]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
374ca955 | 3 | * Copyright (C) 1997-2004, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ****************************************************************************** | |
6 | * file name: nfrule.cpp | |
7 | * encoding: US-ASCII | |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * Modification history | |
12 | * Date Name Comments | |
13 | * 10/11/2001 Doug Ported from ICU4J | |
14 | */ | |
15 | ||
16 | #include "nfrule.h" | |
17 | ||
18 | #if U_HAVE_RBNF | |
19 | ||
20 | #include "unicode/rbnf.h" | |
21 | #include "unicode/tblcoll.h" | |
22 | #include "unicode/coleitr.h" | |
23 | #include "unicode/uchar.h" | |
24 | #include "nfrs.h" | |
25 | #include "nfrlist.h" | |
26 | #include "nfsubs.h" | |
27 | ||
374ca955 | 28 | #include "util.h" |
b75a7d8f A |
29 | |
30 | U_NAMESPACE_BEGIN | |
31 | ||
32 | extern const UChar* CSleftBracket; | |
33 | extern const UChar* CSrightBracket; | |
34 | ||
35 | NFRule::NFRule(const RuleBasedNumberFormat* _rbnf) | |
36 | : baseValue((int32_t)0) | |
37 | , radix(0) | |
38 | , exponent(0) | |
39 | , ruleText() | |
40 | , sub1(NULL) | |
41 | , sub2(NULL) | |
42 | , formatter(_rbnf) | |
43 | { | |
44 | } | |
45 | ||
46 | NFRule::~NFRule() | |
47 | { | |
48 | delete sub1; | |
49 | delete sub2; | |
50 | } | |
51 | ||
52 | static const UChar gLeftBracket = 0x005b; | |
53 | static const UChar gRightBracket = 0x005d; | |
54 | static const UChar gColon = 0x003a; | |
55 | static const UChar gZero = 0x0030; | |
56 | static const UChar gNine = 0x0039; | |
57 | static const UChar gSpace = 0x0020; | |
58 | static const UChar gSlash = 0x002f; | |
59 | static const UChar gGreaterThan = 0x003e; | |
60 | static const UChar gComma = 0x002c; | |
61 | static const UChar gDot = 0x002e; | |
62 | static const UChar gTick = 0x0027; | |
63 | static const UChar gMinus = 0x002d; | |
64 | static const UChar gSemicolon = 0x003b; | |
65 | ||
66 | static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ | |
67 | static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */ | |
68 | static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */ | |
69 | static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */ | |
70 | ||
71 | static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ | |
72 | static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ | |
73 | static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ | |
74 | static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ | |
75 | static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ | |
76 | static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ | |
77 | static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ | |
78 | static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ | |
79 | static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ | |
80 | static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ | |
81 | static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ | |
82 | static const UChar gEmptyString[] = {0}; /* "" */ | |
83 | static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ | |
84 | ||
85 | static const UChar * const tokenStrings[] = { | |
86 | gLessLess, gLessPercent, gLessHash, gLessZero, | |
87 | gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, | |
88 | gEqualPercent, gEqualHash, gEqualZero, NULL | |
89 | }; | |
90 | ||
91 | void | |
92 | NFRule::makeRules(UnicodeString& description, | |
93 | const NFRuleSet *ruleSet, | |
94 | const NFRule *predecessor, | |
95 | const RuleBasedNumberFormat *rbnf, | |
96 | NFRuleList& rules, | |
97 | UErrorCode& status) | |
98 | { | |
99 | // we know we're making at least one rule, so go ahead and | |
100 | // new it up and initialize its basevalue and divisor | |
101 | // (this also strips the rule descriptor, if any, off the | |
102 | // descripton string) | |
103 | NFRule* rule1 = new NFRule(rbnf); | |
104 | /* test for NULL */ | |
105 | if (rule1 == 0) { | |
106 | status = U_MEMORY_ALLOCATION_ERROR; | |
107 | return; | |
108 | } | |
109 | rule1->parseRuleDescriptor(description, status); | |
110 | ||
111 | // check the description to see whether there's text enclosed | |
112 | // in brackets | |
113 | int32_t brack1 = description.indexOf(gLeftBracket); | |
114 | int32_t brack2 = description.indexOf(gRightBracket); | |
115 | ||
116 | // if the description doesn't contain a matched pair of brackets, | |
117 | // or if it's of a type that doesn't recognize bracketed text, | |
118 | // then leave the description alone, initialize the rule's | |
119 | // rule text and substitutions, and return that rule | |
120 | if (brack1 == -1 || brack2 == -1 || brack1 > brack2 | |
121 | || rule1->getType() == kProperFractionRule | |
122 | || rule1->getType() == kNegativeNumberRule) { | |
123 | rule1->ruleText = description; | |
124 | rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); | |
125 | rules.add(rule1); | |
126 | } else { | |
127 | // if the description does contain a matched pair of brackets, | |
128 | // then it's really shorthand for two rules (with one exception) | |
129 | NFRule* rule2 = NULL; | |
130 | UnicodeString sbuf; | |
131 | ||
132 | // we'll actually only split the rule into two rules if its | |
133 | // base value is an even multiple of its divisor (or it's one | |
134 | // of the special rules) | |
135 | if ((rule1->baseValue > 0 | |
136 | && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) | |
137 | || rule1->getType() == kImproperFractionRule | |
138 | || rule1->getType() == kMasterRule) { | |
139 | ||
140 | // if it passes that test, new up the second rule. If the | |
141 | // rule set both rules will belong to is a fraction rule | |
142 | // set, they both have the same base value; otherwise, | |
143 | // increment the original rule's base value ("rule1" actually | |
144 | // goes SECOND in the rule set's rule list) | |
145 | rule2 = new NFRule(rbnf); | |
146 | /* test for NULL */ | |
147 | if (rule2 == 0) { | |
148 | status = U_MEMORY_ALLOCATION_ERROR; | |
149 | return; | |
150 | } | |
151 | if (rule1->baseValue >= 0) { | |
152 | rule2->baseValue = rule1->baseValue; | |
153 | if (!ruleSet->isFractionRuleSet()) { | |
154 | ++rule1->baseValue; | |
155 | } | |
156 | } | |
157 | ||
158 | // if the description began with "x.x" and contains bracketed | |
159 | // text, it describes both the improper fraction rule and | |
160 | // the proper fraction rule | |
161 | else if (rule1->getType() == kImproperFractionRule) { | |
162 | rule2->setType(kProperFractionRule); | |
163 | } | |
164 | ||
165 | // if the description began with "x.0" and contains bracketed | |
166 | // text, it describes both the master rule and the | |
167 | // improper fraction rule | |
168 | else if (rule1->getType() == kMasterRule) { | |
169 | rule2->baseValue = rule1->baseValue; | |
170 | rule1->setType(kImproperFractionRule); | |
171 | } | |
172 | ||
173 | // both rules have the same radix and exponent (i.e., the | |
174 | // same divisor) | |
175 | rule2->radix = rule1->radix; | |
176 | rule2->exponent = rule1->exponent; | |
177 | ||
178 | // rule2's rule text omits the stuff in brackets: initalize | |
179 | // its rule text and substitutions accordingly | |
180 | sbuf.append(description, 0, brack1); | |
181 | if (brack2 + 1 < description.length()) { | |
182 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); | |
183 | } | |
184 | rule2->ruleText.setTo(sbuf); | |
185 | rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status); | |
186 | } | |
187 | ||
188 | // rule1's text includes the text in the brackets but omits | |
189 | // the brackets themselves: initialize _its_ rule text and | |
190 | // substitutions accordingly | |
191 | sbuf.setTo(description, 0, brack1); | |
192 | sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); | |
193 | if (brack2 + 1 < description.length()) { | |
194 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); | |
195 | } | |
196 | rule1->ruleText.setTo(sbuf); | |
197 | rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); | |
198 | ||
199 | // if we only have one rule, return it; if we have two, return | |
200 | // a two-element array containing them (notice that rule2 goes | |
201 | // BEFORE rule1 in the list: in all cases, rule2 OMITS the | |
202 | // material in the brackets and rule1 INCLUDES the material | |
203 | // in the brackets) | |
204 | if (rule2 != NULL) { | |
205 | rules.add(rule2); | |
206 | } | |
207 | rules.add(rule1); | |
208 | } | |
209 | } | |
210 | ||
211 | /** | |
212 | * This function parses the rule's rule descriptor (i.e., the base | |
213 | * value and/or other tokens that precede the rule's rule text | |
214 | * in the description) and sets the rule's base value, radix, and | |
215 | * exponent according to the descriptor. (If the description doesn't | |
216 | * include a rule descriptor, then this function sets everything to | |
217 | * default values and the rule set sets the rule's real base value). | |
218 | * @param description The rule's description | |
219 | * @return If "description" included a rule descriptor, this is | |
220 | * "description" with the descriptor and any trailing whitespace | |
221 | * stripped off. Otherwise; it's "descriptor" unchangd. | |
222 | */ | |
223 | void | |
224 | NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) | |
225 | { | |
226 | // the description consists of a rule descriptor and a rule body, | |
227 | // separated by a colon. The rule descriptor is optional. If | |
228 | // it's omitted, just set the base value to 0. | |
229 | int32_t p = description.indexOf(gColon); | |
230 | if (p == -1) { | |
374ca955 | 231 | setBaseValue((int32_t)0, status); |
b75a7d8f A |
232 | } else { |
233 | // copy the descriptor out into its own string and strip it, | |
234 | // along with any trailing whitespace, out of the original | |
235 | // description | |
236 | UnicodeString descriptor; | |
237 | descriptor.setTo(description, 0, p); | |
238 | ||
239 | ++p; | |
240 | while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) { | |
241 | ++p; | |
242 | } | |
243 | description.removeBetween(0, p); | |
244 | ||
245 | // check first to see if the rule descriptor matches the token | |
246 | // for one of the special rules. If it does, set the base | |
247 | // value to the correct identfier value | |
248 | if (descriptor == gMinusX) { | |
249 | setType(kNegativeNumberRule); | |
250 | } | |
251 | else if (descriptor == gXDotX) { | |
252 | setType(kImproperFractionRule); | |
253 | } | |
254 | else if (descriptor == gZeroDotX) { | |
255 | setType(kProperFractionRule); | |
256 | } | |
257 | else if (descriptor == gXDotZero) { | |
258 | setType(kMasterRule); | |
259 | } | |
260 | ||
261 | // if the rule descriptor begins with a digit, it's a descriptor | |
262 | // for a normal rule | |
263 | // since we don't have Long.parseLong, and this isn't much work anyway, | |
264 | // just build up the value as we encounter the digits. | |
265 | else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) { | |
266 | int64_t val = 0; | |
267 | p = 0; | |
268 | UChar c = gSpace; | |
269 | ||
270 | // begin parsing the descriptor: copy digits | |
271 | // into "tempValue", skip periods, commas, and spaces, | |
272 | // stop on a slash or > sign (or at the end of the string), | |
273 | // and throw an exception on any other character | |
274 | int64_t ll_10 = 10; | |
275 | while (p < descriptor.length()) { | |
276 | c = descriptor.charAt(p); | |
277 | if (c >= gZero && c <= gNine) { | |
278 | val = val * ll_10 + (int32_t)(c - gZero); | |
279 | } | |
280 | else if (c == gSlash || c == gGreaterThan) { | |
281 | break; | |
282 | } | |
283 | else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) { | |
284 | } | |
285 | else { | |
286 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); | |
287 | status = U_PARSE_ERROR; | |
288 | return; | |
289 | } | |
290 | ++p; | |
291 | } | |
292 | ||
293 | // we have the base value, so set it | |
374ca955 | 294 | setBaseValue(val, status); |
b75a7d8f A |
295 | |
296 | // if we stopped the previous loop on a slash, we're | |
297 | // now parsing the rule's radix. Again, accumulate digits | |
298 | // in tempValue, skip punctuation, stop on a > mark, and | |
299 | // throw an exception on anything else | |
300 | if (c == gSlash) { | |
301 | val = 0; | |
302 | ++p; | |
303 | int64_t ll_10 = 10; | |
304 | while (p < descriptor.length()) { | |
305 | c = descriptor.charAt(p); | |
306 | if (c >= gZero && c <= gNine) { | |
307 | val = val * ll_10 + (int32_t)(c - gZero); | |
308 | } | |
309 | else if (c == gGreaterThan) { | |
310 | break; | |
311 | } | |
312 | else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) { | |
313 | } | |
314 | else { | |
315 | // throw new IllegalArgumentException("Illegal character is rule descriptor"); | |
316 | status = U_PARSE_ERROR; | |
317 | return; | |
318 | } | |
319 | ++p; | |
320 | } | |
321 | ||
322 | // tempValue now contain's the rule's radix. Set it | |
323 | // accordingly, and recalculate the rule's exponent | |
374ca955 | 324 | radix = (int32_t)val; |
b75a7d8f A |
325 | if (radix == 0) { |
326 | // throw new IllegalArgumentException("Rule can't have radix of 0"); | |
327 | status = U_PARSE_ERROR; | |
328 | } | |
329 | ||
330 | exponent = expectedExponent(); | |
331 | } | |
332 | ||
333 | // if we stopped the previous loop on a > sign, then continue | |
334 | // for as long as we still see > signs. For each one, | |
335 | // decrement the exponent (unless the exponent is already 0). | |
336 | // If we see another character before reaching the end of | |
337 | // the descriptor, that's also a syntax error. | |
338 | if (c == gGreaterThan) { | |
339 | while (p < descriptor.length()) { | |
340 | c = descriptor.charAt(p); | |
341 | if (c == gGreaterThan && exponent > 0) { | |
342 | --exponent; | |
343 | } else { | |
344 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); | |
345 | status = U_PARSE_ERROR; | |
346 | return; | |
347 | } | |
348 | ++p; | |
349 | } | |
350 | } | |
351 | } | |
352 | } | |
353 | ||
354 | // finally, if the rule body begins with an apostrophe, strip it off | |
355 | // (this is generally used to put whitespace at the beginning of | |
356 | // a rule's rule text) | |
357 | if (description.length() > 0 && description.charAt(0) == gTick) { | |
358 | description.removeBetween(0, 1); | |
359 | } | |
360 | ||
361 | // return the description with all the stuff we've just waded through | |
362 | // stripped off the front. It now contains just the rule body. | |
363 | // return description; | |
364 | } | |
365 | ||
366 | /** | |
367 | * Searches the rule's rule text for the substitution tokens, | |
368 | * creates the substitutions, and removes the substitution tokens | |
369 | * from the rule's rule text. | |
370 | * @param owner The rule set containing this rule | |
371 | * @param predecessor The rule preseding this one in "owners" rule list | |
372 | * @param ownersOwner The RuleBasedFormat that owns this rule | |
373 | */ | |
374 | void | |
375 | NFRule::extractSubstitutions(const NFRuleSet* ruleSet, | |
376 | const NFRule* predecessor, | |
377 | const RuleBasedNumberFormat* rbnf, | |
378 | UErrorCode& status) | |
379 | { | |
380 | if (U_SUCCESS(status)) { | |
381 | sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status); | |
382 | sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status); | |
383 | } | |
384 | } | |
385 | ||
386 | /** | |
387 | * Searches the rule's rule text for the first substitution token, | |
388 | * creates a substitution based on it, and removes the token from | |
389 | * the rule's rule text. | |
390 | * @param owner The rule set containing this rule | |
391 | * @param predecessor The rule preceding this one in the rule set's | |
392 | * rule list | |
393 | * @param ownersOwner The RuleBasedNumberFormat that owns this rule | |
394 | * @return The newly-created substitution. This is never null; if | |
395 | * the rule text doesn't contain any substitution tokens, this will | |
396 | * be a NullSubstitution. | |
397 | */ | |
398 | NFSubstitution * | |
399 | NFRule::extractSubstitution(const NFRuleSet* ruleSet, | |
400 | const NFRule* predecessor, | |
401 | const RuleBasedNumberFormat* rbnf, | |
402 | UErrorCode& status) | |
403 | { | |
404 | NFSubstitution* result = NULL; | |
405 | ||
406 | // search the rule's rule text for the first two characters of | |
407 | // a substitution token | |
408 | int32_t subStart = indexOfAny(tokenStrings); | |
409 | int32_t subEnd = subStart; | |
410 | ||
411 | // if we didn't find one, create a null substitution positioned | |
412 | // at the end of the rule text | |
413 | if (subStart == -1) { | |
414 | return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, | |
415 | ruleSet, rbnf, gEmptyString, status); | |
416 | } | |
417 | ||
418 | // special-case the ">>>" token, since searching for the > at the | |
419 | // end will actually find the > in the middle | |
420 | if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) { | |
421 | subEnd = subStart + 2; | |
422 | ||
423 | // otherwise the substitution token ends with the same character | |
424 | // it began with | |
425 | } else { | |
426 | subEnd = ruleText.indexOf(ruleText.charAt(subStart), subStart + 1); | |
427 | } | |
428 | ||
429 | // if we don't find the end of the token (i.e., if we're on a single, | |
430 | // unmatched token character), create a null substitution positioned | |
431 | // at the end of the rule | |
432 | if (subEnd == -1) { | |
433 | return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, | |
434 | ruleSet, rbnf, gEmptyString, status); | |
435 | } | |
436 | ||
437 | // if we get here, we have a real substitution token (or at least | |
438 | // some text bounded by substitution token characters). Use | |
439 | // makeSubstitution() to create the right kind of substitution | |
440 | UnicodeString subToken; | |
441 | subToken.setTo(ruleText, subStart, subEnd + 1 - subStart); | |
442 | result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, | |
443 | rbnf, subToken, status); | |
444 | ||
445 | // remove the substitution from the rule text | |
446 | ruleText.removeBetween(subStart, subEnd+1); | |
447 | ||
448 | return result; | |
449 | } | |
450 | ||
451 | /** | |
452 | * Sets the rule's base value, and causes the radix and exponent | |
453 | * to be recalculated. This is used during construction when we | |
454 | * don't know the rule's base value until after it's been | |
455 | * constructed. It should be used at any other time. | |
456 | * @param The new base value for the rule. | |
457 | */ | |
458 | void | |
374ca955 | 459 | NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) |
b75a7d8f A |
460 | { |
461 | // set the base value | |
462 | baseValue = newBaseValue; | |
463 | ||
464 | // if this isn't a special rule, recalculate the radix and exponent | |
465 | // (the radix always defaults to 10; if it's supposed to be something | |
466 | // else, it's cleaned up by the caller and the exponent is | |
467 | // recalculated again-- the only function that does this is | |
468 | // NFRule.parseRuleDescriptor() ) | |
469 | if (baseValue >= 1) { | |
470 | radix = 10; | |
471 | exponent = expectedExponent(); | |
472 | ||
473 | // this function gets called on a fully-constructed rule whose | |
474 | // description didn't specify a base value. This means it | |
475 | // has substitutions, and some substitutions hold on to copies | |
476 | // of the rule's divisor. Fix their copies of the divisor. | |
477 | if (sub1 != NULL) { | |
374ca955 | 478 | sub1->setDivisor(radix, exponent, status); |
b75a7d8f A |
479 | } |
480 | if (sub2 != NULL) { | |
374ca955 | 481 | sub2->setDivisor(radix, exponent, status); |
b75a7d8f A |
482 | } |
483 | ||
484 | // if this is a special rule, its radix and exponent are basically | |
485 | // ignored. Set them to "safe" default values | |
486 | } else { | |
487 | radix = 10; | |
488 | exponent = 0; | |
489 | } | |
490 | } | |
491 | ||
492 | /** | |
493 | * This calculates the rule's exponent based on its radix and base | |
494 | * value. This will be the highest power the radix can be raised to | |
495 | * and still produce a result less than or equal to the base value. | |
496 | */ | |
497 | int16_t | |
498 | NFRule::expectedExponent() const | |
499 | { | |
500 | // since the log of 0, or the log base 0 of something, causes an | |
501 | // error, declare the exponent in these cases to be 0 (we also | |
502 | // deal with the special-rule identifiers here) | |
503 | if (radix == 0 || baseValue < 1) { | |
504 | return 0; | |
505 | } | |
506 | ||
507 | // we get rounding error in some cases-- for example, log 1000 / log 10 | |
508 | // gives us 1.9999999996 instead of 2. The extra logic here is to take | |
509 | // that into account | |
510 | int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); | |
511 | int64_t temp = util64_pow(radix, tempResult + 1); | |
512 | if (temp <= baseValue) { | |
513 | tempResult += 1; | |
514 | } | |
515 | return tempResult; | |
516 | } | |
517 | ||
518 | /** | |
519 | * Searches the rule's rule text for any of the specified strings. | |
520 | * @param strings An array of strings to search the rule's rule | |
521 | * text for | |
522 | * @return The index of the first match in the rule's rule text | |
523 | * (i.e., the first substring in the rule's rule text that matches | |
524 | * _any_ of the strings in "strings"). If none of the strings in | |
525 | * "strings" is found in the rule's rule text, returns -1. | |
526 | */ | |
527 | int32_t | |
528 | NFRule::indexOfAny(const UChar* const strings[]) const | |
529 | { | |
530 | int result = -1; | |
531 | for (int i = 0; strings[i]; i++) { | |
532 | int32_t pos = ruleText.indexOf(*strings[i]); | |
533 | if (pos != -1 && (result == -1 || pos < result)) { | |
534 | result = pos; | |
535 | } | |
536 | } | |
537 | return result; | |
538 | } | |
539 | ||
540 | //----------------------------------------------------------------------- | |
541 | // boilerplate | |
542 | //----------------------------------------------------------------------- | |
543 | ||
544 | /** | |
545 | * Tests two rules for equality. | |
546 | * @param that The rule to compare this one against | |
547 | * @return True is the two rules are functionally equivalent | |
548 | */ | |
549 | UBool | |
550 | NFRule::operator==(const NFRule& rhs) const | |
551 | { | |
552 | return baseValue == rhs.baseValue | |
553 | && radix == rhs.radix | |
554 | && exponent == rhs.exponent | |
555 | && ruleText == rhs.ruleText | |
556 | && *sub1 == *rhs.sub1 | |
557 | && *sub2 == *rhs.sub2; | |
558 | } | |
559 | ||
560 | /** | |
561 | * Returns a textual representation of the rule. This won't | |
562 | * necessarily be the same as the description that this rule | |
563 | * was created with, but it will produce the same result. | |
564 | * @return A textual description of the rule | |
565 | */ | |
566 | static void util_append64(UnicodeString& result, int64_t n) | |
567 | { | |
568 | UChar buffer[256]; | |
569 | int32_t len = util64_tou(n, buffer, sizeof(buffer)); | |
570 | UnicodeString temp(buffer, len); | |
571 | result.append(temp); | |
572 | } | |
573 | ||
574 | void | |
575 | NFRule::appendRuleText(UnicodeString& result) const | |
576 | { | |
577 | switch (getType()) { | |
578 | case kNegativeNumberRule: result.append(gMinusX); break; | |
579 | case kImproperFractionRule: result.append(gXDotX); break; | |
580 | case kProperFractionRule: result.append(gZeroDotX); break; | |
581 | case kMasterRule: result.append(gXDotZero); break; | |
582 | default: | |
583 | // for a normal rule, write out its base value, and if the radix is | |
584 | // something other than 10, write out the radix (with the preceding | |
585 | // slash, of course). Then calculate the expected exponent and if | |
586 | // if isn't the same as the actual exponent, write an appropriate | |
587 | // number of > signs. Finally, terminate the whole thing with | |
588 | // a colon. | |
589 | util_append64(result, baseValue); | |
590 | if (radix != 10) { | |
591 | result.append(gSlash); | |
592 | util_append64(result, radix); | |
593 | } | |
594 | int numCarets = expectedExponent() - exponent; | |
595 | for (int i = 0; i < numCarets; i++) { | |
596 | result.append(gGreaterThan); | |
597 | } | |
598 | break; | |
599 | } | |
600 | result.append(gColon); | |
601 | result.append(gSpace); | |
602 | ||
603 | // if the rule text begins with a space, write an apostrophe | |
604 | // (whitespace after the rule descriptor is ignored; the | |
605 | // apostrophe is used to make the whitespace significant) | |
606 | if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) { | |
607 | result.append(gTick); | |
608 | } | |
609 | ||
610 | // now, write the rule's rule text, inserting appropriate | |
611 | // substitution tokens in the appropriate places | |
612 | UnicodeString ruleTextCopy; | |
613 | ruleTextCopy.setTo(ruleText); | |
614 | ||
615 | UnicodeString temp; | |
616 | sub2->toString(temp); | |
617 | ruleTextCopy.insert(sub2->getPos(), temp); | |
618 | sub1->toString(temp); | |
619 | ruleTextCopy.insert(sub1->getPos(), temp); | |
620 | ||
621 | result.append(ruleTextCopy); | |
622 | ||
623 | // and finally, top the whole thing off with a semicolon and | |
624 | // return the result | |
625 | result.append(gSemicolon); | |
626 | } | |
627 | ||
628 | //----------------------------------------------------------------------- | |
629 | // formatting | |
630 | //----------------------------------------------------------------------- | |
631 | ||
632 | /** | |
633 | * Formats the number, and inserts the resulting text into | |
634 | * toInsertInto. | |
635 | * @param number The number being formatted | |
636 | * @param toInsertInto The string where the resultant text should | |
637 | * be inserted | |
638 | * @param pos The position in toInsertInto where the resultant text | |
639 | * should be inserted | |
640 | */ | |
641 | void | |
642 | NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const | |
643 | { | |
644 | // first, insert the rule's rule text into toInsertInto at the | |
645 | // specified position, then insert the results of the substitutions | |
646 | // into the right places in toInsertInto (notice we do the | |
647 | // substitutions in reverse order so that the offsets don't get | |
648 | // messed up) | |
649 | toInsertInto.insert(pos, ruleText); | |
650 | sub2->doSubstitution(number, toInsertInto, pos); | |
651 | sub1->doSubstitution(number, toInsertInto, pos); | |
652 | } | |
653 | ||
654 | /** | |
655 | * Formats the number, and inserts the resulting text into | |
656 | * toInsertInto. | |
657 | * @param number The number being formatted | |
658 | * @param toInsertInto The string where the resultant text should | |
659 | * be inserted | |
660 | * @param pos The position in toInsertInto where the resultant text | |
661 | * should be inserted | |
662 | */ | |
663 | void | |
664 | NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const | |
665 | { | |
666 | // first, insert the rule's rule text into toInsertInto at the | |
667 | // specified position, then insert the results of the substitutions | |
668 | // into the right places in toInsertInto | |
669 | // [again, we have two copies of this routine that do the same thing | |
670 | // so that we don't sacrifice precision in a long by casting it | |
671 | // to a double] | |
672 | toInsertInto.insert(pos, ruleText); | |
673 | sub2->doSubstitution(number, toInsertInto, pos); | |
674 | sub1->doSubstitution(number, toInsertInto, pos); | |
675 | } | |
676 | ||
677 | /** | |
678 | * Used by the owning rule set to determine whether to invoke the | |
679 | * rollback rule (i.e., whether this rule or the one that precedes | |
680 | * it in the rule set's list should be used to format the number) | |
681 | * @param The number being formatted | |
682 | * @return True if the rule set should use the rule that precedes | |
683 | * this one in its list; false if it should use this rule | |
684 | */ | |
685 | UBool | |
686 | NFRule::shouldRollBack(double number) const | |
687 | { | |
688 | // we roll back if the rule contains a modulus substitution, | |
689 | // the number being formatted is an even multiple of the rule's | |
690 | // divisor, and the rule's base value is NOT an even multiple | |
691 | // of its divisor | |
692 | // In other words, if the original description had | |
693 | // 100: << hundred[ >>]; | |
694 | // that expands into | |
695 | // 100: << hundred; | |
696 | // 101: << hundred >>; | |
697 | // internally. But when we're formatting 200, if we use the rule | |
698 | // at 101, which would normally apply, we get "two hundred zero". | |
699 | // To prevent this, we roll back and use the rule at 100 instead. | |
700 | // This is the logic that makes this happen: the rule at 101 has | |
701 | // a modulus substitution, its base value isn't an even multiple | |
702 | // of 100, and the value we're trying to format _is_ an even | |
703 | // multiple of 100. This is called the "rollback rule." | |
704 | if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) { | |
705 | int64_t re = util64_pow(radix, exponent); | |
706 | return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0; | |
707 | } | |
708 | return FALSE; | |
709 | } | |
710 | ||
711 | //----------------------------------------------------------------------- | |
712 | // parsing | |
713 | //----------------------------------------------------------------------- | |
714 | ||
715 | /** | |
716 | * Attempts to parse the string with this rule. | |
717 | * @param text The string being parsed | |
718 | * @param parsePosition On entry, the value is ignored and assumed to | |
719 | * be 0. On exit, this has been updated with the position of the first | |
720 | * character not consumed by matching the text against this rule | |
721 | * (if this rule doesn't match the text at all, the parse position | |
722 | * if left unchanged (presumably at 0) and the function returns | |
723 | * new Long(0)). | |
724 | * @param isFractionRule True if this rule is contained within a | |
725 | * fraction rule set. This is only used if the rule has no | |
726 | * substitutions. | |
727 | * @return If this rule matched the text, this is the rule's base value | |
728 | * combined appropriately with the results of parsing the substitutions. | |
729 | * If nothing matched, this is new Long(0) and the parse position is | |
730 | * left unchanged. The result will be an instance of Long if the | |
731 | * result is an integer and Double otherwise. The result is never null. | |
732 | */ | |
733 | #ifdef RBNF_DEBUG | |
734 | #include <stdio.h> | |
735 | ||
736 | static void dumpUS(FILE* f, const UnicodeString& us) { | |
737 | int len = us.length(); | |
738 | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; | |
739 | us.extract(0, len, buf); | |
740 | buf[len] = 0; | |
741 | fprintf(f, "%s", buf); | |
742 | uprv_free(buf); //delete[] buf; | |
743 | } | |
744 | #endif | |
745 | ||
746 | UBool | |
747 | NFRule::doParse(const UnicodeString& text, | |
748 | ParsePosition& parsePosition, | |
749 | UBool isFractionRule, | |
750 | double upperBound, | |
751 | Formattable& resVal) const | |
752 | { | |
753 | // internally we operate on a copy of the string being parsed | |
754 | // (because we're going to change it) and use our own ParsePosition | |
755 | ParsePosition pp; | |
756 | UnicodeString workText(text); | |
757 | ||
758 | // check to see whether the text before the first substitution | |
759 | // matches the text at the beginning of the string being | |
760 | // parsed. If it does, strip that off the front of workText; | |
761 | // otherwise, dump out with a mismatch | |
762 | UnicodeString prefix; | |
763 | prefix.setTo(ruleText, 0, sub1->getPos()); | |
764 | ||
765 | #ifdef RBNF_DEBUG | |
766 | fprintf(stderr, "doParse %x ", this); | |
767 | { | |
768 | UnicodeString rt; | |
769 | appendRuleText(rt); | |
770 | dumpUS(stderr, rt); | |
771 | } | |
772 | ||
773 | fprintf(stderr, " text: '", this); | |
774 | dumpUS(stderr, text); | |
775 | fprintf(stderr, "' prefix: '"); | |
776 | dumpUS(stderr, prefix); | |
777 | #endif | |
778 | stripPrefix(workText, prefix, pp); | |
779 | int32_t prefixLength = text.length() - workText.length(); | |
780 | ||
781 | #ifdef RBNF_DEBUG | |
782 | fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos()); | |
783 | #endif | |
784 | ||
785 | if (pp.getIndex() == 0 && sub1->getPos() != 0) { | |
786 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
787 | // restored for ICU4C port | |
788 | parsePosition.setErrorIndex(pp.getErrorIndex()); | |
789 | resVal.setLong(0); | |
790 | return TRUE; | |
791 | } | |
792 | ||
793 | // this is the fun part. The basic guts of the rule-matching | |
794 | // logic is matchToDelimiter(), which is called twice. The first | |
795 | // time it searches the input string for the rule text BETWEEN | |
796 | // the substitutions and tries to match the intervening text | |
797 | // in the input string with the first substitution. If that | |
798 | // succeeds, it then calls it again, this time to look for the | |
799 | // rule text after the second substitution and to match the | |
800 | // intervening input text against the second substitution. | |
801 | // | |
802 | // For example, say we have a rule that looks like this: | |
803 | // first << middle >> last; | |
804 | // and input text that looks like this: | |
805 | // first one middle two last | |
806 | // First we use stripPrefix() to match "first " in both places and | |
807 | // strip it off the front, leaving | |
808 | // one middle two last | |
809 | // Then we use matchToDelimiter() to match " middle " and try to | |
810 | // match "one" against a substitution. If it's successful, we now | |
811 | // have | |
812 | // two last | |
813 | // We use matchToDelimiter() a second time to match " last" and | |
814 | // try to match "two" against a substitution. If "two" matches | |
815 | // the substitution, we have a successful parse. | |
816 | // | |
817 | // Since it's possible in many cases to find multiple instances | |
818 | // of each of these pieces of rule text in the input string, | |
819 | // we need to try all the possible combinations of these | |
820 | // locations. This prevents us from prematurely declaring a mismatch, | |
821 | // and makes sure we match as much input text as we can. | |
822 | int highWaterMark = 0; | |
823 | double result = 0; | |
824 | int start = 0; | |
825 | double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); | |
826 | ||
827 | UnicodeString temp; | |
828 | do { | |
829 | // our partial parse result starts out as this rule's base | |
830 | // value. If it finds a successful match, matchToDelimiter() | |
831 | // will compose this in some way with what it gets back from | |
832 | // the substitution, giving us a new partial parse result | |
833 | pp.setIndex(0); | |
834 | ||
835 | temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos()); | |
836 | double partialResult = matchToDelimiter(workText, start, tempBaseValue, | |
837 | temp, pp, sub1, | |
838 | upperBound); | |
839 | ||
840 | // if we got a successful match (or were trying to match a | |
841 | // null substitution), pp is now pointing at the first unmatched | |
842 | // character. Take note of that, and try matchToDelimiter() | |
843 | // on the input text again | |
844 | if (pp.getIndex() != 0 || sub1->isNullSubstitution()) { | |
845 | start = pp.getIndex(); | |
846 | ||
847 | UnicodeString workText2; | |
848 | workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); | |
849 | ParsePosition pp2; | |
850 | ||
851 | // the second matchToDelimiter() will compose our previous | |
852 | // partial result with whatever it gets back from its | |
853 | // substitution if there's a successful match, giving us | |
854 | // a real result | |
855 | temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos()); | |
856 | partialResult = matchToDelimiter(workText2, 0, partialResult, | |
857 | temp, pp2, sub2, | |
858 | upperBound); | |
859 | ||
860 | // if we got a successful match on this second | |
861 | // matchToDelimiter() call, update the high-water mark | |
862 | // and result (if necessary) | |
863 | if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) { | |
864 | if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { | |
865 | highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); | |
866 | result = partialResult; | |
867 | } | |
868 | } | |
869 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
870 | // restored for ICU4C port | |
871 | else { | |
872 | int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex(); | |
873 | if (temp> parsePosition.getErrorIndex()) { | |
874 | parsePosition.setErrorIndex(temp); | |
875 | } | |
876 | } | |
877 | } | |
878 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
879 | // restored for ICU4C port | |
880 | else { | |
881 | int32_t temp = sub1->getPos() + pp.getErrorIndex(); | |
882 | if (temp > parsePosition.getErrorIndex()) { | |
883 | parsePosition.setErrorIndex(temp); | |
884 | } | |
885 | } | |
886 | // keep trying to match things until the outer matchToDelimiter() | |
887 | // call fails to make a match (each time, it picks up where it | |
888 | // left off the previous time) | |
889 | } while (sub1->getPos() != sub2->getPos() | |
890 | && pp.getIndex() > 0 | |
891 | && pp.getIndex() < workText.length() | |
892 | && pp.getIndex() != start); | |
893 | ||
894 | // update the caller's ParsePosition with our high-water mark | |
895 | // (i.e., it now points at the first character this function | |
896 | // didn't match-- the ParsePosition is therefore unchanged if | |
897 | // we didn't match anything) | |
898 | parsePosition.setIndex(highWaterMark); | |
899 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
900 | // restored for ICU4C port | |
901 | if (highWaterMark > 0) { | |
902 | parsePosition.setErrorIndex(0); | |
903 | } | |
904 | ||
905 | // this is a hack for one unusual condition: Normally, whether this | |
906 | // rule belong to a fraction rule set or not is handled by its | |
907 | // substitutions. But if that rule HAS NO substitutions, then | |
908 | // we have to account for it here. By definition, if the matching | |
909 | // rule in a fraction rule set has no substitutions, its numerator | |
910 | // is 1, and so the result is the reciprocal of its base value. | |
911 | if (isFractionRule && | |
912 | highWaterMark > 0 && | |
913 | sub1->isNullSubstitution()) { | |
914 | result = 1 / result; | |
915 | } | |
916 | ||
917 | resVal.setDouble(result); | |
918 | return TRUE; // ??? do we need to worry if it is a long or a double? | |
919 | } | |
920 | ||
921 | /** | |
922 | * This function is used by parse() to match the text being parsed | |
923 | * against a possible prefix string. This function | |
924 | * matches characters from the beginning of the string being parsed | |
925 | * to characters from the prospective prefix. If they match, pp is | |
926 | * updated to the first character not matched, and the result is | |
927 | * the unparsed part of the string. If they don't match, the whole | |
928 | * string is returned, and pp is left unchanged. | |
929 | * @param text The string being parsed | |
930 | * @param prefix The text to match against | |
931 | * @param pp On entry, ignored and assumed to be 0. On exit, points | |
932 | * to the first unmatched character (assuming the whole prefix matched), | |
933 | * or is unchanged (if the whole prefix didn't match). | |
934 | * @return If things match, this is the unparsed part of "text"; | |
935 | * if they didn't match, this is "text". | |
936 | */ | |
937 | void | |
938 | NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const | |
939 | { | |
940 | // if the prefix text is empty, dump out without doing anything | |
941 | if (prefix.length() != 0) { | |
942 | // use prefixLength() to match the beginning of | |
943 | // "text" against "prefix". This function returns the | |
944 | // number of characters from "text" that matched (or 0 if | |
945 | // we didn't match the whole prefix) | |
946 | int32_t pfl = prefixLength(text, prefix); | |
947 | if (pfl != 0) { | |
948 | // if we got a successful match, update the parse position | |
949 | // and strip the prefix off of "text" | |
950 | pp.setIndex(pp.getIndex() + pfl); | |
951 | text.remove(0, pfl); | |
952 | } | |
953 | } | |
954 | } | |
955 | ||
956 | /** | |
957 | * Used by parse() to match a substitution and any following text. | |
958 | * "text" is searched for instances of "delimiter". For each instance | |
959 | * of delimiter, the intervening text is tested to see whether it | |
960 | * matches the substitution. The longest match wins. | |
961 | * @param text The string being parsed | |
962 | * @param startPos The position in "text" where we should start looking | |
963 | * for "delimiter". | |
964 | * @param baseValue A partial parse result (often the rule's base value), | |
965 | * which is combined with the result from matching the substitution | |
966 | * @param delimiter The string to search "text" for. | |
967 | * @param pp Ignored and presumed to be 0 on entry. If there's a match, | |
968 | * on exit this will point to the first unmatched character. | |
969 | * @param sub If we find "delimiter" in "text", this substitution is used | |
970 | * to match the text between the beginning of the string and the | |
971 | * position of "delimiter." (If "delimiter" is the empty string, then | |
972 | * this function just matches against this substitution and updates | |
973 | * everything accordingly.) | |
974 | * @param upperBound When matching the substitution, it will only | |
975 | * consider rules with base values lower than this value. | |
976 | * @return If there's a match, this is the result of composing | |
977 | * baseValue with the result of matching the substitution. Otherwise, | |
978 | * this is new Long(0). It's never null. If the result is an integer, | |
979 | * this will be an instance of Long; otherwise, it's an instance of | |
980 | * Double. | |
981 | * | |
982 | * !!! note {dlf} in point of fact, in the java code the caller always converts | |
983 | * the result to a double, so we might as well return one. | |
984 | */ | |
985 | double | |
986 | NFRule::matchToDelimiter(const UnicodeString& text, | |
987 | int32_t startPos, | |
988 | double _baseValue, | |
989 | const UnicodeString& delimiter, | |
990 | ParsePosition& pp, | |
991 | const NFSubstitution* sub, | |
992 | double upperBound) const | |
993 | { | |
994 | // if "delimiter" contains real (i.e., non-ignorable) text, search | |
995 | // it for "delimiter" beginning at "start". If that succeeds, then | |
996 | // use "sub"'s doParse() method to match the text before the | |
997 | // instance of "delimiter" we just found. | |
998 | if (!allIgnorable(delimiter)) { | |
999 | ParsePosition tempPP; | |
1000 | Formattable result; | |
1001 | ||
1002 | // use findText() to search for "delimiter". It returns a two- | |
1003 | // element array: element 0 is the position of the match, and | |
1004 | // element 1 is the number of characters that matched | |
1005 | // "delimiter". | |
1006 | int32_t dLen; | |
1007 | int32_t dPos = findText(text, delimiter, startPos, &dLen); | |
1008 | ||
1009 | // if findText() succeeded, isolate the text preceding the | |
1010 | // match, and use "sub" to match that text | |
1011 | while (dPos >= 0) { | |
1012 | UnicodeString subText; | |
1013 | subText.setTo(text, 0, dPos); | |
1014 | if (subText.length() > 0) { | |
1015 | UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, | |
1016 | #if UCONFIG_NO_COLLATION | |
1017 | FALSE, | |
1018 | #else | |
1019 | formatter->isLenient(), | |
1020 | #endif | |
1021 | result); | |
1022 | ||
1023 | // if the substitution could match all the text up to | |
1024 | // where we found "delimiter", then this function has | |
1025 | // a successful match. Bump the caller's parse position | |
1026 | // to point to the first character after the text | |
1027 | // that matches "delimiter", and return the result | |
1028 | // we got from parsing the substitution. | |
1029 | if (success && tempPP.getIndex() == dPos) { | |
1030 | pp.setIndex(dPos + dLen); | |
1031 | return result.getDouble(); | |
1032 | } | |
1033 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
1034 | // restored for ICU4C port | |
1035 | else { | |
1036 | if (tempPP.getErrorIndex() > 0) { | |
1037 | pp.setErrorIndex(tempPP.getErrorIndex()); | |
1038 | } else { | |
1039 | pp.setErrorIndex(tempPP.getIndex()); | |
1040 | } | |
1041 | } | |
1042 | } | |
1043 | ||
1044 | // if we didn't match the substitution, search for another | |
1045 | // copy of "delimiter" in "text" and repeat the loop if | |
1046 | // we find it | |
1047 | tempPP.setIndex(0); | |
1048 | dPos = findText(text, delimiter, dPos + dLen, &dLen); | |
1049 | } | |
1050 | // if we make it here, this was an unsuccessful match, and we | |
1051 | // leave pp unchanged and return 0 | |
1052 | pp.setIndex(0); | |
1053 | return 0; | |
1054 | ||
1055 | // if "delimiter" is empty, or consists only of ignorable characters | |
1056 | // (i.e., is semantically empty), thwe we obviously can't search | |
1057 | // for "delimiter". Instead, just use "sub" to parse as much of | |
1058 | // "text" as possible. | |
1059 | } else { | |
1060 | ParsePosition tempPP; | |
1061 | Formattable result; | |
1062 | ||
1063 | // try to match the whole string against the substitution | |
1064 | UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, | |
1065 | #if UCONFIG_NO_COLLATION | |
1066 | FALSE, | |
1067 | #else | |
1068 | formatter->isLenient(), | |
1069 | #endif | |
1070 | result); | |
1071 | if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) { | |
1072 | // if there's a successful match (or it's a null | |
1073 | // substitution), update pp to point to the first | |
1074 | // character we didn't match, and pass the result from | |
1075 | // sub.doParse() on through to the caller | |
1076 | pp.setIndex(tempPP.getIndex()); | |
1077 | return result.getDouble(); | |
1078 | } | |
1079 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
1080 | // restored for ICU4C port | |
1081 | else { | |
1082 | pp.setErrorIndex(tempPP.getErrorIndex()); | |
1083 | } | |
1084 | ||
1085 | // and if we get to here, then nothing matched, so we return | |
1086 | // 0 and leave pp alone | |
1087 | return 0; | |
1088 | } | |
1089 | } | |
1090 | ||
1091 | /** | |
1092 | * Used by stripPrefix() to match characters. If lenient parse mode | |
1093 | * is off, this just calls startsWith(). If lenient parse mode is on, | |
1094 | * this function uses CollationElementIterators to match characters in | |
1095 | * the strings (only primary-order differences are significant in | |
1096 | * determining whether there's a match). | |
1097 | * @param str The string being tested | |
1098 | * @param prefix The text we're hoping to see at the beginning | |
1099 | * of "str" | |
1100 | * @return If "prefix" is found at the beginning of "str", this | |
1101 | * is the number of characters in "str" that were matched (this | |
1102 | * isn't necessarily the same as the length of "prefix" when matching | |
1103 | * text with a collator). If there's no match, this is 0. | |
1104 | */ | |
1105 | int32_t | |
1106 | NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix) const | |
1107 | { | |
1108 | // if we're looking for an empty prefix, it obviously matches | |
1109 | // zero characters. Just go ahead and return 0. | |
1110 | if (prefix.length() == 0) { | |
1111 | return 0; | |
1112 | } | |
1113 | ||
1114 | #if !UCONFIG_NO_COLLATION | |
1115 | // go through all this grief if we're in lenient-parse mode | |
1116 | if (formatter->isLenient()) { | |
1117 | // get the formatter's collator and use it to create two | |
1118 | // collation element iterators, one over the target string | |
1119 | // and another over the prefix (right now, we'll throw an | |
1120 | // exception if the collator we get back from the formatter | |
1121 | // isn't a RuleBasedCollator, because RuleBasedCollator defines | |
1122 | // the CollationElementIterator protocol. Hopefully, this | |
1123 | // will change someday.) | |
1124 | RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator(); | |
1125 | CollationElementIterator* strIter = collator->createCollationElementIterator(str); | |
1126 | CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix); | |
1127 | ||
1128 | UErrorCode err = U_ZERO_ERROR; | |
1129 | ||
1130 | // The original code was problematic. Consider this match: | |
1131 | // prefix = "fifty-" | |
1132 | // string = " fifty-7" | |
1133 | // The intent is to match string up to the '7', by matching 'fifty-' at position 1 | |
1134 | // in the string. Unfortunately, we were getting a match, and then computing where | |
1135 | // the match terminated by rematching the string. The rematch code was using as an | |
1136 | // initial guess the substring of string between 0 and prefix.length. Because of | |
1137 | // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving | |
1138 | // the position before the hyphen in the string. Recursing down, we then parsed the | |
1139 | // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). | |
1140 | // This was not pretty, especially since the string "fifty-7" parsed just fine. | |
1141 | // | |
1142 | // We have newer APIs now, so we can use calls on the iterator to determine what we | |
1143 | // matched up to. If we terminate because we hit the last element in the string, | |
1144 | // our match terminates at this length. If we terminate because we hit the last element | |
1145 | // in the target, our match terminates at one before the element iterator position. | |
1146 | ||
1147 | // match collation elements between the strings | |
1148 | int32_t oStr = strIter->next(err); | |
1149 | int32_t oPrefix = prefixIter->next(err); | |
1150 | ||
1151 | while (oPrefix != CollationElementIterator::NULLORDER) { | |
1152 | // skip over ignorable characters in the target string | |
1153 | while (CollationElementIterator::primaryOrder(oStr) == 0 | |
1154 | && oStr != CollationElementIterator::NULLORDER) { | |
1155 | oStr = strIter->next(err); | |
1156 | } | |
1157 | ||
1158 | // skip over ignorable characters in the prefix | |
1159 | while (CollationElementIterator::primaryOrder(oPrefix) == 0 | |
1160 | && oPrefix != CollationElementIterator::NULLORDER) { | |
1161 | oPrefix = prefixIter->next(err); | |
1162 | } | |
1163 | ||
1164 | // dlf: move this above following test, if we consume the | |
1165 | // entire target, aren't we ok even if the source was also | |
1166 | // entirely consumed? | |
1167 | ||
1168 | // if skipping over ignorables brought to the end of | |
1169 | // the prefix, we DID match: drop out of the loop | |
1170 | if (oPrefix == CollationElementIterator::NULLORDER) { | |
1171 | break; | |
1172 | } | |
1173 | ||
1174 | // if skipping over ignorables brought us to the end | |
1175 | // of the target string, we didn't match and return 0 | |
1176 | if (oStr == CollationElementIterator::NULLORDER) { | |
1177 | delete prefixIter; | |
1178 | delete strIter; | |
1179 | return 0; | |
1180 | } | |
1181 | ||
1182 | // match collation elements from the two strings | |
1183 | // (considering only primary differences). If we | |
1184 | // get a mismatch, dump out and return 0 | |
1185 | if (CollationElementIterator::primaryOrder(oStr) | |
1186 | != CollationElementIterator::primaryOrder(oPrefix)) { | |
1187 | delete prefixIter; | |
1188 | delete strIter; | |
1189 | return 0; | |
1190 | ||
1191 | // otherwise, advance to the next character in each string | |
1192 | // and loop (we drop out of the loop when we exhaust | |
1193 | // collation elements in the prefix) | |
1194 | } else { | |
1195 | oStr = strIter->next(err); | |
1196 | oPrefix = prefixIter->next(err); | |
1197 | } | |
1198 | } | |
1199 | ||
1200 | int32_t result = strIter->getOffset(); | |
1201 | if (oStr != CollationElementIterator::NULLORDER) { | |
1202 | --result; // back over character that we don't want to consume; | |
1203 | } | |
1204 | ||
1205 | #ifdef RBNF_DEBUG | |
1206 | fprintf(stderr, "prefix length: %d\n", result); | |
1207 | #endif | |
1208 | delete prefixIter; | |
1209 | delete strIter; | |
1210 | ||
1211 | return result; | |
1212 | #if 0 | |
1213 | //---------------------------------------------------------------- | |
1214 | // JDK 1.2-specific API call | |
1215 | // return strIter.getOffset(); | |
1216 | //---------------------------------------------------------------- | |
1217 | // JDK 1.1 HACK (take out for 1.2-specific code) | |
1218 | ||
1219 | // if we make it to here, we have a successful match. Now we | |
1220 | // have to find out HOW MANY characters from the target string | |
1221 | // matched the prefix (there isn't necessarily a one-to-one | |
1222 | // mapping between collation elements and characters). | |
1223 | // In JDK 1.2, there's a simple getOffset() call we can use. | |
1224 | // In JDK 1.1, on the other hand, we have to go through some | |
1225 | // ugly contortions. First, use the collator to compare the | |
1226 | // same number of characters from the prefix and target string. | |
1227 | // If they're equal, we're done. | |
1228 | collator->setStrength(Collator::PRIMARY); | |
1229 | if (str.length() >= prefix.length()) { | |
1230 | UnicodeString temp; | |
1231 | temp.setTo(str, 0, prefix.length()); | |
1232 | if (collator->equals(temp, prefix)) { | |
1233 | #ifdef RBNF_DEBUG | |
1234 | fprintf(stderr, "returning: %d\n", prefix.length()); | |
1235 | #endif | |
1236 | return prefix.length(); | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | // if they're not equal, then we have to compare successively | |
1241 | // larger and larger substrings of the target string until we | |
1242 | // get to one that matches the prefix. At that point, we know | |
1243 | // how many characters matched the prefix, and we can return. | |
1244 | int32_t p = 1; | |
1245 | while (p <= str.length()) { | |
1246 | UnicodeString temp; | |
1247 | temp.setTo(str, 0, p); | |
1248 | if (collator->equals(temp, prefix)) { | |
1249 | return p; | |
1250 | } else { | |
1251 | ++p; | |
1252 | } | |
1253 | } | |
1254 | ||
1255 | // SHOULD NEVER GET HERE!!! | |
1256 | return 0; | |
1257 | //---------------------------------------------------------------- | |
1258 | #endif | |
1259 | ||
1260 | // If lenient parsing is turned off, forget all that crap above. | |
1261 | // Just use String.startsWith() and be done with it. | |
1262 | } else | |
1263 | #endif | |
1264 | { | |
1265 | if (str.startsWith(prefix)) { | |
1266 | return prefix.length(); | |
1267 | } else { | |
1268 | return 0; | |
1269 | } | |
1270 | } | |
1271 | } | |
1272 | ||
1273 | /** | |
1274 | * Searches a string for another string. If lenient parsing is off, | |
1275 | * this just calls indexOf(). If lenient parsing is on, this function | |
1276 | * uses CollationElementIterator to match characters, and only | |
1277 | * primary-order differences are significant in determining whether | |
1278 | * there's a match. | |
1279 | * @param str The string to search | |
1280 | * @param key The string to search "str" for | |
1281 | * @param startingAt The index into "str" where the search is to | |
1282 | * begin | |
1283 | * @return A two-element array of ints. Element 0 is the position | |
1284 | * of the match, or -1 if there was no match. Element 1 is the | |
1285 | * number of characters in "str" that matched (which isn't necessarily | |
1286 | * the same as the length of "key") | |
1287 | */ | |
1288 | int32_t | |
1289 | NFRule::findText(const UnicodeString& str, | |
1290 | const UnicodeString& key, | |
1291 | int32_t startingAt, | |
1292 | int32_t* length) const | |
1293 | { | |
1294 | #if !UCONFIG_NO_COLLATION | |
1295 | // if lenient parsing is turned off, this is easy: just call | |
1296 | // String.indexOf() and we're done | |
1297 | if (!formatter->isLenient()) { | |
1298 | *length = key.length(); | |
1299 | return str.indexOf(key, startingAt); | |
1300 | ||
1301 | // but if lenient parsing is turned ON, we've got some work | |
1302 | // ahead of us | |
1303 | } else | |
1304 | #endif | |
1305 | { | |
1306 | //---------------------------------------------------------------- | |
1307 | // JDK 1.1 HACK (take out of 1.2-specific code) | |
1308 | ||
1309 | // in JDK 1.2, CollationElementIterator provides us with an | |
1310 | // API to map between character offsets and collation elements | |
1311 | // and we can do this by marching through the string comparing | |
1312 | // collation elements. We can't do that in JDK 1.1. Insted, | |
1313 | // we have to go through this horrible slow mess: | |
1314 | int32_t p = startingAt; | |
1315 | int32_t keyLen = 0; | |
1316 | ||
1317 | // basically just isolate smaller and smaller substrings of | |
1318 | // the target string (each running to the end of the string, | |
1319 | // and with the first one running from startingAt to the end) | |
1320 | // and then use prefixLength() to see if the search key is at | |
1321 | // the beginning of each substring. This is excruciatingly | |
1322 | // slow, but it will locate the key and tell use how long the | |
1323 | // matching text was. | |
1324 | UnicodeString temp; | |
1325 | while (p < str.length() && keyLen == 0) { | |
1326 | temp.setTo(str, p, str.length() - p); | |
1327 | keyLen = prefixLength(temp, key); | |
1328 | if (keyLen != 0) { | |
1329 | *length = keyLen; | |
1330 | return p; | |
1331 | } | |
1332 | ++p; | |
1333 | } | |
1334 | // if we make it to here, we didn't find it. Return -1 for the | |
1335 | // location. The length should be ignored, but set it to 0, | |
1336 | // which should be "safe" | |
1337 | *length = 0; | |
1338 | return -1; | |
1339 | ||
1340 | //---------------------------------------------------------------- | |
1341 | // JDK 1.2 version of this routine | |
1342 | //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator(); | |
1343 | // | |
1344 | //CollationElementIterator strIter = collator.getCollationElementIterator(str); | |
1345 | //CollationElementIterator keyIter = collator.getCollationElementIterator(key); | |
1346 | // | |
1347 | //int keyStart = -1; | |
1348 | // | |
1349 | //str.setOffset(startingAt); | |
1350 | // | |
1351 | //int oStr = strIter.next(); | |
1352 | //int oKey = keyIter.next(); | |
1353 | //while (oKey != CollationElementIterator.NULLORDER) { | |
1354 | // while (oStr != CollationElementIterator.NULLORDER && | |
1355 | // CollationElementIterator.primaryOrder(oStr) == 0) | |
1356 | // oStr = strIter.next(); | |
1357 | // | |
1358 | // while (oKey != CollationElementIterator.NULLORDER && | |
1359 | // CollationElementIterator.primaryOrder(oKey) == 0) | |
1360 | // oKey = keyIter.next(); | |
1361 | // | |
1362 | // if (oStr == CollationElementIterator.NULLORDER) { | |
1363 | // return new int[] { -1, 0 }; | |
1364 | // } | |
1365 | // | |
1366 | // if (oKey == CollationElementIterator.NULLORDER) { | |
1367 | // break; | |
1368 | // } | |
1369 | // | |
1370 | // if (CollationElementIterator.primaryOrder(oStr) == | |
1371 | // CollationElementIterator.primaryOrder(oKey)) { | |
1372 | // keyStart = strIter.getOffset(); | |
1373 | // oStr = strIter.next(); | |
1374 | // oKey = keyIter.next(); | |
1375 | // } else { | |
1376 | // if (keyStart != -1) { | |
1377 | // keyStart = -1; | |
1378 | // keyIter.reset(); | |
1379 | // } else { | |
1380 | // oStr = strIter.next(); | |
1381 | // } | |
1382 | // } | |
1383 | //} | |
1384 | // | |
1385 | //if (oKey == CollationElementIterator.NULLORDER) { | |
1386 | // return new int[] { keyStart, strIter.getOffset() - keyStart }; | |
1387 | //} else { | |
1388 | // return new int[] { -1, 0 }; | |
1389 | //} | |
1390 | } | |
1391 | } | |
1392 | ||
1393 | /** | |
1394 | * Checks to see whether a string consists entirely of ignorable | |
1395 | * characters. | |
1396 | * @param str The string to test. | |
1397 | * @return true if the string is empty of consists entirely of | |
1398 | * characters that the number formatter's collator says are | |
1399 | * ignorable at the primary-order level. false otherwise. | |
1400 | */ | |
1401 | UBool | |
1402 | NFRule::allIgnorable(const UnicodeString& str) const | |
1403 | { | |
1404 | // if the string is empty, we can just return true | |
1405 | if (str.length() == 0) { | |
1406 | return TRUE; | |
1407 | } | |
1408 | ||
1409 | #if !UCONFIG_NO_COLLATION | |
1410 | // if lenient parsing is turned on, walk through the string with | |
1411 | // a collation element iterator and make sure each collation | |
1412 | // element is 0 (ignorable) at the primary level | |
1413 | if (formatter->isLenient()) { | |
1414 | RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator()); | |
1415 | CollationElementIterator* iter = collator->createCollationElementIterator(str); | |
1416 | ||
1417 | UErrorCode err = U_ZERO_ERROR; | |
1418 | int32_t o = iter->next(err); | |
1419 | while (o != CollationElementIterator::NULLORDER | |
1420 | && CollationElementIterator::primaryOrder(o) == 0) { | |
1421 | o = iter->next(err); | |
1422 | } | |
1423 | ||
1424 | delete iter; | |
1425 | return o == CollationElementIterator::NULLORDER; | |
1426 | } | |
1427 | #endif | |
1428 | ||
1429 | // if lenient parsing is turned off, there is no such thing as | |
1430 | // an ignorable character: return true only if the string is empty | |
1431 | return FALSE; | |
1432 | } | |
1433 | ||
1434 | U_NAMESPACE_END | |
1435 | ||
1436 | /* U_HAVE_RBNF */ | |
1437 | #endif | |
1438 | ||
1439 |