]> git.saurik.com Git - apple/icu.git/blame - icuSources/i18n/collationfastlatinbuilder.cpp
ICU-531.31.tar.gz
[apple/icu.git] / icuSources / i18n / collationfastlatinbuilder.cpp
CommitLineData
57a6839d
A
1/*
2*******************************************************************************
3* Copyright (C) 2013-2014, International Business Machines
4* Corporation and others. All Rights Reserved.
5*******************************************************************************
6* collationfastlatinbuilder.cpp
7*
8* created on: 2013aug09
9* created by: Markus W. Scherer
10*/
11
12#define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2
13#if DEBUG_COLLATION_FAST_LATIN_BUILDER
14#include <stdio.h>
15#include <string>
16#endif
17
18#include "unicode/utypes.h"
19
20#if !UCONFIG_NO_COLLATION
21
22#include "unicode/ucol.h"
23#include "unicode/ucharstrie.h"
24#include "unicode/unistr.h"
25#include "unicode/uobject.h"
26#include "unicode/uscript.h"
27#include "cmemory.h"
28#include "collation.h"
29#include "collationdata.h"
30#include "collationfastlatin.h"
31#include "collationfastlatinbuilder.h"
32#include "uassert.h"
33#include "uvectr64.h"
34
35U_NAMESPACE_BEGIN
36
37struct CollationData;
38
39namespace {
40
41/**
42 * Compare two signed int64_t values as if they were unsigned.
43 */
44int32_t
45compareInt64AsUnsigned(int64_t a, int64_t b) {
46 if((uint64_t)a < (uint64_t)b) {
47 return -1;
48 } else if((uint64_t)a > (uint64_t)b) {
49 return 1;
50 } else {
51 return 0;
52 }
53}
54
55// TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp
56/**
57 * Like Java Collections.binarySearch(List, String, Comparator).
58 *
59 * @return the index>=0 where the item was found,
60 * or the index<0 for inserting the string at ~index in sorted order
61 */
62int32_t
63binarySearch(const int64_t list[], int32_t limit, int64_t ce) {
64 if (limit == 0) { return ~0; }
65 int32_t start = 0;
66 for (;;) {
67 int32_t i = (start + limit) / 2;
68 int32_t cmp = compareInt64AsUnsigned(ce, list[i]);
69 if (cmp == 0) {
70 return i;
71 } else if (cmp < 0) {
72 if (i == start) {
73 return ~start; // insert ce before i
74 }
75 limit = i;
76 } else {
77 if (i == start) {
78 return ~(start + 1); // insert ce after i
79 }
80 start = i;
81 }
82 }
83}
84
85} // namespace
86
87CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode)
88 : ce0(0), ce1(0),
89 contractionCEs(errorCode), uniqueCEs(errorCode),
90 miniCEs(NULL),
91 firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0),
92 firstShortPrimary(0), shortPrimaryOverflow(FALSE),
93 headerLength(0) {
94}
95
96CollationFastLatinBuilder::~CollationFastLatinBuilder() {
97 uprv_free(miniCEs);
98}
99
100UBool
101CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) {
102 if(U_FAILURE(errorCode)) { return FALSE; }
103 if(!result.isEmpty()) { // This builder is not reusable.
104 errorCode = U_INVALID_STATE_ERROR;
105 return FALSE;
106 }
107 if(!loadGroups(data, errorCode)) { return FALSE; }
108
109 // Fast handling of digits.
110 firstShortPrimary = firstDigitPrimary;
111 getCEs(data, errorCode);
112 if(!encodeUniqueCEs(errorCode)) { return FALSE; }
113 if(shortPrimaryOverflow) {
114 // Give digits long mini primaries,
115 // so that there are more short primaries for letters.
116 firstShortPrimary = firstLatinPrimary;
117 resetCEs();
118 getCEs(data, errorCode);
119 if(!encodeUniqueCEs(errorCode)) { return FALSE; }
120 }
121 // Note: If we still have a short-primary overflow but not a long-primary overflow,
122 // then we could calculate how many more long primaries would fit,
123 // and set the firstShortPrimary to that many after the current firstShortPrimary,
124 // and try again.
125 // However, this might only benefit the en_US_POSIX tailoring,
126 // and it is simpler to suppress building fast Latin data for it in genrb,
127 // or by returning FALSE here if shortPrimaryOverflow.
128
129 UBool ok = !shortPrimaryOverflow &&
130 encodeCharCEs(errorCode) && encodeContractions(errorCode);
131 contractionCEs.removeAllElements(); // might reduce heap memory usage
132 uniqueCEs.removeAllElements();
133 return ok;
134}
135
136UBool
137CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) {
138 if(U_FAILURE(errorCode)) { return FALSE; }
139 result.append(0); // reserved for version & headerLength
140 // The first few reordering groups should be special groups
141 // (space, punct, ..., digit) followed by Latn, then Grek and other scripts.
142 for(int32_t i = 0;;) {
143 if(i >= data.scriptsLength) {
144 // no Latn script
145 errorCode = U_INTERNAL_PROGRAM_ERROR;
146 return FALSE;
147 }
148 uint32_t head = data.scripts[i];
149 uint32_t lastByte = head & 0xff; // last primary byte in the group
150 int32_t group = data.scripts[i + 2];
151 if(group == UCOL_REORDER_CODE_DIGIT) {
152 firstDigitPrimary = (head & 0xff00) << 16;
153 headerLength = result.length();
154 uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength;
155 result.setCharAt(0, (UChar)r0);
156 } else if(group == USCRIPT_LATIN) {
157 if(firstDigitPrimary == 0) {
158 // no digit group
159 errorCode = U_INTERNAL_PROGRAM_ERROR;
160 return FALSE;
161 }
162 firstLatinPrimary = (head & 0xff00) << 16;
163 lastLatinPrimary = (lastByte << 24) | 0xffffff;
164 break;
165 } else if(firstDigitPrimary == 0) {
166 // a group below digits
167 if(lastByte > 0x7f) {
168 // We only use 7 bits for the last byte of a below-digits group.
169 // This does not warrant an errorCode, but we do not build a fast Latin table.
170 return FALSE;
171 }
172 result.append((UChar)lastByte);
173 }
174 i = i + 2 + data.scripts[i + 1];
175 }
176 return TRUE;
177}
178
179UBool
180CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const {
181 // Both or neither need to be encoded as short primaries,
182 // so that we can test only one and use the same bit mask.
183 if(p >= firstShortPrimary) {
184 return q >= firstShortPrimary;
185 } else if(q >= firstShortPrimary) {
186 return FALSE;
187 }
188 // Both or neither must be potentially-variable,
189 // so that we can test only one and determine if both are variable.
190 if(p >= firstDigitPrimary) {
191 return q >= firstDigitPrimary;
192 } else if(q >= firstDigitPrimary) {
193 return FALSE;
194 }
195 // Both will be encoded with long mini primaries.
196 // They must be in the same special reordering group,
197 // so that we can test only one and determine if both are variable.
198 p >>= 24; // first primary byte
199 q >>= 24;
200 U_ASSERT(p != 0 && q != 0);
201 U_ASSERT(p <= result[headerLength - 1]); // the loop will terminate
202 for(int32_t i = 1;; ++i) {
203 uint32_t lastByte = result[i];
204 if(p <= lastByte) {
205 return q <= lastByte;
206 } else if(q <= lastByte) {
207 return FALSE;
208 }
209 }
210}
211
212void
213CollationFastLatinBuilder::resetCEs() {
214 contractionCEs.removeAllElements();
215 uniqueCEs.removeAllElements();
216 shortPrimaryOverflow = FALSE;
217 result.truncate(headerLength);
218}
219
220void
221CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) {
222 if(U_FAILURE(errorCode)) { return; }
223 int32_t i = 0;
224 for(UChar c = 0;; ++i, ++c) {
225 if(c == CollationFastLatin::LATIN_LIMIT) {
226 c = CollationFastLatin::PUNCT_START;
227 } else if(c == CollationFastLatin::PUNCT_LIMIT) {
228 break;
229 }
230 const CollationData *d;
231 uint32_t ce32 = data.getCE32(c);
232 if(ce32 == Collation::FALLBACK_CE32) {
233 d = data.base;
234 ce32 = d->getCE32(c);
235 } else {
236 d = &data;
237 }
238 if(getCEsFromCE32(*d, c, ce32, errorCode)) {
239 charCEs[i][0] = ce0;
240 charCEs[i][1] = ce1;
241 addUniqueCE(ce0, errorCode);
242 addUniqueCE(ce1, errorCode);
243 } else {
244 // bail out for c
245 charCEs[i][0] = ce0 = Collation::NO_CE;
246 charCEs[i][1] = ce1 = 0;
247 }
248 if(c == 0 && !isContractionCharCE(ce0)) {
249 // Always map U+0000 to a contraction.
250 // Write a contraction list with only a default value if there is no real contraction.
251 U_ASSERT(contractionCEs.isEmpty());
252 addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode);
253 charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG;
254 charCEs[0][1] = 0;
255 }
256 }
257 // Terminate the last contraction list.
258 contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode);
259}
260
261UBool
262CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32,
263 UErrorCode &errorCode) {
264 if(U_FAILURE(errorCode)) { return FALSE; }
265 ce32 = data.getFinalCE32(ce32);
266 ce1 = 0;
267 if(Collation::isSimpleOrLongCE32(ce32)) {
268 ce0 = Collation::ceFromCE32(ce32);
269 } else {
270 switch(Collation::tagFromCE32(ce32)) {
271 case Collation::LATIN_EXPANSION_TAG:
272 ce0 = Collation::latinCE0FromCE32(ce32);
273 ce1 = Collation::latinCE1FromCE32(ce32);
274 break;
275 case Collation::EXPANSION32_TAG: {
276 const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32);
277 int32_t length = Collation::lengthFromCE32(ce32);
278 if(length <= 2) {
279 ce0 = Collation::ceFromCE32(ce32s[0]);
280 if(length == 2) {
281 ce1 = Collation::ceFromCE32(ce32s[1]);
282 }
283 break;
284 } else {
285 return FALSE;
286 }
287 }
288 case Collation::EXPANSION_TAG: {
289 const int64_t *ces = data.ces + Collation::indexFromCE32(ce32);
290 int32_t length = Collation::lengthFromCE32(ce32);
291 if(length <= 2) {
292 ce0 = ces[0];
293 if(length == 2) {
294 ce1 = ces[1];
295 }
296 break;
297 } else {
298 return FALSE;
299 }
300 }
301 // Note: We could support PREFIX_TAG (assert c>=0)
302 // by recursing on its default CE32 and checking that none of the prefixes starts
303 // with a fast Latin character.
304 // However, currently (2013) there are only the L-before-middle-dot
305 // prefix mappings in the Latin range, and those would be rejected anyway.
306 case Collation::CONTRACTION_TAG:
307 U_ASSERT(c >= 0);
308 return getCEsFromContractionCE32(data, ce32, errorCode);
309 case Collation::OFFSET_TAG:
310 U_ASSERT(c >= 0);
311 ce0 = data.getCEFromOffsetCE32(c, ce32);
312 break;
313 default:
314 return FALSE;
315 }
316 }
317 // A mapping can be completely ignorable.
318 if(ce0 == 0) { return ce1 == 0; }
319 // We do not support an ignorable ce0 unless it is completely ignorable.
320 uint32_t p0 = (uint32_t)(ce0 >> 32);
321 if(p0 == 0) { return FALSE; }
322 // We only support primaries up to the Latin script.
323 if(p0 > lastLatinPrimary) { return FALSE; }
324 // We support non-common secondary and case weights only together with short primaries.
325 uint32_t lower32_0 = (uint32_t)ce0;
326 if(p0 < firstShortPrimary) {
327 uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK;
328 if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; }
329 }
330 // No below-common tertiary weights.
331 if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; }
332 if(ce1 != 0) {
333 // Both primaries must be in the same group,
334 // or both must get short mini primaries,
335 // or a short-primary CE is followed by a secondary CE.
336 // This is so that we can test the first primary and use the same mask for both,
337 // and determine for both whether they are variable.
338 uint32_t p1 = (uint32_t)(ce1 >> 32);
339 if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; }
340 uint32_t lower32_1 = (uint32_t)ce1;
341 // No tertiary CEs.
342 if((lower32_1 >> 16) == 0) { return FALSE; }
343 // We support non-common secondary and case weights
344 // only for secondary CEs or together with short primaries.
345 if(p1 != 0 && p1 < firstShortPrimary) {
346 uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK;
347 if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; }
348 }
349 // No below-common tertiary weights.
350 if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; }
351 }
352 // No quaternary weights.
353 if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; }
354 return TRUE;
355}
356
357UBool
358CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32,
359 UErrorCode &errorCode) {
360 if(U_FAILURE(errorCode)) { return FALSE; }
361 const UChar *p = data.contexts + Collation::indexFromCE32(ce32);
362 ce32 = CollationData::readCE32(p); // Default if no suffix match.
363 // Since the original ce32 is not a prefix mapping,
364 // the default ce32 must not be another contraction.
365 U_ASSERT(!Collation::isContractionCE32(ce32));
366 int32_t contractionIndex = contractionCEs.size();
367 if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) {
368 addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode);
369 } else {
370 // Bail out for c-without-contraction.
371 addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode);
372 }
373 // Handle an encodable contraction unless the next contraction is too long
374 // and starts with the same character.
375 int32_t prevX = -1;
376 UBool addContraction = FALSE;
377 UCharsTrie::Iterator suffixes(p + 2, 0, errorCode);
378 while(suffixes.next(errorCode)) {
379 const UnicodeString &suffix = suffixes.getString();
380 int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0));
381 if(x < 0) { continue; } // ignore anything but fast Latin text
382 if(x == prevX) {
383 if(addContraction) {
384 // Bail out for all contractions starting with this character.
385 addContractionEntry(x, Collation::NO_CE, 0, errorCode);
386 addContraction = FALSE;
387 }
388 continue;
389 }
390 if(addContraction) {
391 addContractionEntry(prevX, ce0, ce1, errorCode);
392 }
393 ce32 = (uint32_t)suffixes.getValue();
394 if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) {
395 addContraction = TRUE;
396 } else {
397 addContractionEntry(x, Collation::NO_CE, 0, errorCode);
398 addContraction = FALSE;
399 }
400 prevX = x;
401 }
402 if(addContraction) {
403 addContractionEntry(prevX, ce0, ce1, errorCode);
404 }
405 if(U_FAILURE(errorCode)) { return FALSE; }
406 // Note: There might not be any fast Latin contractions, but
407 // we need to enter contraction handling anyway so that we can bail out
408 // when there is a non-fast-Latin character following.
409 // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the
410 // following umlaut and bail out, rather than return the difference of Y vs. u.
411 ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex;
412 ce1 = 0;
413 return TRUE;
414}
415
416void
417CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1,
418 UErrorCode &errorCode) {
419 contractionCEs.addElement(x, errorCode);
420 contractionCEs.addElement(cce0, errorCode);
421 contractionCEs.addElement(cce1, errorCode);
422 addUniqueCE(cce0, errorCode);
423 addUniqueCE(cce1, errorCode);
424}
425
426void
427CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) {
428 if(U_FAILURE(errorCode)) { return; }
429 if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; }
430 ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits
431 int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
432 if(i < 0) {
433 uniqueCEs.insertElementAt(ce, ~i, errorCode);
434 }
435}
436
437uint32_t
438CollationFastLatinBuilder::getMiniCE(int64_t ce) const {
439 ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits
440 int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
441 U_ASSERT(index >= 0);
442 return miniCEs[index];
443}
444
445UBool
446CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) {
447 if(U_FAILURE(errorCode)) { return FALSE; }
448 uprv_free(miniCEs);
449 miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2);
450 if(miniCEs == NULL) {
451 errorCode = U_MEMORY_ALLOCATION_ERROR;
452 return FALSE;
453 }
454 int32_t group = 1;
455 uint32_t lastGroupByte = result[group];
456 // The lowest unique CE must be at least a secondary CE.
457 U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0);
458 uint32_t prevPrimary = 0;
459 uint32_t prevSecondary = 0;
460 uint32_t pri = 0;
461 uint32_t sec = 0;
462 uint32_t ter = CollationFastLatin::COMMON_TER;
463 for(int32_t i = 0; i < uniqueCEs.size(); ++i) {
464 int64_t ce = uniqueCEs.elementAti(i);
465 // Note: At least one of the p/s/t weights changes from one unique CE to the next.
466 // (uniqueCEs does not store case bits.)
467 uint32_t p = (uint32_t)(ce >> 32);
468 if(p != prevPrimary) {
469 uint32_t p1 = p >> 24;
470 while(p1 > lastGroupByte) {
471 U_ASSERT(pri <= CollationFastLatin::MAX_LONG);
472 // Add the last "long primary" in or before the group
473 // into the upper 9 bits of the group entry.
474 result.setCharAt(group, (UChar)((pri << 4) | lastGroupByte));
475 if(++group < headerLength) { // group is 1-based
476 lastGroupByte = result[group];
477 } else {
478 lastGroupByte = 0xff;
479 break;
480 }
481 }
482 if(p < firstShortPrimary) {
483 if(pri == 0) {
484 pri = CollationFastLatin::MIN_LONG;
485 } else if(pri < CollationFastLatin::MAX_LONG) {
486 pri += CollationFastLatin::LONG_INC;
487 } else {
488#if DEBUG_COLLATION_FAST_LATIN_BUILDER
489 printf("long-primary overflow for %08x\n", p);
490#endif
491 miniCEs[i] = CollationFastLatin::BAIL_OUT;
492 continue;
493 }
494 } else {
495 if(pri < CollationFastLatin::MIN_SHORT) {
496 pri = CollationFastLatin::MIN_SHORT;
497 } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) {
498 // Reserve the highest primary weight for U+FFFF.
499 pri += CollationFastLatin::SHORT_INC;
500 } else {
501#if DEBUG_COLLATION_FAST_LATIN_BUILDER
502 printf("short-primary overflow for %08x\n", p);
503#endif
504 shortPrimaryOverflow = TRUE;
505 miniCEs[i] = CollationFastLatin::BAIL_OUT;
506 continue;
507 }
508 }
509 prevPrimary = p;
510 prevSecondary = Collation::COMMON_WEIGHT16;
511 sec = CollationFastLatin::COMMON_SEC;
512 ter = CollationFastLatin::COMMON_TER;
513 }
514 uint32_t lower32 = (uint32_t)ce;
515 uint32_t s = lower32 >> 16;
516 if(s != prevSecondary) {
517 if(pri == 0) {
518 if(sec == 0) {
519 sec = CollationFastLatin::MIN_SEC_HIGH;
520 } else if(sec < CollationFastLatin::MAX_SEC_HIGH) {
521 sec += CollationFastLatin::SEC_INC;
522 } else {
523 miniCEs[i] = CollationFastLatin::BAIL_OUT;
524 continue;
525 }
526 prevSecondary = s;
527 ter = CollationFastLatin::COMMON_TER;
528 } else if(s < Collation::COMMON_WEIGHT16) {
529 if(sec == CollationFastLatin::COMMON_SEC) {
530 sec = CollationFastLatin::MIN_SEC_BEFORE;
531 } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) {
532 sec += CollationFastLatin::SEC_INC;
533 } else {
534 miniCEs[i] = CollationFastLatin::BAIL_OUT;
535 continue;
536 }
537 } else if(s == Collation::COMMON_WEIGHT16) {
538 sec = CollationFastLatin::COMMON_SEC;
539 } else {
540 if(sec < CollationFastLatin::MIN_SEC_AFTER) {
541 sec = CollationFastLatin::MIN_SEC_AFTER;
542 } else if(sec < CollationFastLatin::MAX_SEC_AFTER) {
543 sec += CollationFastLatin::SEC_INC;
544 } else {
545 miniCEs[i] = CollationFastLatin::BAIL_OUT;
546 continue;
547 }
548 }
549 prevSecondary = s;
550 ter = CollationFastLatin::COMMON_TER;
551 }
552 U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs
553 uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK;
554 if(t > Collation::COMMON_WEIGHT16) {
555 if(ter < CollationFastLatin::MAX_TER_AFTER) {
556 ++ter;
557 } else {
558 miniCEs[i] = CollationFastLatin::BAIL_OUT;
559 continue;
560 }
561 }
562 if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) {
563 U_ASSERT(sec == CollationFastLatin::COMMON_SEC);
564 miniCEs[i] = (uint16_t)(pri | ter);
565 } else {
566 miniCEs[i] = (uint16_t)(pri | sec | ter);
567 }
568 }
569#if DEBUG_COLLATION_FAST_LATIN_BUILDER
570 printf("last mini primary: %04x\n", pri);
571#endif
572#if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2
573 for(int32_t i = 0; i < uniqueCEs.size(); ++i) {
574 int64_t ce = uniqueCEs.elementAti(i);
575 printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]);
576 }
577#endif
578 return U_SUCCESS(errorCode);
579}
580
581UBool
582CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) {
583 if(U_FAILURE(errorCode)) { return FALSE; }
584 int32_t miniCEsStart = result.length();
585 for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
586 result.append(0); // initialize to completely ignorable
587 }
588 int32_t indexBase = result.length();
589 for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
590 int64_t ce = charCEs[i][0];
591 if(isContractionCharCE(ce)) { continue; } // defer contraction
592 uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]);
593 if(miniCE > 0xffff) {
594 // Note: There is a chance that this new expansion is the same as a previous one,
595 // and if so, then we could reuse the other expansion.
596 // However, that seems unlikely.
597 int32_t expansionIndex = result.length() - indexBase;
598 if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) {
599 miniCE = CollationFastLatin::BAIL_OUT;
600 } else {
601 result.append((UChar)(miniCE >> 16)).append((UChar)miniCE);
602 miniCE = CollationFastLatin::EXPANSION | expansionIndex;
603 }
604 }
605 result.setCharAt(miniCEsStart + i, (UChar)miniCE);
606 }
607 return U_SUCCESS(errorCode);
608}
609
610UBool
611CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) {
612 // We encode all contraction lists so that the first word of a list
613 // terminates the previous list, and we only need one additional terminator at the end.
614 if(U_FAILURE(errorCode)) { return FALSE; }
615 int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS;
616 int32_t firstContractionIndex = result.length();
617 for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
618 int64_t ce = charCEs[i][0];
619 if(!isContractionCharCE(ce)) { continue; }
620 int32_t contractionIndex = result.length() - indexBase;
621 if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) {
622 result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT);
623 continue;
624 }
625 UBool firstTriple = TRUE;
626 for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) {
627 int32_t x = contractionCEs.elementAti(index);
628 if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; }
629 int64_t cce0 = contractionCEs.elementAti(index + 1);
630 int64_t cce1 = contractionCEs.elementAti(index + 2);
631 uint32_t miniCE = encodeTwoCEs(cce0, cce1);
632 if(miniCE == CollationFastLatin::BAIL_OUT) {
633 result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
634 } else if(miniCE <= 0xffff) {
635 result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
636 result.append((UChar)miniCE);
637 } else {
638 result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
639 result.append((UChar)(miniCE >> 16)).append((UChar)miniCE);
640 }
641 firstTriple = FALSE;
642 }
643 // Note: There is a chance that this new contraction list is the same as a previous one,
644 // and if so, then we could truncate the result and reuse the other list.
645 // However, that seems unlikely.
646 result.setCharAt(headerLength + i,
647 (UChar)(CollationFastLatin::CONTRACTION | contractionIndex));
648 }
649 if(result.length() > firstContractionIndex) {
650 // Terminate the last contraction list.
651 result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK);
652 }
653 if(result.isBogus()) {
654 errorCode = U_MEMORY_ALLOCATION_ERROR;
655 return FALSE;
656 }
657#if DEBUG_COLLATION_FAST_LATIN_BUILDER
658 printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2);
659 puts(" header & below-digit groups map");
660 int32_t i = 0;
661 for(; i < headerLength; ++i) {
662 printf(" %04x", result[i]);
663 }
664 printf("\n char mini CEs");
665 U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0);
666 for(; i < indexBase; i += 16) {
667 UChar32 c = i - headerLength;
668 if(c >= CollationFastLatin::LATIN_LIMIT) {
669 c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT;
670 }
671 printf("\n %04x:", c);
672 for(int32_t j = 0; j < 16; ++j) {
673 printf(" %04x", result[i + j]);
674 }
675 }
676 printf("\n expansions & contractions");
677 for(; i < result.length(); ++i) {
678 if((i - indexBase) % 16 == 0) { puts(""); }
679 printf(" %04x", result[i]);
680 }
681 puts("");
682#endif
683 return TRUE;
684}
685
686uint32_t
687CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const {
688 if(first == 0) {
689 return 0; // completely ignorable
690 }
691 if(first == Collation::NO_CE) {
692 return CollationFastLatin::BAIL_OUT;
693 }
694 U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY);
695
696 uint32_t miniCE = getMiniCE(first);
697 if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; }
698 if(miniCE >= CollationFastLatin::MIN_SHORT) {
699 // Extract & copy the case bits.
700 // Shift them from normal CE bits 15..14 to mini CE bits 4..3.
701 uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3));
702 // Only in mini CEs: Ignorable case bits = 0, lowercase = 1.
703 c += CollationFastLatin::LOWER_CASE;
704 miniCE |= c;
705 }
706 if(second == 0) { return miniCE; }
707
708 uint32_t miniCE1 = getMiniCE(second);
709 if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; }
710
711 uint32_t case1 = (uint32_t)second & Collation::CASE_MASK;
712 if(miniCE >= CollationFastLatin::MIN_SHORT &&
713 (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) {
714 // Try to combine the two mini CEs into one.
715 uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK;
716 uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK;
717 if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 &&
718 ter1 == CollationFastLatin::COMMON_TER) {
719 // sec1>=sec_high implies pri1==0.
720 return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1;
721 }
722 }
723
724 if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) {
725 // Secondary CE, or a CE with a short primary, copy the case bits.
726 case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE;
727 miniCE1 |= case1;
728 }
729 return (miniCE << 16) | miniCE1;
730}
731
732U_NAMESPACE_END
733
734#endif // !UCONFIG_NO_COLLATION