]>
Commit | Line | Data |
---|---|---|
57a6839d A |
1 | /* |
2 | ******************************************************************************* | |
3 | * Copyright (C) 2013-2014, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ******************************************************************************* | |
6 | * collationfastlatinbuilder.cpp | |
7 | * | |
8 | * created on: 2013aug09 | |
9 | * created by: Markus W. Scherer | |
10 | */ | |
11 | ||
12 | #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2 | |
13 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER | |
14 | #include <stdio.h> | |
15 | #include <string> | |
16 | #endif | |
17 | ||
18 | #include "unicode/utypes.h" | |
19 | ||
20 | #if !UCONFIG_NO_COLLATION | |
21 | ||
22 | #include "unicode/ucol.h" | |
23 | #include "unicode/ucharstrie.h" | |
24 | #include "unicode/unistr.h" | |
25 | #include "unicode/uobject.h" | |
26 | #include "unicode/uscript.h" | |
27 | #include "cmemory.h" | |
28 | #include "collation.h" | |
29 | #include "collationdata.h" | |
30 | #include "collationfastlatin.h" | |
31 | #include "collationfastlatinbuilder.h" | |
32 | #include "uassert.h" | |
33 | #include "uvectr64.h" | |
34 | ||
35 | U_NAMESPACE_BEGIN | |
36 | ||
37 | struct CollationData; | |
38 | ||
39 | namespace { | |
40 | ||
41 | /** | |
42 | * Compare two signed int64_t values as if they were unsigned. | |
43 | */ | |
44 | int32_t | |
45 | compareInt64AsUnsigned(int64_t a, int64_t b) { | |
46 | if((uint64_t)a < (uint64_t)b) { | |
47 | return -1; | |
48 | } else if((uint64_t)a > (uint64_t)b) { | |
49 | return 1; | |
50 | } else { | |
51 | return 0; | |
52 | } | |
53 | } | |
54 | ||
55 | // TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp | |
56 | /** | |
57 | * Like Java Collections.binarySearch(List, String, Comparator). | |
58 | * | |
59 | * @return the index>=0 where the item was found, | |
60 | * or the index<0 for inserting the string at ~index in sorted order | |
61 | */ | |
62 | int32_t | |
63 | binarySearch(const int64_t list[], int32_t limit, int64_t ce) { | |
64 | if (limit == 0) { return ~0; } | |
65 | int32_t start = 0; | |
66 | for (;;) { | |
67 | int32_t i = (start + limit) / 2; | |
68 | int32_t cmp = compareInt64AsUnsigned(ce, list[i]); | |
69 | if (cmp == 0) { | |
70 | return i; | |
71 | } else if (cmp < 0) { | |
72 | if (i == start) { | |
73 | return ~start; // insert ce before i | |
74 | } | |
75 | limit = i; | |
76 | } else { | |
77 | if (i == start) { | |
78 | return ~(start + 1); // insert ce after i | |
79 | } | |
80 | start = i; | |
81 | } | |
82 | } | |
83 | } | |
84 | ||
85 | } // namespace | |
86 | ||
87 | CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode) | |
88 | : ce0(0), ce1(0), | |
89 | contractionCEs(errorCode), uniqueCEs(errorCode), | |
90 | miniCEs(NULL), | |
91 | firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0), | |
92 | firstShortPrimary(0), shortPrimaryOverflow(FALSE), | |
93 | headerLength(0) { | |
94 | } | |
95 | ||
96 | CollationFastLatinBuilder::~CollationFastLatinBuilder() { | |
97 | uprv_free(miniCEs); | |
98 | } | |
99 | ||
100 | UBool | |
101 | CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) { | |
102 | if(U_FAILURE(errorCode)) { return FALSE; } | |
103 | if(!result.isEmpty()) { // This builder is not reusable. | |
104 | errorCode = U_INVALID_STATE_ERROR; | |
105 | return FALSE; | |
106 | } | |
107 | if(!loadGroups(data, errorCode)) { return FALSE; } | |
108 | ||
109 | // Fast handling of digits. | |
110 | firstShortPrimary = firstDigitPrimary; | |
111 | getCEs(data, errorCode); | |
112 | if(!encodeUniqueCEs(errorCode)) { return FALSE; } | |
113 | if(shortPrimaryOverflow) { | |
114 | // Give digits long mini primaries, | |
115 | // so that there are more short primaries for letters. | |
116 | firstShortPrimary = firstLatinPrimary; | |
117 | resetCEs(); | |
118 | getCEs(data, errorCode); | |
119 | if(!encodeUniqueCEs(errorCode)) { return FALSE; } | |
120 | } | |
121 | // Note: If we still have a short-primary overflow but not a long-primary overflow, | |
122 | // then we could calculate how many more long primaries would fit, | |
123 | // and set the firstShortPrimary to that many after the current firstShortPrimary, | |
124 | // and try again. | |
125 | // However, this might only benefit the en_US_POSIX tailoring, | |
126 | // and it is simpler to suppress building fast Latin data for it in genrb, | |
127 | // or by returning FALSE here if shortPrimaryOverflow. | |
128 | ||
129 | UBool ok = !shortPrimaryOverflow && | |
130 | encodeCharCEs(errorCode) && encodeContractions(errorCode); | |
131 | contractionCEs.removeAllElements(); // might reduce heap memory usage | |
132 | uniqueCEs.removeAllElements(); | |
133 | return ok; | |
134 | } | |
135 | ||
136 | UBool | |
137 | CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) { | |
138 | if(U_FAILURE(errorCode)) { return FALSE; } | |
139 | result.append(0); // reserved for version & headerLength | |
140 | // The first few reordering groups should be special groups | |
141 | // (space, punct, ..., digit) followed by Latn, then Grek and other scripts. | |
142 | for(int32_t i = 0;;) { | |
143 | if(i >= data.scriptsLength) { | |
144 | // no Latn script | |
145 | errorCode = U_INTERNAL_PROGRAM_ERROR; | |
146 | return FALSE; | |
147 | } | |
148 | uint32_t head = data.scripts[i]; | |
149 | uint32_t lastByte = head & 0xff; // last primary byte in the group | |
150 | int32_t group = data.scripts[i + 2]; | |
151 | if(group == UCOL_REORDER_CODE_DIGIT) { | |
152 | firstDigitPrimary = (head & 0xff00) << 16; | |
153 | headerLength = result.length(); | |
154 | uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength; | |
155 | result.setCharAt(0, (UChar)r0); | |
156 | } else if(group == USCRIPT_LATIN) { | |
157 | if(firstDigitPrimary == 0) { | |
158 | // no digit group | |
159 | errorCode = U_INTERNAL_PROGRAM_ERROR; | |
160 | return FALSE; | |
161 | } | |
162 | firstLatinPrimary = (head & 0xff00) << 16; | |
163 | lastLatinPrimary = (lastByte << 24) | 0xffffff; | |
164 | break; | |
165 | } else if(firstDigitPrimary == 0) { | |
166 | // a group below digits | |
167 | if(lastByte > 0x7f) { | |
168 | // We only use 7 bits for the last byte of a below-digits group. | |
169 | // This does not warrant an errorCode, but we do not build a fast Latin table. | |
170 | return FALSE; | |
171 | } | |
172 | result.append((UChar)lastByte); | |
173 | } | |
174 | i = i + 2 + data.scripts[i + 1]; | |
175 | } | |
176 | return TRUE; | |
177 | } | |
178 | ||
179 | UBool | |
180 | CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const { | |
181 | // Both or neither need to be encoded as short primaries, | |
182 | // so that we can test only one and use the same bit mask. | |
183 | if(p >= firstShortPrimary) { | |
184 | return q >= firstShortPrimary; | |
185 | } else if(q >= firstShortPrimary) { | |
186 | return FALSE; | |
187 | } | |
188 | // Both or neither must be potentially-variable, | |
189 | // so that we can test only one and determine if both are variable. | |
190 | if(p >= firstDigitPrimary) { | |
191 | return q >= firstDigitPrimary; | |
192 | } else if(q >= firstDigitPrimary) { | |
193 | return FALSE; | |
194 | } | |
195 | // Both will be encoded with long mini primaries. | |
196 | // They must be in the same special reordering group, | |
197 | // so that we can test only one and determine if both are variable. | |
198 | p >>= 24; // first primary byte | |
199 | q >>= 24; | |
200 | U_ASSERT(p != 0 && q != 0); | |
201 | U_ASSERT(p <= result[headerLength - 1]); // the loop will terminate | |
202 | for(int32_t i = 1;; ++i) { | |
203 | uint32_t lastByte = result[i]; | |
204 | if(p <= lastByte) { | |
205 | return q <= lastByte; | |
206 | } else if(q <= lastByte) { | |
207 | return FALSE; | |
208 | } | |
209 | } | |
210 | } | |
211 | ||
212 | void | |
213 | CollationFastLatinBuilder::resetCEs() { | |
214 | contractionCEs.removeAllElements(); | |
215 | uniqueCEs.removeAllElements(); | |
216 | shortPrimaryOverflow = FALSE; | |
217 | result.truncate(headerLength); | |
218 | } | |
219 | ||
220 | void | |
221 | CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) { | |
222 | if(U_FAILURE(errorCode)) { return; } | |
223 | int32_t i = 0; | |
224 | for(UChar c = 0;; ++i, ++c) { | |
225 | if(c == CollationFastLatin::LATIN_LIMIT) { | |
226 | c = CollationFastLatin::PUNCT_START; | |
227 | } else if(c == CollationFastLatin::PUNCT_LIMIT) { | |
228 | break; | |
229 | } | |
230 | const CollationData *d; | |
231 | uint32_t ce32 = data.getCE32(c); | |
232 | if(ce32 == Collation::FALLBACK_CE32) { | |
233 | d = data.base; | |
234 | ce32 = d->getCE32(c); | |
235 | } else { | |
236 | d = &data; | |
237 | } | |
238 | if(getCEsFromCE32(*d, c, ce32, errorCode)) { | |
239 | charCEs[i][0] = ce0; | |
240 | charCEs[i][1] = ce1; | |
241 | addUniqueCE(ce0, errorCode); | |
242 | addUniqueCE(ce1, errorCode); | |
243 | } else { | |
244 | // bail out for c | |
245 | charCEs[i][0] = ce0 = Collation::NO_CE; | |
246 | charCEs[i][1] = ce1 = 0; | |
247 | } | |
248 | if(c == 0 && !isContractionCharCE(ce0)) { | |
249 | // Always map U+0000 to a contraction. | |
250 | // Write a contraction list with only a default value if there is no real contraction. | |
251 | U_ASSERT(contractionCEs.isEmpty()); | |
252 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); | |
253 | charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG; | |
254 | charCEs[0][1] = 0; | |
255 | } | |
256 | } | |
257 | // Terminate the last contraction list. | |
258 | contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode); | |
259 | } | |
260 | ||
261 | UBool | |
262 | CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32, | |
263 | UErrorCode &errorCode) { | |
264 | if(U_FAILURE(errorCode)) { return FALSE; } | |
265 | ce32 = data.getFinalCE32(ce32); | |
266 | ce1 = 0; | |
267 | if(Collation::isSimpleOrLongCE32(ce32)) { | |
268 | ce0 = Collation::ceFromCE32(ce32); | |
269 | } else { | |
270 | switch(Collation::tagFromCE32(ce32)) { | |
271 | case Collation::LATIN_EXPANSION_TAG: | |
272 | ce0 = Collation::latinCE0FromCE32(ce32); | |
273 | ce1 = Collation::latinCE1FromCE32(ce32); | |
274 | break; | |
275 | case Collation::EXPANSION32_TAG: { | |
276 | const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32); | |
277 | int32_t length = Collation::lengthFromCE32(ce32); | |
278 | if(length <= 2) { | |
279 | ce0 = Collation::ceFromCE32(ce32s[0]); | |
280 | if(length == 2) { | |
281 | ce1 = Collation::ceFromCE32(ce32s[1]); | |
282 | } | |
283 | break; | |
284 | } else { | |
285 | return FALSE; | |
286 | } | |
287 | } | |
288 | case Collation::EXPANSION_TAG: { | |
289 | const int64_t *ces = data.ces + Collation::indexFromCE32(ce32); | |
290 | int32_t length = Collation::lengthFromCE32(ce32); | |
291 | if(length <= 2) { | |
292 | ce0 = ces[0]; | |
293 | if(length == 2) { | |
294 | ce1 = ces[1]; | |
295 | } | |
296 | break; | |
297 | } else { | |
298 | return FALSE; | |
299 | } | |
300 | } | |
301 | // Note: We could support PREFIX_TAG (assert c>=0) | |
302 | // by recursing on its default CE32 and checking that none of the prefixes starts | |
303 | // with a fast Latin character. | |
304 | // However, currently (2013) there are only the L-before-middle-dot | |
305 | // prefix mappings in the Latin range, and those would be rejected anyway. | |
306 | case Collation::CONTRACTION_TAG: | |
307 | U_ASSERT(c >= 0); | |
308 | return getCEsFromContractionCE32(data, ce32, errorCode); | |
309 | case Collation::OFFSET_TAG: | |
310 | U_ASSERT(c >= 0); | |
311 | ce0 = data.getCEFromOffsetCE32(c, ce32); | |
312 | break; | |
313 | default: | |
314 | return FALSE; | |
315 | } | |
316 | } | |
317 | // A mapping can be completely ignorable. | |
318 | if(ce0 == 0) { return ce1 == 0; } | |
319 | // We do not support an ignorable ce0 unless it is completely ignorable. | |
320 | uint32_t p0 = (uint32_t)(ce0 >> 32); | |
321 | if(p0 == 0) { return FALSE; } | |
322 | // We only support primaries up to the Latin script. | |
323 | if(p0 > lastLatinPrimary) { return FALSE; } | |
324 | // We support non-common secondary and case weights only together with short primaries. | |
325 | uint32_t lower32_0 = (uint32_t)ce0; | |
326 | if(p0 < firstShortPrimary) { | |
327 | uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK; | |
328 | if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; } | |
329 | } | |
330 | // No below-common tertiary weights. | |
331 | if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } | |
332 | if(ce1 != 0) { | |
333 | // Both primaries must be in the same group, | |
334 | // or both must get short mini primaries, | |
335 | // or a short-primary CE is followed by a secondary CE. | |
336 | // This is so that we can test the first primary and use the same mask for both, | |
337 | // and determine for both whether they are variable. | |
338 | uint32_t p1 = (uint32_t)(ce1 >> 32); | |
339 | if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; } | |
340 | uint32_t lower32_1 = (uint32_t)ce1; | |
341 | // No tertiary CEs. | |
342 | if((lower32_1 >> 16) == 0) { return FALSE; } | |
343 | // We support non-common secondary and case weights | |
344 | // only for secondary CEs or together with short primaries. | |
345 | if(p1 != 0 && p1 < firstShortPrimary) { | |
346 | uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK; | |
347 | if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; } | |
348 | } | |
349 | // No below-common tertiary weights. | |
350 | if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } | |
351 | } | |
352 | // No quaternary weights. | |
353 | if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; } | |
354 | return TRUE; | |
355 | } | |
356 | ||
357 | UBool | |
358 | CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32, | |
359 | UErrorCode &errorCode) { | |
360 | if(U_FAILURE(errorCode)) { return FALSE; } | |
361 | const UChar *p = data.contexts + Collation::indexFromCE32(ce32); | |
362 | ce32 = CollationData::readCE32(p); // Default if no suffix match. | |
363 | // Since the original ce32 is not a prefix mapping, | |
364 | // the default ce32 must not be another contraction. | |
365 | U_ASSERT(!Collation::isContractionCE32(ce32)); | |
366 | int32_t contractionIndex = contractionCEs.size(); | |
367 | if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { | |
368 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); | |
369 | } else { | |
370 | // Bail out for c-without-contraction. | |
371 | addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode); | |
372 | } | |
373 | // Handle an encodable contraction unless the next contraction is too long | |
374 | // and starts with the same character. | |
375 | int32_t prevX = -1; | |
376 | UBool addContraction = FALSE; | |
377 | UCharsTrie::Iterator suffixes(p + 2, 0, errorCode); | |
378 | while(suffixes.next(errorCode)) { | |
379 | const UnicodeString &suffix = suffixes.getString(); | |
380 | int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0)); | |
381 | if(x < 0) { continue; } // ignore anything but fast Latin text | |
382 | if(x == prevX) { | |
383 | if(addContraction) { | |
384 | // Bail out for all contractions starting with this character. | |
385 | addContractionEntry(x, Collation::NO_CE, 0, errorCode); | |
386 | addContraction = FALSE; | |
387 | } | |
388 | continue; | |
389 | } | |
390 | if(addContraction) { | |
391 | addContractionEntry(prevX, ce0, ce1, errorCode); | |
392 | } | |
393 | ce32 = (uint32_t)suffixes.getValue(); | |
394 | if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { | |
395 | addContraction = TRUE; | |
396 | } else { | |
397 | addContractionEntry(x, Collation::NO_CE, 0, errorCode); | |
398 | addContraction = FALSE; | |
399 | } | |
400 | prevX = x; | |
401 | } | |
402 | if(addContraction) { | |
403 | addContractionEntry(prevX, ce0, ce1, errorCode); | |
404 | } | |
405 | if(U_FAILURE(errorCode)) { return FALSE; } | |
406 | // Note: There might not be any fast Latin contractions, but | |
407 | // we need to enter contraction handling anyway so that we can bail out | |
408 | // when there is a non-fast-Latin character following. | |
409 | // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the | |
410 | // following umlaut and bail out, rather than return the difference of Y vs. u. | |
411 | ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex; | |
412 | ce1 = 0; | |
413 | return TRUE; | |
414 | } | |
415 | ||
416 | void | |
417 | CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1, | |
418 | UErrorCode &errorCode) { | |
419 | contractionCEs.addElement(x, errorCode); | |
420 | contractionCEs.addElement(cce0, errorCode); | |
421 | contractionCEs.addElement(cce1, errorCode); | |
422 | addUniqueCE(cce0, errorCode); | |
423 | addUniqueCE(cce1, errorCode); | |
424 | } | |
425 | ||
426 | void | |
427 | CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) { | |
428 | if(U_FAILURE(errorCode)) { return; } | |
429 | if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; } | |
430 | ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits | |
431 | int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); | |
432 | if(i < 0) { | |
433 | uniqueCEs.insertElementAt(ce, ~i, errorCode); | |
434 | } | |
435 | } | |
436 | ||
437 | uint32_t | |
438 | CollationFastLatinBuilder::getMiniCE(int64_t ce) const { | |
439 | ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits | |
440 | int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); | |
441 | U_ASSERT(index >= 0); | |
442 | return miniCEs[index]; | |
443 | } | |
444 | ||
445 | UBool | |
446 | CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) { | |
447 | if(U_FAILURE(errorCode)) { return FALSE; } | |
448 | uprv_free(miniCEs); | |
449 | miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2); | |
450 | if(miniCEs == NULL) { | |
451 | errorCode = U_MEMORY_ALLOCATION_ERROR; | |
452 | return FALSE; | |
453 | } | |
454 | int32_t group = 1; | |
455 | uint32_t lastGroupByte = result[group]; | |
456 | // The lowest unique CE must be at least a secondary CE. | |
457 | U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0); | |
458 | uint32_t prevPrimary = 0; | |
459 | uint32_t prevSecondary = 0; | |
460 | uint32_t pri = 0; | |
461 | uint32_t sec = 0; | |
462 | uint32_t ter = CollationFastLatin::COMMON_TER; | |
463 | for(int32_t i = 0; i < uniqueCEs.size(); ++i) { | |
464 | int64_t ce = uniqueCEs.elementAti(i); | |
465 | // Note: At least one of the p/s/t weights changes from one unique CE to the next. | |
466 | // (uniqueCEs does not store case bits.) | |
467 | uint32_t p = (uint32_t)(ce >> 32); | |
468 | if(p != prevPrimary) { | |
469 | uint32_t p1 = p >> 24; | |
470 | while(p1 > lastGroupByte) { | |
471 | U_ASSERT(pri <= CollationFastLatin::MAX_LONG); | |
472 | // Add the last "long primary" in or before the group | |
473 | // into the upper 9 bits of the group entry. | |
474 | result.setCharAt(group, (UChar)((pri << 4) | lastGroupByte)); | |
475 | if(++group < headerLength) { // group is 1-based | |
476 | lastGroupByte = result[group]; | |
477 | } else { | |
478 | lastGroupByte = 0xff; | |
479 | break; | |
480 | } | |
481 | } | |
482 | if(p < firstShortPrimary) { | |
483 | if(pri == 0) { | |
484 | pri = CollationFastLatin::MIN_LONG; | |
485 | } else if(pri < CollationFastLatin::MAX_LONG) { | |
486 | pri += CollationFastLatin::LONG_INC; | |
487 | } else { | |
488 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER | |
489 | printf("long-primary overflow for %08x\n", p); | |
490 | #endif | |
491 | miniCEs[i] = CollationFastLatin::BAIL_OUT; | |
492 | continue; | |
493 | } | |
494 | } else { | |
495 | if(pri < CollationFastLatin::MIN_SHORT) { | |
496 | pri = CollationFastLatin::MIN_SHORT; | |
497 | } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) { | |
498 | // Reserve the highest primary weight for U+FFFF. | |
499 | pri += CollationFastLatin::SHORT_INC; | |
500 | } else { | |
501 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER | |
502 | printf("short-primary overflow for %08x\n", p); | |
503 | #endif | |
504 | shortPrimaryOverflow = TRUE; | |
505 | miniCEs[i] = CollationFastLatin::BAIL_OUT; | |
506 | continue; | |
507 | } | |
508 | } | |
509 | prevPrimary = p; | |
510 | prevSecondary = Collation::COMMON_WEIGHT16; | |
511 | sec = CollationFastLatin::COMMON_SEC; | |
512 | ter = CollationFastLatin::COMMON_TER; | |
513 | } | |
514 | uint32_t lower32 = (uint32_t)ce; | |
515 | uint32_t s = lower32 >> 16; | |
516 | if(s != prevSecondary) { | |
517 | if(pri == 0) { | |
518 | if(sec == 0) { | |
519 | sec = CollationFastLatin::MIN_SEC_HIGH; | |
520 | } else if(sec < CollationFastLatin::MAX_SEC_HIGH) { | |
521 | sec += CollationFastLatin::SEC_INC; | |
522 | } else { | |
523 | miniCEs[i] = CollationFastLatin::BAIL_OUT; | |
524 | continue; | |
525 | } | |
526 | prevSecondary = s; | |
527 | ter = CollationFastLatin::COMMON_TER; | |
528 | } else if(s < Collation::COMMON_WEIGHT16) { | |
529 | if(sec == CollationFastLatin::COMMON_SEC) { | |
530 | sec = CollationFastLatin::MIN_SEC_BEFORE; | |
531 | } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) { | |
532 | sec += CollationFastLatin::SEC_INC; | |
533 | } else { | |
534 | miniCEs[i] = CollationFastLatin::BAIL_OUT; | |
535 | continue; | |
536 | } | |
537 | } else if(s == Collation::COMMON_WEIGHT16) { | |
538 | sec = CollationFastLatin::COMMON_SEC; | |
539 | } else { | |
540 | if(sec < CollationFastLatin::MIN_SEC_AFTER) { | |
541 | sec = CollationFastLatin::MIN_SEC_AFTER; | |
542 | } else if(sec < CollationFastLatin::MAX_SEC_AFTER) { | |
543 | sec += CollationFastLatin::SEC_INC; | |
544 | } else { | |
545 | miniCEs[i] = CollationFastLatin::BAIL_OUT; | |
546 | continue; | |
547 | } | |
548 | } | |
549 | prevSecondary = s; | |
550 | ter = CollationFastLatin::COMMON_TER; | |
551 | } | |
552 | U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs | |
553 | uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK; | |
554 | if(t > Collation::COMMON_WEIGHT16) { | |
555 | if(ter < CollationFastLatin::MAX_TER_AFTER) { | |
556 | ++ter; | |
557 | } else { | |
558 | miniCEs[i] = CollationFastLatin::BAIL_OUT; | |
559 | continue; | |
560 | } | |
561 | } | |
562 | if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) { | |
563 | U_ASSERT(sec == CollationFastLatin::COMMON_SEC); | |
564 | miniCEs[i] = (uint16_t)(pri | ter); | |
565 | } else { | |
566 | miniCEs[i] = (uint16_t)(pri | sec | ter); | |
567 | } | |
568 | } | |
569 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER | |
570 | printf("last mini primary: %04x\n", pri); | |
571 | #endif | |
572 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2 | |
573 | for(int32_t i = 0; i < uniqueCEs.size(); ++i) { | |
574 | int64_t ce = uniqueCEs.elementAti(i); | |
575 | printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]); | |
576 | } | |
577 | #endif | |
578 | return U_SUCCESS(errorCode); | |
579 | } | |
580 | ||
581 | UBool | |
582 | CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) { | |
583 | if(U_FAILURE(errorCode)) { return FALSE; } | |
584 | int32_t miniCEsStart = result.length(); | |
585 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { | |
586 | result.append(0); // initialize to completely ignorable | |
587 | } | |
588 | int32_t indexBase = result.length(); | |
589 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { | |
590 | int64_t ce = charCEs[i][0]; | |
591 | if(isContractionCharCE(ce)) { continue; } // defer contraction | |
592 | uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]); | |
593 | if(miniCE > 0xffff) { | |
594 | // Note: There is a chance that this new expansion is the same as a previous one, | |
595 | // and if so, then we could reuse the other expansion. | |
596 | // However, that seems unlikely. | |
597 | int32_t expansionIndex = result.length() - indexBase; | |
598 | if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { | |
599 | miniCE = CollationFastLatin::BAIL_OUT; | |
600 | } else { | |
601 | result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); | |
602 | miniCE = CollationFastLatin::EXPANSION | expansionIndex; | |
603 | } | |
604 | } | |
605 | result.setCharAt(miniCEsStart + i, (UChar)miniCE); | |
606 | } | |
607 | return U_SUCCESS(errorCode); | |
608 | } | |
609 | ||
610 | UBool | |
611 | CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) { | |
612 | // We encode all contraction lists so that the first word of a list | |
613 | // terminates the previous list, and we only need one additional terminator at the end. | |
614 | if(U_FAILURE(errorCode)) { return FALSE; } | |
615 | int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS; | |
616 | int32_t firstContractionIndex = result.length(); | |
617 | for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { | |
618 | int64_t ce = charCEs[i][0]; | |
619 | if(!isContractionCharCE(ce)) { continue; } | |
620 | int32_t contractionIndex = result.length() - indexBase; | |
621 | if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { | |
622 | result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT); | |
623 | continue; | |
624 | } | |
625 | UBool firstTriple = TRUE; | |
626 | for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) { | |
627 | int32_t x = contractionCEs.elementAti(index); | |
628 | if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; } | |
629 | int64_t cce0 = contractionCEs.elementAti(index + 1); | |
630 | int64_t cce1 = contractionCEs.elementAti(index + 2); | |
631 | uint32_t miniCE = encodeTwoCEs(cce0, cce1); | |
632 | if(miniCE == CollationFastLatin::BAIL_OUT) { | |
633 | result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT))); | |
634 | } else if(miniCE <= 0xffff) { | |
635 | result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT))); | |
636 | result.append((UChar)miniCE); | |
637 | } else { | |
638 | result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT))); | |
639 | result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); | |
640 | } | |
641 | firstTriple = FALSE; | |
642 | } | |
643 | // Note: There is a chance that this new contraction list is the same as a previous one, | |
644 | // and if so, then we could truncate the result and reuse the other list. | |
645 | // However, that seems unlikely. | |
646 | result.setCharAt(headerLength + i, | |
647 | (UChar)(CollationFastLatin::CONTRACTION | contractionIndex)); | |
648 | } | |
649 | if(result.length() > firstContractionIndex) { | |
650 | // Terminate the last contraction list. | |
651 | result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK); | |
652 | } | |
653 | if(result.isBogus()) { | |
654 | errorCode = U_MEMORY_ALLOCATION_ERROR; | |
655 | return FALSE; | |
656 | } | |
657 | #if DEBUG_COLLATION_FAST_LATIN_BUILDER | |
658 | printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2); | |
659 | puts(" header & below-digit groups map"); | |
660 | int32_t i = 0; | |
661 | for(; i < headerLength; ++i) { | |
662 | printf(" %04x", result[i]); | |
663 | } | |
664 | printf("\n char mini CEs"); | |
665 | U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0); | |
666 | for(; i < indexBase; i += 16) { | |
667 | UChar32 c = i - headerLength; | |
668 | if(c >= CollationFastLatin::LATIN_LIMIT) { | |
669 | c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT; | |
670 | } | |
671 | printf("\n %04x:", c); | |
672 | for(int32_t j = 0; j < 16; ++j) { | |
673 | printf(" %04x", result[i + j]); | |
674 | } | |
675 | } | |
676 | printf("\n expansions & contractions"); | |
677 | for(; i < result.length(); ++i) { | |
678 | if((i - indexBase) % 16 == 0) { puts(""); } | |
679 | printf(" %04x", result[i]); | |
680 | } | |
681 | puts(""); | |
682 | #endif | |
683 | return TRUE; | |
684 | } | |
685 | ||
686 | uint32_t | |
687 | CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const { | |
688 | if(first == 0) { | |
689 | return 0; // completely ignorable | |
690 | } | |
691 | if(first == Collation::NO_CE) { | |
692 | return CollationFastLatin::BAIL_OUT; | |
693 | } | |
694 | U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY); | |
695 | ||
696 | uint32_t miniCE = getMiniCE(first); | |
697 | if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; } | |
698 | if(miniCE >= CollationFastLatin::MIN_SHORT) { | |
699 | // Extract & copy the case bits. | |
700 | // Shift them from normal CE bits 15..14 to mini CE bits 4..3. | |
701 | uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3)); | |
702 | // Only in mini CEs: Ignorable case bits = 0, lowercase = 1. | |
703 | c += CollationFastLatin::LOWER_CASE; | |
704 | miniCE |= c; | |
705 | } | |
706 | if(second == 0) { return miniCE; } | |
707 | ||
708 | uint32_t miniCE1 = getMiniCE(second); | |
709 | if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; } | |
710 | ||
711 | uint32_t case1 = (uint32_t)second & Collation::CASE_MASK; | |
712 | if(miniCE >= CollationFastLatin::MIN_SHORT && | |
713 | (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) { | |
714 | // Try to combine the two mini CEs into one. | |
715 | uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK; | |
716 | uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK; | |
717 | if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 && | |
718 | ter1 == CollationFastLatin::COMMON_TER) { | |
719 | // sec1>=sec_high implies pri1==0. | |
720 | return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1; | |
721 | } | |
722 | } | |
723 | ||
724 | if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) { | |
725 | // Secondary CE, or a CE with a short primary, copy the case bits. | |
726 | case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE; | |
727 | miniCE1 |= case1; | |
728 | } | |
729 | return (miniCE << 16) | miniCE1; | |
730 | } | |
731 | ||
732 | U_NAMESPACE_END | |
733 | ||
734 | #endif // !UCONFIG_NO_COLLATION |