]>
Commit | Line | Data |
---|---|---|
b75a7d8f | 1 | /* |
374ca955 A |
2 | ********************************************************************** |
3 | * Copyright (C) 1999-2004, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ********************************************************************** | |
6 | * Date Name Description | |
7 | * 11/17/99 aliu Creation. | |
8 | ********************************************************************** | |
9 | */ | |
b75a7d8f A |
10 | |
11 | #include "unicode/utypes.h" | |
12 | ||
13 | #if !UCONFIG_NO_TRANSLITERATION | |
14 | ||
15 | #include "unicode/uobject.h" | |
16 | #include "unicode/parseerr.h" | |
17 | #include "unicode/parsepos.h" | |
18 | #include "unicode/putil.h" | |
19 | #include "unicode/uchar.h" | |
20 | #include "unicode/ustring.h" | |
21 | #include "unicode/uniset.h" | |
22 | #include "cstring.h" | |
23 | #include "funcrepl.h" | |
24 | #include "hash.h" | |
25 | #include "quant.h" | |
26 | #include "rbt.h" | |
27 | #include "rbt_data.h" | |
28 | #include "rbt_pars.h" | |
29 | #include "rbt_rule.h" | |
30 | #include "strmatch.h" | |
31 | #include "strrepl.h" | |
374ca955 | 32 | #include "unicode/symtable.h" |
b75a7d8f A |
33 | #include "tridpars.h" |
34 | #include "uvector.h" | |
35 | #include "util.h" | |
36 | #include "cmemory.h" | |
37 | #include "uprops.h" | |
374ca955 | 38 | #include "putilimp.h" |
b75a7d8f A |
39 | |
40 | // Operators | |
41 | #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ | |
42 | #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ | |
43 | #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ | |
44 | #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op | |
45 | ||
46 | // Other special characters | |
47 | #define QUOTE ((UChar)0x0027) /*'*/ | |
48 | #define ESCAPE ((UChar)0x005C) /*\*/ | |
49 | #define END_OF_RULE ((UChar)0x003B) /*;*/ | |
50 | #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ | |
51 | ||
52 | #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ | |
53 | #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ | |
54 | #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ | |
55 | #define CONTEXT_POST ((UChar)0x007D) /*}*/ | |
56 | #define CURSOR_POS ((UChar)0x007C) /*|*/ | |
57 | #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ | |
58 | #define ANCHOR_START ((UChar)0x005E) /*^*/ | |
59 | #define KLEENE_STAR ((UChar)0x002A) /***/ | |
60 | #define ONE_OR_MORE ((UChar)0x002B) /*+*/ | |
61 | #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ | |
62 | ||
63 | #define DOT ((UChar)46) /*.*/ | |
64 | ||
65 | static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; | |
66 | 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, | |
67 | 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 | |
68 | }; | |
69 | ||
70 | // A function is denoted &Source-Target/Variant(text) | |
71 | #define FUNCTION ((UChar)38) /*&*/ | |
72 | ||
73 | // Aliases for some of the syntax characters. These are provided so | |
74 | // transliteration rules can be expressed in XML without clashing with | |
75 | // XML syntax characters '<', '>', and '&'. | |
76 | #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow | |
77 | #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow | |
78 | #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow | |
79 | #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) | |
80 | ||
81 | // Special characters disallowed at the top level | |
82 | static const UChar ILLEGAL_TOP[] = {41,0}; // ")" | |
83 | ||
84 | // Special characters disallowed within a segment | |
85 | static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" | |
86 | ||
87 | // Special characters disallowed within a function argument | |
88 | static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" | |
89 | ||
90 | // By definition, the ANCHOR_END special character is a | |
91 | // trailing SymbolTable.SYMBOL_REF character. | |
92 | // private static final char ANCHOR_END = '$'; | |
93 | ||
94 | static const UChar gOPERATORS[] = { // "=><" | |
95 | VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, | |
96 | ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, | |
97 | 0 | |
98 | }; | |
99 | ||
100 | static const UChar HALF_ENDERS[] = { // "=><;" | |
101 | VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, | |
102 | ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, | |
103 | END_OF_RULE, | |
104 | 0 | |
105 | }; | |
106 | ||
107 | // These are also used in Transliterator::toRules() | |
108 | static const int32_t ID_TOKEN_LEN = 2; | |
109 | static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' | |
110 | ||
111 | U_NAMESPACE_BEGIN | |
112 | ||
113 | //---------------------------------------------------------------------- | |
114 | // BEGIN ParseData | |
115 | //---------------------------------------------------------------------- | |
116 | ||
117 | /** | |
118 | * This class implements the SymbolTable interface. It is used | |
119 | * during parsing to give UnicodeSet access to variables that | |
120 | * have been defined so far. Note that it uses variablesVector, | |
121 | * _not_ data.setVariables. | |
122 | */ | |
123 | class ParseData : public UMemory, public SymbolTable { | |
124 | public: | |
125 | const TransliterationRuleData* data; // alias | |
126 | ||
127 | const UVector* variablesVector; // alias | |
128 | ||
129 | ParseData(const TransliterationRuleData* data = 0, | |
130 | const UVector* variablesVector = 0); | |
131 | ||
132 | virtual const UnicodeString* lookup(const UnicodeString& s) const; | |
133 | ||
134 | virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; | |
135 | ||
136 | virtual UnicodeString parseReference(const UnicodeString& text, | |
137 | ParsePosition& pos, int32_t limit) const; | |
138 | /** | |
139 | * Return true if the given character is a matcher standin or a plain | |
140 | * character (non standin). | |
141 | */ | |
142 | UBool isMatcher(UChar32 ch); | |
143 | ||
144 | /** | |
145 | * Return true if the given character is a replacer standin or a plain | |
146 | * character (non standin). | |
147 | */ | |
148 | UBool isReplacer(UChar32 ch); | |
149 | ||
150 | private: | |
151 | ParseData(const ParseData &other); // forbid copying of this class | |
152 | ParseData &operator=(const ParseData &other); // forbid copying of this class | |
153 | }; | |
154 | ||
155 | ParseData::ParseData(const TransliterationRuleData* d, | |
156 | const UVector* sets) : | |
157 | data(d), variablesVector(sets) {} | |
158 | ||
159 | /** | |
160 | * Implement SymbolTable API. | |
161 | */ | |
162 | const UnicodeString* ParseData::lookup(const UnicodeString& name) const { | |
163 | return (const UnicodeString*) data->variableNames->get(name); | |
164 | } | |
165 | ||
166 | /** | |
167 | * Implement SymbolTable API. | |
168 | */ | |
169 | const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { | |
170 | // Note that we cannot use data.lookupSet() because the | |
171 | // set array has not been constructed yet. | |
172 | const UnicodeFunctor* set = NULL; | |
173 | int32_t i = ch - data->variablesBase; | |
174 | if (i >= 0 && i < variablesVector->size()) { | |
175 | int32_t i = ch - data->variablesBase; | |
176 | set = (i < variablesVector->size()) ? | |
177 | (UnicodeFunctor*) variablesVector->elementAt(i) : 0; | |
178 | } | |
179 | return set; | |
180 | } | |
181 | ||
182 | /** | |
183 | * Implement SymbolTable API. Parse out a symbol reference | |
184 | * name. | |
185 | */ | |
186 | UnicodeString ParseData::parseReference(const UnicodeString& text, | |
187 | ParsePosition& pos, int32_t limit) const { | |
188 | int32_t start = pos.getIndex(); | |
189 | int32_t i = start; | |
190 | UnicodeString result; | |
191 | while (i < limit) { | |
192 | UChar c = text.charAt(i); | |
193 | if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { | |
194 | break; | |
195 | } | |
196 | ++i; | |
197 | } | |
198 | if (i == start) { // No valid name chars | |
199 | return result; // Indicate failure with empty string | |
200 | } | |
201 | pos.setIndex(i); | |
202 | text.extractBetween(start, i, result); | |
203 | return result; | |
204 | } | |
205 | ||
206 | UBool ParseData::isMatcher(UChar32 ch) { | |
207 | // Note that we cannot use data.lookup() because the | |
208 | // set array has not been constructed yet. | |
209 | int32_t i = ch - data->variablesBase; | |
210 | if (i >= 0 && i < variablesVector->size()) { | |
211 | UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); | |
212 | return f != NULL && f->toMatcher() != NULL; | |
213 | } | |
214 | return TRUE; | |
215 | } | |
216 | ||
217 | /** | |
218 | * Return true if the given character is a replacer standin or a plain | |
219 | * character (non standin). | |
220 | */ | |
221 | UBool ParseData::isReplacer(UChar32 ch) { | |
222 | // Note that we cannot use data.lookup() because the | |
223 | // set array has not been constructed yet. | |
224 | int i = ch - data->variablesBase; | |
225 | if (i >= 0 && i < variablesVector->size()) { | |
226 | UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); | |
227 | return f != NULL && f->toReplacer() != NULL; | |
228 | } | |
229 | return TRUE; | |
230 | } | |
231 | ||
232 | //---------------------------------------------------------------------- | |
233 | // BEGIN RuleHalf | |
234 | //---------------------------------------------------------------------- | |
235 | ||
236 | /** | |
237 | * A class representing one side of a rule. This class knows how to | |
238 | * parse half of a rule. It is tightly coupled to the method | |
239 | * RuleBasedTransliterator.Parser.parseRule(). | |
240 | */ | |
241 | class RuleHalf : public UMemory { | |
242 | ||
243 | public: | |
244 | ||
245 | UnicodeString text; | |
246 | ||
247 | int32_t cursor; // position of cursor in text | |
248 | int32_t ante; // position of ante context marker '{' in text | |
249 | int32_t post; // position of post context marker '}' in text | |
250 | ||
251 | // Record the offset to the cursor either to the left or to the | |
252 | // right of the key. This is indicated by characters on the output | |
253 | // side that allow the cursor to be positioned arbitrarily within | |
254 | // the matching text. For example, abc{def} > | @@@ xyz; changes | |
255 | // def to xyz and moves the cursor to before abc. Offset characters | |
256 | // must be at the start or end, and they cannot move the cursor past | |
257 | // the ante- or postcontext text. Placeholders are only valid in | |
258 | // output text. The length of the ante and post context is | |
259 | // determined at runtime, because of supplementals and quantifiers. | |
260 | int32_t cursorOffset; // only nonzero on output side | |
261 | ||
262 | // Position of first CURSOR_OFFSET on _right_. This will be -1 | |
263 | // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. | |
264 | int32_t cursorOffsetPos; | |
265 | ||
266 | UBool anchorStart; | |
267 | UBool anchorEnd; | |
268 | ||
269 | UErrorCode ec; | |
270 | ||
271 | /** | |
272 | * The segment number from 1..n of the next '(' we see | |
273 | * during parsing; 1-based. | |
274 | */ | |
275 | int32_t nextSegmentNumber; | |
276 | ||
277 | TransliteratorParser& parser; | |
278 | ||
279 | //-------------------------------------------------- | |
280 | // Methods | |
281 | ||
282 | RuleHalf(TransliteratorParser& parser); | |
283 | ~RuleHalf(); | |
284 | ||
285 | int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit); | |
286 | ||
287 | int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, | |
288 | UnicodeString& buf, | |
289 | const UnicodeString& illegal, | |
290 | UBool isSegment); | |
291 | ||
292 | /** | |
293 | * Remove context. | |
294 | */ | |
295 | void removeContext(); | |
296 | ||
297 | /** | |
298 | * Return true if this half looks like valid output, that is, does not | |
299 | * contain quantifiers or other special input-only elements. | |
300 | */ | |
301 | UBool isValidOutput(TransliteratorParser& parser); | |
302 | ||
303 | /** | |
304 | * Return true if this half looks like valid input, that is, does not | |
305 | * contain functions or other special output-only elements. | |
306 | */ | |
307 | UBool isValidInput(TransliteratorParser& parser); | |
308 | ||
309 | int syntaxError(UErrorCode code, | |
310 | const UnicodeString& rule, | |
311 | int32_t start) { | |
312 | return parser.syntaxError(code, rule, start); | |
313 | } | |
314 | ||
315 | private: | |
316 | // Disallowed methods; no impl. | |
317 | RuleHalf(const RuleHalf&); | |
318 | RuleHalf& operator=(const RuleHalf&); | |
319 | }; | |
320 | ||
321 | RuleHalf::RuleHalf(TransliteratorParser& p) : | |
322 | ec(U_ZERO_ERROR), | |
323 | parser(p) | |
324 | { | |
325 | cursor = -1; | |
326 | ante = -1; | |
327 | post = -1; | |
328 | cursorOffset = 0; | |
329 | cursorOffsetPos = 0; | |
330 | anchorStart = anchorEnd = FALSE; | |
331 | nextSegmentNumber = 1; | |
332 | } | |
333 | ||
334 | RuleHalf::~RuleHalf() { | |
335 | } | |
336 | ||
337 | /** | |
338 | * Parse one side of a rule, stopping at either the limit, | |
339 | * the END_OF_RULE character, or an operator. | |
340 | * @return the index after the terminating character, or | |
341 | * if limit was reached, limit | |
342 | */ | |
343 | int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit) { | |
344 | int32_t start = pos; | |
345 | text.truncate(0); | |
346 | pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE); | |
347 | ||
348 | if (cursorOffset > 0 && cursor != cursorOffsetPos) { | |
349 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start); | |
350 | } | |
351 | ||
352 | return pos; | |
353 | } | |
354 | ||
355 | /** | |
356 | * Parse a section of one side of a rule, stopping at either | |
357 | * the limit, the END_OF_RULE character, an operator, or a | |
358 | * segment close character. This method parses both a | |
359 | * top-level rule half and a segment within such a rule half. | |
360 | * It calls itself recursively to parse segments and nested | |
361 | * segments. | |
362 | * @param buf buffer into which to accumulate the rule pattern | |
363 | * characters, either literal characters from the rule or | |
364 | * standins for UnicodeMatcher objects including segments. | |
365 | * @param illegal the set of special characters that is illegal during | |
366 | * this parse. | |
367 | * @param isSegment if true, then we've already seen a '(' and | |
368 | * pos on entry points right after it. Accumulate everything | |
369 | * up to the closing ')', put it in a segment matcher object, | |
370 | * generate a standin for it, and add the standin to buf. As | |
371 | * a side effect, update the segments vector with a reference | |
372 | * to the segment matcher. This works recursively for nested | |
373 | * segments. If isSegment is false, just accumulate | |
374 | * characters into buf. | |
375 | * @return the index after the terminating character, or | |
376 | * if limit was reached, limit | |
377 | */ | |
378 | int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, | |
379 | UnicodeString& buf, | |
380 | const UnicodeString& illegal, | |
381 | UBool isSegment) { | |
382 | int32_t start = pos; | |
383 | ParsePosition pp; | |
384 | UnicodeString scratch; | |
385 | UBool done = FALSE; | |
386 | int32_t quoteStart = -1; // Most recent 'single quoted string' | |
387 | int32_t quoteLimit = -1; | |
388 | int32_t varStart = -1; // Most recent $variableReference | |
389 | int32_t varLimit = -1; | |
390 | int32_t bufStart = buf.length(); | |
391 | ||
392 | while (pos < limit && !done) { | |
393 | // Since all syntax characters are in the BMP, fetching | |
394 | // 16-bit code units suffices here. | |
395 | UChar c = rule.charAt(pos++); | |
396 | if (uprv_isRuleWhiteSpace(c)) { | |
397 | // Ignore whitespace. Note that this is not Unicode | |
398 | // spaces, but Java spaces -- a subset, representing | |
399 | // whitespace likely to be seen in code. | |
400 | continue; | |
401 | } | |
402 | if (u_strchr(HALF_ENDERS, c) != NULL) { | |
403 | if (isSegment) { | |
404 | // Unclosed segment | |
405 | return syntaxError(U_UNCLOSED_SEGMENT, rule, start); | |
406 | } | |
407 | break; | |
408 | } | |
409 | if (anchorEnd) { | |
410 | // Text after a presumed end anchor is a syntax err | |
411 | return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start); | |
412 | } | |
413 | if (UnicodeSet::resemblesPattern(rule, pos-1)) { | |
414 | pp.setIndex(pos-1); // Backup to opening '[' | |
415 | buf.append(parser.parseSet(rule, pp)); | |
416 | if (U_FAILURE(parser.status)) { | |
417 | return syntaxError(U_MALFORMED_SET, rule, start); | |
418 | } | |
419 | pos = pp.getIndex(); | |
420 | continue; | |
421 | } | |
422 | // Handle escapes | |
423 | if (c == ESCAPE) { | |
424 | if (pos == limit) { | |
425 | return syntaxError(U_TRAILING_BACKSLASH, rule, start); | |
426 | } | |
427 | UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' | |
428 | if (escaped == (UChar32) -1) { | |
429 | return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start); | |
430 | } | |
431 | if (!parser.checkVariableRange(escaped)) { | |
432 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start); | |
433 | } | |
434 | buf.append(escaped); | |
435 | continue; | |
436 | } | |
437 | // Handle quoted matter | |
438 | if (c == QUOTE) { | |
439 | int32_t iq = rule.indexOf(QUOTE, pos); | |
440 | if (iq == pos) { | |
441 | buf.append(c); // Parse [''] outside quotes as ['] | |
442 | ++pos; | |
443 | } else { | |
444 | /* This loop picks up a run of quoted text of the | |
445 | * form 'aaaa' each time through. If this run | |
446 | * hasn't really ended ('aaaa''bbbb') then it keeps | |
447 | * looping, each time adding on a new run. When it | |
448 | * reaches the final quote it breaks. | |
449 | */ | |
450 | quoteStart = buf.length(); | |
451 | for (;;) { | |
452 | if (iq < 0) { | |
453 | return syntaxError(U_UNTERMINATED_QUOTE, rule, start); | |
454 | } | |
455 | scratch.truncate(0); | |
456 | rule.extractBetween(pos, iq, scratch); | |
457 | buf.append(scratch); | |
458 | pos = iq+1; | |
459 | if (pos < limit && rule.charAt(pos) == QUOTE) { | |
460 | // Parse [''] inside quotes as ['] | |
461 | iq = rule.indexOf(QUOTE, pos+1); | |
462 | // Continue looping | |
463 | } else { | |
464 | break; | |
465 | } | |
466 | } | |
467 | quoteLimit = buf.length(); | |
468 | ||
469 | for (iq=quoteStart; iq<quoteLimit; ++iq) { | |
470 | if (!parser.checkVariableRange(buf.charAt(iq))) { | |
471 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start); | |
472 | } | |
473 | } | |
474 | } | |
475 | continue; | |
476 | } | |
477 | ||
478 | if (!parser.checkVariableRange(c)) { | |
479 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start); | |
480 | } | |
481 | ||
482 | if (illegal.indexOf(c) >= 0) { | |
483 | syntaxError(U_ILLEGAL_CHARACTER, rule, start); | |
484 | } | |
485 | ||
486 | switch (c) { | |
487 | ||
488 | //------------------------------------------------------ | |
489 | // Elements allowed within and out of segments | |
490 | //------------------------------------------------------ | |
491 | case ANCHOR_START: | |
492 | if (buf.length() == 0 && !anchorStart) { | |
493 | anchorStart = TRUE; | |
494 | } else { | |
495 | return syntaxError(U_MISPLACED_ANCHOR_START, | |
496 | rule, start); | |
497 | } | |
498 | break; | |
499 | case SEGMENT_OPEN: | |
500 | { | |
501 | // bufSegStart is the offset in buf to the first | |
502 | // character of the segment we are parsing. | |
503 | int32_t bufSegStart = buf.length(); | |
504 | ||
505 | // Record segment number now, since nextSegmentNumber | |
506 | // will be incremented during the call to parseSection | |
507 | // if there are nested segments. | |
508 | int32_t segmentNumber = nextSegmentNumber++; // 1-based | |
509 | ||
510 | // Parse the segment | |
511 | pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE); | |
512 | ||
513 | // After parsing a segment, the relevant characters are | |
514 | // in buf, starting at offset bufSegStart. Extract them | |
515 | // into a string matcher, and replace them with a | |
516 | // standin for that matcher. | |
517 | StringMatcher* m = | |
518 | new StringMatcher(buf, bufSegStart, buf.length(), | |
519 | segmentNumber, *parser.data); | |
520 | ||
521 | // Record and associate object and segment number | |
522 | parser.setSegmentObject(segmentNumber, m); | |
523 | buf.truncate(bufSegStart); | |
524 | buf.append(parser.getSegmentStandin(segmentNumber)); | |
525 | } | |
526 | break; | |
527 | case FUNCTION: | |
528 | case ALT_FUNCTION: | |
529 | { | |
530 | int32_t iref = pos; | |
531 | TransliteratorIDParser::SingleID* single = | |
532 | TransliteratorIDParser::parseFilterID(rule, iref); | |
533 | // The next character MUST be a segment open | |
534 | if (single == NULL || | |
535 | !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { | |
536 | return syntaxError(U_INVALID_FUNCTION, rule, start); | |
537 | } | |
538 | ||
539 | Transliterator *t = single->createInstance(); | |
540 | delete single; | |
541 | if (t == NULL) { | |
542 | return syntaxError(U_INVALID_FUNCTION, rule, start); | |
543 | } | |
544 | ||
545 | // bufSegStart is the offset in buf to the first | |
546 | // character of the segment we are parsing. | |
547 | int32_t bufSegStart = buf.length(); | |
548 | ||
549 | // Parse the segment | |
550 | pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE); | |
551 | ||
552 | // After parsing a segment, the relevant characters are | |
553 | // in buf, starting at offset bufSegStart. | |
554 | UnicodeString output; | |
555 | buf.extractBetween(bufSegStart, buf.length(), output); | |
556 | FunctionReplacer *r = | |
557 | new FunctionReplacer(t, new StringReplacer(output, parser.data)); | |
558 | ||
559 | // Replace the buffer contents with a stand-in | |
560 | buf.truncate(bufSegStart); | |
561 | buf.append(parser.generateStandInFor(r)); | |
562 | } | |
563 | break; | |
564 | case SymbolTable::SYMBOL_REF: | |
565 | // Handle variable references and segment references "$1" .. "$9" | |
566 | { | |
567 | // A variable reference must be followed immediately | |
568 | // by a Unicode identifier start and zero or more | |
569 | // Unicode identifier part characters, or by a digit | |
570 | // 1..9 if it is a segment reference. | |
571 | if (pos == limit) { | |
572 | // A variable ref character at the end acts as | |
573 | // an anchor to the context limit, as in perl. | |
574 | anchorEnd = TRUE; | |
575 | break; | |
576 | } | |
577 | // Parse "$1" "$2" .. "$9" .. (no upper limit) | |
578 | c = rule.charAt(pos); | |
579 | int32_t r = u_digit(c, 10); | |
580 | if (r >= 1 && r <= 9) { | |
581 | r = ICU_Utility::parseNumber(rule, pos, 10); | |
582 | if (r < 0) { | |
583 | return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, | |
584 | rule, start); | |
585 | } | |
586 | buf.append(parser.getSegmentStandin(r)); | |
587 | } else { | |
588 | pp.setIndex(pos); | |
589 | UnicodeString name = parser.parseData-> | |
590 | parseReference(rule, pp, limit); | |
591 | if (name.length() == 0) { | |
592 | // This means the '$' was not followed by a | |
593 | // valid name. Try to interpret it as an | |
594 | // end anchor then. If this also doesn't work | |
595 | // (if we see a following character) then signal | |
596 | // an error. | |
597 | anchorEnd = TRUE; | |
598 | break; | |
599 | } | |
600 | pos = pp.getIndex(); | |
601 | // If this is a variable definition statement, | |
602 | // then the LHS variable will be undefined. In | |
603 | // that case appendVariableDef() will append the | |
604 | // special placeholder char variableLimit-1. | |
605 | varStart = buf.length(); | |
606 | parser.appendVariableDef(name, buf); | |
607 | varLimit = buf.length(); | |
608 | } | |
609 | } | |
610 | break; | |
611 | case DOT: | |
612 | buf.append(parser.getDotStandIn()); | |
613 | break; | |
614 | case KLEENE_STAR: | |
615 | case ONE_OR_MORE: | |
616 | case ZERO_OR_ONE: | |
617 | // Quantifiers. We handle single characters, quoted strings, | |
618 | // variable references, and segments. | |
619 | // a+ matches aaa | |
620 | // 'foo'+ matches foofoofoo | |
621 | // $v+ matches xyxyxy if $v == xy | |
622 | // (seg)+ matches segsegseg | |
623 | { | |
624 | if (isSegment && buf.length() == bufStart) { | |
625 | // The */+ immediately follows '(' | |
626 | return syntaxError(U_MISPLACED_QUANTIFIER, rule, start); | |
627 | } | |
628 | ||
629 | int32_t qstart, qlimit; | |
630 | // The */+ follows an isolated character or quote | |
631 | // or variable reference | |
632 | if (buf.length() == quoteLimit) { | |
633 | // The */+ follows a 'quoted string' | |
634 | qstart = quoteStart; | |
635 | qlimit = quoteLimit; | |
636 | } else if (buf.length() == varLimit) { | |
637 | // The */+ follows a $variableReference | |
638 | qstart = varStart; | |
639 | qlimit = varLimit; | |
640 | } else { | |
641 | // The */+ follows a single character, possibly | |
642 | // a segment standin | |
643 | qstart = buf.length() - 1; | |
644 | qlimit = qstart + 1; | |
645 | } | |
646 | ||
647 | UnicodeFunctor *m = | |
648 | new StringMatcher(buf, qstart, qlimit, 0, *parser.data); | |
649 | int32_t min = 0; | |
650 | int32_t max = Quantifier::MAX; | |
651 | switch (c) { | |
652 | case ONE_OR_MORE: | |
653 | min = 1; | |
654 | break; | |
655 | case ZERO_OR_ONE: | |
656 | min = 0; | |
657 | max = 1; | |
658 | break; | |
659 | // case KLEENE_STAR: | |
660 | // do nothing -- min, max already set | |
661 | } | |
662 | m = new Quantifier(m, min, max); | |
663 | buf.truncate(qstart); | |
664 | buf.append(parser.generateStandInFor(m)); | |
665 | } | |
666 | break; | |
667 | ||
668 | //------------------------------------------------------ | |
669 | // Elements allowed ONLY WITHIN segments | |
670 | //------------------------------------------------------ | |
671 | case SEGMENT_CLOSE: | |
672 | // assert(isSegment); | |
673 | // We're done parsing a segment. | |
674 | done = TRUE; | |
675 | break; | |
676 | ||
677 | //------------------------------------------------------ | |
678 | // Elements allowed ONLY OUTSIDE segments | |
679 | //------------------------------------------------------ | |
680 | case CONTEXT_ANTE: | |
681 | if (ante >= 0) { | |
682 | return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start); | |
683 | } | |
684 | ante = buf.length(); | |
685 | break; | |
686 | case CONTEXT_POST: | |
687 | if (post >= 0) { | |
688 | return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start); | |
689 | } | |
690 | post = buf.length(); | |
691 | break; | |
692 | case CURSOR_POS: | |
693 | if (cursor >= 0) { | |
694 | return syntaxError(U_MULTIPLE_CURSORS, rule, start); | |
695 | } | |
696 | cursor = buf.length(); | |
697 | break; | |
698 | case CURSOR_OFFSET: | |
699 | if (cursorOffset < 0) { | |
700 | if (buf.length() > 0) { | |
701 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start); | |
702 | } | |
703 | --cursorOffset; | |
704 | } else if (cursorOffset > 0) { | |
705 | if (buf.length() != cursorOffsetPos || cursor >= 0) { | |
706 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start); | |
707 | } | |
708 | ++cursorOffset; | |
709 | } else { | |
710 | if (cursor == 0 && buf.length() == 0) { | |
711 | cursorOffset = -1; | |
712 | } else if (cursor < 0) { | |
713 | cursorOffsetPos = buf.length(); | |
714 | cursorOffset = 1; | |
715 | } else { | |
716 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start); | |
717 | } | |
718 | } | |
719 | break; | |
720 | ||
721 | ||
722 | //------------------------------------------------------ | |
723 | // Non-special characters | |
724 | //------------------------------------------------------ | |
725 | default: | |
726 | // Disallow unquoted characters other than [0-9A-Za-z] | |
727 | // in the printable ASCII range. These characters are | |
728 | // reserved for possible future use. | |
729 | if (c >= 0x0021 && c <= 0x007E && | |
730 | !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || | |
731 | (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || | |
732 | (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { | |
733 | return syntaxError(U_UNQUOTED_SPECIAL, rule, start); | |
734 | } | |
735 | buf.append(c); | |
736 | break; | |
737 | } | |
738 | } | |
739 | ||
740 | return pos; | |
741 | } | |
742 | ||
743 | /** | |
744 | * Remove context. | |
745 | */ | |
746 | void RuleHalf::removeContext() { | |
747 | //text = text.substring(ante < 0 ? 0 : ante, | |
748 | // post < 0 ? text.length() : post); | |
749 | if (post >= 0) { | |
750 | text.remove(post); | |
751 | } | |
752 | if (ante >= 0) { | |
753 | text.removeBetween(0, ante); | |
754 | } | |
755 | ante = post = -1; | |
756 | anchorStart = anchorEnd = FALSE; | |
757 | } | |
758 | ||
759 | /** | |
760 | * Return true if this half looks like valid output, that is, does not | |
761 | * contain quantifiers or other special input-only elements. | |
762 | */ | |
763 | UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { | |
764 | for (int32_t i=0; i<text.length(); ) { | |
765 | UChar32 c = text.char32At(i); | |
766 | i += UTF_CHAR_LENGTH(c); | |
767 | if (!transParser.parseData->isReplacer(c)) { | |
768 | return FALSE; | |
769 | } | |
770 | } | |
771 | return TRUE; | |
772 | } | |
773 | ||
774 | /** | |
775 | * Return true if this half looks like valid input, that is, does not | |
776 | * contain functions or other special output-only elements. | |
777 | */ | |
778 | UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { | |
779 | for (int32_t i=0; i<text.length(); ) { | |
780 | UChar32 c = text.char32At(i); | |
781 | i += UTF_CHAR_LENGTH(c); | |
782 | if (!transParser.parseData->isMatcher(c)) { | |
783 | return FALSE; | |
784 | } | |
785 | } | |
786 | return TRUE; | |
787 | } | |
788 | ||
789 | //---------------------------------------------------------------------- | |
790 | // PUBLIC API | |
791 | //---------------------------------------------------------------------- | |
792 | ||
793 | /** | |
794 | * Constructor. | |
795 | */ | |
796 | TransliteratorParser::TransliteratorParser() { | |
797 | data = NULL; | |
798 | compoundFilter = NULL; | |
799 | parseData = NULL; | |
800 | variablesVector = NULL; | |
801 | segmentObjects = NULL; | |
802 | } | |
803 | ||
804 | /** | |
805 | * Destructor. | |
806 | */ | |
807 | TransliteratorParser::~TransliteratorParser() { | |
808 | delete data; | |
809 | delete compoundFilter; | |
810 | delete parseData; | |
811 | delete variablesVector; | |
812 | delete segmentObjects; | |
813 | } | |
814 | ||
815 | void | |
816 | TransliteratorParser::parse(const UnicodeString& rules, | |
817 | UTransDirection transDirection, | |
818 | UParseError& pe, | |
819 | UErrorCode& ec) { | |
820 | if (U_SUCCESS(ec)) { | |
821 | parseRules(rules, transDirection); | |
822 | pe = parseError; | |
823 | ec = status; | |
824 | } | |
825 | } | |
826 | ||
827 | /** | |
828 | * Return the compound filter parsed by parse(). Caller owns result. | |
829 | */ | |
830 | UnicodeSet* TransliteratorParser::orphanCompoundFilter() { | |
831 | UnicodeSet* f = compoundFilter; | |
832 | compoundFilter = NULL; | |
833 | return f; | |
834 | } | |
835 | ||
836 | /** | |
837 | * Return the data object parsed by parse(). Caller owns result. | |
838 | */ | |
839 | TransliterationRuleData* TransliteratorParser::orphanData() { | |
840 | TransliterationRuleData* d = data; | |
841 | data = NULL; | |
842 | return d; | |
843 | } | |
844 | ||
845 | //---------------------------------------------------------------------- | |
846 | // Private implementation | |
847 | //---------------------------------------------------------------------- | |
848 | ||
849 | /** | |
850 | * Parse the given string as a sequence of rules, separated by newline | |
851 | * characters ('\n'), and cause this object to implement those rules. Any | |
852 | * previous rules are discarded. Typically this method is called exactly | |
853 | * once, during construction. | |
854 | * @exception IllegalArgumentException if there is a syntax error in the | |
855 | * rules | |
856 | */ | |
857 | void TransliteratorParser::parseRules(const UnicodeString& rule, | |
858 | UTransDirection theDirection) { | |
859 | // Clear error struct | |
860 | parseError.line = parseError.offset = -1; | |
861 | parseError.preContext[0] = parseError.postContext[0] = (UChar)0; | |
862 | status = U_ZERO_ERROR; | |
863 | ||
864 | delete data; | |
865 | data = new TransliterationRuleData(status); | |
866 | if (U_FAILURE(status)) { | |
867 | return; | |
868 | } | |
869 | ||
870 | direction = theDirection; | |
871 | ruleCount = 0; | |
872 | ||
873 | delete compoundFilter; | |
874 | compoundFilter = NULL; | |
875 | ||
876 | if (variablesVector == NULL) { | |
877 | variablesVector = new UVector(status); | |
878 | } else { | |
879 | variablesVector->removeAllElements(); | |
880 | } | |
881 | parseData = new ParseData(0, variablesVector); | |
882 | if (parseData == NULL) { | |
883 | status = U_MEMORY_ALLOCATION_ERROR; | |
884 | return; | |
885 | } | |
886 | parseData->data = data; | |
887 | ||
888 | // By default, rules use part of the private use area | |
889 | // E000..F8FF for variables and other stand-ins. Currently | |
890 | // the range F000..F8FF is typically sufficient. The 'use | |
891 | // variable range' pragma allows rule sets to modify this. | |
892 | setVariableRange(0xF000, 0xF8FF); | |
893 | ||
894 | dotStandIn = (UChar) -1; | |
895 | ||
896 | UnicodeString str; // scratch | |
897 | idBlock.truncate(0); | |
898 | idSplitPoint = -1; | |
899 | int32_t pos = 0; | |
900 | int32_t limit = rule.length(); | |
901 | // The mode marks whether we are in the header ::id block, the | |
902 | // rule block, or the footer ::id block. | |
903 | // mode == 0: start: rule->1, ::id->0 | |
904 | // mode == 1: in rules: rule->1, ::id->2 | |
905 | // mode == 2: in footer rule block: rule->ERROR, ::id->2 | |
906 | int32_t mode = 0; | |
907 | ||
908 | // The compound filter offset is an index into idBlockResult. | |
909 | // If it is 0, then the compound filter occurred at the start, | |
910 | // and it is the offset to the _start_ of the compound filter | |
911 | // pattern. Otherwise it is the offset to the _limit_ of the | |
912 | // compound filter pattern within idBlockResult. | |
913 | compoundFilter = NULL; | |
914 | int32_t compoundFilterOffset = -1; | |
915 | ||
916 | // The number of ::ID block entries we have parsed | |
917 | int32_t idBlockCount = 0; | |
918 | ||
919 | while (pos < limit && U_SUCCESS(status)) { | |
920 | UChar c = rule.charAt(pos++); | |
921 | if (uprv_isRuleWhiteSpace(c)) { | |
922 | // Ignore leading whitespace. | |
923 | continue; | |
924 | } | |
925 | // Skip lines starting with the comment character | |
926 | if (c == RULE_COMMENT_CHAR) { | |
927 | pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; | |
928 | if (pos == 0) { | |
929 | break; // No "\n" found; rest of rule is a commnet | |
930 | } | |
931 | continue; // Either fall out or restart with next line | |
932 | } | |
933 | // We've found the start of a rule or ID. c is its first | |
934 | // character, and pos points past c. | |
935 | --pos; | |
936 | // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 | |
937 | // chars left. | |
938 | if ((pos + ID_TOKEN_LEN + 1) <= limit && | |
939 | rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { | |
940 | pos += ID_TOKEN_LEN; | |
941 | c = rule.charAt(pos); | |
942 | while (uprv_isRuleWhiteSpace(c) && pos < limit) { | |
943 | ++pos; | |
944 | c = rule.charAt(pos); | |
945 | } | |
946 | ||
947 | if (mode == 1) { | |
948 | // We have just entered the footer ::ID block | |
949 | mode = 2; | |
950 | // In the forward direction add elements at the end. | |
951 | // In the reverse direction add elements at the start. | |
952 | idSplitPoint = idBlockCount; | |
953 | } | |
954 | int32_t p = pos; | |
955 | ||
956 | TransliteratorIDParser::SingleID* id = | |
374ca955 | 957 | TransliteratorIDParser::parseSingleID(rule, p, direction, status); |
b75a7d8f A |
958 | if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { |
959 | // Successful ::ID parse. | |
960 | ||
961 | if (direction == UTRANS_FORWARD) { | |
962 | idBlock.append(id->canonID).append(END_OF_RULE); | |
963 | } else { | |
964 | idBlock.insert(0, END_OF_RULE); | |
965 | idBlock.insert(0, id->canonID); | |
966 | } | |
967 | ||
968 | ++idBlockCount; | |
969 | ||
970 | } else { | |
971 | // Couldn't parse an ID. Try to parse a global filter | |
972 | int32_t withParens = -1; | |
973 | UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, &idBlock); | |
974 | if (f != NULL) { | |
975 | if (ICU_Utility::parseChar(rule, p, END_OF_RULE) | |
976 | && (direction == UTRANS_FORWARD) == (withParens == 0)) | |
977 | { | |
978 | if (compoundFilter != NULL) { | |
979 | // Multiple compound filters | |
980 | syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos); | |
981 | delete f; | |
982 | } else { | |
983 | compoundFilter = f; | |
984 | compoundFilterOffset = idBlockCount; | |
985 | } | |
986 | } else { | |
987 | delete f; | |
988 | } | |
989 | } else { | |
990 | // Invalid ::id | |
991 | // Can be parsed as neither an ID nor a global filter | |
992 | syntaxError(U_INVALID_ID, rule, pos); | |
993 | } | |
994 | } | |
995 | delete id; | |
996 | ||
997 | pos = p; | |
998 | } else if (resemblesPragma(rule, pos, limit)) { | |
999 | int32_t ppp = parsePragma(rule, pos, limit); | |
1000 | if (ppp < 0) { | |
1001 | syntaxError(U_MALFORMED_PRAGMA, rule, pos); | |
1002 | } | |
1003 | pos = ppp; | |
1004 | } else { | |
1005 | // Parse a rule | |
1006 | pos = parseRule(rule, pos, limit); | |
1007 | if (U_SUCCESS(status)) { | |
1008 | ++ruleCount; | |
1009 | if (mode == 2) { | |
1010 | // ::id in illegal position (because a rule | |
1011 | // occurred after the ::id footer block) | |
1012 | syntaxError(U_ILLEGAL_ARGUMENT_ERROR,rule,pos); | |
1013 | } | |
1014 | }else{ | |
1015 | syntaxError(status,rule,pos); | |
1016 | } | |
1017 | mode = 1; | |
1018 | } | |
1019 | } | |
1020 | ||
1021 | if (idSplitPoint < 0) { | |
1022 | idSplitPoint = idBlockCount; | |
1023 | } | |
1024 | ||
1025 | if (direction == UTRANS_REVERSE) { | |
1026 | idSplitPoint = idBlockCount - idSplitPoint; | |
1027 | } | |
1028 | ||
1029 | // Convert the set vector to an array | |
1030 | data->variablesLength = variablesVector->size(); | |
1031 | if(data->variablesLength == 0) { | |
1032 | data->variables = 0; | |
1033 | } else { | |
1034 | data->variables = (UnicodeFunctor **)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor *)); | |
1035 | } | |
1036 | ||
1037 | // orphanElement removes the given element and shifts all other | |
1038 | // elements down. For performance (and code clarity) we work from | |
1039 | // the end back to index 0. | |
1040 | int32_t i; | |
1041 | for (i=data->variablesLength; i>0; ) { | |
1042 | --i; | |
1043 | data->variables[i] = | |
1044 | (UnicodeSet*) variablesVector->orphanElementAt(i); | |
1045 | } | |
1046 | ||
1047 | // Index the rules | |
1048 | if (U_SUCCESS(status)) { | |
1049 | if (compoundFilter != NULL) { | |
1050 | if ((direction == UTRANS_FORWARD && | |
1051 | compoundFilterOffset != 0) || | |
1052 | (direction == UTRANS_REVERSE && | |
1053 | compoundFilterOffset != idBlockCount)) { | |
1054 | status = U_MISPLACED_COMPOUND_FILTER; | |
1055 | } | |
1056 | } | |
1057 | ||
1058 | data->ruleSet.freeze(parseError,status); | |
1059 | ||
1060 | if (idSplitPoint < 0) { | |
1061 | idSplitPoint = idBlock.length(); | |
1062 | } | |
1063 | ||
1064 | if (ruleCount == 0) { | |
1065 | delete data; | |
1066 | data = NULL; | |
1067 | } | |
1068 | } | |
1069 | } | |
1070 | ||
1071 | /** | |
1072 | * Set the variable range to [start, end] (inclusive). | |
1073 | */ | |
1074 | void TransliteratorParser::setVariableRange(int32_t start, int32_t end) { | |
1075 | if (start > end || start < 0 || end > 0xFFFF) { | |
1076 | status = U_MALFORMED_PRAGMA; | |
1077 | return; | |
1078 | } | |
1079 | ||
1080 | data->variablesBase = variableNext = (UChar) start; // first private use | |
1081 | variableLimit = (UChar) (end + 1); | |
1082 | } | |
1083 | ||
1084 | /** | |
1085 | * Assert that the given character is NOT within the variable range. | |
1086 | * If it is, return FALSE. This is neccesary to ensure that the | |
1087 | * variable range does not overlap characters used in a rule. | |
1088 | */ | |
1089 | UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { | |
1090 | return !(ch >= data->variablesBase && ch < variableLimit); | |
1091 | } | |
1092 | ||
1093 | /** | |
1094 | * Set the maximum backup to 'backup', in response to a pragma | |
1095 | * statement. | |
1096 | */ | |
374ca955 | 1097 | void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { |
b75a7d8f A |
1098 | //TODO Finish |
1099 | } | |
1100 | ||
1101 | /** | |
1102 | * Begin normalizing all rules using the given mode, in response | |
1103 | * to a pragma statement. | |
1104 | */ | |
374ca955 | 1105 | void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { |
b75a7d8f A |
1106 | //TODO Finish |
1107 | } | |
1108 | ||
1109 | static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " | |
1110 | ||
1111 | static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" | |
1112 | ||
1113 | static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" | |
1114 | ||
1115 | static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" | |
1116 | ||
1117 | static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" | |
1118 | ||
1119 | /** | |
1120 | * Return true if the given rule looks like a pragma. | |
1121 | * @param pos offset to the first non-whitespace character | |
1122 | * of the rule. | |
1123 | * @param limit pointer past the last character of the rule. | |
1124 | */ | |
1125 | UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { | |
1126 | // Must start with /use\s/i | |
1127 | return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0; | |
1128 | } | |
1129 | ||
1130 | /** | |
1131 | * Parse a pragma. This method assumes resemblesPragma() has | |
1132 | * already returned true. | |
1133 | * @param pos offset to the first non-whitespace character | |
1134 | * of the rule. | |
1135 | * @param limit pointer past the last character of the rule. | |
1136 | * @return the position index after the final ';' of the pragma, | |
1137 | * or -1 on failure. | |
1138 | */ | |
1139 | int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit) { | |
1140 | int32_t array[2]; | |
1141 | ||
1142 | // resemblesPragma() has already returned true, so we | |
1143 | // know that pos points to /use\s/i; we can skip 4 characters | |
1144 | // immediately | |
1145 | pos += 4; | |
1146 | ||
1147 | // Here are the pragmas we recognize: | |
1148 | // use variable range 0xE000 0xEFFF; | |
1149 | // use maximum backup 16; | |
1150 | // use nfd rules; | |
1151 | // use nfc rules; | |
1152 | int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, array); | |
1153 | if (p >= 0) { | |
1154 | setVariableRange(array[0], array[1]); | |
1155 | return p; | |
1156 | } | |
1157 | ||
1158 | p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array); | |
1159 | if (p >= 0) { | |
1160 | pragmaMaximumBackup(array[0]); | |
1161 | return p; | |
1162 | } | |
1163 | ||
1164 | p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL); | |
1165 | if (p >= 0) { | |
1166 | pragmaNormalizeRules(UNORM_NFD); | |
1167 | return p; | |
1168 | } | |
1169 | ||
1170 | p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL); | |
1171 | if (p >= 0) { | |
1172 | pragmaNormalizeRules(UNORM_NFC); | |
1173 | return p; | |
1174 | } | |
1175 | ||
1176 | // Syntax error: unable to parse pragma | |
1177 | return -1; | |
1178 | } | |
1179 | ||
1180 | /** | |
1181 | * MAIN PARSER. Parse the next rule in the given rule string, starting | |
1182 | * at pos. Return the index after the last character parsed. Do not | |
1183 | * parse characters at or after limit. | |
1184 | * | |
1185 | * Important: The character at pos must be a non-whitespace character | |
1186 | * that is not the comment character. | |
1187 | * | |
1188 | * This method handles quoting, escaping, and whitespace removal. It | |
1189 | * parses the end-of-rule character. It recognizes context and cursor | |
1190 | * indicators. Once it does a lexical breakdown of the rule at pos, it | |
1191 | * creates a rule object and adds it to our rule list. | |
1192 | */ | |
1193 | int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit) { | |
1194 | // Locate the left side, operator, and right side | |
1195 | int32_t start = pos; | |
1196 | UChar op = 0; | |
1197 | int32_t i; | |
1198 | ||
1199 | // Set up segments data | |
1200 | segmentStandins.truncate(0); | |
1201 | if (segmentObjects == NULL) { | |
1202 | segmentObjects = new UVector(status); | |
1203 | } else { | |
1204 | segmentObjects->removeAllElements(); | |
1205 | } | |
1206 | ||
1207 | // Use pointers to automatics to make swapping possible. | |
1208 | RuleHalf _left(*this), _right(*this); | |
1209 | RuleHalf* left = &_left; | |
1210 | RuleHalf* right = &_right; | |
1211 | ||
1212 | undefinedVariableName.remove(); | |
1213 | pos = left->parse(rule, pos, limit); | |
1214 | if (U_FAILURE(status)) { | |
1215 | return start; | |
1216 | } | |
1217 | ||
1218 | if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { | |
1219 | return syntaxError(U_MISSING_OPERATOR, rule, start); | |
1220 | } | |
1221 | ++pos; | |
1222 | ||
1223 | // Found an operator char. Check for forward-reverse operator. | |
1224 | if (op == REVERSE_RULE_OP && | |
1225 | (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { | |
1226 | ++pos; | |
1227 | op = FWDREV_RULE_OP; | |
1228 | } | |
1229 | ||
1230 | // Translate alternate op characters. | |
1231 | switch (op) { | |
1232 | case ALT_FORWARD_RULE_OP: | |
1233 | op = FORWARD_RULE_OP; | |
1234 | break; | |
1235 | case ALT_REVERSE_RULE_OP: | |
1236 | op = REVERSE_RULE_OP; | |
1237 | break; | |
1238 | case ALT_FWDREV_RULE_OP: | |
1239 | op = FWDREV_RULE_OP; | |
1240 | break; | |
1241 | } | |
1242 | ||
1243 | pos = right->parse(rule, pos, limit); | |
1244 | if (U_FAILURE(status)) { | |
1245 | return start; | |
1246 | } | |
1247 | ||
1248 | if (pos < limit) { | |
1249 | if (rule.charAt(--pos) == END_OF_RULE) { | |
1250 | ++pos; | |
1251 | } else { | |
1252 | // RuleHalf parser must have terminated at an operator | |
1253 | return syntaxError(U_UNQUOTED_SPECIAL, rule, start); | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | if (op == VARIABLE_DEF_OP) { | |
1258 | // LHS is the name. RHS is a single character, either a literal | |
1259 | // or a set (already parsed). If RHS is longer than one | |
1260 | // character, it is either a multi-character string, or multiple | |
1261 | // sets, or a mixture of chars and sets -- syntax error. | |
1262 | ||
1263 | // We expect to see a single undefined variable (the one being | |
1264 | // defined). | |
1265 | if (undefinedVariableName.length() == 0) { | |
1266 | // "Missing '$' or duplicate definition" | |
1267 | return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start); | |
1268 | } | |
1269 | if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { | |
1270 | // "Malformed LHS" | |
1271 | return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start); | |
1272 | } | |
1273 | if (left->anchorStart || left->anchorEnd || | |
1274 | right->anchorStart || right->anchorEnd) { | |
1275 | return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start); | |
1276 | } | |
1277 | // We allow anything on the right, including an empty string. | |
1278 | UnicodeString* value = new UnicodeString(right->text); | |
1279 | data->variableNames->put(undefinedVariableName, value, status); | |
1280 | ++variableLimit; | |
1281 | return pos; | |
1282 | } | |
1283 | ||
1284 | // If this is not a variable definition rule, we shouldn't have | |
1285 | // any undefined variable names. | |
1286 | if (undefinedVariableName.length() != 0) { | |
1287 | return syntaxError(// "Undefined variable $" + undefinedVariableName, | |
1288 | U_UNDEFINED_VARIABLE, | |
1289 | rule, start); | |
1290 | } | |
1291 | ||
1292 | // Verify segments | |
1293 | if (segmentStandins.length() > segmentObjects->size()) { | |
1294 | syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start); | |
1295 | } | |
1296 | for (i=0; i<segmentStandins.length(); ++i) { | |
1297 | if (segmentStandins.charAt(i) == 0) { | |
1298 | syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start); // will never happen | |
1299 | } | |
1300 | } | |
1301 | for (i=0; i<segmentObjects->size(); ++i) { | |
1302 | if (segmentObjects->elementAt(i) == NULL) { | |
1303 | syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start); // will never happen | |
1304 | } | |
1305 | } | |
1306 | ||
1307 | // If the direction we want doesn't match the rule | |
1308 | // direction, do nothing. | |
1309 | if (op != FWDREV_RULE_OP && | |
1310 | ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { | |
1311 | return pos; | |
1312 | } | |
1313 | ||
1314 | // Transform the rule into a forward rule by swapping the | |
1315 | // sides if necessary. | |
1316 | if (direction == UTRANS_REVERSE) { | |
1317 | left = &_right; | |
1318 | right = &_left; | |
1319 | } | |
1320 | ||
1321 | // Remove non-applicable elements in forward-reverse | |
1322 | // rules. Bidirectional rules ignore elements that do not | |
1323 | // apply. | |
1324 | if (op == FWDREV_RULE_OP) { | |
1325 | right->removeContext(); | |
1326 | left->cursor = -1; | |
1327 | left->cursorOffset = 0; | |
1328 | } | |
1329 | ||
1330 | // Normalize context | |
1331 | if (left->ante < 0) { | |
1332 | left->ante = 0; | |
1333 | } | |
1334 | if (left->post < 0) { | |
1335 | left->post = left->text.length(); | |
1336 | } | |
1337 | ||
1338 | // Context is only allowed on the input side. Cursors are only | |
1339 | // allowed on the output side. Segment delimiters can only appear | |
1340 | // on the left, and references on the right. Cursor offset | |
1341 | // cannot appear without an explicit cursor. Cursor offset | |
1342 | // cannot place the cursor outside the limits of the context. | |
1343 | // Anchors are only allowed on the input side. | |
1344 | if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || | |
1345 | (right->cursorOffset != 0 && right->cursor < 0) || | |
1346 | // - The following two checks were used to ensure that the | |
1347 | // - the cursor offset stayed within the ante- or postcontext. | |
1348 | // - However, with the addition of quantifiers, we have to | |
1349 | // - allow arbitrary cursor offsets and do runtime checking. | |
1350 | //(right->cursorOffset > (left->text.length() - left->post)) || | |
1351 | //(-right->cursorOffset > left->ante) || | |
1352 | right->anchorStart || right->anchorEnd || | |
1353 | !left->isValidInput(*this) || !right->isValidOutput(*this) || | |
1354 | left->ante > left->post) { | |
1355 | ||
1356 | return syntaxError(U_MALFORMED_RULE, rule, start); | |
1357 | } | |
1358 | ||
1359 | // Flatten segment objects vector to an array | |
1360 | UnicodeFunctor** segmentsArray = NULL; | |
1361 | if (segmentObjects->size() > 0) { | |
1362 | segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects->size() * sizeof(UnicodeFunctor *)); | |
1363 | segmentObjects->toArray((void**) segmentsArray); | |
1364 | } | |
1365 | ||
1366 | data->ruleSet.addRule(new TransliterationRule( | |
1367 | left->text, left->ante, left->post, | |
1368 | right->text, right->cursor, right->cursorOffset, | |
1369 | segmentsArray, | |
1370 | segmentObjects->size(), | |
1371 | left->anchorStart, left->anchorEnd, | |
1372 | data, | |
1373 | status), status); | |
1374 | ||
1375 | return pos; | |
1376 | } | |
1377 | ||
1378 | /** | |
1379 | * Called by main parser upon syntax error. Search the rule string | |
1380 | * for the probable end of the rule. Of course, if the error is that | |
1381 | * the end of rule marker is missing, then the rule end will not be found. | |
1382 | * In any case the rule start will be correctly reported. | |
1383 | * @param msg error description | |
1384 | * @param rule pattern string | |
1385 | * @param start position of first character of current rule | |
1386 | */ | |
1387 | int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, | |
1388 | const UnicodeString& rule, | |
1389 | int32_t pos) { | |
1390 | parseError.offset = pos; | |
1391 | parseError.line = 0 ; /* we are not using line numbers */ | |
1392 | ||
1393 | // for pre-context | |
1394 | const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; | |
1395 | int32_t start = uprv_max(pos - LEN, 0); | |
1396 | int32_t stop = pos; | |
1397 | ||
1398 | rule.extract(start,stop-start,parseError.preContext); | |
1399 | //null terminate the buffer | |
1400 | parseError.preContext[stop-start] = 0; | |
1401 | ||
1402 | //for post-context | |
1403 | start = pos; | |
1404 | stop = uprv_min(pos + LEN, rule.length()); | |
1405 | ||
1406 | rule.extract(start,stop-start,parseError.postContext); | |
1407 | //null terminate the buffer | |
1408 | parseError.postContext[stop-start]= 0; | |
1409 | ||
1410 | status = (UErrorCode)parseErrorCode; | |
1411 | return pos; | |
1412 | ||
1413 | } | |
1414 | ||
1415 | /** | |
1416 | * Parse a UnicodeSet out, store it, and return the stand-in character | |
1417 | * used to represent it. | |
1418 | */ | |
1419 | UChar TransliteratorParser::parseSet(const UnicodeString& rule, | |
1420 | ParsePosition& pos) { | |
374ca955 | 1421 | UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); |
b75a7d8f A |
1422 | set->compact(); |
1423 | return generateStandInFor(set); | |
1424 | } | |
1425 | ||
1426 | /** | |
1427 | * Generate and return a stand-in for a new UnicodeFunctor. Store | |
1428 | * the matcher (adopt it). | |
1429 | */ | |
1430 | UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted) { | |
1431 | // assert(obj != null); | |
1432 | ||
1433 | // Look up previous stand-in, if any. This is a short list | |
1434 | // (typical n is 0, 1, or 2); linear search is optimal. | |
1435 | for (int32_t i=0; i<variablesVector->size(); ++i) { | |
1436 | if (variablesVector->elementAt(i) == adopted) { // [sic] pointer comparison | |
1437 | return (UChar) (data->variablesBase + i); | |
1438 | } | |
1439 | } | |
1440 | ||
1441 | if (variableNext >= variableLimit) { | |
1442 | delete adopted; | |
1443 | status = U_VARIABLE_RANGE_EXHAUSTED; | |
1444 | return 0; | |
1445 | } | |
1446 | variablesVector->addElement(adopted, status); | |
1447 | return variableNext++; | |
1448 | } | |
1449 | ||
1450 | /** | |
1451 | * Return the standin for segment seg (1-based). | |
1452 | */ | |
1453 | UChar TransliteratorParser::getSegmentStandin(int32_t seg) { | |
1454 | // Special character used to indicate an empty spot | |
1455 | UChar empty = data->variablesBase - 1; | |
1456 | while (segmentStandins.length() < seg) { | |
1457 | segmentStandins.append(empty); | |
1458 | } | |
1459 | UChar c = segmentStandins.charAt(seg-1); | |
1460 | if (c == empty) { | |
1461 | if (variableNext >= variableLimit) { | |
1462 | status = U_VARIABLE_RANGE_EXHAUSTED; | |
1463 | return 0; | |
1464 | } | |
1465 | c = variableNext++; | |
1466 | // Set a placeholder in the master variables vector that will be | |
1467 | // filled in later by setSegmentObject(). We know that we will get | |
1468 | // called first because setSegmentObject() will call us. | |
1469 | variablesVector->addElement((void*) NULL, status); | |
1470 | segmentStandins.setCharAt(seg-1, c); | |
1471 | } | |
1472 | return c; | |
1473 | } | |
1474 | ||
1475 | /** | |
1476 | * Set the object for segment seg (1-based). | |
1477 | */ | |
1478 | void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted) { | |
1479 | // Since we call parseSection() recursively, nested | |
1480 | // segments will result in segment i+1 getting parsed | |
1481 | // and stored before segment i; be careful with the | |
1482 | // vector handling here. | |
1483 | if (segmentObjects->size() < seg) { | |
1484 | segmentObjects->setSize(seg); | |
1485 | } | |
1486 | int32_t index = getSegmentStandin(seg) - data->variablesBase; | |
1487 | if (segmentObjects->elementAt(seg-1) != NULL || | |
1488 | variablesVector->elementAt(index) != NULL) { | |
1489 | // should never happen | |
1490 | status = U_INTERNAL_TRANSLITERATOR_ERROR; | |
1491 | return; | |
1492 | } | |
1493 | segmentObjects->setElementAt(adopted, seg-1); | |
1494 | variablesVector->setElementAt(adopted, index); | |
1495 | } | |
1496 | ||
1497 | /** | |
1498 | * Return the stand-in for the dot set. It is allocated the first | |
1499 | * time and reused thereafter. | |
1500 | */ | |
1501 | UChar TransliteratorParser::getDotStandIn() { | |
1502 | if (dotStandIn == (UChar) -1) { | |
1503 | dotStandIn = generateStandInFor(new UnicodeSet(DOT_SET, status)); | |
1504 | } | |
1505 | return dotStandIn; | |
1506 | } | |
1507 | ||
1508 | /** | |
1509 | * Append the value of the given variable name to the given | |
1510 | * UnicodeString. | |
1511 | */ | |
1512 | void TransliteratorParser::appendVariableDef(const UnicodeString& name, | |
1513 | UnicodeString& buf) { | |
1514 | const UnicodeString* s = (const UnicodeString*) data->variableNames->get(name); | |
1515 | if (s == NULL) { | |
1516 | // We allow one undefined variable so that variable definition | |
1517 | // statements work. For the first undefined variable we return | |
1518 | // the special placeholder variableLimit-1, and save the variable | |
1519 | // name. | |
1520 | if (undefinedVariableName.length() == 0) { | |
1521 | undefinedVariableName = name; | |
1522 | if (variableNext >= variableLimit) { | |
1523 | // throw new RuntimeException("Private use variables exhausted"); | |
1524 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
1525 | return; | |
1526 | } | |
1527 | buf.append((UChar) --variableLimit); | |
1528 | } else { | |
1529 | //throw new IllegalArgumentException("Undefined variable $" | |
1530 | // + name); | |
1531 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
1532 | return; | |
1533 | } | |
1534 | } else { | |
1535 | buf.append(*s); | |
1536 | } | |
1537 | } | |
1538 | ||
1539 | /** | |
1540 | * Glue method to get around access restrictions in C++. | |
1541 | */ | |
1542 | Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { | |
1543 | return Transliterator::createBasicInstance(id, canonID); | |
1544 | } | |
1545 | ||
1546 | U_NAMESPACE_END | |
1547 | ||
1548 | #endif /* #if !UCONFIG_NO_TRANSLITERATION */ |