]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
3 | * | |
729e4ab9 | 4 | * Copyright (C) 2001-2009, International Business Machines |
b75a7d8f A |
5 | * Corporation and others. All Rights Reserved. |
6 | * | |
7 | ****************************************************************************** | |
8 | * file name: utrie.c | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2001oct20 | |
14 | * created by: Markus W. Scherer | |
15 | * | |
16 | * This is a common implementation of a "folded" trie. | |
17 | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with | |
18 | * Unicode code points (0..0x10ffff). | |
19 | */ | |
20 | ||
21 | #ifdef UTRIE_DEBUG | |
22 | # include <stdio.h> | |
23 | #endif | |
24 | ||
25 | #include "unicode/utypes.h" | |
26 | #include "cmemory.h" | |
27 | #include "utrie.h" | |
28 | ||
73c04bcf A |
29 | /* miscellaneous ------------------------------------------------------------ */ |
30 | ||
b75a7d8f A |
31 | #undef ABS |
32 | #define ABS(x) ((x)>=0 ? (x) : -(x)) | |
33 | ||
73c04bcf A |
34 | static U_INLINE UBool |
35 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { | |
36 | while(length>0 && *s==*t) { | |
37 | ++s; | |
38 | ++t; | |
39 | --length; | |
40 | } | |
41 | return (UBool)(length==0); | |
42 | } | |
43 | ||
b75a7d8f A |
44 | /* Building a trie ----------------------------------------------------------*/ |
45 | ||
46 | U_CAPI UNewTrie * U_EXPORT2 | |
47 | utrie_open(UNewTrie *fillIn, | |
48 | uint32_t *aliasData, int32_t maxDataLength, | |
374ca955 A |
49 | uint32_t initialValue, uint32_t leadUnitValue, |
50 | UBool latin1Linear) { | |
b75a7d8f A |
51 | UNewTrie *trie; |
52 | int32_t i, j; | |
53 | ||
54 | if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || | |
55 | (latin1Linear && maxDataLength<1024) | |
56 | ) { | |
57 | return NULL; | |
58 | } | |
59 | ||
60 | if(fillIn!=NULL) { | |
61 | trie=fillIn; | |
62 | } else { | |
63 | trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); | |
64 | if(trie==NULL) { | |
65 | return NULL; | |
66 | } | |
67 | } | |
68 | uprv_memset(trie, 0, sizeof(UNewTrie)); | |
69 | trie->isAllocated= (UBool)(fillIn==NULL); | |
70 | ||
71 | if(aliasData!=NULL) { | |
72 | trie->data=aliasData; | |
73 | trie->isDataAllocated=FALSE; | |
74 | } else { | |
75 | trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); | |
76 | if(trie->data==NULL) { | |
77 | uprv_free(trie); | |
78 | return NULL; | |
79 | } | |
80 | trie->isDataAllocated=TRUE; | |
81 | } | |
82 | ||
83 | /* preallocate and reset the first data block (block index 0) */ | |
84 | j=UTRIE_DATA_BLOCK_LENGTH; | |
85 | ||
86 | if(latin1Linear) { | |
87 | /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ | |
88 | /* made sure above that maxDataLength>=1024 */ | |
89 | ||
90 | /* set indexes to point to consecutive data blocks */ | |
91 | i=0; | |
92 | do { | |
93 | /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ | |
94 | trie->index[i++]=j; | |
95 | j+=UTRIE_DATA_BLOCK_LENGTH; | |
96 | } while(i<(256>>UTRIE_SHIFT)); | |
97 | } | |
98 | ||
99 | /* reset the initially allocated blocks to the initial value */ | |
100 | trie->dataLength=j; | |
101 | while(j>0) { | |
102 | trie->data[--j]=initialValue; | |
103 | } | |
104 | ||
374ca955 | 105 | trie->leadUnitValue=leadUnitValue; |
b75a7d8f A |
106 | trie->indexLength=UTRIE_MAX_INDEX_LENGTH; |
107 | trie->dataCapacity=maxDataLength; | |
108 | trie->isLatin1Linear=latin1Linear; | |
109 | trie->isCompacted=FALSE; | |
110 | return trie; | |
111 | } | |
112 | ||
113 | U_CAPI UNewTrie * U_EXPORT2 | |
114 | utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { | |
115 | UNewTrie *trie; | |
116 | UBool isDataAllocated; | |
117 | ||
118 | /* do not clone if other is not valid or already compacted */ | |
119 | if(other==NULL || other->data==NULL || other->isCompacted) { | |
120 | return NULL; | |
121 | } | |
122 | ||
123 | /* clone data */ | |
124 | if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { | |
125 | isDataAllocated=FALSE; | |
126 | } else { | |
127 | aliasDataCapacity=other->dataCapacity; | |
128 | aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); | |
129 | if(aliasData==NULL) { | |
130 | return NULL; | |
131 | } | |
132 | isDataAllocated=TRUE; | |
133 | } | |
134 | ||
374ca955 A |
135 | trie=utrie_open(fillIn, aliasData, aliasDataCapacity, |
136 | other->data[0], other->leadUnitValue, | |
137 | other->isLatin1Linear); | |
b75a7d8f A |
138 | if(trie==NULL) { |
139 | uprv_free(aliasData); | |
140 | } else { | |
141 | uprv_memcpy(trie->index, other->index, sizeof(trie->index)); | |
142 | uprv_memcpy(trie->data, other->data, other->dataLength*4); | |
143 | trie->dataLength=other->dataLength; | |
144 | trie->isDataAllocated=isDataAllocated; | |
145 | } | |
146 | ||
147 | return trie; | |
148 | } | |
149 | ||
150 | U_CAPI void U_EXPORT2 | |
151 | utrie_close(UNewTrie *trie) { | |
152 | if(trie!=NULL) { | |
153 | if(trie->isDataAllocated) { | |
154 | uprv_free(trie->data); | |
155 | trie->data=NULL; | |
156 | } | |
157 | if(trie->isAllocated) { | |
158 | uprv_free(trie); | |
159 | } | |
160 | } | |
161 | } | |
162 | ||
163 | U_CAPI uint32_t * U_EXPORT2 | |
164 | utrie_getData(UNewTrie *trie, int32_t *pLength) { | |
165 | if(trie==NULL || pLength==NULL) { | |
166 | return NULL; | |
167 | } | |
168 | ||
169 | *pLength=trie->dataLength; | |
170 | return trie->data; | |
171 | } | |
172 | ||
374ca955 A |
173 | static int32_t |
174 | utrie_allocDataBlock(UNewTrie *trie) { | |
175 | int32_t newBlock, newTop; | |
176 | ||
177 | newBlock=trie->dataLength; | |
178 | newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; | |
179 | if(newTop>trie->dataCapacity) { | |
180 | /* out of memory in the data array */ | |
181 | return -1; | |
182 | } | |
183 | trie->dataLength=newTop; | |
184 | return newBlock; | |
185 | } | |
186 | ||
b75a7d8f A |
187 | /** |
188 | * No error checking for illegal arguments. | |
189 | * | |
190 | * @return -1 if no new data block available (out of memory in data array) | |
191 | * @internal | |
192 | */ | |
193 | static int32_t | |
194 | utrie_getDataBlock(UNewTrie *trie, UChar32 c) { | |
374ca955 | 195 | int32_t indexValue, newBlock; |
b75a7d8f A |
196 | |
197 | c>>=UTRIE_SHIFT; | |
198 | indexValue=trie->index[c]; | |
199 | if(indexValue>0) { | |
200 | return indexValue; | |
201 | } | |
202 | ||
203 | /* allocate a new data block */ | |
374ca955 A |
204 | newBlock=utrie_allocDataBlock(trie); |
205 | if(newBlock<0) { | |
b75a7d8f A |
206 | /* out of memory in the data array */ |
207 | return -1; | |
208 | } | |
b75a7d8f A |
209 | trie->index[c]=newBlock; |
210 | ||
211 | /* copy-on-write for a block from a setRange() */ | |
212 | uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); | |
213 | return newBlock; | |
214 | } | |
215 | ||
216 | /** | |
217 | * @return TRUE if the value was successfully set | |
218 | */ | |
219 | U_CAPI UBool U_EXPORT2 | |
220 | utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { | |
221 | int32_t block; | |
222 | ||
223 | /* valid, uncompacted trie and valid c? */ | |
224 | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { | |
225 | return FALSE; | |
226 | } | |
227 | ||
228 | block=utrie_getDataBlock(trie, c); | |
229 | if(block<0) { | |
230 | return FALSE; | |
231 | } | |
232 | ||
233 | trie->data[block+(c&UTRIE_MASK)]=value; | |
234 | return TRUE; | |
235 | } | |
236 | ||
237 | U_CAPI uint32_t U_EXPORT2 | |
238 | utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { | |
239 | int32_t block; | |
240 | ||
241 | /* valid, uncompacted trie and valid c? */ | |
242 | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { | |
243 | if(pInBlockZero!=NULL) { | |
244 | *pInBlockZero=TRUE; | |
245 | } | |
246 | return 0; | |
247 | } | |
248 | ||
249 | block=trie->index[c>>UTRIE_SHIFT]; | |
250 | if(pInBlockZero!=NULL) { | |
251 | *pInBlockZero= (UBool)(block==0); | |
252 | } | |
253 | ||
254 | return trie->data[ABS(block)+(c&UTRIE_MASK)]; | |
255 | } | |
256 | ||
257 | /** | |
258 | * @internal | |
259 | */ | |
260 | static void | |
261 | utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, | |
262 | uint32_t value, uint32_t initialValue, UBool overwrite) { | |
263 | uint32_t *pLimit; | |
264 | ||
265 | pLimit=block+limit; | |
266 | block+=start; | |
267 | if(overwrite) { | |
268 | while(block<pLimit) { | |
269 | *block++=value; | |
270 | } | |
271 | } else { | |
272 | while(block<pLimit) { | |
273 | if(*block==initialValue) { | |
274 | *block=value; | |
275 | } | |
276 | ++block; | |
277 | } | |
278 | } | |
279 | } | |
280 | ||
281 | U_CAPI UBool U_EXPORT2 | |
282 | utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { | |
283 | /* | |
284 | * repeat value in [start..limit[ | |
285 | * mark index values for repeat-data blocks by setting bit 31 of the index values | |
286 | * fill around existing values if any, if(overwrite) | |
287 | */ | |
288 | uint32_t initialValue; | |
289 | int32_t block, rest, repeatBlock; | |
290 | ||
291 | /* valid, uncompacted trie and valid indexes? */ | |
292 | if( trie==NULL || trie->isCompacted || | |
293 | (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit | |
294 | ) { | |
295 | return FALSE; | |
296 | } | |
297 | if(start==limit) { | |
298 | return TRUE; /* nothing to do */ | |
299 | } | |
300 | ||
301 | initialValue=trie->data[0]; | |
302 | if(start&UTRIE_MASK) { | |
303 | UChar32 nextStart; | |
304 | ||
305 | /* set partial block at [start..following block boundary[ */ | |
306 | block=utrie_getDataBlock(trie, start); | |
307 | if(block<0) { | |
308 | return FALSE; | |
309 | } | |
310 | ||
311 | nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; | |
312 | if(nextStart<=limit) { | |
313 | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, | |
314 | value, initialValue, overwrite); | |
315 | start=nextStart; | |
316 | } else { | |
317 | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, | |
318 | value, initialValue, overwrite); | |
319 | return TRUE; | |
320 | } | |
321 | } | |
322 | ||
323 | /* number of positions in the last, partial block */ | |
324 | rest=limit&UTRIE_MASK; | |
325 | ||
326 | /* round down limit to a block boundary */ | |
327 | limit&=~UTRIE_MASK; | |
328 | ||
329 | /* iterate over all-value blocks */ | |
330 | if(value==initialValue) { | |
331 | repeatBlock=0; | |
332 | } else { | |
333 | repeatBlock=-1; | |
334 | } | |
335 | while(start<limit) { | |
336 | /* get index value */ | |
337 | block=trie->index[start>>UTRIE_SHIFT]; | |
338 | if(block>0) { | |
339 | /* already allocated, fill in value */ | |
340 | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); | |
341 | } else if(trie->data[-block]!=value && (block==0 || overwrite)) { | |
342 | /* set the repeatBlock instead of the current block 0 or range block */ | |
343 | if(repeatBlock>=0) { | |
344 | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; | |
345 | } else { | |
346 | /* create and set and fill the repeatBlock */ | |
347 | repeatBlock=utrie_getDataBlock(trie, start); | |
348 | if(repeatBlock<0) { | |
349 | return FALSE; | |
350 | } | |
351 | ||
352 | /* set the negative block number to indicate that it is a repeat block */ | |
353 | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; | |
354 | utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); | |
355 | } | |
356 | } | |
357 | ||
358 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
359 | } | |
360 | ||
361 | if(rest>0) { | |
362 | /* set partial block at [last block boundary..limit[ */ | |
363 | block=utrie_getDataBlock(trie, start); | |
364 | if(block<0) { | |
365 | return FALSE; | |
366 | } | |
367 | ||
368 | utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); | |
369 | } | |
370 | ||
371 | return TRUE; | |
372 | } | |
373 | ||
374 | static int32_t | |
729e4ab9 | 375 | _findSameIndexBlock(const int32_t *idx, int32_t indexLength, |
b75a7d8f A |
376 | int32_t otherBlock) { |
377 | int32_t block, i; | |
378 | ||
379 | for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { | |
380 | for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { | |
729e4ab9 | 381 | if(idx[block+i]!=idx[otherBlock+i]) { |
b75a7d8f A |
382 | break; |
383 | } | |
384 | } | |
385 | if(i==UTRIE_SURROGATE_BLOCK_COUNT) { | |
386 | return block; | |
387 | } | |
388 | } | |
389 | return indexLength; | |
390 | } | |
391 | ||
392 | /* | |
393 | * Fold the normalization data for supplementary code points into | |
394 | * a compact area on top of the BMP-part of the trie index, | |
395 | * with the lead surrogates indexing this compact area. | |
396 | * | |
397 | * Duplicate the index values for lead surrogates: | |
398 | * From inside the BMP area, where some may be overridden with folded values, | |
399 | * to just after the BMP area, where they can be retrieved for | |
400 | * code point lookups. | |
401 | */ | |
402 | static void | |
403 | utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { | |
404 | int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; | |
729e4ab9 | 405 | int32_t *idx; |
b75a7d8f A |
406 | uint32_t value; |
407 | UChar32 c; | |
408 | int32_t indexLength, block; | |
729e4ab9 A |
409 | #ifdef UTRIE_DEBUG |
410 | int countLeadCUWithData=0; | |
411 | #endif | |
b75a7d8f | 412 | |
729e4ab9 | 413 | idx=trie->index; |
b75a7d8f A |
414 | |
415 | /* copy the lead surrogate indexes into a temporary array */ | |
729e4ab9 | 416 | uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); |
b75a7d8f A |
417 | |
418 | /* | |
374ca955 A |
419 | * set all values for lead surrogate code *units* to leadUnitValue |
420 | * so that, by default, runtime lookups will find no data for associated | |
421 | * supplementary code points, unless there is data for such code points | |
422 | * which will result in a non-zero folding value below that is set for | |
423 | * the respective lead units | |
424 | * | |
425 | * the above saved the indexes for surrogate code *points* | |
426 | * fill the indexes with simplified code from utrie_setRange32() | |
b75a7d8f | 427 | */ |
374ca955 A |
428 | if(trie->leadUnitValue==trie->data[0]) { |
429 | block=0; /* leadUnitValue==initialValue, use all-initial-value block */ | |
430 | } else { | |
431 | /* create and fill the repeatBlock */ | |
432 | block=utrie_allocDataBlock(trie); | |
433 | if(block<0) { | |
434 | /* data table overflow */ | |
435 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
436 | return; | |
b75a7d8f | 437 | } |
374ca955 A |
438 | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); |
439 | block=-block; /* negative block number to indicate that it is a repeat block */ | |
440 | } | |
441 | for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { | |
442 | trie->index[c]=block; | |
b75a7d8f A |
443 | } |
444 | ||
445 | /* | |
446 | * Fold significant index values into the area just after the BMP indexes. | |
447 | * In case the first lead surrogate has significant data, | |
448 | * its index block must be used first (in which case the folding is a no-op). | |
449 | * Later all folded index blocks are moved up one to insert the copied | |
450 | * lead surrogate indexes. | |
451 | */ | |
452 | indexLength=UTRIE_BMP_INDEX_LENGTH; | |
453 | ||
454 | /* search for any index (stage 1) entries for supplementary code points */ | |
455 | for(c=0x10000; c<0x110000;) { | |
729e4ab9 | 456 | if(idx[c>>UTRIE_SHIFT]!=0) { |
b75a7d8f A |
457 | /* there is data, treat the full block for a lead surrogate */ |
458 | c&=~0x3ff; | |
459 | ||
460 | #ifdef UTRIE_DEBUG | |
729e4ab9 A |
461 | ++countLeadCUWithData; |
462 | /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ | |
b75a7d8f A |
463 | #endif |
464 | ||
465 | /* is there an identical index block? */ | |
729e4ab9 | 466 | block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); |
b75a7d8f | 467 | |
374ca955 A |
468 | /* |
469 | * get a folded value for [c..c+0x400[ and, | |
470 | * if different from the value for the lead surrogate code point, | |
471 | * set it for the lead surrogate code unit | |
472 | */ | |
b75a7d8f | 473 | value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); |
374ca955 A |
474 | if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { |
475 | if(!utrie_set32(trie, U16_LEAD(c), value)) { | |
b75a7d8f A |
476 | /* data table overflow */ |
477 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
478 | return; | |
479 | } | |
480 | ||
481 | /* if we did not find an identical index block... */ | |
482 | if(block==indexLength) { | |
483 | /* move the actual index (stage 1) entries from the supplementary position to the new one */ | |
729e4ab9 A |
484 | uprv_memmove(idx+indexLength, |
485 | idx+(c>>UTRIE_SHIFT), | |
b75a7d8f A |
486 | 4*UTRIE_SURROGATE_BLOCK_COUNT); |
487 | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; | |
488 | } | |
489 | } | |
490 | c+=0x400; | |
491 | } else { | |
492 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
493 | } | |
494 | } | |
729e4ab9 A |
495 | #ifdef UTRIE_DEBUG |
496 | if(countLeadCUWithData>0) { | |
497 | printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); | |
498 | } | |
499 | #endif | |
b75a7d8f A |
500 | |
501 | /* | |
502 | * index array overflow? | |
503 | * This is to guarantee that a folding offset is of the form | |
504 | * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. | |
505 | * If the index is too large, then n>=1024 and more than 10 bits are necessary. | |
506 | * | |
507 | * In fact, it can only ever become n==1024 with completely unfoldable data and | |
508 | * the additional block of duplicated values for lead surrogates. | |
509 | */ | |
510 | if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { | |
511 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
512 | return; | |
513 | } | |
514 | ||
515 | /* | |
516 | * make space for the lead surrogate index block and | |
517 | * insert it between the BMP indexes and the folded ones | |
518 | */ | |
729e4ab9 A |
519 | uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, |
520 | idx+UTRIE_BMP_INDEX_LENGTH, | |
b75a7d8f | 521 | 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); |
729e4ab9 | 522 | uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, |
b75a7d8f A |
523 | leadIndexes, |
524 | 4*UTRIE_SURROGATE_BLOCK_COUNT); | |
525 | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; | |
526 | ||
527 | #ifdef UTRIE_DEBUG | |
528 | printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", | |
529 | UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); | |
530 | #endif | |
531 | ||
532 | trie->indexLength=indexLength; | |
533 | } | |
534 | ||
535 | /* | |
536 | * Set a value in the trie index map to indicate which data block | |
537 | * is referenced and which one is not. | |
538 | * utrie_compact() will remove data blocks that are not used at all. | |
539 | * Set | |
540 | * - 0 if it is used | |
541 | * - -1 if it is not used | |
542 | */ | |
543 | static void | |
544 | _findUnusedBlocks(UNewTrie *trie) { | |
545 | int32_t i; | |
546 | ||
547 | /* fill the entire map with "not used" */ | |
548 | uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); | |
549 | ||
550 | /* mark each block that _is_ used with 0 */ | |
551 | for(i=0; i<trie->indexLength; ++i) { | |
552 | trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; | |
553 | } | |
554 | ||
555 | /* never move the all-initial-value block 0 */ | |
556 | trie->map[0]=0; | |
557 | } | |
558 | ||
559 | static int32_t | |
560 | _findSameDataBlock(const uint32_t *data, int32_t dataLength, | |
561 | int32_t otherBlock, int32_t step) { | |
73c04bcf | 562 | int32_t block; |
b75a7d8f A |
563 | |
564 | /* ensure that we do not even partially get past dataLength */ | |
565 | dataLength-=UTRIE_DATA_BLOCK_LENGTH; | |
566 | ||
567 | for(block=0; block<=dataLength; block+=step) { | |
73c04bcf | 568 | if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { |
b75a7d8f A |
569 | return block; |
570 | } | |
571 | } | |
572 | return -1; | |
573 | } | |
574 | ||
575 | /* | |
576 | * Compact a folded build-time trie. | |
577 | * | |
578 | * The compaction | |
579 | * - removes blocks that are identical with earlier ones | |
580 | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) | |
581 | * - moves blocks in steps of the data granularity | |
73c04bcf | 582 | * - moves and overlaps blocks that overlap with multiple values in the overlap region |
b75a7d8f A |
583 | * |
584 | * It does not | |
585 | * - try to move and overlap blocks that are not already adjacent | |
b75a7d8f A |
586 | */ |
587 | static void | |
588 | utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { | |
73c04bcf | 589 | int32_t i, start, newStart, overlapStart; |
b75a7d8f A |
590 | |
591 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
592 | return; | |
593 | } | |
594 | ||
595 | /* valid, uncompacted trie? */ | |
596 | if(trie==NULL) { | |
597 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
598 | return; | |
599 | } | |
600 | if(trie->isCompacted) { | |
601 | return; /* nothing left to do */ | |
602 | } | |
603 | ||
604 | /* compaction */ | |
605 | ||
606 | /* initialize the index map with "block is used/unused" flags */ | |
607 | _findUnusedBlocks(trie); | |
608 | ||
609 | /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ | |
610 | if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { | |
611 | overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; | |
612 | } else { | |
613 | overlapStart=UTRIE_DATA_BLOCK_LENGTH; | |
614 | } | |
615 | ||
616 | newStart=UTRIE_DATA_BLOCK_LENGTH; | |
b75a7d8f A |
617 | for(start=newStart; start<trie->dataLength;) { |
618 | /* | |
619 | * start: index of first entry of current block | |
b75a7d8f | 620 | * newStart: index where the current block is to be moved |
73c04bcf | 621 | * (right after current end of already-compacted data) |
b75a7d8f A |
622 | */ |
623 | ||
624 | /* skip blocks that are not used */ | |
625 | if(trie->map[start>>UTRIE_SHIFT]<0) { | |
626 | /* advance start to the next block */ | |
627 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
628 | ||
73c04bcf | 629 | /* leave newStart with the previous block! */ |
b75a7d8f A |
630 | continue; |
631 | } | |
632 | ||
633 | /* search for an identical block */ | |
634 | if( start>=overlapStart && | |
635 | (i=_findSameDataBlock(trie->data, newStart, start, | |
636 | overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) | |
637 | >=0 | |
638 | ) { | |
639 | /* found an identical block, set the other block's index value for the current block */ | |
640 | trie->map[start>>UTRIE_SHIFT]=i; | |
641 | ||
642 | /* advance start to the next block */ | |
643 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
644 | ||
73c04bcf | 645 | /* leave newStart with the previous block! */ |
b75a7d8f A |
646 | continue; |
647 | } | |
648 | ||
649 | /* see if the beginning of this block can be overlapped with the end of the previous block */ | |
73c04bcf A |
650 | if(overlap && start>=overlapStart) { |
651 | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ | |
652 | for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; | |
653 | i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); | |
654 | i-=UTRIE_DATA_GRANULARITY) {} | |
b75a7d8f A |
655 | } else { |
656 | i=0; | |
657 | } | |
658 | ||
659 | if(i>0) { | |
660 | /* some overlap */ | |
661 | trie->map[start>>UTRIE_SHIFT]=newStart-i; | |
662 | ||
663 | /* move the non-overlapping indexes to their new positions */ | |
664 | start+=i; | |
665 | for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { | |
666 | trie->data[newStart++]=trie->data[start++]; | |
667 | } | |
668 | } else if(newStart<start) { | |
669 | /* no overlap, just move the indexes to their new positions */ | |
670 | trie->map[start>>UTRIE_SHIFT]=newStart; | |
671 | for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { | |
672 | trie->data[newStart++]=trie->data[start++]; | |
673 | } | |
674 | } else /* no overlap && newStart==start */ { | |
675 | trie->map[start>>UTRIE_SHIFT]=start; | |
676 | newStart+=UTRIE_DATA_BLOCK_LENGTH; | |
677 | start=newStart; | |
678 | } | |
b75a7d8f A |
679 | } |
680 | ||
681 | /* now adjust the index (stage 1) table */ | |
682 | for(i=0; i<trie->indexLength; ++i) { | |
683 | trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; | |
684 | } | |
685 | ||
686 | #ifdef UTRIE_DEBUG | |
687 | /* we saved some space */ | |
688 | printf("compacting trie: count of 32-bit words %lu->%lu\n", | |
689 | (long)trie->dataLength, (long)newStart); | |
690 | #endif | |
691 | ||
692 | trie->dataLength=newStart; | |
693 | } | |
694 | ||
695 | /* serialization ------------------------------------------------------------ */ | |
696 | ||
374ca955 A |
697 | /* |
698 | * Default function for the folding value: | |
699 | * Just store the offset (16 bits) if there is any non-initial-value entry. | |
700 | * | |
701 | * The offset parameter is never 0. | |
702 | * Returning the offset itself is safe for UTRIE_SHIFT>=5 because | |
703 | * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 | |
704 | * which fits into 16-bit trie values; | |
705 | * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. | |
706 | * | |
707 | * Theoretically, it would be safer for all possible UTRIE_SHIFT including | |
708 | * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS | |
709 | * which would always result in a value of 0x40..0x43f | |
710 | * (start/end 1k blocks of supplementary Unicode code points). | |
711 | * However, this would be uglier, and would not work for some existing | |
712 | * binary data file formats. | |
713 | * | |
714 | * Also, we do not plan to change UTRIE_SHIFT because it would change binary | |
715 | * data file formats, and we would probably not make it smaller because of | |
716 | * the then even larger BMP index length even for empty tries. | |
717 | */ | |
718 | static uint32_t U_CALLCONV | |
719 | defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { | |
720 | uint32_t value, initialValue; | |
721 | UChar32 limit; | |
722 | UBool inBlockZero; | |
723 | ||
724 | initialValue=trie->data[0]; | |
725 | limit=start+0x400; | |
726 | while(start<limit) { | |
727 | value=utrie_get32(trie, start, &inBlockZero); | |
728 | if(inBlockZero) { | |
729 | start+=UTRIE_DATA_BLOCK_LENGTH; | |
730 | } else if(value!=initialValue) { | |
731 | return (uint32_t)offset; | |
732 | } else { | |
733 | ++start; | |
734 | } | |
735 | } | |
736 | return 0; | |
737 | } | |
738 | ||
b75a7d8f A |
739 | U_CAPI int32_t U_EXPORT2 |
740 | utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, | |
741 | UNewTrieGetFoldedValue *getFoldedValue, | |
742 | UBool reduceTo16Bits, | |
743 | UErrorCode *pErrorCode) { | |
744 | UTrieHeader *header; | |
745 | uint32_t *p; | |
746 | uint16_t *dest16; | |
747 | int32_t i, length; | |
748 | uint8_t* data = NULL; | |
749 | ||
750 | /* argument check */ | |
751 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
752 | return 0; | |
753 | } | |
754 | ||
374ca955 | 755 | if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { |
b75a7d8f A |
756 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
757 | return 0; | |
758 | } | |
374ca955 A |
759 | if(getFoldedValue==NULL) { |
760 | getFoldedValue=defaultGetFoldedValue; | |
761 | } | |
762 | ||
b75a7d8f A |
763 | data = (uint8_t*)dt; |
764 | /* fold and compact if necessary, also checks that indexLength is within limits */ | |
765 | if(!trie->isCompacted) { | |
766 | /* compact once without overlap to improve folding */ | |
767 | utrie_compact(trie, FALSE, pErrorCode); | |
768 | ||
769 | /* fold the supplementary part of the index array */ | |
770 | utrie_fold(trie, getFoldedValue, pErrorCode); | |
771 | ||
772 | /* compact again with overlap for minimum data array length */ | |
773 | utrie_compact(trie, TRUE, pErrorCode); | |
774 | ||
775 | trie->isCompacted=TRUE; | |
776 | if(U_FAILURE(*pErrorCode)) { | |
777 | return 0; | |
778 | } | |
779 | } | |
780 | ||
781 | /* is dataLength within limits? */ | |
782 | if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { | |
783 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
784 | } | |
785 | ||
786 | length=sizeof(UTrieHeader)+2*trie->indexLength; | |
787 | if(reduceTo16Bits) { | |
788 | length+=2*trie->dataLength; | |
789 | } else { | |
790 | length+=4*trie->dataLength; | |
791 | } | |
792 | ||
793 | if(length>capacity) { | |
794 | return length; /* preflighting */ | |
795 | } | |
796 | ||
729e4ab9 A |
797 | #ifdef UTRIE_DEBUG |
798 | printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", | |
799 | (long)trie->indexLength, (long)trie->dataLength, (long)length); | |
800 | #endif | |
801 | ||
b75a7d8f A |
802 | /* set the header fields */ |
803 | header=(UTrieHeader *)data; | |
804 | data+=sizeof(UTrieHeader); | |
805 | ||
806 | header->signature=0x54726965; /* "Trie" */ | |
807 | header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); | |
808 | ||
809 | if(!reduceTo16Bits) { | |
810 | header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; | |
811 | } | |
812 | if(trie->isLatin1Linear) { | |
813 | header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; | |
814 | } | |
815 | ||
816 | header->indexLength=trie->indexLength; | |
817 | header->dataLength=trie->dataLength; | |
818 | ||
819 | /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ | |
820 | if(reduceTo16Bits) { | |
821 | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ | |
822 | p=(uint32_t *)trie->index; | |
823 | dest16=(uint16_t *)data; | |
824 | for(i=trie->indexLength; i>0; --i) { | |
825 | *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); | |
826 | } | |
827 | ||
828 | /* write 16-bit data values */ | |
829 | p=trie->data; | |
830 | for(i=trie->dataLength; i>0; --i) { | |
831 | *dest16++=(uint16_t)*p++; | |
832 | } | |
833 | } else { | |
834 | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ | |
835 | p=(uint32_t *)trie->index; | |
836 | dest16=(uint16_t *)data; | |
837 | for(i=trie->indexLength; i>0; --i) { | |
838 | *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); | |
839 | } | |
840 | ||
841 | /* write 32-bit data values */ | |
842 | uprv_memcpy(dest16, trie->data, 4*trie->dataLength); | |
843 | } | |
844 | ||
845 | return length; | |
846 | } | |
847 | ||
374ca955 | 848 | /* inverse to defaultGetFoldedValue() */ |
73c04bcf A |
849 | U_CAPI int32_t U_EXPORT2 |
850 | utrie_defaultGetFoldingOffset(uint32_t data) { | |
374ca955 A |
851 | return (int32_t)data; |
852 | } | |
853 | ||
b75a7d8f A |
854 | U_CAPI int32_t U_EXPORT2 |
855 | utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { | |
73c04bcf A |
856 | const UTrieHeader *header; |
857 | const uint16_t *p16; | |
b75a7d8f A |
858 | uint32_t options; |
859 | ||
860 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
861 | return -1; | |
862 | } | |
863 | ||
864 | /* enough data for a trie header? */ | |
865 | if(length<sizeof(UTrieHeader)) { | |
866 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
867 | return -1; | |
868 | } | |
869 | ||
870 | /* check the signature */ | |
73c04bcf | 871 | header=(const UTrieHeader *)data; |
b75a7d8f A |
872 | if(header->signature!=0x54726965) { |
873 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
874 | return -1; | |
875 | } | |
876 | ||
877 | /* get the options and check the shift values */ | |
878 | options=header->options; | |
879 | if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || | |
880 | ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT | |
881 | ) { | |
882 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
883 | return -1; | |
884 | } | |
885 | trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); | |
886 | ||
887 | /* get the length values */ | |
888 | trie->indexLength=header->indexLength; | |
889 | trie->dataLength=header->dataLength; | |
890 | ||
374ca955 | 891 | length-=(int32_t)sizeof(UTrieHeader); |
b75a7d8f A |
892 | |
893 | /* enough data for the index? */ | |
894 | if(length<2*trie->indexLength) { | |
895 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
896 | return -1; | |
897 | } | |
73c04bcf | 898 | p16=(const uint16_t *)(header+1); |
b75a7d8f A |
899 | trie->index=p16; |
900 | p16+=trie->indexLength; | |
901 | length-=2*trie->indexLength; | |
902 | ||
903 | /* get the data */ | |
904 | if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { | |
905 | if(length<4*trie->dataLength) { | |
906 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
907 | return -1; | |
908 | } | |
909 | trie->data32=(const uint32_t *)p16; | |
910 | trie->initialValue=trie->data32[0]; | |
374ca955 | 911 | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; |
b75a7d8f A |
912 | } else { |
913 | if(length<2*trie->dataLength) { | |
914 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
915 | return -1; | |
916 | } | |
917 | ||
918 | /* the "data16" data is used via the index pointer */ | |
919 | trie->data32=NULL; | |
920 | trie->initialValue=trie->index[trie->indexLength]; | |
374ca955 A |
921 | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; |
922 | } | |
923 | ||
73c04bcf | 924 | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
374ca955 A |
925 | |
926 | return length; | |
927 | } | |
928 | ||
374ca955 | 929 | U_CAPI int32_t U_EXPORT2 |
73c04bcf A |
930 | utrie_unserializeDummy(UTrie *trie, |
931 | void *data, int32_t length, | |
932 | uint32_t initialValue, uint32_t leadUnitValue, | |
933 | UBool make16BitTrie, | |
934 | UErrorCode *pErrorCode) { | |
935 | uint16_t *p16; | |
936 | int32_t actualLength, latin1Length, i, limit; | |
937 | uint16_t block; | |
374ca955 A |
938 | |
939 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
73c04bcf | 940 | return -1; |
374ca955 | 941 | } |
73c04bcf A |
942 | |
943 | /* calculate the actual size of the dummy trie data */ | |
944 | ||
945 | /* max(Latin-1, block 0) */ | |
946 | latin1Length= UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH; | |
947 | ||
948 | trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; | |
949 | trie->dataLength=latin1Length; | |
950 | if(leadUnitValue!=initialValue) { | |
951 | trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; | |
374ca955 A |
952 | } |
953 | ||
73c04bcf A |
954 | actualLength=trie->indexLength*2; |
955 | if(make16BitTrie) { | |
956 | actualLength+=trie->dataLength*2; | |
957 | } else { | |
958 | actualLength+=trie->dataLength*4; | |
374ca955 A |
959 | } |
960 | ||
73c04bcf A |
961 | /* enough space for the dummy trie? */ |
962 | if(length<actualLength) { | |
963 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
964 | return actualLength; | |
374ca955 A |
965 | } |
966 | ||
73c04bcf A |
967 | trie->isLatin1Linear=TRUE; |
968 | trie->initialValue=initialValue; | |
374ca955 | 969 | |
73c04bcf A |
970 | /* fill the index and data arrays */ |
971 | p16=(uint16_t *)data; | |
972 | trie->index=p16; | |
374ca955 | 973 | |
73c04bcf A |
974 | if(make16BitTrie) { |
975 | /* indexes to block 0 */ | |
976 | block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); | |
977 | limit=trie->indexLength; | |
978 | for(i=0; i<limit; ++i) { | |
979 | p16[i]=block; | |
374ca955 A |
980 | } |
981 | ||
73c04bcf A |
982 | if(leadUnitValue!=initialValue) { |
983 | /* indexes for lead surrogate code units to the block after Latin-1 */ | |
984 | block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); | |
985 | i=0xd800>>UTRIE_SHIFT; | |
986 | limit=0xdc00>>UTRIE_SHIFT; | |
987 | for(; i<limit; ++i) { | |
988 | p16[i]=block; | |
989 | } | |
990 | } | |
374ca955 | 991 | |
73c04bcf | 992 | trie->data32=NULL; |
374ca955 | 993 | |
73c04bcf A |
994 | /* Latin-1 data */ |
995 | p16+=trie->indexLength; | |
996 | for(i=0; i<latin1Length; ++i) { | |
997 | p16[i]=(uint16_t)initialValue; | |
998 | } | |
999 | ||
1000 | /* data for lead surrogate code units */ | |
1001 | if(leadUnitValue!=initialValue) { | |
1002 | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; | |
1003 | for(/* i=latin1Length */; i<limit; ++i) { | |
1004 | p16[i]=(uint16_t)leadUnitValue; | |
1005 | } | |
1006 | } | |
1007 | } else { | |
1008 | uint32_t *p32; | |
1009 | ||
1010 | /* indexes to block 0 */ | |
1011 | uprv_memset(p16, 0, trie->indexLength*2); | |
1012 | ||
1013 | if(leadUnitValue!=initialValue) { | |
1014 | /* indexes for lead surrogate code units to the block after Latin-1 */ | |
1015 | block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); | |
1016 | i=0xd800>>UTRIE_SHIFT; | |
1017 | limit=0xdc00>>UTRIE_SHIFT; | |
1018 | for(; i<limit; ++i) { | |
1019 | p16[i]=block; | |
1020 | } | |
1021 | } | |
1022 | ||
1023 | trie->data32=p32=(uint32_t *)(p16+trie->indexLength); | |
1024 | ||
1025 | /* Latin-1 data */ | |
1026 | for(i=0; i<latin1Length; ++i) { | |
1027 | p32[i]=initialValue; | |
1028 | } | |
1029 | ||
1030 | /* data for lead surrogate code units */ | |
1031 | if(leadUnitValue!=initialValue) { | |
1032 | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; | |
1033 | for(/* i=latin1Length */; i<limit; ++i) { | |
1034 | p32[i]=leadUnitValue; | |
1035 | } | |
374ca955 | 1036 | } |
b75a7d8f | 1037 | } |
374ca955 | 1038 | |
73c04bcf A |
1039 | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
1040 | ||
1041 | return actualLength; | |
b75a7d8f A |
1042 | } |
1043 | ||
1044 | /* enumeration -------------------------------------------------------------- */ | |
1045 | ||
1046 | /* default UTrieEnumValue() returns the input value itself */ | |
1047 | static uint32_t U_CALLCONV | |
1048 | enumSameValue(const void *context, uint32_t value) { | |
1049 | return value; | |
1050 | } | |
1051 | ||
1052 | /** | |
1053 | * Enumerate all ranges of code points with the same relevant values. | |
1054 | * The values are transformed from the raw trie entries by the enumValue function. | |
1055 | */ | |
1056 | U_CAPI void U_EXPORT2 | |
374ca955 | 1057 | utrie_enum(const UTrie *trie, |
b75a7d8f A |
1058 | UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { |
1059 | const uint32_t *data32; | |
729e4ab9 | 1060 | const uint16_t *idx; |
b75a7d8f A |
1061 | |
1062 | uint32_t value, prevValue, initialValue; | |
1063 | UChar32 c, prev; | |
729e4ab9 | 1064 | int32_t l, i, j, block, prevBlock, nullBlock, offset; |
b75a7d8f A |
1065 | |
1066 | /* check arguments */ | |
1067 | if(trie==NULL || trie->index==NULL || enumRange==NULL) { | |
1068 | return; | |
1069 | } | |
1070 | if(enumValue==NULL) { | |
1071 | enumValue=enumSameValue; | |
1072 | } | |
1073 | ||
729e4ab9 | 1074 | idx=trie->index; |
b75a7d8f A |
1075 | data32=trie->data32; |
1076 | ||
1077 | /* get the enumeration value that corresponds to an initial-value trie data entry */ | |
1078 | initialValue=enumValue(context, trie->initialValue); | |
1079 | ||
729e4ab9 A |
1080 | if(data32==NULL) { |
1081 | nullBlock=trie->indexLength; | |
1082 | } else { | |
1083 | nullBlock=0; | |
1084 | } | |
1085 | ||
b75a7d8f | 1086 | /* set variables for previous range */ |
729e4ab9 | 1087 | prevBlock=nullBlock; |
b75a7d8f A |
1088 | prev=0; |
1089 | prevValue=initialValue; | |
1090 | ||
1091 | /* enumerate BMP - the main loop enumerates data blocks */ | |
1092 | for(i=0, c=0; c<=0xffff; ++i) { | |
1093 | if(c==0xd800) { | |
1094 | /* skip lead surrogate code _units_, go to lead surr. code _points_ */ | |
1095 | i=UTRIE_BMP_INDEX_LENGTH; | |
1096 | } else if(c==0xdc00) { | |
1097 | /* go back to regular BMP code points */ | |
1098 | i=c>>UTRIE_SHIFT; | |
1099 | } | |
1100 | ||
729e4ab9 | 1101 | block=idx[i]<<UTRIE_INDEX_SHIFT; |
b75a7d8f A |
1102 | if(block==prevBlock) { |
1103 | /* the block is the same as the previous one, and filled with value */ | |
1104 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
729e4ab9 | 1105 | } else if(block==nullBlock) { |
b75a7d8f A |
1106 | /* this is the all-initial-value block */ |
1107 | if(prevValue!=initialValue) { | |
1108 | if(prev<c) { | |
1109 | if(!enumRange(context, prev, c, prevValue)) { | |
1110 | return; | |
1111 | } | |
1112 | } | |
729e4ab9 | 1113 | prevBlock=nullBlock; |
b75a7d8f A |
1114 | prev=c; |
1115 | prevValue=initialValue; | |
1116 | } | |
1117 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
1118 | } else { | |
1119 | prevBlock=block; | |
1120 | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { | |
729e4ab9 | 1121 | value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
b75a7d8f A |
1122 | if(value!=prevValue) { |
1123 | if(prev<c) { | |
1124 | if(!enumRange(context, prev, c, prevValue)) { | |
1125 | return; | |
1126 | } | |
1127 | } | |
1128 | if(j>0) { | |
729e4ab9 | 1129 | /* the block is not filled with all the same value */ |
b75a7d8f A |
1130 | prevBlock=-1; |
1131 | } | |
1132 | prev=c; | |
1133 | prevValue=value; | |
1134 | } | |
1135 | ++c; | |
1136 | } | |
1137 | } | |
1138 | } | |
1139 | ||
1140 | /* enumerate supplementary code points */ | |
1141 | for(l=0xd800; l<0xdc00;) { | |
1142 | /* lead surrogate access */ | |
729e4ab9 A |
1143 | offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; |
1144 | if(offset==nullBlock) { | |
374ca955 A |
1145 | /* no entries for a whole block of lead surrogates */ |
1146 | if(prevValue!=initialValue) { | |
1147 | if(prev<c) { | |
1148 | if(!enumRange(context, prev, c, prevValue)) { | |
1149 | return; | |
1150 | } | |
1151 | } | |
729e4ab9 | 1152 | prevBlock=nullBlock; |
374ca955 A |
1153 | prev=c; |
1154 | prevValue=initialValue; | |
b75a7d8f | 1155 | } |
374ca955 A |
1156 | |
1157 | l+=UTRIE_DATA_BLOCK_LENGTH; | |
1158 | c+=UTRIE_DATA_BLOCK_LENGTH<<10; | |
1159 | continue; | |
b75a7d8f A |
1160 | } |
1161 | ||
729e4ab9 | 1162 | value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; |
374ca955 | 1163 | |
b75a7d8f A |
1164 | /* enumerate trail surrogates for this lead surrogate */ |
1165 | offset=trie->getFoldingOffset(value); | |
1166 | if(offset<=0) { | |
1167 | /* no data for this lead surrogate */ | |
1168 | if(prevValue!=initialValue) { | |
1169 | if(prev<c) { | |
1170 | if(!enumRange(context, prev, c, prevValue)) { | |
1171 | return; | |
1172 | } | |
1173 | } | |
729e4ab9 | 1174 | prevBlock=nullBlock; |
b75a7d8f A |
1175 | prev=c; |
1176 | prevValue=initialValue; | |
1177 | } | |
1178 | ||
1179 | /* nothing else to do for the supplementary code points for this lead surrogate */ | |
1180 | c+=0x400; | |
1181 | } else { | |
1182 | /* enumerate code points for this lead surrogate */ | |
1183 | i=offset; | |
1184 | offset+=UTRIE_SURROGATE_BLOCK_COUNT; | |
1185 | do { | |
1186 | /* copy of most of the body of the BMP loop */ | |
729e4ab9 | 1187 | block=idx[i]<<UTRIE_INDEX_SHIFT; |
b75a7d8f A |
1188 | if(block==prevBlock) { |
1189 | /* the block is the same as the previous one, and filled with value */ | |
1190 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
729e4ab9 | 1191 | } else if(block==nullBlock) { |
b75a7d8f A |
1192 | /* this is the all-initial-value block */ |
1193 | if(prevValue!=initialValue) { | |
1194 | if(prev<c) { | |
1195 | if(!enumRange(context, prev, c, prevValue)) { | |
1196 | return; | |
1197 | } | |
1198 | } | |
729e4ab9 | 1199 | prevBlock=nullBlock; |
b75a7d8f A |
1200 | prev=c; |
1201 | prevValue=initialValue; | |
1202 | } | |
1203 | c+=UTRIE_DATA_BLOCK_LENGTH; | |
1204 | } else { | |
1205 | prevBlock=block; | |
1206 | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { | |
729e4ab9 | 1207 | value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
b75a7d8f A |
1208 | if(value!=prevValue) { |
1209 | if(prev<c) { | |
1210 | if(!enumRange(context, prev, c, prevValue)) { | |
1211 | return; | |
1212 | } | |
1213 | } | |
1214 | if(j>0) { | |
729e4ab9 | 1215 | /* the block is not filled with all the same value */ |
b75a7d8f A |
1216 | prevBlock=-1; |
1217 | } | |
1218 | prev=c; | |
1219 | prevValue=value; | |
1220 | } | |
1221 | ++c; | |
1222 | } | |
1223 | } | |
1224 | } while(++i<offset); | |
1225 | } | |
1226 | ||
1227 | ++l; | |
1228 | } | |
1229 | ||
1230 | /* deliver last range */ | |
1231 | enumRange(context, prev, c, prevValue); | |
1232 | } |