allocDataBlock(trie); |
207 | if(newBlock<0) { | |
b75a7d8f A |
208 | /* out of memory in the data array */ |
209 | return -1; | |
210 | } | |
b75a7d8f A |
211 | trie->index[c]=newBlock; |
212 | ||
213 | /* copy-on-write for a block from a setRange() */ | |
214 | uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); | |
215 | return newBlock; | |
216 | } | |
217 | ||
218 | /** | |
219 | * @return TRUE if the value was successfully set | |
220 | */ | |
221 | U_CAPI UBool U_EXPORT2 | |
222 | utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { | |
223 | int32_t block; | |
224 | ||
225 | /* valid, uncompacted trie and valid c? */ | |
226 | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { | |
227 | return FALSE; | |
228 | } | |
229 | ||
230 | block=utrie_getDataBlock(trie, c); | |
231 | if(block<0) { | |
232 | return FALSE; | |
233 | } | |
234 | ||
235 | trie->data[block+(c&UTRIE_MASK)]=value; | |
236 | return TRUE; | |
237 | } | |
238 | ||
239 | U_CAPI uint32_t U_EXPORT2 | |
240 | utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { | |
241 | int32_t block; | |
242 | ||
243 | /* valid, uncompacted trie and valid c? */ | |
244 | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { | |
245 | if(pInBlockZero!=NULL) { | |
246 | *pInBlockZero=TRUE; | |
247 | } | |
248 | return 0; | |
249 | } | |
250 | ||
251 | block=trie->index[c>>UTRIE_SHIFT]; | |
252 | if(pInBlockZero!=NULL) { | |
253 | *pInBlockZero= (UBool)(block==0); | |
254 | } | |
255 | ||
256 | return trie->data[ABS(block)+(c&UTRIE_MASK)]; | |
257 | } | |
258 | ||
259 | /** | |
260 | * @internal | |
261 | */ | |
262 | static void | |
263 | utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, | |
264 | uint32_t value, uint32_t initialValue, UBool overwrite) { | |
265 | uint32_t *pLimit; | |
266 | ||
267 | pLimit=block+limit; | |
268 | block+=start; | |
269 | if(overwrite) { | |
270 | while(block<pLimit) { | |
271 | *block++=value; | |
272 | } | |
273 | } else { | |
274 | while(block<pLimit) { | |
275 | if(*block==initialValue) { | |
276 | *block=value; | |
277 | } | |
278 | ++block; | |
279 | } | |
280 | } | |
281 | } | |
282 | ||
283 | U_CAPI UBool U_EXPORT2 | |
284 | utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { | |
285 | /* | |
286 | * repeat value in [start..limit[ | |
287 | * mark index values for repeat-data blocks by setting bit 31 of the index values | |
288 | * fill around existing values if any, if(overwrite) | |
289 | */ | |
290 | uint32_t initialValue; | |
291 | int32_t block, rest, repeatBlock; | |
292 | ||
293 | /* valid, uncompacted trie and valid indexes? */ | |
294 | if( trie==NULL || trie->isCompacted || | |
295 | (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit | |
296 | ) { | |
297 | return FALSE; | |
298 | } | |
299 | if(start==limit) { | |
300 | return TRUE; /* nothing to do */ | |
301 | } | |
302 | ||
303 | initialValue=trie->data[0]; | |
304 | if(start&UTRIE_MASK) { | |
305 | UChar32 nextStart; | |
306 | ||
307 | /* set partial block at [start..following block boundary[ */ | |
308 | block=utrie_getDataBlock(trie, start); | |
309 | if(block<0) { | |
310 | return FALSE; | |
311 | } | |
312 | ||
313 | nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; | |
314 | if(nextStart<=limit) { | |
315 | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, | |
316 | value, initialValue, overwrite); | |
317 | start=nextStart; | |
318 | } else { | |
319 | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, | |
320 | value, initialValue, overwrite); | |
321 | return TRUE; | |
322 | } | |
323 | } | |
324 | ||
325 | /* number of positions in the last, partial block */ | |
326 | rest=limit&UTRIE_MASK; | |
327 | ||
328 | /* round down limit to a block boundary */ | |
329 | limit&=~UTRIE_MASK; | |
330 | ||
331 | /* iterate over all-value blocks */ | |
332 | if(value==initialValue) { | |
333 | repeatBlock=0; | |
334 | } else { | |
335 | repeatBlock=-1; | |
336 | } | |
337 | while(start<limit) { | |
338 | /* get index value */ | |
339 | block=trie->index[start>>UTRIE_SHIFT]; | |
340 | if(block>0) { | |
341 | /* already allocated, fill in value */ | |
342 | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); | |
343 | } else if(trie->data[-block]!=value && (block==0 || overwrite)) { | |
344 | /* set the repeatBlock instead of the current block 0 or range block */ | |
345 | if(repeatBlock>=0) { | |
346 | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; | |
347 | } else { | |
348 | /* create and set and fill the repeatBlock */ | |
349 | repeatBlock=utrie_getDataBlock(trie, start); | |
350 | if(repeatBlock<0) { | |
351 | return FALSE; | |
352 | } | |
353 | ||
354 | /* set the negative block number to indicate that it is a repeat block */ | |
355 | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; | |
356 | utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); | |
357 | } | |
358 | } | |
359 | ||
360 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
361 | } | |
362 | ||
363 | if(rest>0) { | |
364 | /* set partial block at [last block boundary..limit[ */ | |
365 | block=utrie_getDataBlock(trie, start); | |
366 | if(block<0) { | |
367 | return FALSE; | |
368 | } | |
369 | ||
370 | utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); | |
371 | } | |
372 | ||
373 | return TRUE; | |
374 | } | |
375 | ||
376 | static int32_t | |
729e4ab9 | 377 | _findSameIndexBlock(const int32_t *idx, int32_t indexLength, |
b75a7d8f A |
378 | int32_t otherBlock) { |
379 | int32_t block, i; | |
380 | ||
381 | for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { | |
382 | for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { | |
729e4ab9 | 383 | if(idx[block+i]!=idx[otherBlock+i]) { |
b75a7d8f A |
384 | break; |
385 | } | |
386 | } | |
387 | if(i==UTRIE_SURROGATE_BLOCK_COUNT) { | |
388 | return block; | |
389 | } | |
390 | } | |
391 | return indexLength; | |
392 | } | |
393 | ||
394 | /* | |
395 | * Fold the normalization data for supplementary code points into | |
396 | * a compact area on top of the BMP-part of the trie index, | |
397 | * with the lead surrogates indexing this compact area. | |
398 | * | |
399 | * Duplicate the index values for lead surrogates: | |
400 | * From inside the BMP area, where some may be overridden with folded values, | |
401 | * to just after the BMP area, where they can be retrieved for | |
402 | * code point lookups. | |
403 | */ | |
404 | static void | |
405 | utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { | |
406 | int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; | |
729e4ab9 | 407 | int32_t *idx; |
b75a7d8f A |
408 | uint32_t value; |
409 | UChar32 c; | |
410 | int32_t indexLength, block; | |
729e4ab9 A |
411 | #ifdef UTRIE_DEBUG |
412 | int countLeadCUWithData=0; | |
413 | #endif | |
b75a7d8f | 414 | |
729e4ab9 | 415 | idx=trie->index; |
b75a7d8f A |
416 | |
417 | /* copy the lead surrogate indexes into a temporary array */ | |
729e4ab9 | 418 | uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); |
b75a7d8f A |
419 | |
420 | /* | |
374ca955 A |
421 | * set all values for lead surrogate code *units* to leadUnitValue |
422 | * so that, by default, runtime lookups will find no data for associated | |
423 | * supplementary code points, unless there is data for such code points | |
424 | * which will result in a non-zero folding value below that is set for | |
425 | * the respective lead units | |
426 | * | |
427 | * the above saved the indexes for surrogate code *points* | |
428 | * fill the indexes with simplified code from utrie_setRange32() | |
b75a7d8f | 429 | */ |
374ca955 A |
430 | if(trie->leadUnitValue==trie->data[0]) { |
431 | block=0; /* leadUnitValue==initialValue, use all-initial-value block */ | |
432 | } else { | |
433 | /* create and fill the repeatBlock */ | |
434 | block=utrie_allocDataBlock(trie); | |
435 | if(block<0) { | |
436 | /* data table overflow */ | |
437 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
438 | return; | |
b75a7d8f | 439 | } |
374ca955 A |
440 | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); |
441 | block=-block; /* negative block number to indicate that it is a repeat block */ | |
442 | } | |
443 | for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { | |
444 | trie->index[c]=block; | |
b75a7d8f A |
445 | } |
446 | ||
447 | /* | |
448 | * Fold significant index values into the area just after the BMP indexes. | |
449 | * In case the first lead surrogate has significant data, | |
450 | * its index block must be used first (in which case the folding is a no-op). | |
451 | * Later all folded index blocks are moved up one to insert the copied | |
452 | * lead surrogate indexes. | |
453 | */ | |
454 | indexLength=UTRIE_BMP_INDEX_LENGTH; | |
455 | ||
456 | /* search for any index (stage 1) entries for supplementary code points */ | |
457 | for(c=0x10000; c<0x110000;) { | |
729e4ab9 | 458 | if(idx[c>>UTRIE_SHIFT]!=0) { |
b75a7d8f A |
459 | /* there is data, treat the full block for a lead surrogate */ |
460 | c&=~0x3ff; | |
461 | ||
462 | #ifdef UTRIE_DEBUG | |
729e4ab9 A |
463 | ++countLeadCUWithData; |
464 | /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ | |
b75a7d8f A |
465 | #endif |
466 | ||
467 | /* is there an identical index block? */ | |
729e4ab9 | 468 | block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); |
b75a7d8f | 469 | |
374ca955 A |
470 | /* |
471 | * get a folded value for [c..c+0x400[ and, | |
472 | * if different from the value for the lead surrogate code point, | |
473 | * set it for the lead surrogate code unit | |
474 | */ | |
b75a7d8f | 475 | value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); |
374ca955 A |
476 | if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { |
477 | if(!utrie_set32(trie, U16_LEAD(c), value)) { | |
b75a7d8f A |
478 | /* data table overflow */ |
479 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
480 | return; | |
481 | } | |
482 | ||
483 | /* if we did not find an identical index block... */ | |
484 | if(block==indexLength) { | |
485 | /* move the actual index (stage 1) entries from the supplementary position to the new one */ | |
729e4ab9 A |
486 | uprv_memmove(idx+indexLength, |
487 | idx+(c>>UTRIE_SHIFT), | |
b75a7d8f A |
488 | 4*UTRIE_SURROGATE_BLOCK_COUNT); |
489 | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; | |
490 | } | |
491 | } | |
492 | c+=0x400; | |
493 | } else { | |
494 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
495 | } | |
496 | } | |
729e4ab9 A |
497 | #ifdef UTRIE_DEBUG |
498 | if(countLeadCUWithData>0) { | |
499 | printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); | |
500 | } | |
501 | #endif | |
b75a7d8f A |
502 | |
503 | /* | |
504 | * index array overflow? | |
505 | * This is to guarantee that a folding offset is of the form | |
506 | * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. | |
507 | * If the index is too large, then n>=1024 and more than 10 bits are necessary. | |
508 | * | |
509 | * In fact, it can only ever become n==1024 with completely unfoldable data and | |
510 | * the additional block of duplicated values for lead surrogates. | |
511 | */ | |
512 | if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { | |
513 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
514 | return; | |
515 | } | |
516 | ||
517 | /* | |
518 | * make space for the lead surrogate index block and | |
519 | * insert it between the BMP indexes and the folded ones | |
520 | */ | |
729e4ab9 A |
521 | uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, |
522 | idx+UTRIE_BMP_INDEX_LENGTH, | |
b75a7d8f | 523 | 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); |
729e4ab9 | 524 | uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, |
b75a7d8f A |
525 | leadIndexes, |
526 | 4*UTRIE_SURROGATE_BLOCK_COUNT); | |
527 | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; | |
528 | ||
529 | #ifdef UTRIE_DEBUG | |
530 | printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", | |
531 | UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); | |
532 | #endif | |
533 | ||
534 | trie->indexLength=indexLength; | |
535 | } | |
536 | ||
537 | /* | |
538 | * Set a value in the trie index map to indicate which data block | |
539 | * is referenced and which one is not. | |
540 | * utrie_compact() will remove data blocks that are not used at all. | |
541 | * Set | |
542 | * - 0 if it is used | |
543 | * - -1 if it is not used | |
544 | */ | |
545 | static void | |
546 | _findUnusedBlocks(UNewTrie *trie) { | |
547 | int32_t i; | |
548 | ||
549 | /* fill the entire map with "not used" */ | |
550 | uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); | |
551 | ||
552 | /* mark each block that _is_ used with 0 */ | |
553 | for(i=0; i<trie->indexLength; ++i) { | |
554 | trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; | |
555 | } | |
556 | ||
557 | /* never move the all-initial-value block 0 */ | |
558 | trie->map[0]=0; | |
559 | } | |
560 | ||
561 | static int32_t | |
562 | _findSameDataBlock(const uint32_t *data, int32_t dataLength, | |
563 | int32_t otherBlock, int32_t step) { | |
73c04bcf | 564 | int32_t block; |
b75a7d8f A |
565 | |
566 | /* ensure that we do not even partially get past dataLength */ | |
567 | dataLength-=UTRIE_DATA_BLOCK_LENGTH; | |
568 | ||
569 | for(block=0; block<=dataLength; block+=step) { | |
73c04bcf | 570 | if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { |
b75a7d8f A |
571 | return block; |
572 | } | |
573 | } | |
574 | return -1; | |
575 | } | |
576 | ||
577 | /* | |
578 | * Compact a folded build-time trie. | |
579 | * | |
580 | * The compaction | |
581 | * - removes blocks that are identical with earlier ones | |
582 | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) | |
583 | * - moves blocks in steps of the data granularity | |
73c04bcf | 584 | * - moves and overlaps blocks that overlap with multiple values in the overlap region |
b75a7d8f A |
585 | * |
586 | * It does not | |
587 | * - try to move and overlap blocks that are not already adjacent | |
b75a7d8f A |
588 | */ |
589 | static void | |
590 | utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { | |
73c04bcf | 591 | int32_t i, start, newStart, overlapStart; |
b75a7d8f A |
592 | |
593 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
594 | return; | |
595 | } | |
596 | ||
597 | /* valid, uncompacted trie? */ | |
598 | if(trie==NULL) { | |
599 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
600 | return; | |
601 | } | |
602 | if(trie->isCompacted) { | |
603 | return; /* nothing left to do */ | |
604 | } | |
605 | ||
606 | /* compaction */ | |
607 | ||
608 | /* initialize the index map with "block is used/unused" flags */ | |
609 | _findUnusedBlocks(trie); | |
610 | ||
611 | /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ | |
612 | if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { | |
613 | overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; | |
614 | } else { | |
615 | overlapStart=UTRIE_DATA_BLOCK_LENGTH; | |
616 | } | |
617 | ||
618 | newStart=UTRIE_DATA_BLOCK_LENGTH; | |
b75a7d8f A |
619 | for(start=newStart; start<trie->dataLength;) { |
620 | /* | |
621 | * start: index of first entry of current block | |
b75a7d8f | 622 | * newStart: index where the current block is to be moved |
73c04bcf | 623 | * (right after current end of already-compacted data) |
b75a7d8f A |
624 | */ |
625 | ||
626 | /* skip blocks that are not used */ | |
627 | if(trie->map[start>>UTRIE_SHIFT]<0) { | |
628 | /* advance start to the next block */ | |
629 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
630 | ||
73c04bcf | 631 | /* leave newStart with the previous block! */ |
b75a7d8f A |
632 | continue; |
633 | } | |
634 | ||
635 | /* search for an identical block */ | |
636 | if( start>=overlapStart && | |
637 | (i=_findSameDataBlock(trie->data, newStart, start, | |
638 | overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) | |
639 | >=0 | |
640 | ) { | |
641 | /* found an identical block, set the other block's index value for the current block */ | |
642 | trie->map[start>>UTRIE_SHIFT]=i; | |
643 | ||
644 | /* advance start to the next block */ | |
645 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
646 | ||
73c04bcf | 647 | /* leave newStart with the previous block! */ |
b75a7d8f A |
648 | continue; |
649 | } | |
650 | ||
651 | /* see if the beginning of this block can be overlapped with the end of the previous block */ | |
73c04bcf A |
652 | if(overlap && start>=overlapStart) { |
653 | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ | |
654 | for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; | |
655 | i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); | |
656 | i-=UTRIE_DATA_GRANULARITY) {} | |
b75a7d8f A |
657 | } else { |
658 | i=0; | |
659 | } | |
660 | ||
661 | if(i>0) { | |
662 | /* some overlap */ | |
663 | trie->map[start>>UTRIE_SHIFT]=newStart-i; | |
664 | ||
665 | /* move the non-overlapping indexes to their new positions */ | |
666 | start+=i; | |
667 | for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { | |
668 | trie->data[newStart++]=trie->data[start++]; | |
669 | } | |
670 | } else if(newStart<start) { | |
671 | /* no overlap, just move the indexes to their new positions */ | |
672 | trie->map[start>>UTRIE_SHIFT]=newStart; | |
673 | for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { | |
674 | trie->data[newStart++]=trie->data[start++]; | |
675 | } | |
676 | } else /* no overlap && newStart==start */ { | |
677 | trie->map[start>>UTRIE_SHIFT]=start; | |
678 | newStart+=UTRIE_DATA_BLOCK_LENGTH; | |
679 | start=newStart; | |
680 | } | |
b75a7d8f A |
681 | } |
682 | ||
683 | /* now adjust the index (stage 1) table */ | |
684 | for(i=0; i<trie->indexLength; ++i) { | |
685 | trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; | |
686 | } | |
687 | ||
688 | #ifdef UTRIE_DEBUG | |
689 | /* we saved some space */ | |
690 | printf("compacting trie: count of 32-bit words %lu->%lu\n", | |
691 | (long)trie->dataLength, (long)newStart); | |
692 | #endif | |
693 | ||
694 | trie->dataLength=newStart; | |
695 | } | |
696 | ||
697 | /* serialization ------------------------------------------------------------ */ | |
698 | ||
374ca955 A |
699 | /* |
700 | * Default function for the folding value: | |
701 | * Just store the offset (16 bits) if there is any non-initial-value entry. | |
702 | * | |
703 | * The offset parameter is never 0. | |
704 | * Returning the offset itself is safe for UTRIE_SHIFT>=5 because | |
705 | * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 | |
706 | * which fits into 16-bit trie values; | |
707 | * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. | |
708 | * | |
709 | * Theoretically, it would be safer for all possible UTRIE_SHIFT including | |
710 | * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS | |
711 | * which would always result in a value of 0x40..0x43f | |
712 | * (start/end 1k blocks of supplementary Unicode code points). | |
713 | * However, this would be uglier, and would not work for some existing | |
714 | * binary data file formats. | |
715 | * | |
716 | * Also, we do not plan to change UTRIE_SHIFT because it would change binary | |
717 | * data file formats, and we would probably not make it smaller because of | |
718 | * the then even larger BMP index length even for empty tries. | |
719 | */ | |
720 | static uint32_t U_CALLCONV | |
721 | defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { | |
722 | uint32_t value, initialValue; | |
723 | UChar32 limit; | |
724 | UBool inBlockZero; | |
725 | ||
726 | initialValue=trie->data[0]; | |
727 | limit=start+0x400; | |
728 | while(start<limit) { | |
729 | value=utrie_get32(trie, start, &inBlockZero); | |
730 | if(inBlockZero) { | |
731 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
732 | } else if(value!=initialValue) { | |
733 | return (uint32_t)offset; | |
734 | } else { | |
735 | ++start; | |
736 | } | |
737 | } | |
738 | return 0; | |
739 | } | |
740 | ||
b75a7d8f A |
741 | U_CAPI int32_t U_EXPORT2 |
742 | utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, | |
743 | UNewTrieGetFoldedValue *getFoldedValue, | |
744 | UBool reduceTo16Bits, | |
745 | UErrorCode *pErrorCode) { | |
746 | UTrieHeader *header; | |
747 | uint32_t *p; | |
748 | uint16_t *dest16; | |
749 | int32_t i, length; | |
750 | uint8_t* data = NULL; | |
751 | ||
752 | /* argument check */ | |
753 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
754 | return 0; | |
755 | } | |
756 | ||
374ca955 | 757 | if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { |
b75a7d8f A |
758 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
759 | return 0; | |
760 | } | |
374ca955 A |
761 | if(getFoldedValue==NULL) { |
762 | getFoldedValue=defaultGetFoldedValue; | |
763 | } | |
764 | ||
b75a7d8f A |
765 | data = (uint8_t*)dt; |
766 | /* fold and compact if necessary, also checks that indexLength is within limits */ | |
767 | if(!trie->isCompacted) { | |
768 | /* compact once without overlap to improve folding */ | |
769 | utrie_compact(trie, FALSE, pErrorCode); | |
770 | ||
771 | /* fold the supplementary part of the index array */ | |
772 | utrie_fold(trie, getFoldedValue, pErrorCode); | |
773 | ||
774 | /* compact again with overlap for minimum data array length */ | |
775 | utrie_compact(trie, TRUE, pErrorCode); | |
776 | ||
777 | trie->isCompacted=TRUE; | |
778 | if(U_FAILURE(*pErrorCode)) { | |
779 | return 0; | |
780 | } | |
781 | } | |
782 | ||
783 | /* is dataLength within limits? */ | |
784 | if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { | |
785 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
786 | } | |
787 | ||
788 | length=sizeof(UTrieHeader)+2*trie->indexLength; | |
789 | if(reduceTo16Bits) { | |
790 | length+=2*trie->dataLength; | |
791 | } else { | |
792 | length+=4*trie->dataLength; | |
793 | } | |
794 | ||
795 | if(length>capacity) { | |
796 | return length; /* preflighting */ | |
797 | } | |
798 | ||
729e4ab9 A |
799 | #ifdef UTRIE_DEBUG |
800 | printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", | |
801 | (long)trie->indexLength, (long)trie->dataLength, (long)length); | |
802 | #endif | |
803 | ||
b75a7d8f A |
804 | /* set the header fields */ |
805 | header=(UTrieHeader *)data; | |
806 | data+=sizeof(UTrieHeader); | |
807 | ||
808 | header->signature=0x54726965; /* "Trie" */ | |
809 | header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); | |
810 | ||
811 | if(!reduceTo16Bits) { | |
812 | header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; | |
813 | } | |
814 | if(trie->isLatin1Linear) { | |
815 | header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; | |
816 | } | |
817 | ||
818 | header->indexLength=trie->indexLength; | |
819 | header->dataLength=trie->dataLength; | |
820 | ||
821 | /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ | |
822 | if(reduceTo16Bits) { | |
823 | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ | |
824 | p=(uint32_t *)trie->index; | |
825 | dest16=(uint16_t *)data; | |
826 | for(i=trie->indexLength; i>0; --i) { | |
827 | *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); | |
828 | } | |
829 | ||
830 | /* write 16-bit data values */ | |
831 | p=trie->data; | |
832 | for(i=trie->dataLength; i>0; --i) { | |
833 | *dest16++=(uint16_t)*p++; | |
834 | } | |
835 | } else { | |
836 | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ | |
837 | p=(uint32_t *)trie->index; | |
838 | dest16=(uint16_t *)data; | |
839 | for(i=trie->indexLength; i>0; --i) { | |
840 | *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); | |
841 | } | |
842 | ||
843 | /* write 32-bit data values */ | |
a62d09fc | 844 | uprv_memcpy(dest16, trie->data, 4*(size_t)trie->dataLength); |
b75a7d8f A |
845 | } |
846 | ||
847 | return length; | |
848 | } | |
849 | ||
374ca955 | 850 | /* inverse to defaultGetFoldedValue() */ |
73c04bcf A |
851 | U_CAPI int32_t U_EXPORT2 |
852 | utrie_defaultGetFoldingOffset(uint32_t data) { | |
374ca955 A |
853 | return (int32_t)data; |
854 | } | |
855 | ||
b75a7d8f A |
856 | U_CAPI int32_t U_EXPORT2 |
857 | utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { | |
73c04bcf A |
858 | const UTrieHeader *header; |
859 | const uint16_t *p16; | |
b75a7d8f A |
860 | uint32_t options; |
861 | ||
862 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
863 | return -1; | |
864 | } | |
865 | ||
866 | /* enough data for a trie header? */ | |
4388f060 | 867 | if(length<(int32_t)sizeof(UTrieHeader)) { |
b75a7d8f A |
868 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
869 | return -1; | |
870 | } | |
871 | ||
872 | /* check the signature */ | |
73c04bcf | 873 | header=(const UTrieHeader *)data; |
b75a7d8f A |
874 | if(header->signature!=0x54726965) { |
875 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
876 | return -1; | |
877 | } | |
878 | ||
879 | /* get the options and check the shift values */ | |
880 | options=header->options; | |
881 | if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || | |
882 | ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT | |
883 | ) { | |
884 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
885 | return -1; | |
886 | } | |
887 | trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); | |
888 | ||
889 | /* get the length values */ | |
890 | trie->indexLength=header->indexLength; | |
891 | trie->dataLength=header->dataLength; | |
892 | ||
374ca955 | 893 | length-=(int32_t)sizeof(UTrieHeader); |
b75a7d8f A |
894 | |
895 | /* enough data for the index? */ | |
896 | if(length<2*trie->indexLength) { | |
897 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
898 | return -1; | |
899 | } | |
73c04bcf | 900 | p16=(const uint16_t *)(header+1); |
b75a7d8f A |
901 | trie->index=p16; |
902 | p16+=trie->indexLength; | |
903 | length-=2*trie->indexLength; | |
904 | ||
905 | /* get the data */ | |
906 | if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { | |
907 | if(length<4*trie->dataLength) { | |
908 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
909 | return -1; | |
910 | } | |
911 | trie->data32=(const uint32_t *)p16; | |
912 | trie->initialValue=trie->data32[0]; | |
374ca955 | 913 | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; |
b75a7d8f A |
914 | } else { |
915 | if(length<2*trie->dataLength) { | |
916 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
917 | return -1; | |
918 | } | |
919 | ||
920 | /* the "data16" data is used via the index pointer */ | |
921 | trie->data32=NULL; | |
922 | trie->initialValue=trie->index[trie->indexLength]; | |
374ca955 A |
923 | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; |
924 | } | |
925 | ||
73c04bcf | 926 | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
374ca955 A |
927 | |
928 | return length; | |
929 | } | |
930 | ||
374ca955 | 931 | U_CAPI int32_t U_EXPORT2 |
73c04bcf A |
932 | utrie_unserializeDummy(UTrie *trie, |
933 | void *data, int32_t length, | |
934 | uint32_t initialValue, uint32_t leadUnitValue, | |
935 | UBool make16BitTrie, | |
936 | UErrorCode *pErrorCode) { | |
937 | uint16_t *p16; | |
938 | int32_t actualLength, latin1Length, i, limit; | |
939 | uint16_t block; | |
374ca955 A |
940 | |
941 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
73c04bcf | 942 | return -1; |
374ca955 | 943 | } |
73c04bcf A |
944 | |
945 | /* calculate the actual size of the dummy trie data */ | |
946 | ||
947 | /* max(Latin-1, block 0) */ | |
51004dcb | 948 | latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/ |
73c04bcf A |
949 | |
950 | trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; | |
951 | trie->dataLength=latin1Length; | |
952 | if(leadUnitValue!=initialValue) { | |
953 | trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; | |
374ca955 A |
954 | } |
955 | ||
73c04bcf A |
956 | actualLength=trie->indexLength*2; |
957 | if(make16BitTrie) { | |
958 | actualLength+=trie->dataLength*2; | |
959 | } else { | |
960 | actualLength+=trie->dataLength*4; | |
374ca955 A |
961 | } |
962 | ||
73c04bcf A |
963 | /* enough space for the dummy trie? */ |
964 | if(length<actualLength) { | |
965 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
966 | return actualLength; | |
374ca955 A |
967 | } |
968 | ||
73c04bcf A |
969 | trie->isLatin1Linear=TRUE; |
970 | trie->initialValue=initialValue; | |
374ca955 | 971 | |
73c04bcf A |
972 | /* fill the index and data arrays */ |
973 | p16=(uint16_t *)data; | |
974 | trie->index=p16; | |
374ca955 | 975 | |
73c04bcf A |
976 | if(make16BitTrie) { |
977 | /* indexes to block 0 */ | |
978 | block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); | |
979 | limit=trie->indexLength; | |
980 | for(i=0; i<limit; ++i) { | |
981 | p16[i]=block; | |
374ca955 A |
982 | } |
983 | ||
73c04bcf A |
984 | if(leadUnitValue!=initialValue) { |
985 | /* indexes for lead surrogate code units to the block after Latin-1 */ | |
986 | block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); | |
987 | i=0xd800>>UTRIE_SHIFT; | |
988 | limit=0xdc00>>UTRIE_SHIFT; | |
989 | for(; i<limit; ++i) { | |
990 | p16[i]=block; | |
991 | } | |
992 | } | |
374ca955 | 993 | |
73c04bcf | 994 | trie->data32=NULL; |
374ca955 | 995 | |
73c04bcf A |
996 | /* Latin-1 data */ |
997 | p16+=trie->indexLength; | |
998 | for(i=0; i<latin1Length; ++i) { | |
999 | p16[i]=(uint16_t)initialValue; | |
1000 | } | |
1001 | ||
1002 | /* data for lead surrogate code units */ | |
1003 | if(leadUnitValue!=initialValue) { | |
1004 | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; | |
1005 | for(/* i=latin1Length */; i<limit; ++i) { | |
1006 | p16[i]=(uint16_t)leadUnitValue; | |
1007 | } | |
1008 | } | |
1009 | } else { | |
1010 | uint32_t *p32; | |
1011 | ||
1012 | /* indexes to block 0 */ | |
1013 | uprv_memset(p16, 0, trie->indexLength*2); | |
1014 | ||
1015 | if(leadUnitValue!=initialValue) { | |
1016 | /* indexes for lead surrogate code units to the block after Latin-1 */ | |
1017 | block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); | |
1018 | i=0xd800>>UTRIE_SHIFT; | |
1019 | limit=0xdc00>>UTRIE_SHIFT; | |
1020 | for(; i<limit; ++i) { | |
1021 | p16[i]=block; | |
1022 | } | |
1023 | } | |
1024 | ||
1025 | trie->data32=p32=(uint32_t *)(p16+trie->indexLength); | |
1026 | ||
1027 | /* Latin-1 data */ | |
1028 | for(i=0; i<latin1Length; ++i) { | |
1029 | p32[i]=initialValue; | |
1030 | } | |
1031 | ||
1032 | /* data for lead surrogate code units */ | |
1033 | if(leadUnitValue!=initialValue) { | |
1034 | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; | |
1035 | for(/* i=latin1Length */; i<limit; ++i) { | |
1036 | p32[i]=leadUnitValue; | |
1037 | } | |
374ca955 | 1038 | } |
b75a7d8f | 1039 | } |
374ca955 | 1040 | |
73c04bcf A |
1041 | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
1042 | ||
1043 | return actualLength; | |
b75a7d8f A |
1044 | } |
1045 | ||
1046 | /* enumeration -------------------------------------------------------------- */ | |
1047 | ||
1048 | /* default UTrieEnumValue() returns the input value itself */ | |
1049 | static uint32_t U_CALLCONV | |
4388f060 | 1050 | enumSameValue(const void * /*context*/, uint32_t value) { |
b75a7d8f A |
1051 | return value; |
1052 | } | |
1053 | ||
1054 | /** | |
1055 | * Enumerate all ranges of code points with the same relevant values. | |
1056 | * The values are transformed from the raw trie entries by the enumValue function. | |
1057 | */ | |
1058 | U_CAPI void U_EXPORT2 | |
374ca955 | 1059 | utrie_enum(const UTrie *trie, |
b75a7d8f A |
1060 | UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { |
1061 | const uint32_t *data32; | |
729e4ab9 | 1062 | const uint16_t *idx; |
b75a7d8f A |
1063 | |
1064 | uint32_t value, prevValue, initialValue; | |
1065 | UChar32 c, prev; | |
729e4ab9 | 1066 | int32_t l, i, j, block, prevBlock, nullBlock, offset; |
b75a7d8f A |
1067 | |
1068 | /* check arguments */ | |
1069 | if(trie==NULL || trie->index==NULL || enumRange==NULL) { | |
1070 | return; | |
1071 | } | |
1072 | if(enumValue==NULL) { | |
1073 | enumValue=enumSameValue; | |
1074 | } | |
1075 | ||
729e4ab9 | 1076 | idx=trie->index; |
b75a7d8f A |
1077 | data32=trie->data32; |
1078 | ||
1079 | /* get the enumeration value that corresponds to an initial-value trie data entry */ | |
1080 | initialValue=enumValue(context, trie->initialValue); | |
1081 | ||
729e4ab9 A |
1082 | if(data32==NULL) { |
1083 | nullBlock=trie->indexLength; | |
1084 | } else { | |
1085 | nullBlock=0; | |
1086 | } | |
1087 | ||
b75a7d8f | 1088 | /* set variables for previous range */ |
729e4ab9 | 1089 | prevBlock=nullBlock; |
b75a7d8f A |
1090 | prev=0; |
1091 | prevValue=initialValue; | |
1092 | ||
1093 | /* enumerate BMP - the main loop enumerates data blocks */ | |
1094 | for(i=0, c=0; c<=0xffff; ++i) { | |
1095 | if(c==0xd800) { | |
1096 | /* skip lead surrogate code _units_, go to lead surr. code _points_ */ | |
1097 | i=UTRIE_BMP_INDEX_LENGTH; | |
1098 | } else if(c==0xdc00) { | |
1099 | /* go back to regular BMP code points */ | |
1100 | i=c>>UTRIE_SHIFT; | |
1101 | } | |
1102 | ||
729e4ab9 | 1103 | block=idx[i]<<UTRIE_INDEX_SHIFT; |
b75a7d8f A |
1104 | if(block==prevBlock) { |
1105 | /* the block is the same as the previous one, and filled with value */ | |
1106 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
729e4ab9 | 1107 | } else if(block==nullBlock) { |
b75a7d8f A |
1108 | /* this is the all-initial-value block */ |
1109 | if(prevValue!=initialValue) { | |
1110 | if(prev<c) { | |
1111 | if(!enumRange(context, prev, c, prevValue)) { | |
1112 | return; | |
1113 | } | |
1114 | } | |
729e4ab9 | 1115 | prevBlock=nullBlock; |
b75a7d8f A |
1116 | prev=c; |
1117 | prevValue=initialValue; | |
1118 | } | |
1119 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
1120 | } else { | |
1121 | prevBlock=block; | |
1122 | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { | |
729e4ab9 | 1123 | value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
b75a7d8f A |
1124 | if(value!=prevValue) { |
1125 | if(prev<c) { | |
1126 | if(!enumRange(context, prev, c, prevValue)) { | |
1127 | return; | |
1128 | } | |
1129 | } | |
1130 | if(j>0) { | |
729e4ab9 | 1131 | /* the block is not filled with all the same value */ |
b75a7d8f A |
1132 | prevBlock=-1; |
1133 | } | |
1134 | prev=c; | |
1135 | prevValue=value; | |
1136 | } | |
1137 | ++c; | |
1138 | } | |
1139 | } | |
1140 | } | |
1141 | ||
1142 | /* enumerate supplementary code points */ | |
1143 | for(l=0xd800; l<0xdc00;) { | |
1144 | /* lead surrogate access */ | |
729e4ab9 A |
1145 | offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; |
1146 | if(offset==nullBlock) { | |
374ca955 A |
1147 | /* no entries for a whole block of lead surrogates */ |
1148 | if(prevValue!=initialValue) { | |
1149 | if(prev<c) { | |
1150 | if(!enumRange(context, prev, c, prevValue)) { | |
1151 | return; | |
1152 | } | |
1153 | } | |
729e4ab9 | 1154 | prevBlock=nullBlock; |
374ca955 A |
1155 | prev=c; |
1156 | prevValue=initialValue; | |
b75a7d8f | 1157 | } |
374ca955 A |
1158 | |
1159 | l+=UTRIE_DATA_BLOCK_LENGTH; | |
1160 | c+=UTRIE_DATA_BLOCK_LENGTH<<10; | |
1161 | continue; | |
b75a7d8f A |
1162 | } |
1163 | ||
729e4ab9 | 1164 | value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; |
374ca955 | 1165 | |
b75a7d8f A |
1166 | /* enumerate trail surrogates for this lead surrogate */ |
1167 | offset=trie->getFoldingOffset(value); | |
1168 | if(offset<=0) { | |
1169 | /* no data for this lead surrogate */ | |
1170 | if(prevValue!=initialValue) { | |
1171 | if(prev<c) { | |
1172 | if(!enumRange(context, prev, c, prevValue)) { | |
1173 | return; | |
1174 | } | |
1175 | } | |
729e4ab9 | 1176 | prevBlock=nullBlock; |
b75a7d8f A |
1177 | prev=c; |
1178 | prevValue=initialValue; | |
1179 | } | |
1180 | ||
1181 | /* nothing else to do for the supplementary code points for this lead surrogate */ | |
1182 | c+=0x400; | |
1183 | } else { | |
1184 | /* enumerate code points for this lead surrogate */ | |
1185 | i=offset; | |
1186 | offset+=UTRIE_SURROGATE_BLOCK_COUNT; | |
1187 | do { | |
1188 | /* copy of most of the body of the BMP loop */ | |
729e4ab9 | 1189 | block=idx[i]<<UTRIE_INDEX_SHIFT; |
b75a7d8f A |
1190 | if(block==prevBlock) { |
1191 | /* the block is the same as the previous one, and filled with value */ | |
1192 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
729e4ab9 | 1193 | } else if(block==nullBlock) { |
b75a7d8f A |
1194 | /* this is the all-initial-value block */ |
1195 | if(prevValue!=initialValue) { | |
1196 | if(prev<c) { | |
1197 | if(!enumRange(context, prev, c, prevValue)) { | |
1198 | return; | |
1199 | } | |
1200 | } | |
729e4ab9 | 1201 | prevBlock=nullBlock; |
b75a7d8f A |
1202 | prev=c; |
1203 | prevValue=initialValue; | |
1204 | } | |
1205 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
1206 | } else { | |
1207 | prevBlock=block; | |
1208 | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { | |
729e4ab9 | 1209 | value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
b75a7d8f A |
1210 | if(value!=prevValue) { |
1211 | if(prev<c) { | |
1212 | if(!enumRange(context, prev, c, prevValue)) { | |
1213 | return; | |
1214 | } | |
1215 | } | |
1216 | if(j>0) { | |
729e4ab9 | 1217 | /* the block is not filled with all the same value */ |
b75a7d8f A |
1218 | prevBlock=-1; |
1219 | } | |
1220 | prev=c; | |
1221 | prevValue=value; | |
1222 | } | |
1223 | ++c; | |
1224 | } | |
1225 | } | |
1226 | } while(++i<offset); | |
1227 | } | |
1228 | ||
1229 | ++l; | |
1230 | } | |
1231 | ||
1232 | /* deliver last range */ | |
1233 | enumRange(context, prev, c, prevValue); | |
1234 | } |