]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
3 | * | |
51004dcb | 4 | * Copyright (C) 2000-2013, International Business Machines |
b75a7d8f A |
5 | * Corporation and others. All Rights Reserved. |
6 | * | |
7 | ****************************************************************************** | |
8 | * file name: ucnvmbcs.c | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2000jul03 | |
14 | * created by: Markus W. Scherer | |
15 | * | |
16 | * The current code in this file replaces the previous implementation | |
17 | * of conversion code from multi-byte codepages to Unicode and back. | |
18 | * This implementation supports the following: | |
19 | * - legacy variable-length codepages with up to 4 bytes per character | |
20 | * - all Unicode code points (up to 0x10ffff) | |
21 | * - efficient distinction of unassigned vs. illegal byte sequences | |
22 | * - it is possible in fromUnicode() to directly deal with simple | |
23 | * stateful encodings (used for EBCDIC_STATEFUL) | |
374ca955 | 24 | * - it is possible to convert Unicode code points |
b75a7d8f A |
25 | * to a single zero byte (but not as a fallback except for SBCS) |
26 | * | |
27 | * Remaining limitations in fromUnicode: | |
28 | * - byte sequences must not have leading zero bytes | |
29 | * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte | |
30 | * - limitation to up to 4 bytes per character | |
31 | * | |
374ca955 A |
32 | * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these |
33 | * limitations and adds m:n character mappings and other features. | |
34 | * See ucnv_ext.h for details. | |
35 | * | |
b75a7d8f A |
36 | * Change history: |
37 | * | |
38 | * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, | |
39 | * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 | |
40 | * macros to ucnvmbcs.h file | |
41 | */ | |
42 | ||
43 | #include "unicode/utypes.h" | |
44 | ||
374ca955 | 45 | #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION |
b75a7d8f A |
46 | |
47 | #include "unicode/ucnv.h" | |
48 | #include "unicode/ucnv_cb.h" | |
49 | #include "unicode/udata.h" | |
50 | #include "unicode/uset.h" | |
4388f060 A |
51 | #include "unicode/utf8.h" |
52 | #include "unicode/utf16.h" | |
b75a7d8f A |
53 | #include "ucnv_bld.h" |
54 | #include "ucnvmbcs.h" | |
374ca955 | 55 | #include "ucnv_ext.h" |
b75a7d8f | 56 | #include "ucnv_cnv.h" |
b75a7d8f A |
57 | #include "cmemory.h" |
58 | #include "cstring.h" | |
51004dcb | 59 | #include "umutex.h" |
b75a7d8f A |
60 | |
61 | /* control optimizations according to the platform */ | |
62 | #define MBCS_UNROLL_SINGLE_TO_BMP 1 | |
63 | #define MBCS_UNROLL_SINGLE_FROM_BMP 0 | |
64 | ||
65 | /* | |
46f4442e | 66 | * _MBCSHeader versions 5.3 & 4.3 |
b75a7d8f A |
67 | * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) |
68 | * | |
46f4442e A |
69 | * This version is optional. Version 5 is used for incompatible data format changes. |
70 | * makeconv will continue to generate version 4 files if possible. | |
71 | * | |
72 | * Changes from version 4: | |
73 | * | |
74 | * The main difference is an additional _MBCSHeader field with | |
75 | * - the length (number of uint32_t) of the _MBCSHeader | |
76 | * - flags for further incompatible data format changes | |
77 | * - flags for further, backward compatible data format changes | |
78 | * | |
79 | * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from | |
80 | * the file and needs to be reconstituted at load time. | |
81 | * This requires a utf8Friendly format with an additional mbcsIndex table for fast | |
82 | * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar. | |
83 | * (For details about these structures see below, and see ucnvmbcs.h.) | |
84 | * | |
85 | * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order | |
86 | * of the Unicode code points. (This requires that the .ucm file has the |0 etc. | |
87 | * precision markers for all mappings.) | |
88 | * | |
89 | * All fallbacks have been moved to the extension table, leaving only roundtrips in the | |
90 | * omitted data that can be reconstituted from the toUnicode data. | |
91 | * | |
92 | * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted. | |
93 | * With only roundtrip mappings in the base fromUnicode data, this part is fully | |
94 | * redundant with the mbcsIndex and will be reconstituted from that (also using the | |
95 | * stage 1 table which contains the information about how stage 2 was compacted). | |
96 | * | |
97 | * The rest of the stage 2 table, the part for code points above maxFastUChar, | |
98 | * is stored in the file and will be appended to the reconstituted part. | |
99 | * | |
100 | * The entire fromUBytes array is omitted from the file and will be reconstitued. | |
101 | * This is done by enumerating all toUnicode roundtrip mappings, performing | |
102 | * each mapping (using the stage 1 and reconstituted stage 2 tables) and | |
103 | * writing instead of reading the byte values. | |
104 | * | |
105 | * _MBCSHeader version 4.3 | |
106 | * | |
107 | * Change from version 4.2: | |
108 | * - Optional utf8Friendly data structures, with 64-entry stage 3 block | |
109 | * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS | |
110 | * files which can be used instead of stages 1 & 2. | |
111 | * Faster lookups for roundtrips from most commonly used characters, | |
112 | * and lookups from UTF-8 byte sequences with a natural bit distribution. | |
113 | * See ucnvmbcs.h for more details. | |
114 | * | |
374ca955 A |
115 | * Change from version 4.1: |
116 | * - Added an optional extension table structure at the end of the .cnv file. | |
117 | * It is present if the upper bits of the header flags field contains a non-zero | |
118 | * byte offset to it. | |
119 | * Files that contain only a conversion table and no base table | |
120 | * use the special outputType MBCS_OUTPUT_EXT_ONLY. | |
121 | * These contain the base table name between the MBCS header and the extension | |
122 | * data. | |
123 | * | |
b75a7d8f A |
124 | * Change from version 4.0: |
125 | * - Replace header.reserved with header.fromUBytesLength so that all | |
126 | * fields in the data have length. | |
127 | * | |
128 | * Changes from version 3 (for performance improvements): | |
129 | * - new bit distribution for state table entries | |
130 | * - reordered action codes | |
131 | * - new data structure for single-byte fromUnicode | |
132 | * + stage 2 only contains indexes | |
133 | * + stage 3 stores 16 bits per character with classification bits 15..8 | |
134 | * - no multiplier for stage 1 entries | |
135 | * - stage 2 for non-single-byte codepages contains the index and the flags in | |
136 | * one 32-bit value | |
137 | * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers | |
138 | * | |
139 | * For more details about old versions of the MBCS data structure, see | |
140 | * the corresponding versions of this file. | |
141 | * | |
142 | * Converting stateless codepage data ---------------------------------------*** | |
143 | * (or codepage data with simple states) to Unicode. | |
144 | * | |
145 | * Data structure and algorithm for converting from complex legacy codepages | |
146 | * to Unicode. (Designed before 2000-may-22.) | |
147 | * | |
148 | * The basic idea is that the structure of legacy codepages can be described | |
149 | * with state tables. | |
150 | * When reading a byte stream, each input byte causes a state transition. | |
151 | * Some transitions result in the output of a code point, some result in | |
152 | * "unassigned" or "illegal" output. | |
153 | * This is used here for character conversion. | |
154 | * | |
155 | * The data structure begins with a state table consisting of a row | |
156 | * per state, with 256 entries (columns) per row for each possible input | |
157 | * byte value. | |
158 | * Each entry is 32 bits wide, with two formats distinguished by | |
159 | * the sign bit (bit 31): | |
160 | * | |
161 | * One format for transitional entries (bit 31 not set) for non-final bytes, and | |
162 | * one format for final entries (bit 31 set). | |
163 | * Both formats contain the number of the next state in the same bit | |
164 | * positions. | |
165 | * State 0 is the initial state. | |
166 | * | |
167 | * Most of the time, the offset values of subsequent states are added | |
168 | * up to a scalar value. This value will eventually be the index of | |
169 | * the Unicode code point in a table that follows the state table. | |
170 | * The effect is that the code points for final state table rows | |
171 | * are contiguous. The code points of final state rows follow each other | |
172 | * in the order of the references to those final states by previous | |
173 | * states, etc. | |
174 | * | |
175 | * For some terminal states, the offset is itself the output Unicode | |
176 | * code point (16 bits for a BMP code point or 20 bits for a supplementary | |
177 | * code point (stored as code point minus 0x10000 so that 20 bits are enough). | |
178 | * For others, the code point in the Unicode table is stored with either | |
179 | * one or two code units: one for BMP code points, two for a pair of | |
180 | * surrogates. | |
181 | * All code points for a final state entry take up the same number of code | |
182 | * units, regardless of whether they all actually _use_ the same number | |
183 | * of code units. This is necessary for simple array access. | |
184 | * | |
185 | * An additional feature comes in with what in ICU is called "fallback" | |
186 | * mappings: | |
187 | * | |
188 | * In addition to round-trippable, precise, 1:1 mappings, there are often | |
189 | * mappings defined between similar, though not the same, characters. | |
190 | * Typically, such mappings occur only in fromUnicode mapping tables because | |
191 | * Unicode has a superset repertoire of most other codepages. However, it | |
192 | * is possible to provide such mappings in the toUnicode tables, too. | |
193 | * In this case, the fallback mappings are partly integrated into the | |
194 | * general state tables because the structure of the encoding includes their | |
195 | * byte sequences. | |
196 | * For final entries in an initial state, fallback mappings are stored in | |
197 | * the entry itself like with roundtrip mappings. | |
198 | * For other final entries, they are stored in the code units table if | |
199 | * the entry is for a pair of code units. | |
200 | * For single-unit results in the code units table, there is no space to | |
201 | * alternatively hold a fallback mapping; in this case, the code unit | |
202 | * is stored as U+fffe (unassigned), and the fallback mapping needs to | |
203 | * be looked up by the scalar offset value in a separate table. | |
204 | * | |
205 | * "Unassigned" state entries really mean "structurally unassigned", | |
206 | * i.e., such a byte sequence will never have a mapping result. | |
207 | * | |
208 | * The interpretation of the bits in each entry is as follows: | |
209 | * | |
210 | * Bit 31 not set, not a terminal entry ("transitional"): | |
211 | * 30..24 next state | |
212 | * 23..0 offset delta, to be added up | |
213 | * | |
214 | * Bit 31 set, terminal ("final") entry: | |
215 | * 30..24 next state (regardless of action code) | |
216 | * 23..20 action code: | |
217 | * action codes 0 and 1 result in precise-mapping Unicode code points | |
218 | * 0 valid byte sequence | |
219 | * 19..16 not used, 0 | |
220 | * 15..0 16-bit Unicode BMP code point | |
221 | * never U+fffe or U+ffff | |
222 | * 1 valid byte sequence | |
223 | * 19..0 20-bit Unicode supplementary code point | |
224 | * never U+fffe or U+ffff | |
225 | * | |
226 | * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points | |
227 | * 2 valid byte sequence (fallback) | |
228 | * 19..16 not used, 0 | |
229 | * 15..0 16-bit Unicode BMP code point as fallback result | |
230 | * 3 valid byte sequence (fallback) | |
231 | * 19..0 20-bit Unicode supplementary code point as fallback result | |
232 | * | |
233 | * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results | |
234 | * depending on the code units they result in | |
235 | * 4 valid byte sequence | |
236 | * 19..9 not used, 0 | |
237 | * 8..0 final offset delta | |
238 | * pointing to one 16-bit code unit which may be | |
239 | * fffe unassigned -- look for a fallback for this offset | |
240 | * ffff illegal | |
241 | * 5 valid byte sequence | |
242 | * 19..9 not used, 0 | |
243 | * 8..0 final offset delta | |
244 | * pointing to two 16-bit code units | |
245 | * (typically UTF-16 surrogates) | |
246 | * the result depends on the first code unit as follows: | |
247 | * 0000..d7ff roundtrip BMP code point (1st alone) | |
248 | * d800..dbff roundtrip surrogate pair (1st, 2nd) | |
249 | * dc00..dfff fallback surrogate pair (1st-400, 2nd) | |
250 | * e000 roundtrip BMP code point (2nd alone) | |
251 | * e001 fallback BMP code point (2nd alone) | |
252 | * fffe unassigned | |
253 | * ffff illegal | |
254 | * (the final offset deltas are at most 255 * 2, | |
255 | * times 2 because of storing code unit pairs) | |
256 | * | |
257 | * 6 unassigned byte sequence | |
258 | * 19..16 not used, 0 | |
259 | * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) | |
260 | * this does not contain a final offset delta because the main | |
261 | * purpose of this action code is to save scalar offset values; | |
262 | * therefore, fallback values cannot be assigned to byte | |
263 | * sequences that result in this action code | |
264 | * 7 illegal byte sequence | |
265 | * 19..16 not used, 0 | |
266 | * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) | |
267 | * 8 state change only | |
268 | * 19..0 not used, 0 | |
269 | * useful for state changes in simple stateful encodings, | |
270 | * at Shift-In/Shift-Out codes | |
271 | * | |
272 | * | |
273 | * 9..15 reserved for future use | |
274 | * current implementations will only perform a state change | |
275 | * and ignore bits 19..0 | |
276 | * | |
277 | * An encoding with contiguous ranges of unassigned byte sequences, like | |
278 | * Shift-JIS and especially EUC-TW, can be stored efficiently by having | |
279 | * at least two states for the trail bytes: | |
280 | * One trail byte state that results in code points, and one that only | |
281 | * has "unassigned" and "illegal" terminal states. | |
282 | * | |
46f4442e | 283 | * Note: partly by accident, this data structure supports simple stateful |
b75a7d8f A |
284 | * encodings without any additional logic. |
285 | * Currently, only simple Shift-In/Shift-Out schemes are handled with | |
286 | * appropriate state tables (especially EBCDIC_STATEFUL!). | |
287 | * | |
288 | * MBCS version 2 added: | |
289 | * unassigned and illegal action codes have U+fffe and U+ffff | |
290 | * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() | |
291 | * | |
292 | * Converting from Unicode to codepage bytes --------------------------------*** | |
293 | * | |
294 | * The conversion data structure for fromUnicode is designed for the known | |
295 | * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to | |
296 | * a sequence of 1..4 bytes, in addition to a flag that indicates if there is | |
297 | * a roundtrip mapping. | |
298 | * | |
299 | * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 | |
300 | * like in the character properties table. | |
301 | * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 | |
302 | * with the resulting bytes is at offsetFromUBytes. | |
303 | * | |
304 | * Beginning with version 4, single-byte codepages have a significantly different | |
305 | * trie compared to other codepages. | |
306 | * In all cases, the entry in stage 1 is directly the index of the block of | |
307 | * 64 entries in stage 2. | |
308 | * | |
309 | * Single-byte lookup: | |
310 | * | |
311 | * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. | |
312 | * Stage 3 contains one 16-bit word per result: | |
313 | * Bits 15..8 indicate the kind of result: | |
314 | * f roundtrip result | |
315 | * c fallback result from private-use code point | |
316 | * 8 fallback result from other code points | |
317 | * 0 unassigned | |
318 | * Bits 7..0 contain the codepage byte. A zero byte is always possible. | |
319 | * | |
46f4442e A |
320 | * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly |
321 | * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup | |
322 | * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. | |
323 | * ASCII code points can be looked up with a linear array access into stage 3. | |
324 | * See maxFastUChar and other details in ucnvmbcs.h. | |
325 | * | |
b75a7d8f A |
326 | * Multi-byte lookup: |
327 | * | |
328 | * Stage 2 contains a 32-bit word for each 16-block in stage 3: | |
329 | * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results | |
330 | * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) | |
331 | * If this test is false, then a non-zero result will be interpreted as | |
332 | * a fallback mapping. | |
333 | * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) | |
334 | * | |
335 | * Stage 3 contains 2, 3, or 4 bytes per result. | |
336 | * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, | |
337 | * while 3 bytes are stored as bytes in big-endian order. | |
338 | * Leading zero bytes are ignored, and the number of bytes is counted. | |
339 | * A zero byte mapping result is possible as a roundtrip result. | |
340 | * For some output types, the actual result is processed from this; | |
374ca955 | 341 | * see ucnv_MBCSFromUnicodeWithOffsets(). |
b75a7d8f A |
342 | * |
343 | * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), | |
344 | * or (version 3 and up) for BMP-only codepages, it contains 64 entries. | |
345 | * | |
46f4442e A |
346 | * In version 4.3, a utf8Friendly file contains an mbcsIndex table. |
347 | * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup | |
348 | * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. | |
349 | * ASCII code points can be looked up with a linear array access into stage 3. | |
350 | * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. | |
351 | * | |
b75a7d8f A |
352 | * In version 3, stage 2 blocks may overlap by multiples of the multiplier |
353 | * for compaction. | |
354 | * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) | |
355 | * may overlap by any number of entries. | |
356 | * | |
357 | * MBCS version 2 added: | |
358 | * the converter checks for known output types, which allows | |
359 | * adding new ones without crashing an unaware converter | |
360 | */ | |
361 | ||
46f4442e A |
362 | static const UConverterImpl _SBCSUTF8Impl; |
363 | static const UConverterImpl _DBCSUTF8Impl; | |
b75a7d8f A |
364 | |
365 | /* GB 18030 data ------------------------------------------------------------ */ | |
366 | ||
367 | /* helper macros for linear values for GB 18030 four-byte sequences */ | |
368 | #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) | |
369 | ||
370 | #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) | |
371 | ||
372 | #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) | |
373 | ||
374 | /* | |
375 | * Some ranges of GB 18030 where both the Unicode code points and the | |
376 | * GB four-byte sequences are contiguous and are handled algorithmically by | |
377 | * the special callback functions below. | |
378 | * The values are start & end of Unicode & GB codes. | |
379 | * | |
380 | * Note that single surrogates are not mapped by GB 18030 | |
381 | * as of the re-released mapping tables from 2000-nov-30. | |
382 | */ | |
383 | static const uint32_t | |
4388f060 | 384 | gb18030Ranges[14][4]={ |
b75a7d8f A |
385 | {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, |
386 | {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, | |
4388f060 A |
387 | {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)}, |
388 | {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)}, | |
b75a7d8f A |
389 | {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, |
390 | {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, | |
391 | {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, | |
392 | {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, | |
393 | {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, | |
394 | {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, | |
395 | {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, | |
396 | {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, | |
397 | {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, | |
398 | {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} | |
399 | }; | |
400 | ||
401 | /* bit flag for UConverter.options indicating GB 18030 special handling */ | |
402 | #define _MBCS_OPTION_GB18030 0x8000 | |
403 | ||
729e4ab9 A |
404 | /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ |
405 | #define _MBCS_OPTION_KEIS 0x01000 | |
406 | #define _MBCS_OPTION_JEF 0x02000 | |
407 | #define _MBCS_OPTION_JIPS 0x04000 | |
408 | ||
409 | #define KEIS_SO_CHAR_1 0x0A | |
410 | #define KEIS_SO_CHAR_2 0x42 | |
411 | #define KEIS_SI_CHAR_1 0x0A | |
412 | #define KEIS_SI_CHAR_2 0x41 | |
413 | ||
414 | #define JEF_SO_CHAR 0x28 | |
415 | #define JEF_SI_CHAR 0x29 | |
416 | ||
417 | #define JIPS_SO_CHAR_1 0x1A | |
418 | #define JIPS_SO_CHAR_2 0x70 | |
419 | #define JIPS_SI_CHAR_1 0x1A | |
420 | #define JIPS_SI_CHAR_2 0x71 | |
421 | ||
422 | enum SISO_Option { | |
423 | SI, | |
424 | SO | |
425 | }; | |
426 | typedef enum SISO_Option SISO_Option; | |
427 | ||
428 | static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) { | |
429 | int32_t SISOLength = 0; | |
430 | ||
431 | switch (option) { | |
432 | case SI: | |
433 | if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { | |
434 | value[0] = KEIS_SI_CHAR_1; | |
435 | value[1] = KEIS_SI_CHAR_2; | |
436 | SISOLength = 2; | |
437 | } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { | |
438 | value[0] = JEF_SI_CHAR; | |
439 | SISOLength = 1; | |
440 | } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { | |
441 | value[0] = JIPS_SI_CHAR_1; | |
442 | value[1] = JIPS_SI_CHAR_2; | |
443 | SISOLength = 2; | |
444 | } else { | |
445 | value[0] = UCNV_SI; | |
446 | SISOLength = 1; | |
447 | } | |
448 | break; | |
449 | case SO: | |
450 | if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { | |
451 | value[0] = KEIS_SO_CHAR_1; | |
452 | value[1] = KEIS_SO_CHAR_2; | |
453 | SISOLength = 2; | |
454 | } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { | |
455 | value[0] = JEF_SO_CHAR; | |
456 | SISOLength = 1; | |
457 | } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { | |
458 | value[0] = JIPS_SO_CHAR_1; | |
459 | value[1] = JIPS_SO_CHAR_2; | |
460 | SISOLength = 2; | |
461 | } else { | |
462 | value[0] = UCNV_SO; | |
463 | SISOLength = 1; | |
464 | } | |
465 | break; | |
466 | default: | |
467 | /* Should never happen. */ | |
468 | break; | |
469 | } | |
470 | ||
471 | return SISOLength; | |
472 | } | |
473 | ||
b75a7d8f A |
474 | /* Miscellaneous ------------------------------------------------------------ */ |
475 | ||
46f4442e A |
476 | /** |
477 | * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from | |
478 | * consecutive sequences of bytes, starting from the one encoded in value, | |
479 | * to Unicode code points. (Multiple mappings to reduce per-function call overhead.) | |
480 | * Does not currently support m:n mappings or reverse fallbacks. | |
481 | * This function will not be called for sequences of bytes with leading zeros. | |
482 | * | |
483 | * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() | |
484 | * @param value contains 1..4 bytes of the first byte sequence, right-aligned | |
485 | * @param codePoints resulting Unicode code points, or negative if a byte sequence does | |
486 | * not map to anything | |
487 | * @return TRUE to continue enumeration, FALSE to stop | |
488 | */ | |
489 | typedef UBool U_CALLCONV | |
490 | UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]); | |
491 | ||
374ca955 | 492 | /* similar to ucnv_MBCSGetNextUChar() but recursive */ |
46f4442e A |
493 | static UBool |
494 | enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], | |
495 | int32_t state, uint32_t offset, | |
496 | uint32_t value, | |
497 | UConverterEnumToUCallback *callback, const void *context, | |
498 | UErrorCode *pErrorCode) { | |
499 | UChar32 codePoints[32]; | |
500 | const int32_t *row; | |
501 | const uint16_t *unicodeCodeUnits; | |
502 | UChar32 anyCodePoints; | |
503 | int32_t b, limit; | |
504 | ||
505 | row=mbcsTable->stateTable[state]; | |
506 | unicodeCodeUnits=mbcsTable->unicodeCodeUnits; | |
374ca955 | 507 | |
46f4442e A |
508 | value<<=8; |
509 | anyCodePoints=-1; /* becomes non-negative if there is a mapping */ | |
510 | ||
511 | b=(stateProps[state]&0x38)<<2; | |
512 | if(b==0 && stateProps[state]>=0x40) { | |
513 | /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */ | |
514 | codePoints[0]=U_SENTINEL; | |
515 | b=1; | |
516 | } | |
517 | limit=((stateProps[state]&7)+1)<<5; | |
518 | while(b<limit) { | |
519 | int32_t entry=row[b]; | |
374ca955 | 520 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
46f4442e A |
521 | int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); |
522 | if(stateProps[nextState]>=0) { | |
523 | /* recurse to a state with non-ignorable actions */ | |
524 | if(!enumToU( | |
525 | mbcsTable, stateProps, nextState, | |
526 | offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), | |
527 | value|(uint32_t)b, | |
528 | callback, context, | |
529 | pErrorCode)) { | |
530 | return FALSE; | |
531 | } | |
532 | } | |
533 | codePoints[b&0x1f]=U_SENTINEL; | |
374ca955 A |
534 | } else { |
535 | UChar32 c; | |
46f4442e | 536 | int32_t action; |
b75a7d8f | 537 | |
374ca955 A |
538 | /* |
539 | * An if-else-if chain provides more reliable performance for | |
540 | * the most common cases compared to a switch. | |
541 | */ | |
46f4442e | 542 | action=MBCS_ENTRY_FINAL_ACTION(entry); |
374ca955 A |
543 | if(action==MBCS_STATE_VALID_DIRECT_16) { |
544 | /* output BMP code point */ | |
545 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
546 | } else if(action==MBCS_STATE_VALID_16) { | |
46f4442e A |
547 | int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
548 | c=unicodeCodeUnits[finalOffset]; | |
374ca955 A |
549 | if(c<0xfffe) { |
550 | /* output BMP code point */ | |
551 | } else { | |
552 | c=U_SENTINEL; | |
b75a7d8f | 553 | } |
374ca955 | 554 | } else if(action==MBCS_STATE_VALID_16_PAIR) { |
46f4442e A |
555 | int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
556 | c=unicodeCodeUnits[finalOffset++]; | |
374ca955 A |
557 | if(c<0xd800) { |
558 | /* output BMP code point below 0xd800 */ | |
559 | } else if(c<=0xdbff) { | |
560 | /* output roundtrip or fallback supplementary code point */ | |
46f4442e | 561 | c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00); |
374ca955 A |
562 | } else if(c==0xe000) { |
563 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ | |
46f4442e | 564 | c=unicodeCodeUnits[finalOffset]; |
374ca955 A |
565 | } else { |
566 | c=U_SENTINEL; | |
b75a7d8f | 567 | } |
374ca955 A |
568 | } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
569 | /* output supplementary code point */ | |
570 | c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); | |
46f4442e A |
571 | } else { |
572 | c=U_SENTINEL; | |
573 | } | |
574 | ||
575 | codePoints[b&0x1f]=c; | |
576 | anyCodePoints&=c; | |
577 | } | |
578 | if(((++b)&0x1f)==0) { | |
579 | if(anyCodePoints>=0) { | |
580 | if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { | |
581 | return FALSE; | |
582 | } | |
583 | anyCodePoints=-1; | |
b75a7d8f | 584 | } |
46f4442e A |
585 | } |
586 | } | |
587 | return TRUE; | |
588 | } | |
b75a7d8f | 589 | |
46f4442e A |
590 | /* |
591 | * Only called if stateProps[state]==-1. | |
592 | * A recursive call may do stateProps[state]|=0x40 if this state is the target of an | |
593 | * MBCS_STATE_CHANGE_ONLY. | |
594 | */ | |
595 | static int8_t | |
596 | getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { | |
597 | const int32_t *row; | |
598 | int32_t min, max, entry, nextState; | |
599 | ||
600 | row=stateTable[state]; | |
601 | stateProps[state]=0; | |
602 | ||
603 | /* find first non-ignorable state */ | |
604 | for(min=0;; ++min) { | |
605 | entry=row[min]; | |
606 | nextState=MBCS_ENTRY_STATE(entry); | |
607 | if(stateProps[nextState]==-1) { | |
608 | getStateProp(stateTable, stateProps, nextState); | |
609 | } | |
610 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
611 | if(stateProps[nextState]>=0) { | |
612 | break; | |
613 | } | |
614 | } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { | |
615 | break; | |
616 | } | |
617 | if(min==0xff) { | |
618 | stateProps[state]=-0x40; /* (int8_t)0xc0 */ | |
619 | return stateProps[state]; | |
620 | } | |
621 | } | |
622 | stateProps[state]|=(int8_t)((min>>5)<<3); | |
623 | ||
624 | /* find last non-ignorable state */ | |
625 | for(max=0xff; min<max; --max) { | |
626 | entry=row[max]; | |
627 | nextState=MBCS_ENTRY_STATE(entry); | |
628 | if(stateProps[nextState]==-1) { | |
629 | getStateProp(stateTable, stateProps, nextState); | |
630 | } | |
631 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
632 | if(stateProps[nextState]>=0) { | |
633 | break; | |
634 | } | |
635 | } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { | |
636 | break; | |
637 | } | |
638 | } | |
639 | stateProps[state]|=(int8_t)(max>>5); | |
640 | ||
641 | /* recurse further and collect direct-state information */ | |
642 | while(min<=max) { | |
643 | entry=row[min]; | |
644 | nextState=MBCS_ENTRY_STATE(entry); | |
645 | if(stateProps[nextState]==-1) { | |
646 | getStateProp(stateTable, stateProps, nextState); | |
647 | } | |
648 | if(MBCS_ENTRY_IS_FINAL(entry)) { | |
649 | stateProps[nextState]|=0x40; | |
650 | if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { | |
651 | stateProps[state]|=0x40; | |
374ca955 | 652 | } |
b75a7d8f | 653 | } |
46f4442e | 654 | ++min; |
b75a7d8f | 655 | } |
46f4442e | 656 | return stateProps[state]; |
b75a7d8f A |
657 | } |
658 | ||
374ca955 | 659 | /* |
46f4442e A |
660 | * Internal function enumerating the toUnicode data of an MBCS converter. |
661 | * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U | |
662 | * table, but could also be used for a future ucnv_getUnicodeSet() option | |
663 | * that includes reverse fallbacks (after updating this function's implementation). | |
664 | * Currently only handles roundtrip mappings. | |
374ca955 | 665 | * Does not currently handle extensions. |
374ca955 | 666 | */ |
46f4442e A |
667 | static void |
668 | ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, | |
669 | UConverterEnumToUCallback *callback, const void *context, | |
670 | UErrorCode *pErrorCode) { | |
671 | /* | |
672 | * Properties for each state, to speed up the enumeration. | |
673 | * Ignorable actions are unassigned/illegal/state-change-only: | |
674 | * They do not lead to mappings. | |
675 | * | |
676 | * Bits 7..6: | |
677 | * 1 direct/initial state (stateful converters have multiple) | |
678 | * 0 non-initial state with transitions or with non-ignorable result actions | |
679 | * -1 final state with only ignorable actions | |
680 | * | |
681 | * Bits 5..3: | |
682 | * The lowest byte value with non-ignorable actions is | |
683 | * value<<5 (rounded down). | |
684 | * | |
685 | * Bits 2..0: | |
686 | * The highest byte value with non-ignorable actions is | |
687 | * (value<<5)&0x1f (rounded up). | |
688 | */ | |
689 | int8_t stateProps[MBCS_MAX_STATE_COUNT]; | |
690 | int32_t state; | |
691 | ||
692 | uprv_memset(stateProps, -1, sizeof(stateProps)); | |
693 | ||
694 | /* recurse from state 0 and set all stateProps */ | |
695 | getStateProp(mbcsTable->stateTable, stateProps, 0); | |
696 | ||
697 | for(state=0; state<mbcsTable->countStates; ++state) { | |
698 | /*if(stateProps[state]==-1) { | |
699 | printf("unused/unreachable <icu:state> %d\n", state); | |
700 | }*/ | |
701 | if(stateProps[state]>=0x40) { | |
702 | /* start from each direct state */ | |
703 | enumToU( | |
704 | mbcsTable, stateProps, state, 0, 0, | |
705 | callback, context, | |
706 | pErrorCode); | |
707 | } | |
708 | } | |
374ca955 A |
709 | } |
710 | ||
711 | U_CFUNC void | |
46f4442e A |
712 | ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
713 | const USetAdder *sa, | |
714 | UConverterUnicodeSet which, | |
715 | UConverterSetFilter filter, | |
716 | UErrorCode *pErrorCode) { | |
374ca955 | 717 | const UConverterMBCSTable *mbcsTable; |
b75a7d8f A |
718 | const uint16_t *table; |
719 | ||
720 | uint32_t st3; | |
721 | uint16_t st1, maxStage1, st2; | |
722 | ||
723 | UChar32 c; | |
724 | ||
b75a7d8f | 725 | /* enumerate the from-Unicode trie table */ |
374ca955 | 726 | mbcsTable=&sharedData->mbcs; |
b75a7d8f A |
727 | table=mbcsTable->fromUnicodeTable; |
728 | if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { | |
729 | maxStage1=0x440; | |
730 | } else { | |
731 | maxStage1=0x40; | |
732 | } | |
733 | ||
734 | c=0; /* keep track of the current code point while enumerating */ | |
735 | ||
736 | if(mbcsTable->outputType==MBCS_OUTPUT_1) { | |
737 | const uint16_t *stage2, *stage3, *results; | |
46f4442e | 738 | uint16_t minValue; |
b75a7d8f A |
739 | |
740 | results=(const uint16_t *)mbcsTable->fromUnicodeBytes; | |
741 | ||
46f4442e A |
742 | /* |
743 | * Set a threshold variable for selecting which mappings to use. | |
744 | * See ucnv_MBCSSingleFromBMPWithOffsets() and | |
745 | * MBCS_SINGLE_RESULT_FROM_U() for details. | |
746 | */ | |
747 | if(which==UCNV_ROUNDTRIP_SET) { | |
748 | /* use only roundtrips */ | |
749 | minValue=0xf00; | |
750 | } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { | |
751 | /* use all roundtrip and fallback results */ | |
752 | minValue=0x800; | |
753 | } | |
754 | ||
b75a7d8f A |
755 | for(st1=0; st1<maxStage1; ++st1) { |
756 | st2=table[st1]; | |
757 | if(st2>maxStage1) { | |
758 | stage2=table+st2; | |
759 | for(st2=0; st2<64; ++st2) { | |
760 | if((st3=stage2[st2])!=0) { | |
761 | /* read the stage 3 block */ | |
762 | stage3=results+st3; | |
763 | ||
b75a7d8f | 764 | do { |
46f4442e | 765 | if(*stage3++>=minValue) { |
374ca955 A |
766 | sa->add(sa->set, c); |
767 | } | |
768 | } while((++c&0xf)!=0); | |
769 | } else { | |
770 | c+=16; /* empty stage 3 block */ | |
771 | } | |
772 | } | |
773 | } else { | |
774 | c+=1024; /* empty stage 2 block */ | |
775 | } | |
776 | } | |
46f4442e | 777 | } else { |
374ca955 | 778 | const uint32_t *stage2; |
46f4442e A |
779 | const uint8_t *stage3, *bytes; |
780 | uint32_t st3Multiplier; | |
781 | uint32_t value; | |
782 | UBool useFallback; | |
374ca955 | 783 | |
46f4442e | 784 | bytes=mbcsTable->fromUnicodeBytes; |
374ca955 | 785 | |
46f4442e | 786 | useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); |
374ca955 | 787 | |
46f4442e A |
788 | switch(mbcsTable->outputType) { |
789 | case MBCS_OUTPUT_3: | |
790 | case MBCS_OUTPUT_4_EUC: | |
791 | st3Multiplier=3; | |
792 | break; | |
793 | case MBCS_OUTPUT_4: | |
794 | st3Multiplier=4; | |
795 | break; | |
796 | default: | |
797 | st3Multiplier=2; | |
798 | break; | |
b75a7d8f | 799 | } |
b75a7d8f A |
800 | |
801 | for(st1=0; st1<maxStage1; ++st1) { | |
802 | st2=table[st1]; | |
803 | if(st2>(maxStage1>>1)) { | |
804 | stage2=(const uint32_t *)table+st2; | |
805 | for(st2=0; st2<64; ++st2) { | |
806 | if((st3=stage2[st2])!=0) { | |
46f4442e A |
807 | /* read the stage 3 block */ |
808 | stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; | |
809 | ||
b75a7d8f A |
810 | /* get the roundtrip flags for the stage 3 block */ |
811 | st3>>=16; | |
812 | ||
813 | /* | |
46f4442e A |
814 | * Add code points for which the roundtrip flag is set, |
815 | * or which map to non-zero bytes if we use fallbacks. | |
374ca955 | 816 | * See ucnv_MBCSFromUnicodeWithOffsets() for details. |
b75a7d8f | 817 | */ |
46f4442e A |
818 | switch(filter) { |
819 | case UCNV_SET_FILTER_NONE: | |
820 | do { | |
821 | if(st3&1) { | |
822 | sa->add(sa->set, c); | |
823 | stage3+=st3Multiplier; | |
824 | } else if(useFallback) { | |
825 | uint8_t b=0; | |
826 | switch(st3Multiplier) { | |
827 | case 4: | |
828 | b|=*stage3++; | |
4388f060 | 829 | case 3: /*fall through*/ |
46f4442e | 830 | b|=*stage3++; |
4388f060 | 831 | case 2: /*fall through*/ |
46f4442e A |
832 | b|=stage3[0]|stage3[1]; |
833 | stage3+=2; | |
834 | default: | |
835 | break; | |
836 | } | |
837 | if(b!=0) { | |
838 | sa->add(sa->set, c); | |
839 | } | |
840 | } | |
841 | st3>>=1; | |
842 | } while((++c&0xf)!=0); | |
843 | break; | |
844 | case UCNV_SET_FILTER_DBCS_ONLY: | |
845 | /* Ignore single-byte results (<0x100). */ | |
846 | do { | |
847 | if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) { | |
848 | sa->add(sa->set, c); | |
849 | } | |
850 | st3>>=1; | |
851 | stage3+=2; /* +=st3Multiplier */ | |
852 | } while((++c&0xf)!=0); | |
853 | break; | |
854 | case UCNV_SET_FILTER_2022_CN: | |
855 | /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */ | |
856 | do { | |
857 | if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) { | |
858 | sa->add(sa->set, c); | |
859 | } | |
860 | st3>>=1; | |
861 | stage3+=3; /* +=st3Multiplier */ | |
862 | } while((++c&0xf)!=0); | |
863 | break; | |
864 | case UCNV_SET_FILTER_SJIS: | |
865 | /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */ | |
866 | do { | |
867 | if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) { | |
868 | sa->add(sa->set, c); | |
869 | } | |
870 | st3>>=1; | |
871 | stage3+=2; /* +=st3Multiplier */ | |
872 | } while((++c&0xf)!=0); | |
873 | break; | |
874 | case UCNV_SET_FILTER_GR94DBCS: | |
875 | /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */ | |
876 | do { | |
877 | if( ((st3&1)!=0 || useFallback) && | |
878 | (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) && | |
879 | (uint8_t)(value-0xa1)<=(0xfe - 0xa1) | |
880 | ) { | |
881 | sa->add(sa->set, c); | |
882 | } | |
883 | st3>>=1; | |
884 | stage3+=2; /* +=st3Multiplier */ | |
885 | } while((++c&0xf)!=0); | |
886 | break; | |
887 | case UCNV_SET_FILTER_HZ: | |
888 | /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */ | |
889 | do { | |
890 | if( ((st3&1)!=0 || useFallback) && | |
891 | (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) && | |
892 | (uint8_t)(value-0xa1)<=(0xfe - 0xa1) | |
893 | ) { | |
894 | sa->add(sa->set, c); | |
895 | } | |
896 | st3>>=1; | |
897 | stage3+=2; /* +=st3Multiplier */ | |
898 | } while((++c&0xf)!=0); | |
899 | break; | |
900 | default: | |
901 | *pErrorCode=U_INTERNAL_PROGRAM_ERROR; | |
902 | return; | |
903 | } | |
b75a7d8f A |
904 | } else { |
905 | c+=16; /* empty stage 3 block */ | |
906 | } | |
907 | } | |
908 | } else { | |
909 | c+=1024; /* empty stage 2 block */ | |
910 | } | |
911 | } | |
912 | } | |
374ca955 | 913 | |
46f4442e A |
914 | ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); |
915 | } | |
916 | ||
917 | U_CFUNC void | |
918 | ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, | |
919 | const USetAdder *sa, | |
920 | UConverterUnicodeSet which, | |
921 | UErrorCode *pErrorCode) { | |
922 | ucnv_MBCSGetFilteredUnicodeSetForUnicode( | |
923 | sharedData, sa, which, | |
924 | sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? | |
925 | UCNV_SET_FILTER_DBCS_ONLY : | |
926 | UCNV_SET_FILTER_NONE, | |
927 | pErrorCode); | |
374ca955 A |
928 | } |
929 | ||
930 | static void | |
931 | ucnv_MBCSGetUnicodeSet(const UConverter *cnv, | |
73c04bcf | 932 | const USetAdder *sa, |
374ca955 A |
933 | UConverterUnicodeSet which, |
934 | UErrorCode *pErrorCode) { | |
935 | if(cnv->options&_MBCS_OPTION_GB18030) { | |
936 | sa->addRange(sa->set, 0, 0xd7ff); | |
937 | sa->addRange(sa->set, 0xe000, 0x10ffff); | |
938 | } else { | |
939 | ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode); | |
940 | } | |
941 | } | |
942 | ||
943 | /* conversion extensions for input not in the main table -------------------- */ | |
944 | ||
945 | /* | |
946 | * Hardcoded extension handling for GB 18030. | |
947 | * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file. | |
948 | * | |
949 | * In the future, conversion extensions may handle m:n mappings and delta tables, | |
46f4442e | 950 | * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html |
374ca955 A |
951 | * |
952 | * If an input character cannot be mapped, then these functions set an error | |
953 | * code. The framework will then call the callback function. | |
954 | */ | |
955 | ||
956 | /* | |
957 | * @return if(U_FAILURE) return the code point for cnv->fromUChar32 | |
958 | * else return 0 after output has been written to the target | |
959 | */ | |
960 | static UChar32 | |
961 | _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, | |
962 | UChar32 cp, | |
963 | const UChar **source, const UChar *sourceLimit, | |
46f4442e | 964 | uint8_t **target, const uint8_t *targetLimit, |
374ca955 A |
965 | int32_t **offsets, int32_t sourceIndex, |
966 | UBool flush, | |
967 | UErrorCode *pErrorCode) { | |
968 | const int32_t *cx; | |
969 | ||
970 | cnv->useSubChar1=FALSE; | |
971 | ||
972 | if( (cx=sharedData->mbcs.extIndexes)!=NULL && | |
973 | ucnv_extInitialMatchFromU( | |
974 | cnv, cx, | |
975 | cp, source, sourceLimit, | |
46f4442e | 976 | (char **)target, (char *)targetLimit, |
374ca955 A |
977 | offsets, sourceIndex, |
978 | flush, | |
979 | pErrorCode) | |
980 | ) { | |
981 | return 0; /* an extension mapping handled the input */ | |
982 | } | |
983 | ||
984 | /* GB 18030 */ | |
985 | if((cnv->options&_MBCS_OPTION_GB18030)!=0) { | |
986 | const uint32_t *range; | |
987 | int32_t i; | |
988 | ||
989 | range=gb18030Ranges[0]; | |
990 | for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) { | |
991 | if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { | |
992 | /* found the Unicode code point, output the four-byte sequence for it */ | |
993 | uint32_t linear; | |
994 | char bytes[4]; | |
995 | ||
996 | /* get the linear value of the first GB 18030 code in this range */ | |
997 | linear=range[2]-LINEAR_18030_BASE; | |
998 | ||
999 | /* add the offset from the beginning of the range */ | |
1000 | linear+=((uint32_t)cp-range[0]); | |
1001 | ||
1002 | /* turn this into a four-byte sequence */ | |
1003 | bytes[3]=(char)(0x30+linear%10); linear/=10; | |
1004 | bytes[2]=(char)(0x81+linear%126); linear/=126; | |
1005 | bytes[1]=(char)(0x30+linear%10); linear/=10; | |
1006 | bytes[0]=(char)(0x81+linear); | |
1007 | ||
1008 | /* output this sequence */ | |
1009 | ucnv_fromUWriteBytes(cnv, | |
46f4442e | 1010 | bytes, 4, (char **)target, (char *)targetLimit, |
374ca955 A |
1011 | offsets, sourceIndex, pErrorCode); |
1012 | return 0; | |
1013 | } | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | /* no mapping */ | |
1018 | *pErrorCode=U_INVALID_CHAR_FOUND; | |
1019 | return cp; | |
1020 | } | |
1021 | ||
1022 | /* | |
1023 | * Input sequence: cnv->toUBytes[0..length[ | |
1024 | * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input | |
1025 | * else return 0 after output has been written to the target | |
1026 | */ | |
1027 | static int8_t | |
1028 | _extToU(UConverter *cnv, const UConverterSharedData *sharedData, | |
1029 | int8_t length, | |
46f4442e | 1030 | const uint8_t **source, const uint8_t *sourceLimit, |
374ca955 A |
1031 | UChar **target, const UChar *targetLimit, |
1032 | int32_t **offsets, int32_t sourceIndex, | |
1033 | UBool flush, | |
1034 | UErrorCode *pErrorCode) { | |
1035 | const int32_t *cx; | |
1036 | ||
1037 | if( (cx=sharedData->mbcs.extIndexes)!=NULL && | |
1038 | ucnv_extInitialMatchToU( | |
1039 | cnv, cx, | |
46f4442e | 1040 | length, (const char **)source, (const char *)sourceLimit, |
374ca955 A |
1041 | target, targetLimit, |
1042 | offsets, sourceIndex, | |
1043 | flush, | |
1044 | pErrorCode) | |
1045 | ) { | |
1046 | return 0; /* an extension mapping handled the input */ | |
1047 | } | |
1048 | ||
1049 | /* GB 18030 */ | |
1050 | if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { | |
1051 | const uint32_t *range; | |
1052 | uint32_t linear; | |
1053 | int32_t i; | |
1054 | ||
1055 | linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]); | |
1056 | range=gb18030Ranges[0]; | |
1057 | for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i) { | |
1058 | if(range[2]<=linear && linear<=range[3]) { | |
1059 | /* found the sequence, output the Unicode code point for it */ | |
1060 | *pErrorCode=U_ZERO_ERROR; | |
1061 | ||
1062 | /* add the linear difference between the input and start sequences to the start code point */ | |
1063 | linear=range[0]+(linear-range[2]); | |
1064 | ||
1065 | /* output this code point */ | |
1066 | ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode); | |
1067 | ||
1068 | return 0; | |
1069 | } | |
1070 | } | |
1071 | } | |
1072 | ||
1073 | /* no mapping */ | |
1074 | *pErrorCode=U_INVALID_CHAR_FOUND; | |
1075 | return length; | |
b75a7d8f A |
1076 | } |
1077 | ||
1078 | /* EBCDIC swap LF<->NL ------------------------------------------------------ */ | |
1079 | ||
1080 | /* | |
1081 | * This code modifies a standard EBCDIC<->Unicode mapping table for | |
1082 | * OS/390 (z/OS) Unix System Services (Open Edition). | |
1083 | * The difference is in the mapping of Line Feed and New Line control codes: | |
1084 | * Standard EBCDIC maps | |
1085 | * | |
1086 | * <U000A> \x25 |0 | |
1087 | * <U0085> \x15 |0 | |
1088 | * | |
1089 | * but OS/390 USS EBCDIC swaps the control codes for LF and NL, | |
1090 | * mapping | |
1091 | * | |
1092 | * <U000A> \x15 |0 | |
1093 | * <U0085> \x25 |0 | |
1094 | * | |
1095 | * This code modifies a loaded standard EBCDIC<->Unicode mapping table | |
1096 | * by copying it into allocated memory and swapping the LF and NL values. | |
1097 | * It allows to support the same EBCDIC charset in both versions without | |
1098 | * duplicating the entire installed table. | |
1099 | */ | |
1100 | ||
1101 | /* standard EBCDIC codes */ | |
1102 | #define EBCDIC_LF 0x25 | |
1103 | #define EBCDIC_NL 0x15 | |
1104 | ||
1105 | /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ | |
1106 | #define EBCDIC_RT_LF 0xf25 | |
1107 | #define EBCDIC_RT_NL 0xf15 | |
1108 | ||
1109 | /* Unicode code points */ | |
1110 | #define U_LF 0x0a | |
1111 | #define U_NL 0x85 | |
1112 | ||
1113 | static UBool | |
1114 | _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { | |
1115 | UConverterMBCSTable *mbcsTable; | |
1116 | ||
1117 | const uint16_t *table, *results; | |
1118 | const uint8_t *bytes; | |
1119 | ||
1120 | int32_t (*newStateTable)[256]; | |
1121 | uint16_t *newResults; | |
1122 | uint8_t *p; | |
1123 | char *name; | |
1124 | ||
1125 | uint32_t stage2Entry; | |
1126 | uint32_t size, sizeofFromUBytes; | |
1127 | ||
374ca955 | 1128 | mbcsTable=&sharedData->mbcs; |
b75a7d8f A |
1129 | |
1130 | table=mbcsTable->fromUnicodeTable; | |
1131 | bytes=mbcsTable->fromUnicodeBytes; | |
1132 | results=(const uint16_t *)bytes; | |
1133 | ||
1134 | /* | |
1135 | * Check that this is an EBCDIC table with SBCS portion - | |
1136 | * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. | |
1137 | * | |
1138 | * If not, ignore the option. Options are always ignored if they do not apply. | |
1139 | */ | |
1140 | if(!( | |
1141 | (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && | |
1142 | mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && | |
1143 | mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) | |
1144 | )) { | |
1145 | return FALSE; | |
1146 | } | |
1147 | ||
1148 | if(mbcsTable->outputType==MBCS_OUTPUT_1) { | |
1149 | if(!( | |
1150 | EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && | |
1151 | EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) | |
1152 | )) { | |
1153 | return FALSE; | |
1154 | } | |
1155 | } else /* MBCS_OUTPUT_2_SISO */ { | |
1156 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); | |
1157 | if(!( | |
1158 | MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && | |
1159 | EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) | |
1160 | )) { | |
1161 | return FALSE; | |
1162 | } | |
1163 | ||
1164 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); | |
1165 | if(!( | |
1166 | MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && | |
1167 | EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) | |
1168 | )) { | |
1169 | return FALSE; | |
1170 | } | |
1171 | } | |
1172 | ||
374ca955 A |
1173 | if(mbcsTable->fromUBytesLength>0) { |
1174 | /* | |
1175 | * We _know_ the number of bytes in the fromUnicodeBytes array | |
1176 | * starting with header.version 4.1. | |
1177 | */ | |
1178 | sizeofFromUBytes=mbcsTable->fromUBytesLength; | |
1179 | } else { | |
1180 | /* | |
1181 | * Otherwise: | |
1182 | * There used to be code to enumerate the fromUnicode | |
1183 | * trie and find the highest entry, but it was removed in ICU 3.2 | |
1184 | * because it was not tested and caused a low code coverage number. | |
1185 | * See Jitterbug 3674. | |
1186 | * This affects only some .cnv file formats with a header.version | |
1187 | * below 4.1, and only when swaplfnl is requested. | |
1188 | * | |
1189 | * ucnvmbcs.c revision 1.99 is the last one with the | |
1190 | * ucnv_MBCSSizeofFromUBytes() function. | |
1191 | */ | |
1192 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
1193 | return FALSE; | |
1194 | } | |
1195 | ||
b75a7d8f A |
1196 | /* |
1197 | * The table has an appropriate format. | |
1198 | * Allocate and build | |
1199 | * - a modified to-Unicode state table | |
1200 | * - a modified from-Unicode output array | |
1201 | * - a converter name string with the swap option appended | |
1202 | */ | |
b75a7d8f A |
1203 | size= |
1204 | mbcsTable->countStates*1024+ | |
1205 | sizeofFromUBytes+ | |
1206 | UCNV_MAX_CONVERTER_NAME_LENGTH+20; | |
1207 | p=(uint8_t *)uprv_malloc(size); | |
1208 | if(p==NULL) { | |
1209 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
1210 | return FALSE; | |
1211 | } | |
1212 | ||
1213 | /* copy and modify the to-Unicode state table */ | |
1214 | newStateTable=(int32_t (*)[256])p; | |
1215 | uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); | |
1216 | ||
1217 | newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); | |
1218 | newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); | |
1219 | ||
1220 | /* copy and modify the from-Unicode result table */ | |
1221 | newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; | |
1222 | uprv_memcpy(newResults, bytes, sizeofFromUBytes); | |
1223 | ||
1224 | /* conveniently, the table access macros work on the left side of expressions */ | |
1225 | if(mbcsTable->outputType==MBCS_OUTPUT_1) { | |
1226 | MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; | |
1227 | MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; | |
1228 | } else /* MBCS_OUTPUT_2_SISO */ { | |
1229 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); | |
1230 | MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; | |
1231 | ||
1232 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); | |
1233 | MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; | |
1234 | } | |
1235 | ||
1236 | /* set the canonical converter name */ | |
1237 | name=(char *)newResults+sizeofFromUBytes; | |
1238 | uprv_strcpy(name, sharedData->staticData->name); | |
1239 | uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); | |
1240 | ||
1241 | /* set the pointers */ | |
1242 | umtx_lock(NULL); | |
1243 | if(mbcsTable->swapLFNLStateTable==NULL) { | |
1244 | mbcsTable->swapLFNLStateTable=newStateTable; | |
1245 | mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; | |
1246 | mbcsTable->swapLFNLName=name; | |
1247 | ||
1248 | newStateTable=NULL; | |
1249 | } | |
1250 | umtx_unlock(NULL); | |
1251 | ||
1252 | /* release the allocated memory if another thread beat us to it */ | |
1253 | if(newStateTable!=NULL) { | |
1254 | uprv_free(newStateTable); | |
1255 | } | |
1256 | return TRUE; | |
1257 | } | |
1258 | ||
46f4442e A |
1259 | /* reconstitute omitted fromUnicode data ------------------------------------ */ |
1260 | ||
1261 | /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */ | |
1262 | static UBool U_CALLCONV | |
1263 | writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) { | |
1264 | UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; | |
1265 | const uint16_t *table; | |
1266 | uint32_t *stage2; | |
1267 | uint8_t *bytes, *p; | |
1268 | UChar32 c; | |
1269 | int32_t i, st3; | |
1270 | ||
1271 | table=mbcsTable->fromUnicodeTable; | |
1272 | bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; | |
1273 | ||
1274 | /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ | |
1275 | switch(mbcsTable->outputType) { | |
1276 | case MBCS_OUTPUT_3_EUC: | |
1277 | if(value<=0xffff) { | |
1278 | /* short sequences are stored directly */ | |
1279 | /* code set 0 or 1 */ | |
1280 | } else if(value<=0x8effff) { | |
1281 | /* code set 2 */ | |
1282 | value&=0x7fff; | |
1283 | } else /* first byte is 0x8f */ { | |
1284 | /* code set 3 */ | |
1285 | value&=0xff7f; | |
1286 | } | |
1287 | break; | |
1288 | case MBCS_OUTPUT_4_EUC: | |
1289 | if(value<=0xffffff) { | |
1290 | /* short sequences are stored directly */ | |
1291 | /* code set 0 or 1 */ | |
1292 | } else if(value<=0x8effffff) { | |
1293 | /* code set 2 */ | |
1294 | value&=0x7fffff; | |
1295 | } else /* first byte is 0x8f */ { | |
1296 | /* code set 3 */ | |
1297 | value&=0xff7fff; | |
1298 | } | |
1299 | break; | |
1300 | default: | |
1301 | break; | |
1302 | } | |
1303 | ||
1304 | for(i=0; i<=0x1f; ++value, ++i) { | |
1305 | c=codePoints[i]; | |
1306 | if(c<0) { | |
1307 | continue; | |
1308 | } | |
1309 | ||
1310 | /* locate the stage 2 & 3 data */ | |
1311 | stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); | |
1312 | p=bytes; | |
1313 | st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); | |
1314 | ||
1315 | /* write the codepage bytes into stage 3 */ | |
1316 | switch(mbcsTable->outputType) { | |
1317 | case MBCS_OUTPUT_3: | |
1318 | case MBCS_OUTPUT_4_EUC: | |
1319 | p+=st3*3; | |
1320 | p[0]=(uint8_t)(value>>16); | |
1321 | p[1]=(uint8_t)(value>>8); | |
1322 | p[2]=(uint8_t)value; | |
1323 | break; | |
1324 | case MBCS_OUTPUT_4: | |
1325 | ((uint32_t *)p)[st3]=value; | |
1326 | break; | |
1327 | default: | |
1328 | /* 2 bytes per character */ | |
1329 | ((uint16_t *)p)[st3]=(uint16_t)value; | |
1330 | break; | |
1331 | } | |
1332 | ||
1333 | /* set the roundtrip flag */ | |
1334 | *stage2|=(1UL<<(16+(c&0xf))); | |
1335 | } | |
1336 | return TRUE; | |
1337 | } | |
1338 | ||
1339 | static void | |
1340 | reconstituteData(UConverterMBCSTable *mbcsTable, | |
1341 | uint32_t stage1Length, uint32_t stage2Length, | |
1342 | uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */ | |
1343 | UErrorCode *pErrorCode) { | |
1344 | uint16_t *stage1; | |
1345 | uint32_t *stage2; | |
46f4442e A |
1346 | uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength; |
1347 | mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); | |
1348 | if(mbcsTable->reconstitutedData==NULL) { | |
1349 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
1350 | return; | |
1351 | } | |
1352 | uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); | |
1353 | ||
1354 | /* copy existing data and reroute the pointers */ | |
1355 | stage1=(uint16_t *)mbcsTable->reconstitutedData; | |
1356 | uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); | |
1357 | ||
1358 | stage2=(uint32_t *)(stage1+stage1Length); | |
1359 | uprv_memcpy(stage2+(fullStage2Length-stage2Length), | |
1360 | mbcsTable->fromUnicodeTable+stage1Length, | |
1361 | stage2Length*4); | |
1362 | ||
1363 | mbcsTable->fromUnicodeTable=stage1; | |
51004dcb | 1364 | mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length); |
46f4442e A |
1365 | |
1366 | /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ | |
1367 | stage2=(uint32_t *)stage1; | |
1368 | ||
1369 | /* reconstitute the initial part of stage 2 from the mbcsIndex */ | |
1370 | { | |
1371 | int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; | |
1372 | int32_t stageUTF8Index=0; | |
1373 | int32_t st1, st2, st3, i; | |
1374 | ||
1375 | for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { | |
1376 | st2=stage1[st1]; | |
1377 | if(st2!=stage1Length/2) { | |
1378 | /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */ | |
1379 | for(i=0; i<16; ++i) { | |
1380 | st3=mbcsTable->mbcsIndex[stageUTF8Index++]; | |
1381 | if(st3!=0) { | |
1382 | /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */ | |
1383 | st3>>=4; | |
1384 | /* | |
1385 | * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are | |
1386 | * allocated together as a single 64-block for access from the mbcsIndex | |
1387 | */ | |
1388 | stage2[st2++]=st3++; | |
1389 | stage2[st2++]=st3++; | |
1390 | stage2[st2++]=st3++; | |
1391 | stage2[st2++]=st3; | |
1392 | } else { | |
1393 | /* no stage 3 block, skip */ | |
1394 | st2+=4; | |
1395 | } | |
1396 | } | |
1397 | } else { | |
1398 | /* no stage 2 block, skip */ | |
1399 | stageUTF8Index+=16; | |
1400 | } | |
1401 | } | |
1402 | } | |
1403 | ||
1404 | /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ | |
1405 | ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode); | |
1406 | } | |
1407 | ||
b75a7d8f A |
1408 | /* MBCS setup functions ----------------------------------------------------- */ |
1409 | ||
1410 | static void | |
374ca955 A |
1411 | ucnv_MBCSLoad(UConverterSharedData *sharedData, |
1412 | UConverterLoadArgs *pArgs, | |
b75a7d8f A |
1413 | const uint8_t *raw, |
1414 | UErrorCode *pErrorCode) { | |
1415 | UDataInfo info; | |
374ca955 | 1416 | UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
b75a7d8f | 1417 | _MBCSHeader *header=(_MBCSHeader *)raw; |
374ca955 | 1418 | uint32_t offset; |
46f4442e A |
1419 | uint32_t headerLength; |
1420 | UBool noFromU=FALSE; | |
1421 | ||
1422 | if(header->version[0]==4) { | |
1423 | headerLength=MBCS_HEADER_V4_LENGTH; | |
1424 | } else if(header->version[0]==5 && header->version[1]>=3 && | |
1425 | (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { | |
1426 | headerLength=header->options&MBCS_OPT_LENGTH_MASK; | |
1427 | noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); | |
1428 | } else { | |
b75a7d8f A |
1429 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
1430 | return; | |
1431 | } | |
1432 | ||
b75a7d8f | 1433 | mbcsTable->outputType=(uint8_t)header->flags; |
46f4442e A |
1434 | if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { |
1435 | *pErrorCode=U_INVALID_TABLE_FORMAT; | |
1436 | return; | |
1437 | } | |
b75a7d8f | 1438 | |
374ca955 A |
1439 | /* extension data, header version 4.2 and higher */ |
1440 | offset=header->flags>>8; | |
1441 | if(offset!=0) { | |
1442 | mbcsTable->extIndexes=(const int32_t *)(raw+offset); | |
b75a7d8f A |
1443 | } |
1444 | ||
374ca955 A |
1445 | if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { |
1446 | UConverterLoadArgs args={ 0 }; | |
1447 | UConverterSharedData *baseSharedData; | |
1448 | const int32_t *extIndexes; | |
1449 | const char *baseName; | |
b75a7d8f | 1450 | |
374ca955 A |
1451 | /* extension-only file, load the base table and set values appropriately */ |
1452 | if((extIndexes=mbcsTable->extIndexes)==NULL) { | |
1453 | /* extension-only file without extension */ | |
1454 | *pErrorCode=U_INVALID_TABLE_FORMAT; | |
1455 | return; | |
1456 | } | |
b75a7d8f | 1457 | |
374ca955 A |
1458 | if(pArgs->nestedLoads!=1) { |
1459 | /* an extension table must not be loaded as a base table */ | |
1460 | *pErrorCode=U_INVALID_TABLE_FILE; | |
1461 | return; | |
1462 | } | |
b75a7d8f | 1463 | |
374ca955 | 1464 | /* load the base table */ |
46f4442e | 1465 | baseName=(const char *)header+headerLength*4; |
374ca955 A |
1466 | if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { |
1467 | /* forbid loading this same extension-only file */ | |
1468 | *pErrorCode=U_INVALID_TABLE_FORMAT; | |
1469 | return; | |
1470 | } | |
b75a7d8f | 1471 | |
374ca955 A |
1472 | /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */ |
1473 | args.size=sizeof(UConverterLoadArgs); | |
1474 | args.nestedLoads=2; | |
729e4ab9 | 1475 | args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; |
374ca955 A |
1476 | args.reserved=pArgs->reserved; |
1477 | args.options=pArgs->options; | |
1478 | args.pkg=pArgs->pkg; | |
1479 | args.name=baseName; | |
1480 | baseSharedData=ucnv_load(&args, pErrorCode); | |
1481 | if(U_FAILURE(*pErrorCode)) { | |
1482 | return; | |
1483 | } | |
1484 | if( baseSharedData->staticData->conversionType!=UCNV_MBCS || | |
1485 | baseSharedData->mbcs.baseSharedData!=NULL | |
1486 | ) { | |
1487 | ucnv_unload(baseSharedData); | |
1488 | *pErrorCode=U_INVALID_TABLE_FORMAT; | |
1489 | return; | |
1490 | } | |
729e4ab9 A |
1491 | if(pArgs->onlyTestIsLoadable) { |
1492 | /* | |
1493 | * Exit as soon as we know that we can load the converter | |
1494 | * and the format is valid and supported. | |
1495 | * The worst that can happen in the following code is a memory | |
1496 | * allocation error. | |
1497 | */ | |
1498 | ucnv_unload(baseSharedData); | |
1499 | return; | |
1500 | } | |
374ca955 A |
1501 | |
1502 | /* copy the base table data */ | |
1503 | uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable)); | |
1504 | ||
1505 | /* overwrite values with relevant ones for the extension converter */ | |
1506 | mbcsTable->baseSharedData=baseSharedData; | |
1507 | mbcsTable->extIndexes=extIndexes; | |
1508 | ||
1509 | /* | |
1510 | * It would be possible to share the swapLFNL data with a base converter, | |
1511 | * but the generated name would have to be different, and the memory | |
1512 | * would have to be free'd only once. | |
1513 | * It is easier to just create the data for the extension converter | |
1514 | * separately when it is requested. | |
1515 | */ | |
1516 | mbcsTable->swapLFNLStateTable=NULL; | |
1517 | mbcsTable->swapLFNLFromUnicodeBytes=NULL; | |
1518 | mbcsTable->swapLFNLName=NULL; | |
1519 | ||
46f4442e A |
1520 | /* |
1521 | * The reconstitutedData must be deleted only when the base converter | |
1522 | * is unloaded. | |
1523 | */ | |
1524 | mbcsTable->reconstitutedData=NULL; | |
1525 | ||
374ca955 A |
1526 | /* |
1527 | * Set a special, runtime-only outputType if the extension converter | |
1528 | * is a DBCS version of a base converter that also maps single bytes. | |
1529 | */ | |
1530 | if( sharedData->staticData->conversionType==UCNV_DBCS || | |
1531 | (sharedData->staticData->conversionType==UCNV_MBCS && | |
1532 | sharedData->staticData->minBytesPerChar>=2) | |
1533 | ) { | |
1534 | if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { | |
1535 | /* the base converter is SI/SO-stateful */ | |
1536 | int32_t entry; | |
1537 | ||
1538 | /* get the dbcs state from the state table entry for SO=0x0e */ | |
1539 | entry=mbcsTable->stateTable[0][0xe]; | |
1540 | if( MBCS_ENTRY_IS_FINAL(entry) && | |
1541 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && | |
1542 | MBCS_ENTRY_FINAL_STATE(entry)!=0 | |
1543 | ) { | |
1544 | mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); | |
1545 | ||
1546 | mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; | |
1547 | } | |
1548 | } else if( | |
1549 | baseSharedData->staticData->conversionType==UCNV_MBCS && | |
1550 | baseSharedData->staticData->minBytesPerChar==1 && | |
1551 | baseSharedData->staticData->maxBytesPerChar==2 && | |
1552 | mbcsTable->countStates<=127 | |
1553 | ) { | |
1554 | /* non-stateful base converter, need to modify the state table */ | |
1555 | int32_t (*newStateTable)[256]; | |
1556 | int32_t *state; | |
1557 | int32_t i, count; | |
1558 | ||
1559 | /* allocate a new state table and copy the base state table contents */ | |
1560 | count=mbcsTable->countStates; | |
1561 | newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); | |
1562 | if(newStateTable==NULL) { | |
1563 | ucnv_unload(baseSharedData); | |
1564 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
1565 | return; | |
1566 | } | |
1567 | ||
1568 | uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); | |
1569 | ||
1570 | /* change all final single-byte entries to go to a new all-illegal state */ | |
1571 | state=newStateTable[0]; | |
1572 | for(i=0; i<256; ++i) { | |
1573 | if(MBCS_ENTRY_IS_FINAL(state[i])) { | |
1574 | state[i]=MBCS_ENTRY_TRANSITION(count, 0); | |
1575 | } | |
1576 | } | |
1577 | ||
1578 | /* build the new all-illegal state */ | |
1579 | state=newStateTable[count]; | |
1580 | for(i=0; i<256; ++i) { | |
1581 | state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); | |
1582 | } | |
1583 | mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; | |
1584 | mbcsTable->countStates=(uint8_t)(count+1); | |
1585 | mbcsTable->stateTableOwned=TRUE; | |
1586 | ||
1587 | mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; | |
1588 | } | |
1589 | } | |
1590 | ||
1591 | /* | |
1592 | * unlike below for files with base tables, do not get the unicodeMask | |
1593 | * from the sharedData; instead, use the base table's unicodeMask, | |
1594 | * which we copied in the memcpy above; | |
1595 | * this is necessary because the static data unicodeMask, especially | |
1596 | * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data | |
1597 | */ | |
1598 | } else { | |
1599 | /* conversion file with a base table; an additional extension table is optional */ | |
1600 | /* make sure that the output type is known */ | |
1601 | switch(mbcsTable->outputType) { | |
1602 | case MBCS_OUTPUT_1: | |
1603 | case MBCS_OUTPUT_2: | |
1604 | case MBCS_OUTPUT_3: | |
1605 | case MBCS_OUTPUT_4: | |
1606 | case MBCS_OUTPUT_3_EUC: | |
1607 | case MBCS_OUTPUT_4_EUC: | |
1608 | case MBCS_OUTPUT_2_SISO: | |
1609 | /* OK */ | |
1610 | break; | |
1611 | default: | |
1612 | *pErrorCode=U_INVALID_TABLE_FORMAT; | |
1613 | return; | |
1614 | } | |
729e4ab9 A |
1615 | if(pArgs->onlyTestIsLoadable) { |
1616 | /* | |
1617 | * Exit as soon as we know that we can load the converter | |
1618 | * and the format is valid and supported. | |
1619 | * The worst that can happen in the following code is a memory | |
1620 | * allocation error. | |
1621 | */ | |
1622 | return; | |
1623 | } | |
374ca955 A |
1624 | |
1625 | mbcsTable->countStates=(uint8_t)header->countStates; | |
1626 | mbcsTable->countToUFallbacks=header->countToUFallbacks; | |
46f4442e | 1627 | mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); |
374ca955 A |
1628 | mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); |
1629 | mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); | |
1630 | ||
1631 | mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); | |
1632 | mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); | |
1633 | mbcsTable->fromUBytesLength=header->fromUBytesLength; | |
1634 | ||
1635 | /* | |
1636 | * converter versions 6.1 and up contain a unicodeMask that is | |
1637 | * used here to select the most efficient function implementations | |
1638 | */ | |
1639 | info.size=sizeof(UDataInfo); | |
1640 | udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); | |
1641 | if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { | |
1642 | /* mask off possible future extensions to be safe */ | |
1643 | mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); | |
1644 | } else { | |
1645 | /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ | |
1646 | mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; | |
1647 | } | |
46f4442e A |
1648 | |
1649 | /* | |
1650 | * _MBCSHeader.version 4.3 adds utf8Friendly data structures. | |
1651 | * Check for the header version, SBCS vs. MBCS, and for whether the | |
1652 | * data structures are optimized for code points as high as what the | |
1653 | * runtime code is designed for. | |
1654 | * The implementation does not handle mapping tables with entries for | |
1655 | * unpaired surrogates. | |
1656 | */ | |
1657 | if( header->version[1]>=3 && | |
1658 | (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && | |
1659 | (mbcsTable->countStates==1 ? | |
1660 | (header->version[2]>=(SBCS_FAST_MAX>>8)) : | |
1661 | (header->version[2]>=(MBCS_FAST_MAX>>8)) | |
1662 | ) | |
1663 | ) { | |
1664 | mbcsTable->utf8Friendly=TRUE; | |
1665 | ||
1666 | if(mbcsTable->countStates==1) { | |
1667 | /* | |
1668 | * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher. | |
1669 | * Build a table with indexes to each block, to be used instead of | |
1670 | * the regular stage 1/2 table. | |
1671 | */ | |
1672 | int32_t i; | |
1673 | for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { | |
1674 | mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; | |
1675 | } | |
1676 | /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */ | |
1677 | mbcsTable->maxFastUChar=SBCS_FAST_MAX; | |
1678 | } else { | |
1679 | /* | |
1680 | * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher. | |
1681 | * The .cnv file is prebuilt with an additional stage table with indexes | |
1682 | * to each block. | |
1683 | */ | |
1684 | mbcsTable->mbcsIndex=(const uint16_t *) | |
1685 | (mbcsTable->fromUnicodeBytes+ | |
1686 | (noFromU ? 0 : mbcsTable->fromUBytesLength)); | |
1687 | mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; | |
1688 | } | |
1689 | } | |
1690 | ||
1691 | /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */ | |
1692 | { | |
1693 | uint32_t asciiRoundtrips=0xffffffff; | |
1694 | int32_t i; | |
1695 | ||
1696 | for(i=0; i<0x80; ++i) { | |
1697 | if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) { | |
1698 | asciiRoundtrips&=~((uint32_t)1<<(i>>2)); | |
1699 | } | |
1700 | } | |
1701 | mbcsTable->asciiRoundtrips=asciiRoundtrips; | |
1702 | } | |
1703 | ||
1704 | if(noFromU) { | |
1705 | uint32_t stage1Length= | |
1706 | mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? | |
1707 | 0x440 : 0x40; | |
1708 | uint32_t stage2Length= | |
1709 | (header->offsetFromUBytes-header->offsetFromUTable)/4- | |
1710 | stage1Length/2; | |
1711 | reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode); | |
1712 | } | |
1713 | } | |
1714 | ||
1715 | /* Set the impl pointer here so that it is set for both extension-only and base tables. */ | |
1716 | if(mbcsTable->utf8Friendly) { | |
1717 | if(mbcsTable->countStates==1) { | |
1718 | sharedData->impl=&_SBCSUTF8Impl; | |
1719 | } else { | |
1720 | if(mbcsTable->outputType==MBCS_OUTPUT_2) { | |
1721 | sharedData->impl=&_DBCSUTF8Impl; | |
1722 | } | |
1723 | } | |
1724 | } | |
1725 | ||
1726 | if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) { | |
1727 | /* | |
1728 | * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip. | |
1729 | * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly. | |
1730 | */ | |
1731 | mbcsTable->asciiRoundtrips=0; | |
374ca955 A |
1732 | } |
1733 | } | |
1734 | ||
1735 | static void | |
1736 | ucnv_MBCSUnload(UConverterSharedData *sharedData) { | |
1737 | UConverterMBCSTable *mbcsTable=&sharedData->mbcs; | |
1738 | ||
1739 | if(mbcsTable->swapLFNLStateTable!=NULL) { | |
1740 | uprv_free(mbcsTable->swapLFNLStateTable); | |
1741 | } | |
1742 | if(mbcsTable->stateTableOwned) { | |
1743 | uprv_free((void *)mbcsTable->stateTable); | |
1744 | } | |
1745 | if(mbcsTable->baseSharedData!=NULL) { | |
1746 | ucnv_unload(mbcsTable->baseSharedData); | |
1747 | } | |
46f4442e A |
1748 | if(mbcsTable->reconstitutedData!=NULL) { |
1749 | uprv_free(mbcsTable->reconstitutedData); | |
1750 | } | |
374ca955 A |
1751 | } |
1752 | ||
1753 | static void | |
1754 | ucnv_MBCSOpen(UConverter *cnv, | |
729e4ab9 A |
1755 | UConverterLoadArgs *pArgs, |
1756 | UErrorCode *pErrorCode) { | |
374ca955 A |
1757 | UConverterMBCSTable *mbcsTable; |
1758 | const int32_t *extIndexes; | |
1759 | uint8_t outputType; | |
1760 | int8_t maxBytesPerUChar; | |
1761 | ||
729e4ab9 A |
1762 | if(pArgs->onlyTestIsLoadable) { |
1763 | return; | |
1764 | } | |
1765 | ||
374ca955 A |
1766 | mbcsTable=&cnv->sharedData->mbcs; |
1767 | outputType=mbcsTable->outputType; | |
1768 | ||
1769 | if(outputType==MBCS_OUTPUT_DBCS_ONLY) { | |
1770 | /* the swaplfnl option does not apply, remove it */ | |
729e4ab9 | 1771 | cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
374ca955 A |
1772 | } |
1773 | ||
729e4ab9 | 1774 | if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
b75a7d8f A |
1775 | /* do this because double-checked locking is broken */ |
1776 | UBool isCached; | |
1777 | ||
1778 | umtx_lock(NULL); | |
374ca955 | 1779 | isCached=mbcsTable->swapLFNLStateTable!=NULL; |
b75a7d8f A |
1780 | umtx_unlock(NULL); |
1781 | ||
1782 | if(!isCached) { | |
1783 | if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { | |
374ca955 A |
1784 | if(U_FAILURE(*pErrorCode)) { |
1785 | return; /* something went wrong */ | |
1786 | } | |
1787 | ||
b75a7d8f | 1788 | /* the option does not apply, remove it */ |
729e4ab9 | 1789 | cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
b75a7d8f A |
1790 | } |
1791 | } | |
1792 | } | |
1793 | ||
729e4ab9 A |
1794 | if(uprv_strstr(pArgs->name, "18030")!=NULL) { |
1795 | if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) { | |
b75a7d8f A |
1796 | /* set a flag for GB 18030 mode, which changes the callback behavior */ |
1797 | cnv->options|=_MBCS_OPTION_GB18030; | |
1798 | } | |
729e4ab9 A |
1799 | } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) { |
1800 | /* set a flag for KEIS converter, which changes the SI/SO character sequence */ | |
1801 | cnv->options|=_MBCS_OPTION_KEIS; | |
1802 | } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) { | |
1803 | /* set a flag for JEF converter, which changes the SI/SO character sequence */ | |
1804 | cnv->options|=_MBCS_OPTION_JEF; | |
1805 | } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) { | |
1806 | /* set a flag for JIPS converter, which changes the SI/SO character sequence */ | |
1807 | cnv->options|=_MBCS_OPTION_JIPS; | |
b75a7d8f A |
1808 | } |
1809 | ||
374ca955 A |
1810 | /* fix maxBytesPerUChar depending on outputType and options etc. */ |
1811 | if(outputType==MBCS_OUTPUT_2_SISO) { | |
1812 | cnv->maxBytesPerUChar=3; /* SO+DBCS */ | |
1813 | } | |
1814 | ||
1815 | extIndexes=mbcsTable->extIndexes; | |
1816 | if(extIndexes!=NULL) { | |
1817 | maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); | |
1818 | if(outputType==MBCS_OUTPUT_2_SISO) { | |
1819 | ++maxBytesPerUChar; /* SO + multiple DBCS */ | |
1820 | } | |
1821 | ||
1822 | if(maxBytesPerUChar>cnv->maxBytesPerUChar) { | |
1823 | cnv->maxBytesPerUChar=maxBytesPerUChar; | |
1824 | } | |
1825 | } | |
1826 | ||
1827 | #if 0 | |
1828 | /* | |
1829 | * documentation of UConverter fields used for status | |
1830 | * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() | |
1831 | */ | |
1832 | ||
1833 | /* toUnicode */ | |
1834 | cnv->toUnicodeStatus=0; /* offset */ | |
1835 | cnv->mode=0; /* state */ | |
1836 | cnv->toULength=0; /* byteIndex */ | |
1837 | ||
1838 | /* fromUnicode */ | |
1839 | cnv->fromUChar32=0; | |
1840 | cnv->fromUnicodeStatus=1; /* prevLength */ | |
1841 | #endif | |
b75a7d8f A |
1842 | } |
1843 | ||
1844 | static const char * | |
374ca955 A |
1845 | ucnv_MBCSGetName(const UConverter *cnv) { |
1846 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) { | |
1847 | return cnv->sharedData->mbcs.swapLFNLName; | |
b75a7d8f A |
1848 | } else { |
1849 | return cnv->sharedData->staticData->name; | |
1850 | } | |
1851 | } | |
1852 | ||
1853 | /* MBCS-to-Unicode conversion functions ------------------------------------- */ | |
1854 | ||
1855 | static UChar32 | |
374ca955 | 1856 | ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { |
b75a7d8f A |
1857 | const _MBCSToUFallback *toUFallbacks; |
1858 | uint32_t i, start, limit; | |
1859 | ||
1860 | limit=mbcsTable->countToUFallbacks; | |
1861 | if(limit>0) { | |
1862 | /* do a binary search for the fallback mapping */ | |
1863 | toUFallbacks=mbcsTable->toUFallbacks; | |
1864 | start=0; | |
1865 | while(start<limit-1) { | |
1866 | i=(start+limit)/2; | |
1867 | if(offset<toUFallbacks[i].offset) { | |
1868 | limit=i; | |
1869 | } else { | |
1870 | start=i; | |
1871 | } | |
1872 | } | |
1873 | ||
1874 | /* did we really find it? */ | |
1875 | if(offset==toUFallbacks[start].offset) { | |
1876 | return toUFallbacks[start].codePoint; | |
1877 | } | |
1878 | } | |
1879 | ||
1880 | return 0xfffe; | |
1881 | } | |
1882 | ||
374ca955 A |
1883 | /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ |
1884 | static void | |
1885 | ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, | |
1886 | UErrorCode *pErrorCode) { | |
b75a7d8f A |
1887 | UConverter *cnv; |
1888 | const uint8_t *source, *sourceLimit; | |
1889 | UChar *target; | |
1890 | const UChar *targetLimit; | |
1891 | int32_t *offsets; | |
1892 | ||
1893 | const int32_t (*stateTable)[256]; | |
b75a7d8f | 1894 | |
374ca955 | 1895 | int32_t sourceIndex; |
b75a7d8f A |
1896 | |
1897 | int32_t entry; | |
1898 | UChar c; | |
1899 | uint8_t action; | |
b75a7d8f A |
1900 | |
1901 | /* set up the local pointers */ | |
374ca955 | 1902 | cnv=pArgs->converter; |
b75a7d8f A |
1903 | source=(const uint8_t *)pArgs->source; |
1904 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
1905 | target=pArgs->target; | |
1906 | targetLimit=pArgs->targetLimit; | |
1907 | offsets=pArgs->offsets; | |
1908 | ||
1909 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
374ca955 | 1910 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
b75a7d8f | 1911 | } else { |
374ca955 | 1912 | stateTable=cnv->sharedData->mbcs.stateTable; |
b75a7d8f | 1913 | } |
b75a7d8f A |
1914 | |
1915 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
374ca955 | 1916 | sourceIndex=0; |
b75a7d8f A |
1917 | |
1918 | /* conversion loop */ | |
1919 | while(source<sourceLimit) { | |
1920 | /* | |
1921 | * This following test is to see if available input would overflow the output. | |
1922 | * It does not catch output of more than one code unit that | |
1923 | * overflows as a result of a surrogate pair or callback output | |
1924 | * from the last source byte. | |
1925 | * Therefore, those situations also test for overflows and will | |
1926 | * then break the loop, too. | |
1927 | */ | |
374ca955 A |
1928 | if(target>=targetLimit) { |
1929 | /* target is full */ | |
1930 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1931 | break; | |
1932 | } | |
b75a7d8f | 1933 | |
374ca955 A |
1934 | entry=stateTable[0][*source++]; |
1935 | /* MBCS_ENTRY_IS_FINAL(entry) */ | |
b75a7d8f | 1936 | |
374ca955 A |
1937 | /* test the most common case first */ |
1938 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
1939 | /* output BMP code point */ | |
1940 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
1941 | if(offsets!=NULL) { | |
1942 | *offsets++=sourceIndex; | |
1943 | } | |
b75a7d8f | 1944 | |
374ca955 A |
1945 | /* normal end of action codes: prepare for a new character */ |
1946 | ++sourceIndex; | |
1947 | continue; | |
1948 | } | |
b75a7d8f | 1949 | |
374ca955 A |
1950 | /* |
1951 | * An if-else-if chain provides more reliable performance for | |
1952 | * the most common cases compared to a switch. | |
1953 | */ | |
1954 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
1955 | if(action==MBCS_STATE_VALID_DIRECT_20 || | |
1956 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) | |
1957 | ) { | |
1958 | entry=MBCS_ENTRY_FINAL_VALUE(entry); | |
1959 | /* output surrogate pair */ | |
1960 | *target++=(UChar)(0xd800|(UChar)(entry>>10)); | |
1961 | if(offsets!=NULL) { | |
1962 | *offsets++=sourceIndex; | |
1963 | } | |
1964 | c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); | |
1965 | if(target<targetLimit) { | |
1966 | *target++=c; | |
1967 | if(offsets!=NULL) { | |
1968 | *offsets++=sourceIndex; | |
1969 | } | |
1970 | } else { | |
1971 | /* target overflow */ | |
1972 | cnv->UCharErrorBuffer[0]=c; | |
1973 | cnv->UCharErrorBufferLength=1; | |
1974 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1975 | break; | |
1976 | } | |
b75a7d8f | 1977 | |
374ca955 A |
1978 | ++sourceIndex; |
1979 | continue; | |
1980 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
1981 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
1982 | /* output BMP code point */ | |
1983 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
1984 | if(offsets!=NULL) { | |
1985 | *offsets++=sourceIndex; | |
b75a7d8f A |
1986 | } |
1987 | ||
374ca955 A |
1988 | ++sourceIndex; |
1989 | continue; | |
b75a7d8f | 1990 | } |
374ca955 A |
1991 | } else if(action==MBCS_STATE_UNASSIGNED) { |
1992 | /* just fall through */ | |
1993 | } else if(action==MBCS_STATE_ILLEGAL) { | |
1994 | /* callback(illegal) */ | |
1995 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
b75a7d8f | 1996 | } else { |
374ca955 A |
1997 | /* reserved, must never occur */ |
1998 | ++sourceIndex; | |
1999 | continue; | |
b75a7d8f | 2000 | } |
b75a7d8f | 2001 | |
374ca955 A |
2002 | if(U_FAILURE(*pErrorCode)) { |
2003 | /* callback(illegal) */ | |
2004 | break; | |
2005 | } else /* unassigned sequences indicated with byteIndex>0 */ { | |
2006 | /* try an extension mapping */ | |
2007 | pArgs->source=(const char *)source; | |
2008 | cnv->toUBytes[0]=*(source-1); | |
2009 | cnv->toULength=_extToU(cnv, cnv->sharedData, | |
46f4442e | 2010 | 1, &source, sourceLimit, |
374ca955 A |
2011 | &target, targetLimit, |
2012 | &offsets, sourceIndex, | |
2013 | pArgs->flush, | |
2014 | pErrorCode); | |
2015 | sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); | |
2016 | ||
2017 | if(U_FAILURE(*pErrorCode)) { | |
2018 | /* not mappable or buffer overflow */ | |
2019 | break; | |
2020 | } | |
b75a7d8f | 2021 | } |
b75a7d8f A |
2022 | } |
2023 | ||
2024 | /* write back the updated pointers */ | |
2025 | pArgs->source=(const char *)source; | |
2026 | pArgs->target=target; | |
2027 | pArgs->offsets=offsets; | |
2028 | } | |
2029 | ||
374ca955 A |
2030 | /* |
2031 | * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages | |
2032 | * that only map to and from the BMP. | |
2033 | * In addition to single-byte optimizations, the offset calculations | |
2034 | * become much easier. | |
2035 | */ | |
b75a7d8f | 2036 | static void |
374ca955 A |
2037 | ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, |
2038 | UErrorCode *pErrorCode) { | |
b75a7d8f | 2039 | UConverter *cnv; |
374ca955 | 2040 | const uint8_t *source, *sourceLimit, *lastSource; |
b75a7d8f | 2041 | UChar *target; |
374ca955 | 2042 | int32_t targetCapacity, length; |
b75a7d8f A |
2043 | int32_t *offsets; |
2044 | ||
2045 | const int32_t (*stateTable)[256]; | |
2046 | ||
374ca955 | 2047 | int32_t sourceIndex; |
b75a7d8f A |
2048 | |
2049 | int32_t entry; | |
b75a7d8f | 2050 | uint8_t action; |
b75a7d8f A |
2051 | |
2052 | /* set up the local pointers */ | |
2053 | cnv=pArgs->converter; | |
2054 | source=(const uint8_t *)pArgs->source; | |
2055 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
2056 | target=pArgs->target; | |
73c04bcf | 2057 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
b75a7d8f A |
2058 | offsets=pArgs->offsets; |
2059 | ||
2060 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
374ca955 | 2061 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
b75a7d8f | 2062 | } else { |
374ca955 | 2063 | stateTable=cnv->sharedData->mbcs.stateTable; |
b75a7d8f A |
2064 | } |
2065 | ||
2066 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
2067 | sourceIndex=0; | |
374ca955 | 2068 | lastSource=source; |
b75a7d8f A |
2069 | |
2070 | /* | |
2071 | * since the conversion here is 1:1 UChar:uint8_t, we need only one counter | |
2072 | * for the minimum of the sourceLength and targetCapacity | |
2073 | */ | |
73c04bcf | 2074 | length=(int32_t)(sourceLimit-source); |
b75a7d8f A |
2075 | if(length<targetCapacity) { |
2076 | targetCapacity=length; | |
2077 | } | |
2078 | ||
2079 | #if MBCS_UNROLL_SINGLE_TO_BMP | |
2080 | /* unrolling makes it faster on Pentium III/Windows 2000 */ | |
2081 | /* unroll the loop with the most common case */ | |
2082 | unrolled: | |
2083 | if(targetCapacity>=16) { | |
2084 | int32_t count, loops, oredEntries; | |
2085 | ||
2086 | loops=count=targetCapacity>>4; | |
2087 | do { | |
2088 | oredEntries=entry=stateTable[0][*source++]; | |
2089 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2090 | oredEntries|=entry=stateTable[0][*source++]; | |
2091 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2092 | oredEntries|=entry=stateTable[0][*source++]; | |
2093 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2094 | oredEntries|=entry=stateTable[0][*source++]; | |
2095 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2096 | oredEntries|=entry=stateTable[0][*source++]; | |
2097 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2098 | oredEntries|=entry=stateTable[0][*source++]; | |
2099 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2100 | oredEntries|=entry=stateTable[0][*source++]; | |
2101 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2102 | oredEntries|=entry=stateTable[0][*source++]; | |
2103 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2104 | oredEntries|=entry=stateTable[0][*source++]; | |
2105 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2106 | oredEntries|=entry=stateTable[0][*source++]; | |
2107 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2108 | oredEntries|=entry=stateTable[0][*source++]; | |
2109 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2110 | oredEntries|=entry=stateTable[0][*source++]; | |
2111 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2112 | oredEntries|=entry=stateTable[0][*source++]; | |
2113 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2114 | oredEntries|=entry=stateTable[0][*source++]; | |
2115 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2116 | oredEntries|=entry=stateTable[0][*source++]; | |
2117 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2118 | oredEntries|=entry=stateTable[0][*source++]; | |
2119 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2120 | ||
2121 | /* were all 16 entries really valid? */ | |
2122 | if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { | |
2123 | /* no, return to the first of these 16 */ | |
2124 | source-=16; | |
2125 | target-=16; | |
2126 | break; | |
2127 | } | |
2128 | } while(--count>0); | |
2129 | count=loops-count; | |
2130 | targetCapacity-=16*count; | |
2131 | ||
2132 | if(offsets!=NULL) { | |
2133 | lastSource+=16*count; | |
2134 | while(count>0) { | |
2135 | *offsets++=sourceIndex++; | |
2136 | *offsets++=sourceIndex++; | |
2137 | *offsets++=sourceIndex++; | |
2138 | *offsets++=sourceIndex++; | |
2139 | *offsets++=sourceIndex++; | |
2140 | *offsets++=sourceIndex++; | |
2141 | *offsets++=sourceIndex++; | |
2142 | *offsets++=sourceIndex++; | |
2143 | *offsets++=sourceIndex++; | |
2144 | *offsets++=sourceIndex++; | |
2145 | *offsets++=sourceIndex++; | |
2146 | *offsets++=sourceIndex++; | |
2147 | *offsets++=sourceIndex++; | |
2148 | *offsets++=sourceIndex++; | |
2149 | *offsets++=sourceIndex++; | |
2150 | *offsets++=sourceIndex++; | |
2151 | --count; | |
2152 | } | |
2153 | } | |
2154 | } | |
2155 | #endif | |
2156 | ||
2157 | /* conversion loop */ | |
729e4ab9 | 2158 | while(targetCapacity > 0 && source < sourceLimit) { |
b75a7d8f A |
2159 | entry=stateTable[0][*source++]; |
2160 | /* MBCS_ENTRY_IS_FINAL(entry) */ | |
2161 | ||
2162 | /* test the most common case first */ | |
2163 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
2164 | /* output BMP code point */ | |
2165 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2166 | --targetCapacity; | |
2167 | continue; | |
2168 | } | |
2169 | ||
2170 | /* | |
2171 | * An if-else-if chain provides more reliable performance for | |
2172 | * the most common cases compared to a switch. | |
2173 | */ | |
2174 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
2175 | if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
374ca955 A |
2176 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
2177 | /* output BMP code point */ | |
2178 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2179 | --targetCapacity; | |
2180 | continue; | |
b75a7d8f | 2181 | } |
b75a7d8f | 2182 | } else if(action==MBCS_STATE_UNASSIGNED) { |
374ca955 | 2183 | /* just fall through */ |
b75a7d8f A |
2184 | } else if(action==MBCS_STATE_ILLEGAL) { |
2185 | /* callback(illegal) */ | |
b75a7d8f A |
2186 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
2187 | } else { | |
2188 | /* reserved, must never occur */ | |
2189 | continue; | |
2190 | } | |
2191 | ||
374ca955 | 2192 | /* set offsets since the start or the last extension */ |
b75a7d8f A |
2193 | if(offsets!=NULL) { |
2194 | int32_t count=(int32_t)(source-lastSource); | |
2195 | ||
2196 | /* predecrement: do not set the offset for the callback-causing character */ | |
2197 | while(--count>0) { | |
2198 | *offsets++=sourceIndex++; | |
2199 | } | |
2200 | /* offset and sourceIndex are now set for the current character */ | |
2201 | } | |
2202 | ||
374ca955 A |
2203 | if(U_FAILURE(*pErrorCode)) { |
2204 | /* callback(illegal) */ | |
b75a7d8f | 2205 | break; |
374ca955 A |
2206 | } else /* unassigned sequences indicated with byteIndex>0 */ { |
2207 | /* try an extension mapping */ | |
2208 | lastSource=source; | |
2209 | cnv->toUBytes[0]=*(source-1); | |
2210 | cnv->toULength=_extToU(cnv, cnv->sharedData, | |
46f4442e A |
2211 | 1, &source, sourceLimit, |
2212 | &target, pArgs->targetLimit, | |
374ca955 A |
2213 | &offsets, sourceIndex, |
2214 | pArgs->flush, | |
2215 | pErrorCode); | |
2216 | sourceIndex+=1+(int32_t)(source-lastSource); | |
2217 | ||
2218 | if(U_FAILURE(*pErrorCode)) { | |
2219 | /* not mappable or buffer overflow */ | |
2220 | break; | |
2221 | } | |
2222 | ||
2223 | /* recalculate the targetCapacity after an extension mapping */ | |
73c04bcf A |
2224 | targetCapacity=(int32_t)(pArgs->targetLimit-target); |
2225 | length=(int32_t)(sourceLimit-source); | |
374ca955 A |
2226 | if(length<targetCapacity) { |
2227 | targetCapacity=length; | |
2228 | } | |
b75a7d8f A |
2229 | } |
2230 | ||
2231 | #if MBCS_UNROLL_SINGLE_TO_BMP | |
2232 | /* unrolling makes it faster on Pentium III/Windows 2000 */ | |
2233 | goto unrolled; | |
2234 | #endif | |
2235 | } | |
2236 | ||
2237 | if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) { | |
2238 | /* target is full */ | |
2239 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
2240 | } | |
2241 | ||
2242 | /* set offsets since the start or the last callback */ | |
2243 | if(offsets!=NULL) { | |
2244 | size_t count=source-lastSource; | |
2245 | while(count>0) { | |
2246 | *offsets++=sourceIndex++; | |
2247 | --count; | |
2248 | } | |
2249 | } | |
2250 | ||
2251 | /* write back the updated pointers */ | |
2252 | pArgs->source=(const char *)source; | |
2253 | pArgs->target=target; | |
2254 | pArgs->offsets=offsets; | |
2255 | } | |
2256 | ||
fd0068a8 A |
2257 | static UBool |
2258 | hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { | |
2259 | const int32_t *row=stateTable[state]; | |
2260 | int32_t b, entry; | |
2261 | /* First test for final entries in this state for some commonly valid byte values. */ | |
2262 | entry=row[0xa1]; | |
2263 | if( !MBCS_ENTRY_IS_TRANSITION(entry) && | |
2264 | MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL | |
2265 | ) { | |
2266 | return TRUE; | |
2267 | } | |
2268 | entry=row[0x41]; | |
2269 | if( !MBCS_ENTRY_IS_TRANSITION(entry) && | |
2270 | MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL | |
2271 | ) { | |
2272 | return TRUE; | |
2273 | } | |
2274 | /* Then test for final entries in this state. */ | |
2275 | for(b=0; b<=0xff; ++b) { | |
2276 | entry=row[b]; | |
2277 | if( !MBCS_ENTRY_IS_TRANSITION(entry) && | |
2278 | MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL | |
2279 | ) { | |
2280 | return TRUE; | |
2281 | } | |
2282 | } | |
2283 | /* Then recurse for transition entries. */ | |
2284 | for(b=0; b<=0xff; ++b) { | |
2285 | entry=row[b]; | |
2286 | if( MBCS_ENTRY_IS_TRANSITION(entry) && | |
2287 | hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)) | |
2288 | ) { | |
2289 | return TRUE; | |
2290 | } | |
2291 | } | |
2292 | return FALSE; | |
2293 | } | |
2294 | ||
2295 | /* | |
2296 | * Is byte b a single/lead byte in this state? | |
2297 | * Recurse for transition states, because here we don't want to say that | |
2298 | * b is a lead byte if all byte sequences that start with b are illegal. | |
2299 | */ | |
2300 | static UBool | |
2301 | isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) { | |
2302 | const int32_t *row=stateTable[state]; | |
2303 | int32_t entry=row[b]; | |
2304 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ | |
2305 | return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)); | |
2306 | } else { | |
2307 | uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
2308 | if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { | |
2309 | return FALSE; /* SI/SO are illegal for DBCS-only conversion */ | |
2310 | } else { | |
2311 | return action!=MBCS_STATE_ILLEGAL; | |
2312 | } | |
2313 | } | |
2314 | } | |
2315 | ||
374ca955 A |
2316 | U_CFUNC void |
2317 | ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, | |
2318 | UErrorCode *pErrorCode) { | |
b75a7d8f A |
2319 | UConverter *cnv; |
2320 | const uint8_t *source, *sourceLimit; | |
374ca955 A |
2321 | UChar *target; |
2322 | const UChar *targetLimit; | |
2323 | int32_t *offsets; | |
b75a7d8f A |
2324 | |
2325 | const int32_t (*stateTable)[256]; | |
2326 | const uint16_t *unicodeCodeUnits; | |
2327 | ||
2328 | uint32_t offset; | |
2329 | uint8_t state; | |
2330 | int8_t byteIndex; | |
2331 | uint8_t *bytes; | |
2332 | ||
374ca955 A |
2333 | int32_t sourceIndex, nextSourceIndex; |
2334 | ||
b75a7d8f | 2335 | int32_t entry; |
374ca955 | 2336 | UChar c; |
b75a7d8f | 2337 | uint8_t action; |
b75a7d8f A |
2338 | |
2339 | /* use optimized function if possible */ | |
2340 | cnv=pArgs->converter; | |
374ca955 A |
2341 | |
2342 | if(cnv->preToULength>0) { | |
b75a7d8f | 2343 | /* |
374ca955 A |
2344 | * pass sourceIndex=-1 because we continue from an earlier buffer |
2345 | * in the future, this may change with continuous offsets | |
b75a7d8f | 2346 | */ |
374ca955 A |
2347 | ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); |
2348 | ||
2349 | if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { | |
2350 | return; | |
2351 | } | |
2352 | } | |
2353 | ||
2354 | if(cnv->sharedData->mbcs.countStates==1) { | |
2355 | if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
2356 | ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); | |
2357 | } else { | |
2358 | ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); | |
2359 | } | |
2360 | return; | |
b75a7d8f A |
2361 | } |
2362 | ||
2363 | /* set up the local pointers */ | |
2364 | source=(const uint8_t *)pArgs->source; | |
2365 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
374ca955 A |
2366 | target=pArgs->target; |
2367 | targetLimit=pArgs->targetLimit; | |
2368 | offsets=pArgs->offsets; | |
b75a7d8f A |
2369 | |
2370 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
374ca955 | 2371 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
b75a7d8f | 2372 | } else { |
374ca955 | 2373 | stateTable=cnv->sharedData->mbcs.stateTable; |
b75a7d8f | 2374 | } |
374ca955 | 2375 | unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
b75a7d8f A |
2376 | |
2377 | /* get the converter state from UConverter */ | |
2378 | offset=cnv->toUnicodeStatus; | |
b75a7d8f A |
2379 | byteIndex=cnv->toULength; |
2380 | bytes=cnv->toUBytes; | |
2381 | ||
374ca955 A |
2382 | /* |
2383 | * if we are in the SBCS state for a DBCS-only converter, | |
2384 | * then load the DBCS state from the MBCS data | |
2385 | * (dbcsOnlyState==0 if it is not a DBCS-only converter) | |
2386 | */ | |
2387 | if((state=(uint8_t)(cnv->mode))==0) { | |
2388 | state=cnv->sharedData->mbcs.dbcsOnlyState; | |
2389 | } | |
2390 | ||
2391 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
2392 | sourceIndex=byteIndex==0 ? 0 : -1; | |
2393 | nextSourceIndex=0; | |
2394 | ||
b75a7d8f A |
2395 | /* conversion loop */ |
2396 | while(source<sourceLimit) { | |
374ca955 A |
2397 | /* |
2398 | * This following test is to see if available input would overflow the output. | |
2399 | * It does not catch output of more than one code unit that | |
2400 | * overflows as a result of a surrogate pair or callback output | |
2401 | * from the last source byte. | |
2402 | * Therefore, those situations also test for overflows and will | |
2403 | * then break the loop, too. | |
2404 | */ | |
2405 | if(target>=targetLimit) { | |
2406 | /* target is full */ | |
2407 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
2408 | break; | |
2409 | } | |
2410 | ||
2411 | if(byteIndex==0) { | |
2412 | /* optimized loop for 1/2-byte input and BMP output */ | |
2413 | if(offsets==NULL) { | |
2414 | do { | |
2415 | entry=stateTable[state][*source]; | |
2416 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
2417 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
2418 | offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
2419 | ||
2420 | ++source; | |
2421 | if( source<sourceLimit && | |
2422 | MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && | |
2423 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && | |
2424 | (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe | |
2425 | ) { | |
2426 | ++source; | |
2427 | *target++=c; | |
2428 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
2429 | offset=0; | |
2430 | } else { | |
2431 | /* set the state and leave the optimized loop */ | |
2432 | bytes[0]=*(source-1); | |
2433 | byteIndex=1; | |
2434 | break; | |
2435 | } | |
2436 | } else { | |
2437 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
2438 | /* output BMP code point */ | |
2439 | ++source; | |
2440 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2441 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
2442 | } else { | |
2443 | /* leave the optimized loop */ | |
2444 | break; | |
2445 | } | |
2446 | } | |
2447 | } while(source<sourceLimit && target<targetLimit); | |
2448 | } else /* offsets!=NULL */ { | |
2449 | do { | |
2450 | entry=stateTable[state][*source]; | |
2451 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
2452 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
2453 | offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
2454 | ||
2455 | ++source; | |
2456 | if( source<sourceLimit && | |
2457 | MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && | |
2458 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && | |
2459 | (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe | |
2460 | ) { | |
2461 | ++source; | |
2462 | *target++=c; | |
2463 | if(offsets!=NULL) { | |
2464 | *offsets++=sourceIndex; | |
2465 | sourceIndex=(nextSourceIndex+=2); | |
2466 | } | |
2467 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
2468 | offset=0; | |
2469 | } else { | |
2470 | /* set the state and leave the optimized loop */ | |
2471 | ++nextSourceIndex; | |
2472 | bytes[0]=*(source-1); | |
2473 | byteIndex=1; | |
2474 | break; | |
2475 | } | |
2476 | } else { | |
2477 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
2478 | /* output BMP code point */ | |
2479 | ++source; | |
2480 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2481 | if(offsets!=NULL) { | |
2482 | *offsets++=sourceIndex; | |
2483 | sourceIndex=++nextSourceIndex; | |
2484 | } | |
2485 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
2486 | } else { | |
2487 | /* leave the optimized loop */ | |
2488 | break; | |
2489 | } | |
2490 | } | |
2491 | } while(source<sourceLimit && target<targetLimit); | |
2492 | } | |
2493 | ||
2494 | /* | |
2495 | * these tests and break statements could be put inside the loop | |
2496 | * if C had "break outerLoop" like Java | |
2497 | */ | |
2498 | if(source>=sourceLimit) { | |
2499 | break; | |
2500 | } | |
2501 | if(target>=targetLimit) { | |
2502 | /* target is full */ | |
2503 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
2504 | break; | |
2505 | } | |
2506 | ||
2507 | ++nextSourceIndex; | |
2508 | bytes[byteIndex++]=*source++; | |
2509 | } else /* byteIndex>0 */ { | |
2510 | ++nextSourceIndex; | |
2511 | entry=stateTable[state][bytes[byteIndex++]=*source++]; | |
2512 | } | |
2513 | ||
b75a7d8f A |
2514 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
2515 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
2516 | offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
374ca955 A |
2517 | continue; |
2518 | } | |
b75a7d8f | 2519 | |
374ca955 A |
2520 | /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
2521 | cnv->mode=state; | |
2522 | ||
2523 | /* set the next state early so that we can reuse the entry variable */ | |
2524 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
2525 | ||
2526 | /* | |
2527 | * An if-else-if chain provides more reliable performance for | |
2528 | * the most common cases compared to a switch. | |
2529 | */ | |
2530 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
2531 | if(action==MBCS_STATE_VALID_16) { | |
2532 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2533 | c=unicodeCodeUnits[offset]; | |
2534 | if(c<0xfffe) { | |
2535 | /* output BMP code point */ | |
2536 | *target++=c; | |
2537 | if(offsets!=NULL) { | |
2538 | *offsets++=sourceIndex; | |
2539 | } | |
2540 | byteIndex=0; | |
2541 | } else if(c==0xfffe) { | |
2542 | if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { | |
2543 | /* output fallback BMP code point */ | |
2544 | *target++=(UChar)entry; | |
2545 | if(offsets!=NULL) { | |
2546 | *offsets++=sourceIndex; | |
b75a7d8f | 2547 | } |
374ca955 | 2548 | byteIndex=0; |
b75a7d8f | 2549 | } |
374ca955 A |
2550 | } else { |
2551 | /* callback(illegal) */ | |
2552 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
2553 | } | |
2554 | } else if(action==MBCS_STATE_VALID_DIRECT_16) { | |
2555 | /* output BMP code point */ | |
2556 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2557 | if(offsets!=NULL) { | |
2558 | *offsets++=sourceIndex; | |
2559 | } | |
2560 | byteIndex=0; | |
2561 | } else if(action==MBCS_STATE_VALID_16_PAIR) { | |
2562 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2563 | c=unicodeCodeUnits[offset++]; | |
2564 | if(c<0xd800) { | |
2565 | /* output BMP code point below 0xd800 */ | |
2566 | *target++=c; | |
2567 | if(offsets!=NULL) { | |
2568 | *offsets++=sourceIndex; | |
b75a7d8f | 2569 | } |
374ca955 A |
2570 | byteIndex=0; |
2571 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { | |
2572 | /* output roundtrip or fallback surrogate pair */ | |
2573 | *target++=(UChar)(c&0xdbff); | |
2574 | if(offsets!=NULL) { | |
2575 | *offsets++=sourceIndex; | |
b75a7d8f | 2576 | } |
374ca955 A |
2577 | byteIndex=0; |
2578 | if(target<targetLimit) { | |
2579 | *target++=unicodeCodeUnits[offset]; | |
2580 | if(offsets!=NULL) { | |
2581 | *offsets++=sourceIndex; | |
2582 | } | |
2583 | } else { | |
2584 | /* target overflow */ | |
2585 | cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; | |
2586 | cnv->UCharErrorBufferLength=1; | |
2587 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
2588 | ||
2589 | offset=0; | |
2590 | break; | |
b75a7d8f | 2591 | } |
374ca955 A |
2592 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
2593 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ | |
2594 | *target++=unicodeCodeUnits[offset]; | |
2595 | if(offsets!=NULL) { | |
2596 | *offsets++=sourceIndex; | |
2597 | } | |
2598 | byteIndex=0; | |
2599 | } else if(c==0xffff) { | |
b75a7d8f | 2600 | /* callback(illegal) */ |
374ca955 A |
2601 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
2602 | } | |
2603 | } else if(action==MBCS_STATE_VALID_DIRECT_20 || | |
2604 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) | |
2605 | ) { | |
2606 | entry=MBCS_ENTRY_FINAL_VALUE(entry); | |
2607 | /* output surrogate pair */ | |
2608 | *target++=(UChar)(0xd800|(UChar)(entry>>10)); | |
2609 | if(offsets!=NULL) { | |
2610 | *offsets++=sourceIndex; | |
b75a7d8f | 2611 | } |
b75a7d8f | 2612 | byteIndex=0; |
374ca955 A |
2613 | c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
2614 | if(target<targetLimit) { | |
2615 | *target++=c; | |
2616 | if(offsets!=NULL) { | |
2617 | *offsets++=sourceIndex; | |
b75a7d8f | 2618 | } |
b75a7d8f | 2619 | } else { |
374ca955 A |
2620 | /* target overflow */ |
2621 | cnv->UCharErrorBuffer[0]=c; | |
2622 | cnv->UCharErrorBufferLength=1; | |
2623 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
b75a7d8f | 2624 | |
374ca955 A |
2625 | offset=0; |
2626 | break; | |
2627 | } | |
2628 | } else if(action==MBCS_STATE_CHANGE_ONLY) { | |
b75a7d8f | 2629 | /* |
374ca955 A |
2630 | * This serves as a state change without any output. |
2631 | * It is useful for reading simple stateful encodings, | |
2632 | * for example using just Shift-In/Shift-Out codes. | |
2633 | * The 21 unused bits may later be used for more sophisticated | |
2634 | * state transitions. | |
b75a7d8f | 2635 | */ |
374ca955 A |
2636 | if(cnv->sharedData->mbcs.dbcsOnlyState==0) { |
2637 | byteIndex=0; | |
2638 | } else { | |
2639 | /* SI/SO are illegal for DBCS-only conversion */ | |
2640 | state=(uint8_t)(cnv->mode); /* restore the previous state */ | |
2641 | ||
2642 | /* callback(illegal) */ | |
2643 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
2644 | } | |
2645 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
2646 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
2647 | /* output BMP code point */ | |
2648 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2649 | if(offsets!=NULL) { | |
2650 | *offsets++=sourceIndex; | |
2651 | } | |
2652 | byteIndex=0; | |
2653 | } | |
2654 | } else if(action==MBCS_STATE_UNASSIGNED) { | |
2655 | /* just fall through */ | |
2656 | } else if(action==MBCS_STATE_ILLEGAL) { | |
2657 | /* callback(illegal) */ | |
2658 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
2659 | } else { | |
2660 | /* reserved, must never occur */ | |
2661 | byteIndex=0; | |
b75a7d8f | 2662 | } |
b75a7d8f | 2663 | |
374ca955 A |
2664 | /* end of action codes: prepare for a new character */ |
2665 | offset=0; | |
2666 | ||
2667 | if(byteIndex==0) { | |
2668 | sourceIndex=nextSourceIndex; | |
2669 | } else if(U_FAILURE(*pErrorCode)) { | |
2670 | /* callback(illegal) */ | |
fd0068a8 A |
2671 | if(byteIndex>1) { |
2672 | /* | |
2673 | * Ticket 5691: consistent illegal sequences: | |
2674 | * - We include at least the first byte in the illegal sequence. | |
2675 | * - If any of the non-initial bytes could be the start of a character, | |
2676 | * we stop the illegal sequence before the first one of those. | |
2677 | */ | |
2678 | UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); | |
2679 | int8_t i; | |
2680 | for(i=1; | |
2681 | i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]); | |
2682 | ++i) {} | |
2683 | if(i<byteIndex) { | |
2684 | /* Back out some bytes. */ | |
2685 | int8_t backOutDistance=byteIndex-i; | |
2686 | int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source); | |
2687 | byteIndex=i; /* length of reported illegal byte sequence */ | |
2688 | if(backOutDistance<=bytesFromThisBuffer) { | |
2689 | source-=backOutDistance; | |
2690 | } else { | |
2691 | /* Back out bytes from the previous buffer: Need to replay them. */ | |
2692 | cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); | |
2693 | /* preToULength is negative! */ | |
2694 | uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); | |
2695 | source=(const uint8_t *)pArgs->source; | |
2696 | } | |
2697 | } | |
2698 | } | |
374ca955 A |
2699 | break; |
2700 | } else /* unassigned sequences indicated with byteIndex>0 */ { | |
2701 | /* try an extension mapping */ | |
2702 | pArgs->source=(const char *)source; | |
2703 | byteIndex=_extToU(cnv, cnv->sharedData, | |
46f4442e | 2704 | byteIndex, &source, sourceLimit, |
374ca955 A |
2705 | &target, targetLimit, |
2706 | &offsets, sourceIndex, | |
2707 | pArgs->flush, | |
2708 | pErrorCode); | |
fd0068a8 | 2709 | sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source); |
374ca955 A |
2710 | |
2711 | if(U_FAILURE(*pErrorCode)) { | |
2712 | /* not mappable or buffer overflow */ | |
2713 | break; | |
2714 | } | |
2715 | } | |
b75a7d8f | 2716 | } |
b75a7d8f | 2717 | |
374ca955 A |
2718 | /* set the converter state back into UConverter */ |
2719 | cnv->toUnicodeStatus=offset; | |
b75a7d8f | 2720 | cnv->mode=state; |
374ca955 | 2721 | cnv->toULength=byteIndex; |
b75a7d8f | 2722 | |
374ca955 | 2723 | /* write back the updated pointers */ |
b75a7d8f | 2724 | pArgs->source=(const char *)source; |
374ca955 A |
2725 | pArgs->target=target; |
2726 | pArgs->offsets=offsets; | |
b75a7d8f A |
2727 | } |
2728 | ||
2729 | /* | |
374ca955 A |
2730 | * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages. |
2731 | * We still need a conversion loop in case we find reserved action codes, which are to be ignored. | |
b75a7d8f A |
2732 | */ |
2733 | static UChar32 | |
374ca955 | 2734 | ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, |
b75a7d8f | 2735 | UErrorCode *pErrorCode) { |
b75a7d8f A |
2736 | UConverter *cnv; |
2737 | const int32_t (*stateTable)[256]; | |
2738 | const uint8_t *source, *sourceLimit; | |
2739 | ||
2740 | int32_t entry; | |
2741 | uint8_t action; | |
b75a7d8f A |
2742 | |
2743 | /* set up the local pointers */ | |
2744 | cnv=pArgs->converter; | |
2745 | source=(const uint8_t *)pArgs->source; | |
2746 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
2747 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
374ca955 | 2748 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
b75a7d8f | 2749 | } else { |
374ca955 | 2750 | stateTable=cnv->sharedData->mbcs.stateTable; |
b75a7d8f A |
2751 | } |
2752 | ||
2753 | /* conversion loop */ | |
2754 | while(source<sourceLimit) { | |
2755 | entry=stateTable[0][*source++]; | |
2756 | /* MBCS_ENTRY_IS_FINAL(entry) */ | |
2757 | ||
2758 | /* write back the updated pointer early so that we can return directly */ | |
2759 | pArgs->source=(const char *)source; | |
2760 | ||
2761 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
2762 | /* output BMP code point */ | |
2763 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2764 | } | |
2765 | ||
2766 | /* | |
2767 | * An if-else-if chain provides more reliable performance for | |
2768 | * the most common cases compared to a switch. | |
2769 | */ | |
2770 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
374ca955 A |
2771 | if( action==MBCS_STATE_VALID_DIRECT_20 || |
2772 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) | |
2773 | ) { | |
b75a7d8f A |
2774 | /* output supplementary code point */ |
2775 | return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); | |
2776 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
374ca955 | 2777 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
b75a7d8f A |
2778 | /* output BMP code point */ |
2779 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2780 | } | |
b75a7d8f | 2781 | } else if(action==MBCS_STATE_UNASSIGNED) { |
374ca955 | 2782 | /* just fall through */ |
b75a7d8f A |
2783 | } else if(action==MBCS_STATE_ILLEGAL) { |
2784 | /* callback(illegal) */ | |
b75a7d8f A |
2785 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
2786 | } else { | |
2787 | /* reserved, must never occur */ | |
374ca955 | 2788 | continue; |
b75a7d8f A |
2789 | } |
2790 | ||
374ca955 A |
2791 | if(U_FAILURE(*pErrorCode)) { |
2792 | /* callback(illegal) */ | |
2793 | break; | |
2794 | } else /* unassigned sequence */ { | |
2795 | /* defer to the generic implementation */ | |
2796 | pArgs->source=(const char *)source-1; | |
2797 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
b75a7d8f A |
2798 | } |
2799 | } | |
2800 | ||
374ca955 | 2801 | /* no output because of empty input or only state changes */ |
b75a7d8f A |
2802 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2803 | return 0xffff; | |
2804 | } | |
2805 | ||
2806 | /* | |
374ca955 A |
2807 | * Version of _MBCSToUnicodeWithOffsets() optimized for single-character |
2808 | * conversion without offset handling. | |
b75a7d8f | 2809 | * |
374ca955 A |
2810 | * When a character does not have a mapping to Unicode, then we return to the |
2811 | * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback | |
2812 | * handling. | |
2813 | * We also defer to the generic code in other complicated cases and have them | |
2814 | * ultimately handled by _MBCSToUnicodeWithOffsets() itself. | |
2815 | * | |
2816 | * All normal mappings and errors are handled here. | |
b75a7d8f | 2817 | */ |
374ca955 A |
2818 | static UChar32 |
2819 | ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, | |
2820 | UErrorCode *pErrorCode) { | |
2821 | UConverter *cnv; | |
2822 | const uint8_t *source, *sourceLimit, *lastSource; | |
b75a7d8f A |
2823 | |
2824 | const int32_t (*stateTable)[256]; | |
2825 | const uint16_t *unicodeCodeUnits; | |
2826 | ||
2827 | uint32_t offset; | |
374ca955 | 2828 | uint8_t state; |
b75a7d8f A |
2829 | |
2830 | int32_t entry; | |
374ca955 A |
2831 | UChar32 c; |
2832 | uint8_t action; | |
b75a7d8f | 2833 | |
374ca955 A |
2834 | /* use optimized function if possible */ |
2835 | cnv=pArgs->converter; | |
2836 | ||
2837 | if(cnv->preToULength>0) { | |
2838 | /* use the generic code in ucnv_getNextUChar() to continue with a partial match */ | |
2839 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
b75a7d8f A |
2840 | } |
2841 | ||
374ca955 A |
2842 | if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { |
2843 | /* | |
2844 | * Using the generic ucnv_getNextUChar() code lets us deal correctly | |
2845 | * with the rare case of a codepage that maps single surrogates | |
2846 | * without adding the complexity to this already complicated function here. | |
2847 | */ | |
2848 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
2849 | } else if(cnv->sharedData->mbcs.countStates==1) { | |
2850 | return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); | |
b75a7d8f | 2851 | } |
b75a7d8f | 2852 | |
374ca955 A |
2853 | /* set up the local pointers */ |
2854 | source=lastSource=(const uint8_t *)pArgs->source; | |
2855 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
b75a7d8f | 2856 | |
374ca955 A |
2857 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
2858 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; | |
2859 | } else { | |
2860 | stateTable=cnv->sharedData->mbcs.stateTable; | |
2861 | } | |
2862 | unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; | |
2863 | ||
2864 | /* get the converter state from UConverter */ | |
2865 | offset=cnv->toUnicodeStatus; | |
2866 | ||
2867 | /* | |
2868 | * if we are in the SBCS state for a DBCS-only converter, | |
2869 | * then load the DBCS state from the MBCS data | |
2870 | * (dbcsOnlyState==0 if it is not a DBCS-only converter) | |
2871 | */ | |
2872 | if((state=(uint8_t)(cnv->mode))==0) { | |
2873 | state=cnv->sharedData->mbcs.dbcsOnlyState; | |
2874 | } | |
b75a7d8f A |
2875 | |
2876 | /* conversion loop */ | |
374ca955 A |
2877 | c=U_SENTINEL; |
2878 | while(source<sourceLimit) { | |
b75a7d8f A |
2879 | entry=stateTable[state][*source++]; |
2880 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
2881 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
2882 | offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
374ca955 A |
2883 | |
2884 | /* optimization for 1/2-byte input and BMP output */ | |
2885 | if( source<sourceLimit && | |
2886 | MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && | |
2887 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && | |
2888 | (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe | |
2889 | ) { | |
2890 | ++source; | |
2891 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
2892 | /* output BMP code point */ | |
2893 | break; | |
2894 | } | |
b75a7d8f | 2895 | } else { |
374ca955 A |
2896 | /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
2897 | cnv->mode=state; | |
2898 | ||
2899 | /* set the next state early so that we can reuse the entry variable */ | |
2900 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ | |
b75a7d8f A |
2901 | |
2902 | /* | |
2903 | * An if-else-if chain provides more reliable performance for | |
2904 | * the most common cases compared to a switch. | |
2905 | */ | |
2906 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
374ca955 A |
2907 | if(action==MBCS_STATE_VALID_DIRECT_16) { |
2908 | /* output BMP code point */ | |
2909 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2910 | break; | |
2911 | } else if(action==MBCS_STATE_VALID_16) { | |
b75a7d8f | 2912 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
374ca955 A |
2913 | c=unicodeCodeUnits[offset]; |
2914 | if(c<0xfffe) { | |
2915 | /* output BMP code point */ | |
2916 | break; | |
2917 | } else if(c==0xfffe) { | |
2918 | if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { | |
2919 | break; | |
2920 | } | |
b75a7d8f | 2921 | } else { |
374ca955 A |
2922 | /* callback(illegal) */ |
2923 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
b75a7d8f | 2924 | } |
b75a7d8f A |
2925 | } else if(action==MBCS_STATE_VALID_16_PAIR) { |
2926 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
374ca955 A |
2927 | c=unicodeCodeUnits[offset++]; |
2928 | if(c<0xd800) { | |
b75a7d8f | 2929 | /* output BMP code point below 0xd800 */ |
374ca955 A |
2930 | break; |
2931 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { | |
b75a7d8f | 2932 | /* output roundtrip or fallback supplementary code point */ |
374ca955 A |
2933 | c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); |
2934 | break; | |
2935 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { | |
b75a7d8f | 2936 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
374ca955 A |
2937 | c=unicodeCodeUnits[offset]; |
2938 | break; | |
2939 | } else if(c==0xffff) { | |
2940 | /* callback(illegal) */ | |
2941 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
b75a7d8f | 2942 | } |
374ca955 A |
2943 | } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
2944 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) | |
2945 | ) { | |
b75a7d8f | 2946 | /* output supplementary code point */ |
374ca955 A |
2947 | c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
2948 | break; | |
b75a7d8f A |
2949 | } else if(action==MBCS_STATE_CHANGE_ONLY) { |
2950 | /* | |
2951 | * This serves as a state change without any output. | |
2952 | * It is useful for reading simple stateful encodings, | |
2953 | * for example using just Shift-In/Shift-Out codes. | |
2954 | * The 21 unused bits may later be used for more sophisticated | |
2955 | * state transitions. | |
2956 | */ | |
374ca955 A |
2957 | if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { |
2958 | /* SI/SO are illegal for DBCS-only conversion */ | |
2959 | state=(uint8_t)(cnv->mode); /* restore the previous state */ | |
2960 | ||
2961 | /* callback(illegal) */ | |
2962 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
2963 | } | |
2964 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
2965 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
2966 | /* output BMP code point */ | |
2967 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
2968 | break; | |
b75a7d8f A |
2969 | } |
2970 | } else if(action==MBCS_STATE_UNASSIGNED) { | |
374ca955 | 2971 | /* just fall through */ |
b75a7d8f | 2972 | } else if(action==MBCS_STATE_ILLEGAL) { |
374ca955 A |
2973 | /* callback(illegal) */ |
2974 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
b75a7d8f | 2975 | } else { |
374ca955 A |
2976 | /* reserved (must never occur), or only state change */ |
2977 | offset=0; | |
2978 | lastSource=source; | |
2979 | continue; | |
b75a7d8f A |
2980 | } |
2981 | ||
374ca955 | 2982 | /* end of action codes: prepare for a new character */ |
b75a7d8f | 2983 | offset=0; |
374ca955 A |
2984 | |
2985 | if(U_FAILURE(*pErrorCode)) { | |
2986 | /* callback(illegal) */ | |
2987 | break; | |
2988 | } else /* unassigned sequence */ { | |
2989 | /* defer to the generic implementation */ | |
2990 | cnv->toUnicodeStatus=0; | |
2991 | cnv->mode=state; | |
2992 | pArgs->source=(const char *)lastSource; | |
2993 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; | |
2994 | } | |
b75a7d8f | 2995 | } |
374ca955 | 2996 | } |
b75a7d8f | 2997 | |
374ca955 A |
2998 | if(c<0) { |
2999 | if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { | |
374ca955 A |
3000 | /* incomplete character byte sequence */ |
3001 | uint8_t *bytes=cnv->toUBytes; | |
3002 | cnv->toULength=(int8_t)(source-lastSource); | |
3003 | do { | |
3004 | *bytes++=*lastSource++; | |
3005 | } while(lastSource<source); | |
fd0068a8 A |
3006 | *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
3007 | } else if(U_FAILURE(*pErrorCode)) { | |
3008 | /* callback(illegal) */ | |
3009 | /* | |
3010 | * Ticket 5691: consistent illegal sequences: | |
3011 | * - We include at least the first byte in the illegal sequence. | |
3012 | * - If any of the non-initial bytes could be the start of a character, | |
3013 | * we stop the illegal sequence before the first one of those. | |
3014 | */ | |
3015 | UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); | |
3016 | uint8_t *bytes=cnv->toUBytes; | |
3017 | *bytes++=*lastSource++; /* first byte */ | |
3018 | if(lastSource==source) { | |
3019 | cnv->toULength=1; | |
3020 | } else /* lastSource<source: multi-byte character */ { | |
3021 | int8_t i; | |
3022 | for(i=1; | |
3023 | lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource); | |
3024 | ++i | |
3025 | ) { | |
3026 | *bytes++=*lastSource++; | |
3027 | } | |
3028 | cnv->toULength=i; | |
3029 | source=lastSource; | |
3030 | } | |
374ca955 A |
3031 | } else { |
3032 | /* no output because of empty input or only state changes */ | |
3033 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
3034 | } | |
3035 | c=0xffff; | |
3036 | } | |
3037 | ||
3038 | /* set the converter state back into UConverter, ready for a new character */ | |
3039 | cnv->toUnicodeStatus=0; | |
3040 | cnv->mode=state; | |
3041 | ||
3042 | /* write back the updated pointer */ | |
3043 | pArgs->source=(const char *)source; | |
3044 | return c; | |
b75a7d8f A |
3045 | } |
3046 | ||
3047 | #if 0 | |
3048 | /* | |
3049 | * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus | |
3050 | * Removal improves code coverage. | |
3051 | */ | |
3052 | /** | |
374ca955 | 3053 | * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages. |
b75a7d8f | 3054 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
374ca955 | 3055 | * It does not handle conversion extensions (_extToU()). |
b75a7d8f A |
3056 | */ |
3057 | U_CFUNC UChar32 | |
374ca955 | 3058 | ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, |
b75a7d8f A |
3059 | uint8_t b, UBool useFallback) { |
3060 | int32_t entry; | |
3061 | uint8_t action; | |
3062 | ||
374ca955 | 3063 | entry=sharedData->mbcs.stateTable[0][b]; |
b75a7d8f A |
3064 | /* MBCS_ENTRY_IS_FINAL(entry) */ |
3065 | ||
3066 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { | |
3067 | /* output BMP code point */ | |
3068 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
3069 | } | |
3070 | ||
3071 | /* | |
3072 | * An if-else-if chain provides more reliable performance for | |
3073 | * the most common cases compared to a switch. | |
3074 | */ | |
3075 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
3076 | if(action==MBCS_STATE_VALID_DIRECT_20) { | |
3077 | /* output supplementary code point */ | |
3078 | return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
3079 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
3080 | if(!TO_U_USE_FALLBACK(useFallback)) { | |
3081 | return 0xfffe; | |
3082 | } | |
3083 | /* output BMP code point */ | |
3084 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
3085 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { | |
3086 | if(!TO_U_USE_FALLBACK(useFallback)) { | |
3087 | return 0xfffe; | |
3088 | } | |
3089 | /* output supplementary code point */ | |
3090 | return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
3091 | } else if(action==MBCS_STATE_UNASSIGNED) { | |
3092 | return 0xfffe; | |
3093 | } else if(action==MBCS_STATE_ILLEGAL) { | |
3094 | return 0xffff; | |
3095 | } else { | |
3096 | /* reserved, must never occur */ | |
3097 | return 0xffff; | |
3098 | } | |
3099 | } | |
3100 | #endif | |
3101 | ||
374ca955 A |
3102 | /* |
3103 | * This is a simple version of _MBCSGetNextUChar() that is used | |
3104 | * by other converter implementations. | |
3105 | * It only returns an "assigned" result if it consumes the entire input. | |
3106 | * It does not use state from the converter, nor error codes. | |
3107 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). | |
3108 | * It handles conversion extensions but not GB 18030. | |
3109 | * | |
3110 | * Return value: | |
3111 | * U+fffe unassigned | |
3112 | * U+ffff illegal | |
3113 | * otherwise the Unicode code point | |
3114 | */ | |
3115 | U_CFUNC UChar32 | |
3116 | ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, | |
3117 | const char *source, int32_t length, | |
3118 | UBool useFallback) { | |
3119 | const int32_t (*stateTable)[256]; | |
3120 | const uint16_t *unicodeCodeUnits; | |
3121 | ||
3122 | uint32_t offset; | |
3123 | uint8_t state, action; | |
3124 | ||
3125 | UChar32 c; | |
3126 | int32_t i, entry; | |
3127 | ||
3128 | if(length<=0) { | |
3129 | /* no input at all: "illegal" */ | |
3130 | return 0xffff; | |
3131 | } | |
3132 | ||
3133 | #if 0 | |
3134 | /* | |
3135 | * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus | |
3136 | * TODO In future releases, verify that this function is never called for SBCS | |
3137 | * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. | |
3138 | * Removal improves code coverage. | |
3139 | */ | |
3140 | /* use optimized function if possible */ | |
3141 | if(sharedData->mbcs.countStates==1) { | |
3142 | if(length==1) { | |
3143 | return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback); | |
3144 | } else { | |
3145 | return 0xffff; /* illegal: more than a single byte for an SBCS converter */ | |
3146 | } | |
3147 | } | |
3148 | #endif | |
3149 | ||
3150 | /* set up the local pointers */ | |
3151 | stateTable=sharedData->mbcs.stateTable; | |
3152 | unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; | |
3153 | ||
3154 | /* converter state */ | |
3155 | offset=0; | |
3156 | state=sharedData->mbcs.dbcsOnlyState; | |
3157 | ||
3158 | /* conversion loop */ | |
3159 | for(i=0;;) { | |
3160 | entry=stateTable[state][(uint8_t)source[i++]]; | |
3161 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { | |
3162 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); | |
3163 | offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); | |
3164 | ||
3165 | if(i==length) { | |
3166 | return 0xffff; /* truncated character */ | |
3167 | } | |
3168 | } else { | |
3169 | /* | |
3170 | * An if-else-if chain provides more reliable performance for | |
3171 | * the most common cases compared to a switch. | |
3172 | */ | |
3173 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); | |
3174 | if(action==MBCS_STATE_VALID_16) { | |
3175 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
3176 | c=unicodeCodeUnits[offset]; | |
3177 | if(c!=0xfffe) { | |
3178 | /* done */ | |
3179 | } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { | |
3180 | c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); | |
3181 | /* else done with 0xfffe */ | |
3182 | } | |
3183 | break; | |
3184 | } else if(action==MBCS_STATE_VALID_DIRECT_16) { | |
3185 | /* output BMP code point */ | |
3186 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
3187 | break; | |
3188 | } else if(action==MBCS_STATE_VALID_16_PAIR) { | |
3189 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); | |
3190 | c=unicodeCodeUnits[offset++]; | |
3191 | if(c<0xd800) { | |
3192 | /* output BMP code point below 0xd800 */ | |
3193 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { | |
3194 | /* output roundtrip or fallback supplementary code point */ | |
3195 | c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00)); | |
3196 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { | |
3197 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ | |
3198 | c=unicodeCodeUnits[offset]; | |
3199 | } else if(c==0xffff) { | |
3200 | return 0xffff; | |
3201 | } else { | |
3202 | c=0xfffe; | |
3203 | } | |
3204 | break; | |
3205 | } else if(action==MBCS_STATE_VALID_DIRECT_20) { | |
3206 | /* output supplementary code point */ | |
3207 | c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
3208 | break; | |
3209 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { | |
3210 | if(!TO_U_USE_FALLBACK(useFallback)) { | |
3211 | c=0xfffe; | |
3212 | break; | |
3213 | } | |
3214 | /* output BMP code point */ | |
3215 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); | |
3216 | break; | |
3217 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { | |
3218 | if(!TO_U_USE_FALLBACK(useFallback)) { | |
3219 | c=0xfffe; | |
3220 | break; | |
3221 | } | |
3222 | /* output supplementary code point */ | |
3223 | c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); | |
3224 | break; | |
3225 | } else if(action==MBCS_STATE_UNASSIGNED) { | |
3226 | c=0xfffe; | |
3227 | break; | |
3228 | } | |
3229 | ||
3230 | /* | |
3231 | * forbid MBCS_STATE_CHANGE_ONLY for this function, | |
3232 | * and MBCS_STATE_ILLEGAL and reserved action codes | |
3233 | */ | |
3234 | return 0xffff; | |
3235 | } | |
3236 | } | |
3237 | ||
3238 | if(i!=length) { | |
3239 | /* illegal for this function: not all input consumed */ | |
3240 | return 0xffff; | |
3241 | } | |
3242 | ||
3243 | if(c==0xfffe) { | |
3244 | /* try an extension mapping */ | |
3245 | const int32_t *cx=sharedData->mbcs.extIndexes; | |
3246 | if(cx!=NULL) { | |
3247 | return ucnv_extSimpleMatchToU(cx, source, length, useFallback); | |
3248 | } | |
3249 | } | |
3250 | ||
3251 | return c; | |
3252 | } | |
3253 | ||
b75a7d8f A |
3254 | /* MBCS-from-Unicode conversion functions ----------------------------------- */ |
3255 | ||
374ca955 A |
3256 | /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */ |
3257 | static void | |
3258 | ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
3259 | UErrorCode *pErrorCode) { | |
b75a7d8f A |
3260 | UConverter *cnv; |
3261 | const UChar *source, *sourceLimit; | |
3262 | uint8_t *target; | |
3263 | int32_t targetCapacity; | |
3264 | int32_t *offsets; | |
3265 | ||
3266 | const uint16_t *table; | |
46f4442e | 3267 | const uint16_t *mbcsIndex; |
374ca955 | 3268 | const uint8_t *bytes; |
b75a7d8f A |
3269 | |
3270 | UChar32 c; | |
3271 | ||
374ca955 | 3272 | int32_t sourceIndex, nextSourceIndex; |
b75a7d8f | 3273 | |
b75a7d8f | 3274 | uint32_t stage2Entry; |
46f4442e | 3275 | uint32_t asciiRoundtrips; |
b75a7d8f | 3276 | uint32_t value; |
b75a7d8f A |
3277 | uint8_t unicodeMask; |
3278 | ||
3279 | /* use optimized function if possible */ | |
3280 | cnv=pArgs->converter; | |
374ca955 | 3281 | unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
b75a7d8f A |
3282 | |
3283 | /* set up the local pointers */ | |
3284 | source=pArgs->source; | |
3285 | sourceLimit=pArgs->sourceLimit; | |
3286 | target=(uint8_t *)pArgs->target; | |
73c04bcf | 3287 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
b75a7d8f A |
3288 | offsets=pArgs->offsets; |
3289 | ||
374ca955 | 3290 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
46f4442e | 3291 | mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
b75a7d8f | 3292 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
374ca955 | 3293 | bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
b75a7d8f | 3294 | } else { |
374ca955 | 3295 | bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
b75a7d8f | 3296 | } |
46f4442e | 3297 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
b75a7d8f A |
3298 | |
3299 | /* get the converter state from UConverter */ | |
374ca955 | 3300 | c=cnv->fromUChar32; |
b75a7d8f A |
3301 | |
3302 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
b75a7d8f A |
3303 | sourceIndex= c==0 ? 0 : -1; |
3304 | nextSourceIndex=0; | |
3305 | ||
3306 | /* conversion loop */ | |
b75a7d8f A |
3307 | if(c!=0 && targetCapacity>0) { |
3308 | goto getTrail; | |
3309 | } | |
3310 | ||
3311 | while(source<sourceLimit) { | |
3312 | /* | |
3313 | * This following test is to see if available input would overflow the output. | |
3314 | * It does not catch output of more than one byte that | |
3315 | * overflows as a result of a multi-byte character or callback output | |
3316 | * from the last source character. | |
3317 | * Therefore, those situations also test for overflows and will | |
3318 | * then break the loop, too. | |
3319 | */ | |
3320 | if(targetCapacity>0) { | |
3321 | /* | |
3322 | * Get a correct Unicode code point: | |
3323 | * a single UChar for a BMP code point or | |
3324 | * a matched surrogate pair for a "supplementary code point". | |
3325 | */ | |
3326 | c=*source++; | |
3327 | ++nextSourceIndex; | |
46f4442e A |
3328 | if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
3329 | *target++=(uint8_t)c; | |
3330 | if(offsets!=NULL) { | |
3331 | *offsets++=sourceIndex; | |
3332 | sourceIndex=nextSourceIndex; | |
3333 | } | |
3334 | --targetCapacity; | |
3335 | c=0; | |
3336 | continue; | |
3337 | } | |
b75a7d8f | 3338 | /* |
46f4442e A |
3339 | * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
3340 | * to avoid dealing with surrogates. | |
3341 | * MBCS_FAST_MAX must be >=0xd7ff. | |
b75a7d8f | 3342 | */ |
46f4442e A |
3343 | if(c<=0xd7ff) { |
3344 | value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c); | |
3345 | /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ | |
3346 | if(value==0) { | |
3347 | goto unassigned; | |
3348 | } | |
3349 | /* output the value */ | |
3350 | } else { | |
3351 | /* | |
3352 | * This also tests if the codepage maps single surrogates. | |
3353 | * If it does, then surrogates are not paired but mapped separately. | |
3354 | * Note that in this case unmatched surrogates are not detected. | |
3355 | */ | |
4388f060 A |
3356 | if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
3357 | if(U16_IS_SURROGATE_LEAD(c)) { | |
b75a7d8f | 3358 | getTrail: |
46f4442e A |
3359 | if(source<sourceLimit) { |
3360 | /* test the following code unit */ | |
3361 | UChar trail=*source; | |
4388f060 | 3362 | if(U16_IS_TRAIL(trail)) { |
46f4442e A |
3363 | ++source; |
3364 | ++nextSourceIndex; | |
4388f060 | 3365 | c=U16_GET_SUPPLEMENTARY(c, trail); |
46f4442e A |
3366 | if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
3367 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
3368 | /* callback(unassigned) */ | |
3369 | goto unassigned; | |
3370 | } | |
3371 | /* convert this supplementary code point */ | |
3372 | /* exit this condition tree */ | |
3373 | } else { | |
3374 | /* this is an unmatched lead code unit (1st surrogate) */ | |
3375 | /* callback(illegal) */ | |
3376 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
3377 | break; | |
b75a7d8f | 3378 | } |
b75a7d8f | 3379 | } else { |
46f4442e | 3380 | /* no more input */ |
374ca955 | 3381 | break; |
b75a7d8f A |
3382 | } |
3383 | } else { | |
46f4442e A |
3384 | /* this is an unmatched trail code unit (2nd surrogate) */ |
3385 | /* callback(illegal) */ | |
3386 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
b75a7d8f A |
3387 | break; |
3388 | } | |
b75a7d8f | 3389 | } |
b75a7d8f | 3390 | |
46f4442e A |
3391 | /* convert the Unicode code point in c into codepage bytes */ |
3392 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
b75a7d8f | 3393 | |
46f4442e A |
3394 | /* get the bytes and the length for the output */ |
3395 | /* MBCS_OUTPUT_2 */ | |
3396 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
b75a7d8f | 3397 | |
46f4442e A |
3398 | /* is this code point assigned, or do we use fallbacks? */ |
3399 | if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || | |
3400 | (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) | |
3401 | ) { | |
3402 | /* | |
3403 | * We allow a 0 byte output if the "assigned" bit is set for this entry. | |
3404 | * There is no way with this data structure for fallback output | |
3405 | * to be a zero byte. | |
3406 | */ | |
b75a7d8f | 3407 | |
374ca955 | 3408 | unassigned: |
46f4442e A |
3409 | /* try an extension mapping */ |
3410 | pArgs->source=source; | |
3411 | c=_extFromU(cnv, cnv->sharedData, | |
3412 | c, &source, sourceLimit, | |
3413 | &target, target+targetCapacity, | |
3414 | &offsets, sourceIndex, | |
3415 | pArgs->flush, | |
3416 | pErrorCode); | |
3417 | nextSourceIndex+=(int32_t)(source-pArgs->source); | |
3418 | ||
3419 | if(U_FAILURE(*pErrorCode)) { | |
3420 | /* not mappable or buffer overflow */ | |
3421 | break; | |
3422 | } else { | |
3423 | /* a mapping was written to the target, continue */ | |
b75a7d8f | 3424 | |
46f4442e A |
3425 | /* recalculate the targetCapacity after an extension mapping */ |
3426 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); | |
374ca955 | 3427 | |
46f4442e A |
3428 | /* normal end of conversion: prepare for a new character */ |
3429 | sourceIndex=nextSourceIndex; | |
3430 | continue; | |
3431 | } | |
b75a7d8f | 3432 | } |
374ca955 | 3433 | } |
b75a7d8f | 3434 | |
374ca955 A |
3435 | /* write the output character bytes from value and length */ |
3436 | /* from the first if in the loop we know that targetCapacity>0 */ | |
46f4442e | 3437 | if(value<=0xff) { |
374ca955 A |
3438 | /* this is easy because we know that there is enough space */ |
3439 | *target++=(uint8_t)value; | |
3440 | if(offsets!=NULL) { | |
3441 | *offsets++=sourceIndex; | |
3442 | } | |
3443 | --targetCapacity; | |
3444 | } else /* length==2 */ { | |
3445 | *target++=(uint8_t)(value>>8); | |
3446 | if(2<=targetCapacity) { | |
3447 | *target++=(uint8_t)value; | |
b75a7d8f A |
3448 | if(offsets!=NULL) { |
3449 | *offsets++=sourceIndex; | |
b75a7d8f A |
3450 | *offsets++=sourceIndex; |
3451 | } | |
374ca955 A |
3452 | targetCapacity-=2; |
3453 | } else { | |
b75a7d8f A |
3454 | if(offsets!=NULL) { |
3455 | *offsets++=sourceIndex; | |
3456 | } | |
374ca955 A |
3457 | cnv->charErrorBuffer[0]=(char)value; |
3458 | cnv->charErrorBufferLength=1; | |
3459 | ||
3460 | /* target overflow */ | |
3461 | targetCapacity=0; | |
3462 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
3463 | c=0; | |
b75a7d8f A |
3464 | break; |
3465 | } | |
b75a7d8f A |
3466 | } |
3467 | ||
3468 | /* normal end of conversion: prepare for a new character */ | |
3469 | c=0; | |
374ca955 | 3470 | sourceIndex=nextSourceIndex; |
b75a7d8f | 3471 | continue; |
b75a7d8f A |
3472 | } else { |
3473 | /* target is full */ | |
3474 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
3475 | break; | |
3476 | } | |
3477 | } | |
3478 | ||
b75a7d8f | 3479 | /* set the converter state back into UConverter */ |
374ca955 | 3480 | cnv->fromUChar32=c; |
b75a7d8f A |
3481 | |
3482 | /* write back the updated pointers */ | |
3483 | pArgs->source=source; | |
3484 | pArgs->target=(char *)target; | |
3485 | pArgs->offsets=offsets; | |
3486 | } | |
3487 | ||
374ca955 | 3488 | /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */ |
b75a7d8f | 3489 | static void |
374ca955 | 3490 | ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
b75a7d8f A |
3491 | UErrorCode *pErrorCode) { |
3492 | UConverter *cnv; | |
3493 | const UChar *source, *sourceLimit; | |
3494 | uint8_t *target; | |
3495 | int32_t targetCapacity; | |
3496 | int32_t *offsets; | |
3497 | ||
3498 | const uint16_t *table; | |
374ca955 | 3499 | const uint16_t *results; |
b75a7d8f A |
3500 | |
3501 | UChar32 c; | |
3502 | ||
3503 | int32_t sourceIndex, nextSourceIndex; | |
3504 | ||
b75a7d8f A |
3505 | uint16_t value, minValue; |
3506 | UBool hasSupplementary; | |
3507 | ||
3508 | /* set up the local pointers */ | |
3509 | cnv=pArgs->converter; | |
3510 | source=pArgs->source; | |
3511 | sourceLimit=pArgs->sourceLimit; | |
3512 | target=(uint8_t *)pArgs->target; | |
73c04bcf | 3513 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
b75a7d8f A |
3514 | offsets=pArgs->offsets; |
3515 | ||
374ca955 | 3516 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
b75a7d8f | 3517 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
374ca955 | 3518 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
b75a7d8f | 3519 | } else { |
374ca955 | 3520 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
b75a7d8f A |
3521 | } |
3522 | ||
3523 | if(cnv->useFallback) { | |
3524 | /* use all roundtrip and fallback results */ | |
3525 | minValue=0x800; | |
3526 | } else { | |
3527 | /* use only roundtrips and fallbacks from private-use characters */ | |
3528 | minValue=0xc00; | |
3529 | } | |
374ca955 | 3530 | hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
b75a7d8f A |
3531 | |
3532 | /* get the converter state from UConverter */ | |
374ca955 | 3533 | c=cnv->fromUChar32; |
b75a7d8f A |
3534 | |
3535 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
3536 | sourceIndex= c==0 ? 0 : -1; | |
3537 | nextSourceIndex=0; | |
3538 | ||
3539 | /* conversion loop */ | |
3540 | if(c!=0 && targetCapacity>0) { | |
3541 | goto getTrail; | |
3542 | } | |
3543 | ||
3544 | while(source<sourceLimit) { | |
3545 | /* | |
3546 | * This following test is to see if available input would overflow the output. | |
3547 | * It does not catch output of more than one byte that | |
3548 | * overflows as a result of a multi-byte character or callback output | |
3549 | * from the last source character. | |
3550 | * Therefore, those situations also test for overflows and will | |
3551 | * then break the loop, too. | |
3552 | */ | |
3553 | if(targetCapacity>0) { | |
3554 | /* | |
3555 | * Get a correct Unicode code point: | |
3556 | * a single UChar for a BMP code point or | |
3557 | * a matched surrogate pair for a "supplementary code point". | |
3558 | */ | |
3559 | c=*source++; | |
3560 | ++nextSourceIndex; | |
4388f060 A |
3561 | if(U16_IS_SURROGATE(c)) { |
3562 | if(U16_IS_SURROGATE_LEAD(c)) { | |
b75a7d8f A |
3563 | getTrail: |
3564 | if(source<sourceLimit) { | |
3565 | /* test the following code unit */ | |
3566 | UChar trail=*source; | |
4388f060 | 3567 | if(U16_IS_TRAIL(trail)) { |
b75a7d8f A |
3568 | ++source; |
3569 | ++nextSourceIndex; | |
4388f060 | 3570 | c=U16_GET_SUPPLEMENTARY(c, trail); |
b75a7d8f A |
3571 | if(!hasSupplementary) { |
3572 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
3573 | /* callback(unassigned) */ | |
3574 | goto unassigned; | |
3575 | } | |
3576 | /* convert this supplementary code point */ | |
3577 | /* exit this condition tree */ | |
3578 | } else { | |
3579 | /* this is an unmatched lead code unit (1st surrogate) */ | |
3580 | /* callback(illegal) */ | |
b75a7d8f | 3581 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
374ca955 | 3582 | break; |
b75a7d8f A |
3583 | } |
3584 | } else { | |
3585 | /* no more input */ | |
3586 | break; | |
3587 | } | |
3588 | } else { | |
3589 | /* this is an unmatched trail code unit (2nd surrogate) */ | |
3590 | /* callback(illegal) */ | |
b75a7d8f | 3591 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
374ca955 | 3592 | break; |
b75a7d8f A |
3593 | } |
3594 | } | |
3595 | ||
3596 | /* convert the Unicode code point in c into codepage bytes */ | |
3597 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
3598 | ||
3599 | /* is this code point assigned, or do we use fallbacks? */ | |
3600 | if(value>=minValue) { | |
3601 | /* assigned, write the output character bytes from value and length */ | |
3602 | /* length==1 */ | |
3603 | /* this is easy because we know that there is enough space */ | |
3604 | *target++=(uint8_t)value; | |
3605 | if(offsets!=NULL) { | |
3606 | *offsets++=sourceIndex; | |
3607 | } | |
3608 | --targetCapacity; | |
3609 | ||
3610 | /* normal end of conversion: prepare for a new character */ | |
3611 | c=0; | |
3612 | sourceIndex=nextSourceIndex; | |
b75a7d8f | 3613 | } else { /* unassigned */ |
b75a7d8f | 3614 | unassigned: |
374ca955 A |
3615 | /* try an extension mapping */ |
3616 | pArgs->source=source; | |
3617 | c=_extFromU(cnv, cnv->sharedData, | |
3618 | c, &source, sourceLimit, | |
46f4442e | 3619 | &target, target+targetCapacity, |
374ca955 A |
3620 | &offsets, sourceIndex, |
3621 | pArgs->flush, | |
3622 | pErrorCode); | |
3623 | nextSourceIndex+=(int32_t)(source-pArgs->source); | |
3624 | ||
3625 | if(U_FAILURE(*pErrorCode)) { | |
3626 | /* not mappable or buffer overflow */ | |
3627 | break; | |
3628 | } else { | |
3629 | /* a mapping was written to the target, continue */ | |
b75a7d8f | 3630 | |
374ca955 | 3631 | /* recalculate the targetCapacity after an extension mapping */ |
73c04bcf | 3632 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
b75a7d8f | 3633 | |
374ca955 A |
3634 | /* normal end of conversion: prepare for a new character */ |
3635 | sourceIndex=nextSourceIndex; | |
3636 | } | |
b75a7d8f | 3637 | } |
b75a7d8f A |
3638 | } else { |
3639 | /* target is full */ | |
3640 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
3641 | break; | |
3642 | } | |
3643 | } | |
3644 | ||
374ca955 A |
3645 | /* set the converter state back into UConverter */ |
3646 | cnv->fromUChar32=c; | |
b75a7d8f A |
3647 | |
3648 | /* write back the updated pointers */ | |
3649 | pArgs->source=source; | |
3650 | pArgs->target=(char *)target; | |
3651 | pArgs->offsets=offsets; | |
3652 | } | |
3653 | ||
3654 | /* | |
374ca955 | 3655 | * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages |
b75a7d8f A |
3656 | * that map only to and from the BMP. |
3657 | * In addition to single-byte/state optimizations, the offset calculations | |
3658 | * become much easier. | |
46f4442e A |
3659 | * It would be possible to use the sbcsIndex for UTF-8-friendly tables, |
3660 | * but measurements have shown that this diminishes performance | |
3661 | * in more cases than it improves it. | |
3662 | * See SVN revision 21013 (2007-feb-06) for the last version with #if switches | |
3663 | * for various MBCS and SBCS optimizations. | |
b75a7d8f A |
3664 | */ |
3665 | static void | |
374ca955 | 3666 | ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, |
b75a7d8f A |
3667 | UErrorCode *pErrorCode) { |
3668 | UConverter *cnv; | |
3669 | const UChar *source, *sourceLimit, *lastSource; | |
3670 | uint8_t *target; | |
3671 | int32_t targetCapacity, length; | |
3672 | int32_t *offsets; | |
3673 | ||
3674 | const uint16_t *table; | |
3675 | const uint16_t *results; | |
3676 | ||
3677 | UChar32 c; | |
3678 | ||
3679 | int32_t sourceIndex; | |
3680 | ||
46f4442e | 3681 | uint32_t asciiRoundtrips; |
b75a7d8f A |
3682 | uint16_t value, minValue; |
3683 | ||
3684 | /* set up the local pointers */ | |
3685 | cnv=pArgs->converter; | |
3686 | source=pArgs->source; | |
3687 | sourceLimit=pArgs->sourceLimit; | |
3688 | target=(uint8_t *)pArgs->target; | |
73c04bcf | 3689 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
b75a7d8f A |
3690 | offsets=pArgs->offsets; |
3691 | ||
374ca955 | 3692 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
b75a7d8f | 3693 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
374ca955 | 3694 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
b75a7d8f | 3695 | } else { |
374ca955 | 3696 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
b75a7d8f | 3697 | } |
46f4442e | 3698 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
b75a7d8f A |
3699 | |
3700 | if(cnv->useFallback) { | |
3701 | /* use all roundtrip and fallback results */ | |
3702 | minValue=0x800; | |
3703 | } else { | |
3704 | /* use only roundtrips and fallbacks from private-use characters */ | |
3705 | minValue=0xc00; | |
3706 | } | |
3707 | ||
3708 | /* get the converter state from UConverter */ | |
374ca955 | 3709 | c=cnv->fromUChar32; |
b75a7d8f A |
3710 | |
3711 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
3712 | sourceIndex= c==0 ? 0 : -1; | |
3713 | lastSource=source; | |
3714 | ||
3715 | /* | |
3716 | * since the conversion here is 1:1 UChar:uint8_t, we need only one counter | |
3717 | * for the minimum of the sourceLength and targetCapacity | |
3718 | */ | |
73c04bcf | 3719 | length=(int32_t)(sourceLimit-source); |
b75a7d8f A |
3720 | if(length<targetCapacity) { |
3721 | targetCapacity=length; | |
3722 | } | |
3723 | ||
3724 | /* conversion loop */ | |
3725 | if(c!=0 && targetCapacity>0) { | |
3726 | goto getTrail; | |
3727 | } | |
3728 | ||
3729 | #if MBCS_UNROLL_SINGLE_FROM_BMP | |
3730 | /* unrolling makes it slower on Pentium III/Windows 2000?! */ | |
3731 | /* unroll the loop with the most common case */ | |
3732 | unrolled: | |
3733 | if(targetCapacity>=4) { | |
3734 | int32_t count, loops; | |
3735 | uint16_t andedValues; | |
3736 | ||
3737 | loops=count=targetCapacity>>2; | |
3738 | do { | |
3739 | c=*source++; | |
3740 | andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
3741 | *target++=(uint8_t)value; | |
3742 | c=*source++; | |
3743 | andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
3744 | *target++=(uint8_t)value; | |
3745 | c=*source++; | |
3746 | andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
3747 | *target++=(uint8_t)value; | |
3748 | c=*source++; | |
3749 | andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
3750 | *target++=(uint8_t)value; | |
3751 | ||
3752 | /* were all 4 entries really valid? */ | |
3753 | if(andedValues<minValue) { | |
3754 | /* no, return to the first of these 4 */ | |
3755 | source-=4; | |
3756 | target-=4; | |
3757 | break; | |
3758 | } | |
3759 | } while(--count>0); | |
3760 | count=loops-count; | |
3761 | targetCapacity-=4*count; | |
3762 | ||
3763 | if(offsets!=NULL) { | |
3764 | lastSource+=4*count; | |
3765 | while(count>0) { | |
3766 | *offsets++=sourceIndex++; | |
3767 | *offsets++=sourceIndex++; | |
3768 | *offsets++=sourceIndex++; | |
3769 | *offsets++=sourceIndex++; | |
3770 | --count; | |
3771 | } | |
3772 | } | |
3773 | ||
3774 | c=0; | |
3775 | } | |
3776 | #endif | |
3777 | ||
3778 | while(targetCapacity>0) { | |
3779 | /* | |
3780 | * Get a correct Unicode code point: | |
3781 | * a single UChar for a BMP code point or | |
3782 | * a matched surrogate pair for a "supplementary code point". | |
3783 | */ | |
3784 | c=*source++; | |
3785 | /* | |
3786 | * Do not immediately check for single surrogates: | |
3787 | * Assume that they are unassigned and check for them in that case. | |
3788 | * This speeds up the conversion of assigned characters. | |
3789 | */ | |
3790 | /* convert the Unicode code point in c into codepage bytes */ | |
46f4442e A |
3791 | if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
3792 | *target++=(uint8_t)c; | |
3793 | --targetCapacity; | |
3794 | c=0; | |
3795 | continue; | |
3796 | } | |
b75a7d8f | 3797 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
b75a7d8f A |
3798 | /* is this code point assigned, or do we use fallbacks? */ |
3799 | if(value>=minValue) { | |
3800 | /* assigned, write the output character bytes from value and length */ | |
3801 | /* length==1 */ | |
3802 | /* this is easy because we know that there is enough space */ | |
3803 | *target++=(uint8_t)value; | |
3804 | --targetCapacity; | |
3805 | ||
3806 | /* normal end of conversion: prepare for a new character */ | |
3807 | c=0; | |
3808 | continue; | |
4388f060 | 3809 | } else if(!U16_IS_SURROGATE(c)) { |
b75a7d8f | 3810 | /* normal, unassigned BMP character */ |
4388f060 | 3811 | } else if(U16_IS_SURROGATE_LEAD(c)) { |
b75a7d8f A |
3812 | getTrail: |
3813 | if(source<sourceLimit) { | |
3814 | /* test the following code unit */ | |
3815 | UChar trail=*source; | |
4388f060 | 3816 | if(U16_IS_TRAIL(trail)) { |
b75a7d8f | 3817 | ++source; |
4388f060 | 3818 | c=U16_GET_SUPPLEMENTARY(c, trail); |
b75a7d8f A |
3819 | /* this codepage does not map supplementary code points */ |
3820 | /* callback(unassigned) */ | |
b75a7d8f A |
3821 | } else { |
3822 | /* this is an unmatched lead code unit (1st surrogate) */ | |
3823 | /* callback(illegal) */ | |
b75a7d8f | 3824 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
374ca955 | 3825 | break; |
b75a7d8f A |
3826 | } |
3827 | } else { | |
3828 | /* no more input */ | |
46f4442e A |
3829 | if (pArgs->flush) { |
3830 | *pErrorCode=U_TRUNCATED_CHAR_FOUND; | |
3831 | } | |
b75a7d8f A |
3832 | break; |
3833 | } | |
3834 | } else { | |
3835 | /* this is an unmatched trail code unit (2nd surrogate) */ | |
3836 | /* callback(illegal) */ | |
b75a7d8f | 3837 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
374ca955 | 3838 | break; |
b75a7d8f A |
3839 | } |
3840 | ||
374ca955 | 3841 | /* c does not have a mapping */ |
b75a7d8f | 3842 | |
374ca955 A |
3843 | /* get the number of code units for c to correctly advance sourceIndex */ |
3844 | length=U16_LENGTH(c); | |
3845 | ||
3846 | /* set offsets since the start or the last extension */ | |
b75a7d8f A |
3847 | if(offsets!=NULL) { |
3848 | int32_t count=(int32_t)(source-lastSource); | |
3849 | ||
374ca955 A |
3850 | /* do not set the offset for this character */ |
3851 | count-=length; | |
3852 | ||
3853 | while(count>0) { | |
3854 | *offsets++=sourceIndex++; | |
3855 | --count; | |
3856 | } | |
3857 | /* offsets and sourceIndex are now set for the current character */ | |
3858 | } | |
3859 | ||
3860 | /* try an extension mapping */ | |
3861 | lastSource=source; | |
3862 | c=_extFromU(cnv, cnv->sharedData, | |
3863 | c, &source, sourceLimit, | |
46f4442e | 3864 | &target, (const uint8_t *)(pArgs->targetLimit), |
374ca955 A |
3865 | &offsets, sourceIndex, |
3866 | pArgs->flush, | |
3867 | pErrorCode); | |
3868 | sourceIndex+=length+(int32_t)(source-lastSource); | |
3869 | lastSource=source; | |
3870 | ||
3871 | if(U_FAILURE(*pErrorCode)) { | |
3872 | /* not mappable or buffer overflow */ | |
3873 | break; | |
3874 | } else { | |
3875 | /* a mapping was written to the target, continue */ | |
3876 | ||
3877 | /* recalculate the targetCapacity after an extension mapping */ | |
73c04bcf A |
3878 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
3879 | length=(int32_t)(sourceLimit-source); | |
374ca955 A |
3880 | if(length<targetCapacity) { |
3881 | targetCapacity=length; | |
3882 | } | |
3883 | } | |
3884 | ||
3885 | #if MBCS_UNROLL_SINGLE_FROM_BMP | |
3886 | /* unrolling makes it slower on Pentium III/Windows 2000?! */ | |
3887 | goto unrolled; | |
3888 | #endif | |
3889 | } | |
3890 | ||
3891 | if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) { | |
3892 | /* target is full */ | |
3893 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
3894 | } | |
3895 | ||
3896 | /* set offsets since the start or the last callback */ | |
3897 | if(offsets!=NULL) { | |
3898 | size_t count=source-lastSource; | |
46f4442e A |
3899 | if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { |
3900 | /* | |
3901 | Caller gave us a partial supplementary character, | |
3902 | which this function couldn't convert in any case. | |
3903 | The callback will handle the offset. | |
3904 | */ | |
3905 | count--; | |
3906 | } | |
374ca955 A |
3907 | while(count>0) { |
3908 | *offsets++=sourceIndex++; | |
3909 | --count; | |
3910 | } | |
3911 | } | |
3912 | ||
3913 | /* set the converter state back into UConverter */ | |
3914 | cnv->fromUChar32=c; | |
3915 | ||
3916 | /* write back the updated pointers */ | |
3917 | pArgs->source=source; | |
3918 | pArgs->target=(char *)target; | |
3919 | pArgs->offsets=offsets; | |
3920 | } | |
3921 | ||
3922 | U_CFUNC void | |
3923 | ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
3924 | UErrorCode *pErrorCode) { | |
3925 | UConverter *cnv; | |
3926 | const UChar *source, *sourceLimit; | |
3927 | uint8_t *target; | |
3928 | int32_t targetCapacity; | |
3929 | int32_t *offsets; | |
3930 | ||
3931 | const uint16_t *table; | |
46f4442e | 3932 | const uint16_t *mbcsIndex; |
374ca955 A |
3933 | const uint8_t *p, *bytes; |
3934 | uint8_t outputType; | |
3935 | ||
3936 | UChar32 c; | |
3937 | ||
3938 | int32_t prevSourceIndex, sourceIndex, nextSourceIndex; | |
3939 | ||
3940 | uint32_t stage2Entry; | |
46f4442e | 3941 | uint32_t asciiRoundtrips; |
374ca955 | 3942 | uint32_t value; |
51004dcb A |
3943 | /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */ |
3944 | uint8_t siBytes[2] = {0, 0}; | |
3945 | uint8_t soBytes[2] = {0, 0}; | |
3946 | uint8_t siLength, soLength; | |
729e4ab9 | 3947 | int32_t length = 0, prevLength; |
374ca955 A |
3948 | uint8_t unicodeMask; |
3949 | ||
3950 | cnv=pArgs->converter; | |
3951 | ||
3952 | if(cnv->preFromUFirstCP>=0) { | |
3953 | /* | |
3954 | * pass sourceIndex=-1 because we continue from an earlier buffer | |
3955 | * in the future, this may change with continuous offsets | |
3956 | */ | |
3957 | ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); | |
3958 | ||
3959 | if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { | |
3960 | return; | |
3961 | } | |
3962 | } | |
3963 | ||
3964 | /* use optimized function if possible */ | |
3965 | outputType=cnv->sharedData->mbcs.outputType; | |
3966 | unicodeMask=cnv->sharedData->mbcs.unicodeMask; | |
3967 | if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { | |
3968 | if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { | |
3969 | ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); | |
3970 | } else { | |
3971 | ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); | |
3972 | } | |
3973 | return; | |
46f4442e | 3974 | } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { |
374ca955 A |
3975 | ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); |
3976 | return; | |
3977 | } | |
3978 | ||
3979 | /* set up the local pointers */ | |
3980 | source=pArgs->source; | |
3981 | sourceLimit=pArgs->sourceLimit; | |
3982 | target=(uint8_t *)pArgs->target; | |
73c04bcf | 3983 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
374ca955 A |
3984 | offsets=pArgs->offsets; |
3985 | ||
3986 | table=cnv->sharedData->mbcs.fromUnicodeTable; | |
46f4442e A |
3987 | if(cnv->sharedData->mbcs.utf8Friendly) { |
3988 | mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; | |
3989 | } else { | |
3990 | mbcsIndex=NULL; | |
3991 | } | |
374ca955 A |
3992 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
3993 | bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
3994 | } else { | |
3995 | bytes=cnv->sharedData->mbcs.fromUnicodeBytes; | |
3996 | } | |
46f4442e | 3997 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
374ca955 A |
3998 | |
3999 | /* get the converter state from UConverter */ | |
4000 | c=cnv->fromUChar32; | |
4001 | ||
4002 | if(outputType==MBCS_OUTPUT_2_SISO) { | |
4003 | prevLength=cnv->fromUnicodeStatus; | |
4004 | if(prevLength==0) { | |
4005 | /* set the real value */ | |
4006 | prevLength=1; | |
4007 | } | |
4008 | } else { | |
4009 | /* prevent fromUnicodeStatus from being set to something non-0 */ | |
4010 | prevLength=0; | |
4011 | } | |
4012 | ||
4013 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
4014 | prevSourceIndex=-1; | |
4015 | sourceIndex= c==0 ? 0 : -1; | |
4016 | nextSourceIndex=0; | |
4017 | ||
729e4ab9 | 4018 | /* Get the SI/SO character for the converter */ |
51004dcb A |
4019 | siLength = getSISOBytes(SI, cnv->options, siBytes); |
4020 | soLength = getSISOBytes(SO, cnv->options, soBytes); | |
729e4ab9 | 4021 | |
374ca955 A |
4022 | /* conversion loop */ |
4023 | /* | |
4024 | * This is another piece of ugly code: | |
4025 | * A goto into the loop if the converter state contains a first surrogate | |
4026 | * from the previous function call. | |
4027 | * It saves me to check in each loop iteration a check of if(c==0) | |
4028 | * and duplicating the trail-surrogate-handling code in the else | |
4029 | * branch of that check. | |
4030 | * I could not find any other way to get around this other than | |
4031 | * using a function call for the conversion and callback, which would | |
4032 | * be even more inefficient. | |
4033 | * | |
4034 | * Markus Scherer 2000-jul-19 | |
4035 | */ | |
4036 | if(c!=0 && targetCapacity>0) { | |
4037 | goto getTrail; | |
4038 | } | |
4039 | ||
4040 | while(source<sourceLimit) { | |
4041 | /* | |
4042 | * This following test is to see if available input would overflow the output. | |
4043 | * It does not catch output of more than one byte that | |
4044 | * overflows as a result of a multi-byte character or callback output | |
4045 | * from the last source character. | |
4046 | * Therefore, those situations also test for overflows and will | |
4047 | * then break the loop, too. | |
4048 | */ | |
4049 | if(targetCapacity>0) { | |
4050 | /* | |
4051 | * Get a correct Unicode code point: | |
4052 | * a single UChar for a BMP code point or | |
4053 | * a matched surrogate pair for a "supplementary code point". | |
4054 | */ | |
4055 | c=*source++; | |
4056 | ++nextSourceIndex; | |
46f4442e A |
4057 | if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
4058 | *target++=(uint8_t)c; | |
4059 | if(offsets!=NULL) { | |
4060 | *offsets++=sourceIndex; | |
4061 | prevSourceIndex=sourceIndex; | |
4062 | sourceIndex=nextSourceIndex; | |
4063 | } | |
4064 | --targetCapacity; | |
4065 | c=0; | |
4066 | continue; | |
4067 | } | |
374ca955 | 4068 | /* |
46f4442e A |
4069 | * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
4070 | * to avoid dealing with surrogates. | |
4071 | * MBCS_FAST_MAX must be >=0xd7ff. | |
374ca955 | 4072 | */ |
46f4442e A |
4073 | if(c<=0xd7ff && mbcsIndex!=NULL) { |
4074 | value=mbcsIndex[c>>6]; | |
4075 | ||
4076 | /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */ | |
4077 | /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ | |
4078 | switch(outputType) { | |
4079 | case MBCS_OUTPUT_2: | |
4080 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
4081 | if(value<=0xff) { | |
4082 | if(value==0) { | |
4083 | goto unassigned; | |
4084 | } else { | |
4085 | length=1; | |
4086 | } | |
4087 | } else { | |
4088 | length=2; | |
4089 | } | |
4090 | break; | |
4091 | case MBCS_OUTPUT_2_SISO: | |
4092 | /* 1/2-byte stateful with Shift-In/Shift-Out */ | |
4093 | /* | |
4094 | * Save the old state in the converter object | |
4095 | * right here, then change the local prevLength state variable if necessary. | |
4096 | * Then, if this character turns out to be unassigned or a fallback that | |
4097 | * is not taken, the callback code must not save the new state in the converter | |
4098 | * because the new state is for a character that is not output. | |
4099 | * However, the callback must still restore the state from the converter | |
4100 | * in case the callback function changed it for its output. | |
4101 | */ | |
4102 | cnv->fromUnicodeStatus=prevLength; /* save the old state */ | |
4103 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
4104 | if(value<=0xff) { | |
4105 | if(value==0) { | |
4106 | goto unassigned; | |
4107 | } else if(prevLength<=1) { | |
4108 | length=1; | |
4109 | } else { | |
4110 | /* change from double-byte mode to single-byte */ | |
51004dcb A |
4111 | if (siLength == 1) { |
4112 | value|=(uint32_t)siBytes[0]<<8; | |
729e4ab9 | 4113 | length = 2; |
51004dcb A |
4114 | } else if (siLength == 2) { |
4115 | value|=(uint32_t)siBytes[1]<<8; | |
4116 | value|=(uint32_t)siBytes[0]<<16; | |
729e4ab9 A |
4117 | length = 3; |
4118 | } | |
46f4442e A |
4119 | prevLength=1; |
4120 | } | |
4121 | } else { | |
4122 | if(prevLength==2) { | |
4123 | length=2; | |
4124 | } else { | |
4125 | /* change from single-byte mode to double-byte */ | |
51004dcb A |
4126 | if (soLength == 1) { |
4127 | value|=(uint32_t)soBytes[0]<<16; | |
729e4ab9 | 4128 | length = 3; |
51004dcb A |
4129 | } else if (soLength == 2) { |
4130 | value|=(uint32_t)soBytes[1]<<16; | |
4131 | value|=(uint32_t)soBytes[0]<<24; | |
729e4ab9 A |
4132 | length = 4; |
4133 | } | |
46f4442e A |
4134 | prevLength=2; |
4135 | } | |
4136 | } | |
4137 | break; | |
4138 | case MBCS_OUTPUT_DBCS_ONLY: | |
4139 | /* table with single-byte results, but only DBCS mappings used */ | |
4140 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
4141 | if(value<=0xff) { | |
4142 | /* no mapping or SBCS result, not taken for DBCS-only */ | |
4143 | goto unassigned; | |
4144 | } else { | |
4145 | length=2; | |
4146 | } | |
4147 | break; | |
4148 | case MBCS_OUTPUT_3: | |
4149 | p=bytes+(value+(c&0x3f))*3; | |
4150 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
4151 | if(value<=0xff) { | |
4152 | if(value==0) { | |
4153 | goto unassigned; | |
4154 | } else { | |
4155 | length=1; | |
4156 | } | |
4157 | } else if(value<=0xffff) { | |
4158 | length=2; | |
4159 | } else { | |
4160 | length=3; | |
4161 | } | |
4162 | break; | |
4163 | case MBCS_OUTPUT_4: | |
4164 | value=((const uint32_t *)bytes)[value +(c&0x3f)]; | |
4165 | if(value<=0xff) { | |
4166 | if(value==0) { | |
4167 | goto unassigned; | |
4168 | } else { | |
4169 | length=1; | |
4170 | } | |
4171 | } else if(value<=0xffff) { | |
4172 | length=2; | |
4173 | } else if(value<=0xffffff) { | |
4174 | length=3; | |
4175 | } else { | |
4176 | length=4; | |
4177 | } | |
4178 | break; | |
4179 | case MBCS_OUTPUT_3_EUC: | |
4180 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; | |
4181 | /* EUC 16-bit fixed-length representation */ | |
4182 | if(value<=0xff) { | |
4183 | if(value==0) { | |
4184 | goto unassigned; | |
4185 | } else { | |
4186 | length=1; | |
4187 | } | |
4188 | } else if((value&0x8000)==0) { | |
4189 | value|=0x8e8000; | |
4190 | length=3; | |
4191 | } else if((value&0x80)==0) { | |
4192 | value|=0x8f0080; | |
4193 | length=3; | |
4194 | } else { | |
4195 | length=2; | |
4196 | } | |
4197 | break; | |
4198 | case MBCS_OUTPUT_4_EUC: | |
4199 | p=bytes+(value+(c&0x3f))*3; | |
4200 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
4201 | /* EUC 16-bit fixed-length representation applied to the first two bytes */ | |
4202 | if(value<=0xff) { | |
4203 | if(value==0) { | |
4204 | goto unassigned; | |
4205 | } else { | |
4206 | length=1; | |
4207 | } | |
4208 | } else if(value<=0xffff) { | |
4209 | length=2; | |
4210 | } else if((value&0x800000)==0) { | |
4211 | value|=0x8e800000; | |
4212 | length=4; | |
4213 | } else if((value&0x8000)==0) { | |
4214 | value|=0x8f008000; | |
4215 | length=4; | |
4216 | } else { | |
4217 | length=3; | |
4218 | } | |
4219 | break; | |
4220 | default: | |
4221 | /* must not occur */ | |
4222 | /* | |
4223 | * To avoid compiler warnings that value & length may be | |
4224 | * used without having been initialized, we set them here. | |
4225 | * In reality, this is unreachable code. | |
4226 | * Not having a default branch also causes warnings with | |
4227 | * some compilers. | |
4228 | */ | |
4229 | value=0; | |
4230 | length=0; | |
4231 | break; | |
4232 | } | |
4233 | /* output the value */ | |
4234 | } else { | |
4235 | /* | |
4236 | * This also tests if the codepage maps single surrogates. | |
4237 | * If it does, then surrogates are not paired but mapped separately. | |
4238 | * Note that in this case unmatched surrogates are not detected. | |
4239 | */ | |
4388f060 A |
4240 | if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
4241 | if(U16_IS_SURROGATE_LEAD(c)) { | |
374ca955 | 4242 | getTrail: |
46f4442e A |
4243 | if(source<sourceLimit) { |
4244 | /* test the following code unit */ | |
4245 | UChar trail=*source; | |
4388f060 | 4246 | if(U16_IS_TRAIL(trail)) { |
46f4442e A |
4247 | ++source; |
4248 | ++nextSourceIndex; | |
4388f060 | 4249 | c=U16_GET_SUPPLEMENTARY(c, trail); |
46f4442e A |
4250 | if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
4251 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
4252 | cnv->fromUnicodeStatus=prevLength; /* save the old state */ | |
4253 | /* callback(unassigned) */ | |
4254 | goto unassigned; | |
4255 | } | |
4256 | /* convert this supplementary code point */ | |
4257 | /* exit this condition tree */ | |
4258 | } else { | |
4259 | /* this is an unmatched lead code unit (1st surrogate) */ | |
4260 | /* callback(illegal) */ | |
4261 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
4262 | break; | |
374ca955 | 4263 | } |
374ca955 | 4264 | } else { |
46f4442e | 4265 | /* no more input */ |
374ca955 A |
4266 | break; |
4267 | } | |
4268 | } else { | |
46f4442e A |
4269 | /* this is an unmatched trail code unit (2nd surrogate) */ |
4270 | /* callback(illegal) */ | |
4271 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
374ca955 A |
4272 | break; |
4273 | } | |
374ca955 | 4274 | } |
374ca955 | 4275 | |
46f4442e | 4276 | /* convert the Unicode code point in c into codepage bytes */ |
374ca955 | 4277 | |
374ca955 | 4278 | /* |
46f4442e A |
4279 | * The basic lookup is a triple-stage compact array (trie) lookup. |
4280 | * For details see the beginning of this file. | |
4281 | * | |
4282 | * Single-byte codepages are handled with a different data structure | |
4283 | * by _MBCSSingle... functions. | |
4284 | * | |
4285 | * The result consists of a 32-bit value from stage 2 and | |
4286 | * a pointer to as many bytes as are stored per character. | |
4287 | * The pointer points to the character's bytes in stage 3. | |
4288 | * Bits 15..0 of the stage 2 entry contain the stage 3 index | |
4289 | * for that pointer, while bits 31..16 are flags for which of | |
4290 | * the 16 characters in the block are roundtrip-assigned. | |
4291 | * | |
4292 | * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t | |
4293 | * respectively as uint32_t, in the platform encoding. | |
4294 | * For 3-byte codepages, the bytes are always stored in big-endian order. | |
4295 | * | |
4296 | * For EUC encodings that use only either 0x8e or 0x8f as the first | |
4297 | * byte of their longest byte sequences, the first two bytes in | |
4298 | * this third stage indicate with their 7th bits whether these bytes | |
4299 | * are to be written directly or actually need to be preceeded by | |
4300 | * one of the two Single-Shift codes. With this, the third stage | |
4301 | * stores one byte fewer per character than the actual maximum length of | |
4302 | * EUC byte sequences. | |
4303 | * | |
4304 | * Other than that, leading zero bytes are removed and the other | |
4305 | * bytes output. A single zero byte may be output if the "assigned" | |
4306 | * bit in stage 2 was on. | |
4307 | * The data structure does not support zero byte output as a fallback, | |
4308 | * and also does not allow output of leading zeros. | |
374ca955 | 4309 | */ |
46f4442e A |
4310 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
4311 | ||
4312 | /* get the bytes and the length for the output */ | |
4313 | switch(outputType) { | |
4314 | case MBCS_OUTPUT_2: | |
4315 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
4316 | if(value<=0xff) { | |
4317 | length=1; | |
4318 | } else { | |
4319 | length=2; | |
4320 | } | |
4321 | break; | |
4322 | case MBCS_OUTPUT_2_SISO: | |
4323 | /* 1/2-byte stateful with Shift-In/Shift-Out */ | |
4324 | /* | |
4325 | * Save the old state in the converter object | |
4326 | * right here, then change the local prevLength state variable if necessary. | |
4327 | * Then, if this character turns out to be unassigned or a fallback that | |
4328 | * is not taken, the callback code must not save the new state in the converter | |
4329 | * because the new state is for a character that is not output. | |
4330 | * However, the callback must still restore the state from the converter | |
4331 | * in case the callback function changed it for its output. | |
4332 | */ | |
4333 | cnv->fromUnicodeStatus=prevLength; /* save the old state */ | |
4334 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
4335 | if(value<=0xff) { | |
4336 | if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) { | |
4337 | /* no mapping, leave value==0 */ | |
4338 | length=0; | |
4339 | } else if(prevLength<=1) { | |
4340 | length=1; | |
4341 | } else { | |
4342 | /* change from double-byte mode to single-byte */ | |
51004dcb A |
4343 | if (siLength == 1) { |
4344 | value|=(uint32_t)siBytes[0]<<8; | |
729e4ab9 | 4345 | length = 2; |
51004dcb A |
4346 | } else if (siLength == 2) { |
4347 | value|=(uint32_t)siBytes[1]<<8; | |
4348 | value|=(uint32_t)siBytes[0]<<16; | |
729e4ab9 A |
4349 | length = 3; |
4350 | } | |
46f4442e A |
4351 | prevLength=1; |
4352 | } | |
4353 | } else { | |
4354 | if(prevLength==2) { | |
4355 | length=2; | |
4356 | } else { | |
4357 | /* change from single-byte mode to double-byte */ | |
51004dcb A |
4358 | if (soLength == 1) { |
4359 | value|=(uint32_t)soBytes[0]<<16; | |
729e4ab9 | 4360 | length = 3; |
51004dcb A |
4361 | } else if (soLength == 2) { |
4362 | value|=(uint32_t)soBytes[1]<<16; | |
4363 | value|=(uint32_t)soBytes[0]<<24; | |
729e4ab9 A |
4364 | length = 4; |
4365 | } | |
46f4442e A |
4366 | prevLength=2; |
4367 | } | |
4368 | } | |
4369 | break; | |
4370 | case MBCS_OUTPUT_DBCS_ONLY: | |
4371 | /* table with single-byte results, but only DBCS mappings used */ | |
4372 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
4373 | if(value<=0xff) { | |
4374 | /* no mapping or SBCS result, not taken for DBCS-only */ | |
4375 | value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ | |
374ca955 | 4376 | length=0; |
46f4442e A |
4377 | } else { |
4378 | length=2; | |
4379 | } | |
4380 | break; | |
4381 | case MBCS_OUTPUT_3: | |
4382 | p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); | |
4383 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
4384 | if(value<=0xff) { | |
4385 | length=1; | |
4386 | } else if(value<=0xffff) { | |
4387 | length=2; | |
4388 | } else { | |
4389 | length=3; | |
4390 | } | |
4391 | break; | |
4392 | case MBCS_OUTPUT_4: | |
4393 | value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); | |
4394 | if(value<=0xff) { | |
4395 | length=1; | |
4396 | } else if(value<=0xffff) { | |
4397 | length=2; | |
4398 | } else if(value<=0xffffff) { | |
4399 | length=3; | |
4400 | } else { | |
4401 | length=4; | |
4402 | } | |
4403 | break; | |
4404 | case MBCS_OUTPUT_3_EUC: | |
4405 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); | |
4406 | /* EUC 16-bit fixed-length representation */ | |
4407 | if(value<=0xff) { | |
374ca955 | 4408 | length=1; |
46f4442e A |
4409 | } else if((value&0x8000)==0) { |
4410 | value|=0x8e8000; | |
4411 | length=3; | |
4412 | } else if((value&0x80)==0) { | |
4413 | value|=0x8f0080; | |
4414 | length=3; | |
374ca955 | 4415 | } else { |
374ca955 | 4416 | length=2; |
374ca955 | 4417 | } |
46f4442e A |
4418 | break; |
4419 | case MBCS_OUTPUT_4_EUC: | |
4420 | p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); | |
4421 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
4422 | /* EUC 16-bit fixed-length representation applied to the first two bytes */ | |
4423 | if(value<=0xff) { | |
4424 | length=1; | |
4425 | } else if(value<=0xffff) { | |
374ca955 | 4426 | length=2; |
46f4442e A |
4427 | } else if((value&0x800000)==0) { |
4428 | value|=0x8e800000; | |
4429 | length=4; | |
4430 | } else if((value&0x8000)==0) { | |
4431 | value|=0x8f008000; | |
4432 | length=4; | |
374ca955 | 4433 | } else { |
374ca955 | 4434 | length=3; |
374ca955 | 4435 | } |
46f4442e A |
4436 | break; |
4437 | default: | |
4438 | /* must not occur */ | |
4439 | /* | |
4440 | * To avoid compiler warnings that value & length may be | |
4441 | * used without having been initialized, we set them here. | |
4442 | * In reality, this is unreachable code. | |
4443 | * Not having a default branch also causes warnings with | |
4444 | * some compilers. | |
4445 | */ | |
374ca955 A |
4446 | value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
4447 | length=0; | |
46f4442e | 4448 | break; |
374ca955 | 4449 | } |
46f4442e A |
4450 | |
4451 | /* is this code point assigned, or do we use fallbacks? */ | |
4452 | if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || | |
4453 | (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) | |
4454 | ) { | |
4455 | /* | |
4456 | * We allow a 0 byte output if the "assigned" bit is set for this entry. | |
4457 | * There is no way with this data structure for fallback output | |
4458 | * to be a zero byte. | |
4459 | */ | |
4460 | ||
4461 | unassigned: | |
4462 | /* try an extension mapping */ | |
4463 | pArgs->source=source; | |
4464 | c=_extFromU(cnv, cnv->sharedData, | |
4465 | c, &source, sourceLimit, | |
4466 | &target, target+targetCapacity, | |
4467 | &offsets, sourceIndex, | |
4468 | pArgs->flush, | |
4469 | pErrorCode); | |
4470 | nextSourceIndex+=(int32_t)(source-pArgs->source); | |
4471 | prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ | |
4472 | ||
4473 | if(U_FAILURE(*pErrorCode)) { | |
4474 | /* not mappable or buffer overflow */ | |
4475 | break; | |
4476 | } else { | |
4477 | /* a mapping was written to the target, continue */ | |
4478 | ||
4479 | /* recalculate the targetCapacity after an extension mapping */ | |
4480 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); | |
4481 | ||
4482 | /* normal end of conversion: prepare for a new character */ | |
4483 | if(offsets!=NULL) { | |
4484 | prevSourceIndex=sourceIndex; | |
4485 | sourceIndex=nextSourceIndex; | |
4486 | } | |
4487 | continue; | |
4488 | } | |
374ca955 | 4489 | } |
46f4442e A |
4490 | } |
4491 | ||
4492 | /* write the output character bytes from value and length */ | |
4493 | /* from the first if in the loop we know that targetCapacity>0 */ | |
4494 | if(length<=targetCapacity) { | |
4495 | if(offsets==NULL) { | |
4496 | switch(length) { | |
4497 | /* each branch falls through to the next one */ | |
4498 | case 4: | |
4499 | *target++=(uint8_t)(value>>24); | |
4388f060 | 4500 | case 3: /*fall through*/ |
46f4442e | 4501 | *target++=(uint8_t)(value>>16); |
4388f060 | 4502 | case 2: /*fall through*/ |
46f4442e | 4503 | *target++=(uint8_t)(value>>8); |
4388f060 | 4504 | case 1: /*fall through*/ |
46f4442e A |
4505 | *target++=(uint8_t)value; |
4506 | default: | |
4507 | /* will never occur */ | |
4508 | break; | |
4509 | } | |
374ca955 A |
4510 | } else { |
4511 | switch(length) { | |
4512 | /* each branch falls through to the next one */ | |
4513 | case 4: | |
4514 | *target++=(uint8_t)(value>>24); | |
4515 | *offsets++=sourceIndex; | |
4388f060 | 4516 | case 3: /*fall through*/ |
374ca955 A |
4517 | *target++=(uint8_t)(value>>16); |
4518 | *offsets++=sourceIndex; | |
4388f060 | 4519 | case 2: /*fall through*/ |
374ca955 A |
4520 | *target++=(uint8_t)(value>>8); |
4521 | *offsets++=sourceIndex; | |
4388f060 | 4522 | case 1: /*fall through*/ |
374ca955 A |
4523 | *target++=(uint8_t)value; |
4524 | *offsets++=sourceIndex; | |
4525 | default: | |
4526 | /* will never occur */ | |
4527 | break; | |
4528 | } | |
4529 | } | |
4530 | targetCapacity-=length; | |
4531 | } else { | |
4532 | uint8_t *charErrorBuffer; | |
4533 | ||
4534 | /* | |
4535 | * We actually do this backwards here: | |
4536 | * In order to save an intermediate variable, we output | |
4537 | * first to the overflow buffer what does not fit into the | |
4538 | * regular target. | |
4539 | */ | |
4540 | /* we know that 1<=targetCapacity<length<=4 */ | |
4541 | length-=targetCapacity; | |
4542 | charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; | |
4543 | switch(length) { | |
4544 | /* each branch falls through to the next one */ | |
4545 | case 3: | |
4546 | *charErrorBuffer++=(uint8_t)(value>>16); | |
4388f060 | 4547 | case 2: /*fall through*/ |
374ca955 | 4548 | *charErrorBuffer++=(uint8_t)(value>>8); |
4388f060 | 4549 | case 1: /*fall through*/ |
374ca955 A |
4550 | *charErrorBuffer=(uint8_t)value; |
4551 | default: | |
4552 | /* will never occur */ | |
4553 | break; | |
4554 | } | |
4555 | cnv->charErrorBufferLength=(int8_t)length; | |
4556 | ||
4557 | /* now output what fits into the regular target */ | |
4558 | value>>=8*length; /* length was reduced by targetCapacity */ | |
4559 | switch(targetCapacity) { | |
4560 | /* each branch falls through to the next one */ | |
4561 | case 3: | |
4562 | *target++=(uint8_t)(value>>16); | |
4563 | if(offsets!=NULL) { | |
4564 | *offsets++=sourceIndex; | |
4565 | } | |
4388f060 | 4566 | case 2: /*fall through*/ |
374ca955 A |
4567 | *target++=(uint8_t)(value>>8); |
4568 | if(offsets!=NULL) { | |
4569 | *offsets++=sourceIndex; | |
4570 | } | |
4388f060 | 4571 | case 1: /*fall through*/ |
374ca955 A |
4572 | *target++=(uint8_t)value; |
4573 | if(offsets!=NULL) { | |
4574 | *offsets++=sourceIndex; | |
4575 | } | |
4576 | default: | |
4577 | /* will never occur */ | |
4578 | break; | |
4579 | } | |
b75a7d8f | 4580 | |
374ca955 A |
4581 | /* target overflow */ |
4582 | targetCapacity=0; | |
4583 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
4584 | c=0; | |
4585 | break; | |
b75a7d8f | 4586 | } |
b75a7d8f | 4587 | |
374ca955 | 4588 | /* normal end of conversion: prepare for a new character */ |
b75a7d8f | 4589 | c=0; |
374ca955 A |
4590 | if(offsets!=NULL) { |
4591 | prevSourceIndex=sourceIndex; | |
4592 | sourceIndex=nextSourceIndex; | |
4593 | } | |
4594 | continue; | |
4595 | } else { | |
b75a7d8f A |
4596 | /* target is full */ |
4597 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
4598 | break; | |
4599 | } | |
b75a7d8f A |
4600 | } |
4601 | ||
374ca955 A |
4602 | /* |
4603 | * the end of the input stream and detection of truncated input | |
4604 | * are handled by the framework, but for EBCDIC_STATEFUL conversion | |
4605 | * we need to emit an SI at the very end | |
4606 | * | |
4607 | * conditions: | |
4608 | * successful | |
4609 | * EBCDIC_STATEFUL in DBCS mode | |
4610 | * end of input and no truncated input | |
4611 | */ | |
4612 | if( U_SUCCESS(*pErrorCode) && | |
4613 | outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && | |
4614 | pArgs->flush && source>=sourceLimit && c==0 | |
4615 | ) { | |
4616 | /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */ | |
4617 | if(targetCapacity>0) { | |
51004dcb A |
4618 | *target++=(uint8_t)siBytes[0]; |
4619 | if (siLength == 2) { | |
729e4ab9 | 4620 | if (targetCapacity<2) { |
51004dcb | 4621 | cnv->charErrorBuffer[0]=(uint8_t)siBytes[1]; |
729e4ab9 A |
4622 | cnv->charErrorBufferLength=1; |
4623 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
4624 | } else { | |
51004dcb | 4625 | *target++=(uint8_t)siBytes[1]; |
729e4ab9 A |
4626 | } |
4627 | } | |
374ca955 A |
4628 | if(offsets!=NULL) { |
4629 | /* set the last source character's index (sourceIndex points at sourceLimit now) */ | |
4630 | *offsets++=prevSourceIndex; | |
4631 | } | |
4632 | } else { | |
4633 | /* target is full */ | |
51004dcb A |
4634 | cnv->charErrorBuffer[0]=(uint8_t)siBytes[0]; |
4635 | if (siLength == 2) { | |
4636 | cnv->charErrorBuffer[1]=(uint8_t)siBytes[1]; | |
729e4ab9 | 4637 | } |
51004dcb | 4638 | cnv->charErrorBufferLength=siLength; |
374ca955 | 4639 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
b75a7d8f | 4640 | } |
374ca955 | 4641 | prevLength=1; /* we switched into SBCS */ |
b75a7d8f A |
4642 | } |
4643 | ||
374ca955 A |
4644 | /* set the converter state back into UConverter */ |
4645 | cnv->fromUChar32=c; | |
4646 | cnv->fromUnicodeStatus=prevLength; | |
b75a7d8f A |
4647 | |
4648 | /* write back the updated pointers */ | |
4649 | pArgs->source=source; | |
4650 | pArgs->target=(char *)target; | |
4651 | pArgs->offsets=offsets; | |
4652 | } | |
4653 | ||
4654 | /* | |
4655 | * This is another simple conversion function for internal use by other | |
4656 | * conversion implementations. | |
4657 | * It does not use the converter state nor call callbacks. | |
4658 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). | |
374ca955 | 4659 | * It handles conversion extensions but not GB 18030. |
b75a7d8f A |
4660 | * |
4661 | * It converts one single Unicode code point into codepage bytes, encoded | |
4662 | * as one 32-bit value. The function returns the number of bytes in *pValue: | |
4663 | * 1..4 the number of bytes in *pValue | |
4664 | * 0 unassigned (*pValue undefined) | |
4665 | * -1 illegal (currently not used, *pValue undefined) | |
4666 | * | |
4667 | * *pValue will contain the resulting bytes with the last byte in bits 7..0, | |
4668 | * the second to last byte in bits 15..8, etc. | |
4669 | * Currently, the function assumes but does not check that 0<=c<=0x10ffff. | |
4670 | */ | |
4671 | U_CFUNC int32_t | |
374ca955 | 4672 | ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, |
b75a7d8f A |
4673 | UChar32 c, uint32_t *pValue, |
4674 | UBool useFallback) { | |
374ca955 A |
4675 | const int32_t *cx; |
4676 | const uint16_t *table; | |
4677 | #if 0 | |
4678 | /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ | |
b75a7d8f | 4679 | const uint8_t *p; |
374ca955 | 4680 | #endif |
b75a7d8f A |
4681 | uint32_t stage2Entry; |
4682 | uint32_t value; | |
4683 | int32_t length; | |
4684 | ||
4685 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
374ca955 A |
4686 | if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
4687 | table=sharedData->mbcs.fromUnicodeTable; | |
b75a7d8f | 4688 | |
374ca955 A |
4689 | /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ |
4690 | if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { | |
4691 | value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); | |
4692 | /* is this code point assigned, or do we use fallbacks? */ | |
4693 | if(useFallback ? value>=0x800 : value>=0xc00) { | |
4694 | *pValue=value&0xff; | |
4695 | return 1; | |
4696 | } | |
4697 | } else /* outputType!=MBCS_OUTPUT_1 */ { | |
4698 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
b75a7d8f | 4699 | |
374ca955 A |
4700 | /* get the bytes and the length for the output */ |
4701 | switch(sharedData->mbcs.outputType) { | |
4702 | case MBCS_OUTPUT_2: | |
4703 | value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
4704 | if(value<=0xff) { | |
4705 | length=1; | |
4706 | } else { | |
4707 | length=2; | |
4708 | } | |
4709 | break; | |
4710 | #if 0 | |
4711 | /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ | |
4712 | case MBCS_OUTPUT_DBCS_ONLY: | |
4713 | /* table with single-byte results, but only DBCS mappings used */ | |
4714 | value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
4715 | if(value<=0xff) { | |
4716 | /* no mapping or SBCS result, not taken for DBCS-only */ | |
4717 | value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ | |
4718 | length=0; | |
4719 | } else { | |
4720 | length=2; | |
4721 | } | |
4722 | break; | |
4723 | case MBCS_OUTPUT_3: | |
4724 | p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
4725 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
4726 | if(value<=0xff) { | |
4727 | length=1; | |
4728 | } else if(value<=0xffff) { | |
4729 | length=2; | |
4730 | } else { | |
4731 | length=3; | |
4732 | } | |
4733 | break; | |
4734 | case MBCS_OUTPUT_4: | |
4735 | value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
4736 | if(value<=0xff) { | |
4737 | length=1; | |
4738 | } else if(value<=0xffff) { | |
4739 | length=2; | |
4740 | } else if(value<=0xffffff) { | |
4741 | length=3; | |
4742 | } else { | |
4743 | length=4; | |
4744 | } | |
4745 | break; | |
4746 | case MBCS_OUTPUT_3_EUC: | |
4747 | value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
4748 | /* EUC 16-bit fixed-length representation */ | |
4749 | if(value<=0xff) { | |
4750 | length=1; | |
4751 | } else if((value&0x8000)==0) { | |
4752 | value|=0x8e8000; | |
4753 | length=3; | |
4754 | } else if((value&0x80)==0) { | |
4755 | value|=0x8f0080; | |
4756 | length=3; | |
4757 | } else { | |
4758 | length=2; | |
4759 | } | |
4760 | break; | |
4761 | case MBCS_OUTPUT_4_EUC: | |
4762 | p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); | |
4763 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; | |
4764 | /* EUC 16-bit fixed-length representation applied to the first two bytes */ | |
4765 | if(value<=0xff) { | |
4766 | length=1; | |
4767 | } else if(value<=0xffff) { | |
4768 | length=2; | |
4769 | } else if((value&0x800000)==0) { | |
4770 | value|=0x8e800000; | |
4771 | length=4; | |
4772 | } else if((value&0x8000)==0) { | |
4773 | value|=0x8f008000; | |
4774 | length=4; | |
4775 | } else { | |
4776 | length=3; | |
4777 | } | |
4778 | break; | |
4779 | #endif | |
4780 | default: | |
4781 | /* must not occur */ | |
4782 | return -1; | |
4783 | } | |
b75a7d8f | 4784 | |
374ca955 A |
4785 | /* is this code point assigned, or do we use fallbacks? */ |
4786 | if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || | |
4787 | (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) | |
4788 | ) { | |
4789 | /* | |
4790 | * We allow a 0 byte output if the "assigned" bit is set for this entry. | |
4791 | * There is no way with this data structure for fallback output | |
4792 | * to be a zero byte. | |
4793 | */ | |
4794 | /* assigned */ | |
4795 | *pValue=value; | |
4796 | return length; | |
4797 | } | |
b75a7d8f | 4798 | } |
b75a7d8f A |
4799 | } |
4800 | ||
374ca955 A |
4801 | cx=sharedData->mbcs.extIndexes; |
4802 | if(cx!=NULL) { | |
46f4442e A |
4803 | length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); |
4804 | return length>=0 ? length : -length; /* return abs(length); */ | |
b75a7d8f | 4805 | } |
374ca955 A |
4806 | |
4807 | /* unassigned */ | |
4808 | return 0; | |
b75a7d8f A |
4809 | } |
4810 | ||
4811 | ||
4812 | #if 0 | |
374ca955 A |
4813 | /* |
4814 | * This function has been moved to ucnv2022.c for inlining. | |
4815 | * This implementation is here only for documentation purposes | |
b75a7d8f A |
4816 | */ |
4817 | ||
4818 | /** | |
374ca955 | 4819 | * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages. |
b75a7d8f | 4820 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
374ca955 | 4821 | * It does not handle conversion extensions (_extFromU()). |
b75a7d8f A |
4822 | * |
4823 | * It returns the codepage byte for the code point, or -1 if it is unassigned. | |
4824 | */ | |
4825 | U_CFUNC int32_t | |
374ca955 | 4826 | ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, |
b75a7d8f A |
4827 | UChar32 c, |
4828 | UBool useFallback) { | |
4829 | const uint16_t *table; | |
4830 | int32_t value; | |
4831 | ||
4832 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
374ca955 | 4833 | if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
b75a7d8f A |
4834 | return -1; |
4835 | } | |
4836 | ||
4837 | /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ | |
374ca955 | 4838 | table=sharedData->mbcs.fromUnicodeTable; |
b75a7d8f A |
4839 | |
4840 | /* get the byte for the output */ | |
374ca955 | 4841 | value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); |
b75a7d8f A |
4842 | /* is this code point assigned, or do we use fallbacks? */ |
4843 | if(useFallback ? value>=0x800 : value>=0xc00) { | |
4844 | return value&0xff; | |
4845 | } else { | |
4846 | return -1; | |
4847 | } | |
4848 | } | |
4849 | #endif | |
4850 | ||
46f4442e A |
4851 | /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ |
4852 | ||
4853 | /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ | |
4854 | static const UChar32 | |
4855 | utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; | |
4856 | ||
4857 | /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */ | |
4858 | static const UChar32 | |
4859 | utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; | |
4860 | ||
4861 | static void | |
4862 | ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, | |
4863 | UConverterToUnicodeArgs *pToUArgs, | |
4864 | UErrorCode *pErrorCode) { | |
4865 | UConverter *utf8, *cnv; | |
4866 | const uint8_t *source, *sourceLimit; | |
4867 | uint8_t *target; | |
4868 | int32_t targetCapacity; | |
4869 | ||
4870 | const uint16_t *table, *sbcsIndex; | |
4871 | const uint16_t *results; | |
4872 | ||
4873 | int8_t oldToULength, toULength, toULimit; | |
4874 | ||
4875 | UChar32 c; | |
4876 | uint8_t b, t1, t2; | |
4877 | ||
4878 | uint32_t asciiRoundtrips; | |
4879 | uint16_t value, minValue; | |
4880 | UBool hasSupplementary; | |
4881 | ||
4882 | /* set up the local pointers */ | |
4883 | utf8=pToUArgs->converter; | |
4884 | cnv=pFromUArgs->converter; | |
4885 | source=(uint8_t *)pToUArgs->source; | |
4886 | sourceLimit=(uint8_t *)pToUArgs->sourceLimit; | |
4887 | target=(uint8_t *)pFromUArgs->target; | |
4888 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); | |
4889 | ||
4890 | table=cnv->sharedData->mbcs.fromUnicodeTable; | |
4891 | sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; | |
4892 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
4893 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
4894 | } else { | |
4895 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; | |
4896 | } | |
4897 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
4898 | ||
4899 | if(cnv->useFallback) { | |
4900 | /* use all roundtrip and fallback results */ | |
4901 | minValue=0x800; | |
4902 | } else { | |
4903 | /* use only roundtrips and fallbacks from private-use characters */ | |
4904 | minValue=0xc00; | |
4905 | } | |
4906 | hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); | |
4907 | ||
4908 | /* get the converter state from the UTF-8 UConverter */ | |
4909 | c=(UChar32)utf8->toUnicodeStatus; | |
4910 | if(c!=0) { | |
4911 | toULength=oldToULength=utf8->toULength; | |
4912 | toULimit=(int8_t)utf8->mode; | |
4913 | } else { | |
4914 | toULength=oldToULength=toULimit=0; | |
4915 | } | |
4916 | ||
4917 | /* | |
4918 | * Make sure that the last byte sequence before sourceLimit is complete | |
4919 | * or runs into a lead byte. | |
4920 | * Do not go back into the bytes that will be read for finishing a partial | |
4921 | * sequence from the previous buffer. | |
4922 | * In the conversion loop compare source with sourceLimit only once | |
4923 | * per multi-byte character. | |
4924 | */ | |
4925 | { | |
4926 | int32_t i, length; | |
4927 | ||
4928 | length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); | |
4929 | for(i=0; i<3 && i<length;) { | |
4930 | b=*(sourceLimit-i-1); | |
4931 | if(U8_IS_TRAIL(b)) { | |
4932 | ++i; | |
4933 | } else { | |
51004dcb | 4934 | if(i<U8_COUNT_TRAIL_BYTES(b)) { |
46f4442e A |
4935 | /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ |
4936 | sourceLimit-=i+1; | |
4937 | } | |
4938 | break; | |
4939 | } | |
4940 | } | |
4941 | } | |
4942 | ||
4943 | if(c!=0 && targetCapacity>0) { | |
4944 | utf8->toUnicodeStatus=0; | |
4945 | utf8->toULength=0; | |
4946 | goto moreBytes; | |
4947 | /* | |
4948 | * Note: We could avoid the goto by duplicating some of the moreBytes | |
4949 | * code, but only up to the point of collecting a complete UTF-8 | |
4950 | * sequence; then recurse for the toUBytes[toULength] | |
4951 | * and then continue with normal conversion. | |
4952 | * | |
4953 | * If so, move this code to just after initializing the minimum | |
4954 | * set of local variables for reading the UTF-8 input | |
4955 | * (utf8, source, target, limits but not cnv, table, minValue, etc.). | |
4956 | * | |
4957 | * Potential advantages: | |
4958 | * - avoid the goto | |
4959 | * - oldToULength could become a local variable in just those code blocks | |
4960 | * that deal with buffer boundaries | |
4961 | * - possibly faster if the goto prevents some compiler optimizations | |
4962 | * (this would need measuring to confirm) | |
4963 | * Disadvantage: | |
4964 | * - code duplication | |
4965 | */ | |
4966 | } | |
4967 | ||
4968 | /* conversion loop */ | |
4969 | while(source<sourceLimit) { | |
4970 | if(targetCapacity>0) { | |
4971 | b=*source++; | |
4972 | if((int8_t)b>=0) { | |
4973 | /* convert ASCII */ | |
4974 | if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { | |
4975 | *target++=(uint8_t)b; | |
4976 | --targetCapacity; | |
4977 | continue; | |
4978 | } else { | |
4979 | c=b; | |
4980 | value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); | |
4981 | } | |
4982 | } else { | |
4983 | if(b<0xe0) { | |
4984 | if( /* handle U+0080..U+07FF inline */ | |
4985 | b>=0xc2 && | |
4986 | (t1=(uint8_t)(*source-0x80)) <= 0x3f | |
4987 | ) { | |
4988 | c=b&0x1f; | |
4989 | ++source; | |
4990 | value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); | |
4991 | if(value>=minValue) { | |
4992 | *target++=(uint8_t)value; | |
4993 | --targetCapacity; | |
4994 | continue; | |
4995 | } else { | |
4996 | c=(c<<6)|t1; | |
4997 | } | |
4998 | } else { | |
4999 | c=-1; | |
5000 | } | |
5001 | } else if(b==0xe0) { | |
5002 | if( /* handle U+0800..U+0FFF inline */ | |
5003 | (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && | |
5004 | (t2=(uint8_t)(source[1]-0x80)) <= 0x3f | |
5005 | ) { | |
5006 | c=t1; | |
5007 | source+=2; | |
5008 | value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); | |
5009 | if(value>=minValue) { | |
5010 | *target++=(uint8_t)value; | |
5011 | --targetCapacity; | |
5012 | continue; | |
5013 | } else { | |
5014 | c=(c<<6)|t2; | |
5015 | } | |
5016 | } else { | |
5017 | c=-1; | |
5018 | } | |
5019 | } else { | |
5020 | c=-1; | |
5021 | } | |
5022 | ||
5023 | if(c<0) { | |
5024 | /* handle "complicated" and error cases, and continuing partial characters */ | |
5025 | oldToULength=0; | |
5026 | toULength=1; | |
51004dcb | 5027 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
46f4442e A |
5028 | c=b; |
5029 | moreBytes: | |
5030 | while(toULength<toULimit) { | |
729e4ab9 A |
5031 | /* |
5032 | * The sourceLimit may have been adjusted before the conversion loop | |
5033 | * to stop before a truncated sequence. | |
5034 | * Here we need to use the real limit in case we have two truncated | |
5035 | * sequences at the end. | |
5036 | * See ticket #7492. | |
5037 | */ | |
5038 | if(source<(uint8_t *)pToUArgs->sourceLimit) { | |
46f4442e A |
5039 | b=*source; |
5040 | if(U8_IS_TRAIL(b)) { | |
5041 | ++source; | |
5042 | ++toULength; | |
5043 | c=(c<<6)+b; | |
5044 | } else { | |
5045 | break; /* sequence too short, stop with toULength<toULimit */ | |
5046 | } | |
5047 | } else { | |
5048 | /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ | |
5049 | source-=(toULength-oldToULength); | |
5050 | while(oldToULength<toULength) { | |
5051 | utf8->toUBytes[oldToULength++]=*source++; | |
5052 | } | |
5053 | utf8->toUnicodeStatus=c; | |
5054 | utf8->toULength=toULength; | |
5055 | utf8->mode=toULimit; | |
5056 | pToUArgs->source=(char *)source; | |
5057 | pFromUArgs->target=(char *)target; | |
5058 | return; | |
5059 | } | |
5060 | } | |
5061 | ||
5062 | if( toULength==toULimit && /* consumed all trail bytes */ | |
5063 | (toULength==3 || toULength==2) && /* BMP */ | |
5064 | (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && | |
5065 | (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ | |
5066 | ) { | |
5067 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
5068 | } else if( | |
5069 | toULength==toULimit && toULength==4 && | |
5070 | (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) | |
5071 | ) { | |
5072 | /* supplementary code point */ | |
5073 | if(!hasSupplementary) { | |
5074 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
5075 | value=0; | |
5076 | } else { | |
5077 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); | |
5078 | } | |
5079 | } else { | |
5080 | /* error handling: illegal UTF-8 byte sequence */ | |
5081 | source-=(toULength-oldToULength); | |
5082 | while(oldToULength<toULength) { | |
5083 | utf8->toUBytes[oldToULength++]=*source++; | |
5084 | } | |
5085 | utf8->toULength=toULength; | |
5086 | pToUArgs->source=(char *)source; | |
5087 | pFromUArgs->target=(char *)target; | |
5088 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
5089 | return; | |
5090 | } | |
5091 | } | |
5092 | } | |
5093 | ||
5094 | if(value>=minValue) { | |
5095 | /* output the mapping for c */ | |
5096 | *target++=(uint8_t)value; | |
5097 | --targetCapacity; | |
5098 | } else { | |
5099 | /* value<minValue means c is unassigned (unmappable) */ | |
5100 | /* | |
5101 | * Try an extension mapping. | |
5102 | * Pass in no source because we don't have UTF-16 input. | |
5103 | * If we have a partial match on c, we will return and revert | |
5104 | * to UTF-8->UTF-16->charset conversion. | |
5105 | */ | |
5106 | static const UChar nul=0; | |
5107 | const UChar *noSource=&nul; | |
5108 | c=_extFromU(cnv, cnv->sharedData, | |
5109 | c, &noSource, noSource, | |
5110 | &target, target+targetCapacity, | |
5111 | NULL, -1, | |
5112 | pFromUArgs->flush, | |
5113 | pErrorCode); | |
5114 | ||
5115 | if(U_FAILURE(*pErrorCode)) { | |
5116 | /* not mappable or buffer overflow */ | |
5117 | cnv->fromUChar32=c; | |
5118 | break; | |
5119 | } else if(cnv->preFromUFirstCP>=0) { | |
5120 | /* | |
5121 | * Partial match, return and revert to pivoting. | |
5122 | * In normal from-UTF-16 conversion, we would just continue | |
5123 | * but then exit the loop because the extension match would | |
5124 | * have consumed the source. | |
5125 | */ | |
51004dcb | 5126 | *pErrorCode=U_USING_DEFAULT_WARNING; |
46f4442e A |
5127 | break; |
5128 | } else { | |
5129 | /* a mapping was written to the target, continue */ | |
5130 | ||
5131 | /* recalculate the targetCapacity after an extension mapping */ | |
5132 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); | |
5133 | } | |
5134 | } | |
5135 | } else { | |
5136 | /* target is full */ | |
5137 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
5138 | break; | |
5139 | } | |
5140 | } | |
5141 | ||
5142 | /* | |
5143 | * The sourceLimit may have been adjusted before the conversion loop | |
5144 | * to stop before a truncated sequence. | |
5145 | * If so, then collect the truncated sequence now. | |
5146 | */ | |
51004dcb A |
5147 | if(U_SUCCESS(*pErrorCode) && |
5148 | cnv->preFromUFirstCP<0 && | |
5149 | source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { | |
46f4442e A |
5150 | c=utf8->toUBytes[0]=b=*source++; |
5151 | toULength=1; | |
51004dcb | 5152 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
46f4442e A |
5153 | while(source<sourceLimit) { |
5154 | utf8->toUBytes[toULength++]=b=*source++; | |
5155 | c=(c<<6)+b; | |
5156 | } | |
5157 | utf8->toUnicodeStatus=c; | |
5158 | utf8->toULength=toULength; | |
5159 | utf8->mode=toULimit; | |
5160 | } | |
5161 | ||
5162 | /* write back the updated pointers */ | |
5163 | pToUArgs->source=(char *)source; | |
5164 | pFromUArgs->target=(char *)target; | |
5165 | } | |
5166 | ||
5167 | static void | |
5168 | ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, | |
5169 | UConverterToUnicodeArgs *pToUArgs, | |
5170 | UErrorCode *pErrorCode) { | |
5171 | UConverter *utf8, *cnv; | |
5172 | const uint8_t *source, *sourceLimit; | |
5173 | uint8_t *target; | |
5174 | int32_t targetCapacity; | |
5175 | ||
5176 | const uint16_t *table, *mbcsIndex; | |
5177 | const uint16_t *results; | |
5178 | ||
5179 | int8_t oldToULength, toULength, toULimit; | |
5180 | ||
5181 | UChar32 c; | |
5182 | uint8_t b, t1, t2; | |
5183 | ||
5184 | uint32_t stage2Entry; | |
5185 | uint32_t asciiRoundtrips; | |
4388f060 | 5186 | uint16_t value; |
46f4442e A |
5187 | UBool hasSupplementary; |
5188 | ||
5189 | /* set up the local pointers */ | |
5190 | utf8=pToUArgs->converter; | |
5191 | cnv=pFromUArgs->converter; | |
5192 | source=(uint8_t *)pToUArgs->source; | |
5193 | sourceLimit=(uint8_t *)pToUArgs->sourceLimit; | |
5194 | target=(uint8_t *)pFromUArgs->target; | |
5195 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); | |
5196 | ||
5197 | table=cnv->sharedData->mbcs.fromUnicodeTable; | |
5198 | mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; | |
5199 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { | |
5200 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; | |
5201 | } else { | |
5202 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; | |
5203 | } | |
5204 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; | |
5205 | ||
46f4442e A |
5206 | hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
5207 | ||
5208 | /* get the converter state from the UTF-8 UConverter */ | |
5209 | c=(UChar32)utf8->toUnicodeStatus; | |
5210 | if(c!=0) { | |
5211 | toULength=oldToULength=utf8->toULength; | |
5212 | toULimit=(int8_t)utf8->mode; | |
5213 | } else { | |
5214 | toULength=oldToULength=toULimit=0; | |
5215 | } | |
5216 | ||
5217 | /* | |
5218 | * Make sure that the last byte sequence before sourceLimit is complete | |
5219 | * or runs into a lead byte. | |
5220 | * Do not go back into the bytes that will be read for finishing a partial | |
5221 | * sequence from the previous buffer. | |
5222 | * In the conversion loop compare source with sourceLimit only once | |
5223 | * per multi-byte character. | |
5224 | */ | |
5225 | { | |
5226 | int32_t i, length; | |
5227 | ||
5228 | length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); | |
5229 | for(i=0; i<3 && i<length;) { | |
5230 | b=*(sourceLimit-i-1); | |
5231 | if(U8_IS_TRAIL(b)) { | |
5232 | ++i; | |
5233 | } else { | |
51004dcb | 5234 | if(i<U8_COUNT_TRAIL_BYTES(b)) { |
46f4442e A |
5235 | /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ |
5236 | sourceLimit-=i+1; | |
5237 | } | |
5238 | break; | |
5239 | } | |
5240 | } | |
5241 | } | |
5242 | ||
5243 | if(c!=0 && targetCapacity>0) { | |
5244 | utf8->toUnicodeStatus=0; | |
5245 | utf8->toULength=0; | |
5246 | goto moreBytes; | |
5247 | /* See note in ucnv_SBCSFromUTF8() about this goto. */ | |
5248 | } | |
5249 | ||
5250 | /* conversion loop */ | |
5251 | while(source<sourceLimit) { | |
5252 | if(targetCapacity>0) { | |
5253 | b=*source++; | |
5254 | if((int8_t)b>=0) { | |
5255 | /* convert ASCII */ | |
5256 | if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { | |
5257 | *target++=b; | |
5258 | --targetCapacity; | |
5259 | continue; | |
5260 | } else { | |
5261 | value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); | |
5262 | if(value==0) { | |
5263 | c=b; | |
5264 | goto unassigned; | |
5265 | } | |
5266 | } | |
5267 | } else { | |
5268 | if(b>0xe0) { | |
5269 | if( /* handle U+1000..U+D7FF inline */ | |
5270 | (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) || | |
5271 | (b==0xed && (t1 <= 0x1f))) && | |
5272 | (t2=(uint8_t)(source[1]-0x80)) <= 0x3f | |
5273 | ) { | |
5274 | c=((b&0xf)<<6)|t1; | |
5275 | source+=2; | |
5276 | value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); | |
5277 | if(value==0) { | |
5278 | c=(c<<6)|t2; | |
5279 | goto unassigned; | |
5280 | } | |
5281 | } else { | |
5282 | c=-1; | |
5283 | } | |
5284 | } else if(b<0xe0) { | |
5285 | if( /* handle U+0080..U+07FF inline */ | |
5286 | b>=0xc2 && | |
5287 | (t1=(uint8_t)(*source-0x80)) <= 0x3f | |
5288 | ) { | |
5289 | c=b&0x1f; | |
5290 | ++source; | |
5291 | value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); | |
5292 | if(value==0) { | |
5293 | c=(c<<6)|t1; | |
5294 | goto unassigned; | |
5295 | } | |
5296 | } else { | |
5297 | c=-1; | |
5298 | } | |
5299 | } else { | |
5300 | c=-1; | |
5301 | } | |
5302 | ||
5303 | if(c<0) { | |
5304 | /* handle "complicated" and error cases, and continuing partial characters */ | |
5305 | oldToULength=0; | |
5306 | toULength=1; | |
51004dcb | 5307 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
46f4442e A |
5308 | c=b; |
5309 | moreBytes: | |
5310 | while(toULength<toULimit) { | |
729e4ab9 A |
5311 | /* |
5312 | * The sourceLimit may have been adjusted before the conversion loop | |
5313 | * to stop before a truncated sequence. | |
5314 | * Here we need to use the real limit in case we have two truncated | |
5315 | * sequences at the end. | |
5316 | * See ticket #7492. | |
5317 | */ | |
5318 | if(source<(uint8_t *)pToUArgs->sourceLimit) { | |
46f4442e A |
5319 | b=*source; |
5320 | if(U8_IS_TRAIL(b)) { | |
5321 | ++source; | |
5322 | ++toULength; | |
5323 | c=(c<<6)+b; | |
5324 | } else { | |
5325 | break; /* sequence too short, stop with toULength<toULimit */ | |
5326 | } | |
5327 | } else { | |
5328 | /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ | |
5329 | source-=(toULength-oldToULength); | |
5330 | while(oldToULength<toULength) { | |
5331 | utf8->toUBytes[oldToULength++]=*source++; | |
5332 | } | |
5333 | utf8->toUnicodeStatus=c; | |
5334 | utf8->toULength=toULength; | |
5335 | utf8->mode=toULimit; | |
5336 | pToUArgs->source=(char *)source; | |
5337 | pFromUArgs->target=(char *)target; | |
5338 | return; | |
5339 | } | |
5340 | } | |
5341 | ||
5342 | if( toULength==toULimit && /* consumed all trail bytes */ | |
5343 | (toULength==3 || toULength==2) && /* BMP */ | |
5344 | (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && | |
5345 | (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ | |
5346 | ) { | |
5347 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
5348 | } else if( | |
5349 | toULength==toULimit && toULength==4 && | |
5350 | (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) | |
5351 | ) { | |
5352 | /* supplementary code point */ | |
5353 | if(!hasSupplementary) { | |
5354 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ | |
5355 | stage2Entry=0; | |
5356 | } else { | |
5357 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); | |
5358 | } | |
5359 | } else { | |
5360 | /* error handling: illegal UTF-8 byte sequence */ | |
5361 | source-=(toULength-oldToULength); | |
5362 | while(oldToULength<toULength) { | |
5363 | utf8->toUBytes[oldToULength++]=*source++; | |
5364 | } | |
5365 | utf8->toULength=toULength; | |
5366 | pToUArgs->source=(char *)source; | |
5367 | pFromUArgs->target=(char *)target; | |
5368 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
5369 | return; | |
5370 | } | |
5371 | ||
5372 | /* get the bytes and the length for the output */ | |
5373 | /* MBCS_OUTPUT_2 */ | |
5374 | value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); | |
5375 | ||
5376 | /* is this code point assigned, or do we use fallbacks? */ | |
5377 | if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || | |
5378 | (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) | |
5379 | ) { | |
5380 | goto unassigned; | |
5381 | } | |
5382 | } | |
5383 | } | |
5384 | ||
5385 | /* write the output character bytes from value and length */ | |
5386 | /* from the first if in the loop we know that targetCapacity>0 */ | |
5387 | if(value<=0xff) { | |
5388 | /* this is easy because we know that there is enough space */ | |
5389 | *target++=(uint8_t)value; | |
5390 | --targetCapacity; | |
5391 | } else /* length==2 */ { | |
5392 | *target++=(uint8_t)(value>>8); | |
5393 | if(2<=targetCapacity) { | |
5394 | *target++=(uint8_t)value; | |
5395 | targetCapacity-=2; | |
5396 | } else { | |
5397 | cnv->charErrorBuffer[0]=(char)value; | |
5398 | cnv->charErrorBufferLength=1; | |
5399 | ||
5400 | /* target overflow */ | |
5401 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
5402 | break; | |
5403 | } | |
5404 | } | |
5405 | continue; | |
5406 | ||
5407 | unassigned: | |
5408 | { | |
5409 | /* | |
5410 | * Try an extension mapping. | |
5411 | * Pass in no source because we don't have UTF-16 input. | |
5412 | * If we have a partial match on c, we will return and revert | |
5413 | * to UTF-8->UTF-16->charset conversion. | |
5414 | */ | |
5415 | static const UChar nul=0; | |
5416 | const UChar *noSource=&nul; | |
5417 | c=_extFromU(cnv, cnv->sharedData, | |
5418 | c, &noSource, noSource, | |
5419 | &target, target+targetCapacity, | |
5420 | NULL, -1, | |
5421 | pFromUArgs->flush, | |
5422 | pErrorCode); | |
5423 | ||
5424 | if(U_FAILURE(*pErrorCode)) { | |
5425 | /* not mappable or buffer overflow */ | |
5426 | cnv->fromUChar32=c; | |
5427 | break; | |
5428 | } else if(cnv->preFromUFirstCP>=0) { | |
5429 | /* | |
5430 | * Partial match, return and revert to pivoting. | |
5431 | * In normal from-UTF-16 conversion, we would just continue | |
5432 | * but then exit the loop because the extension match would | |
5433 | * have consumed the source. | |
5434 | */ | |
51004dcb | 5435 | *pErrorCode=U_USING_DEFAULT_WARNING; |
46f4442e A |
5436 | break; |
5437 | } else { | |
5438 | /* a mapping was written to the target, continue */ | |
5439 | ||
5440 | /* recalculate the targetCapacity after an extension mapping */ | |
5441 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); | |
5442 | continue; | |
5443 | } | |
5444 | } | |
5445 | } else { | |
5446 | /* target is full */ | |
5447 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
5448 | break; | |
5449 | } | |
5450 | } | |
5451 | ||
5452 | /* | |
5453 | * The sourceLimit may have been adjusted before the conversion loop | |
5454 | * to stop before a truncated sequence. | |
5455 | * If so, then collect the truncated sequence now. | |
5456 | */ | |
51004dcb A |
5457 | if(U_SUCCESS(*pErrorCode) && |
5458 | cnv->preFromUFirstCP<0 && | |
5459 | source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { | |
46f4442e A |
5460 | c=utf8->toUBytes[0]=b=*source++; |
5461 | toULength=1; | |
51004dcb | 5462 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
46f4442e A |
5463 | while(source<sourceLimit) { |
5464 | utf8->toUBytes[toULength++]=b=*source++; | |
5465 | c=(c<<6)+b; | |
5466 | } | |
5467 | utf8->toUnicodeStatus=c; | |
5468 | utf8->toULength=toULength; | |
5469 | utf8->mode=toULimit; | |
5470 | } | |
5471 | ||
5472 | /* write back the updated pointers */ | |
5473 | pToUArgs->source=(char *)source; | |
5474 | pFromUArgs->target=(char *)target; | |
5475 | } | |
5476 | ||
b75a7d8f A |
5477 | /* miscellaneous ------------------------------------------------------------ */ |
5478 | ||
5479 | static void | |
374ca955 | 5480 | ucnv_MBCSGetStarters(const UConverter* cnv, |
b75a7d8f A |
5481 | UBool starters[256], |
5482 | UErrorCode *pErrorCode) { | |
374ca955 | 5483 | const int32_t *state0; |
b75a7d8f A |
5484 | int i; |
5485 | ||
374ca955 | 5486 | state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]; |
b75a7d8f A |
5487 | for(i=0; i<256; ++i) { |
5488 | /* all bytes that cause a state transition from state 0 are lead bytes */ | |
5489 | starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); | |
5490 | } | |
5491 | } | |
5492 | ||
5493 | /* | |
5494 | * This is an internal function that allows other converter implementations | |
5495 | * to check whether a byte is a lead byte. | |
5496 | */ | |
5497 | U_CFUNC UBool | |
374ca955 A |
5498 | ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { |
5499 | return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]); | |
b75a7d8f A |
5500 | } |
5501 | ||
5502 | static void | |
374ca955 | 5503 | ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, |
b75a7d8f A |
5504 | int32_t offsetIndex, |
5505 | UErrorCode *pErrorCode) { | |
5506 | UConverter *cnv=pArgs->converter; | |
5507 | char *p, *subchar; | |
5508 | char buffer[4]; | |
5509 | int32_t length; | |
5510 | ||
5511 | /* first, select between subChar and subChar1 */ | |
374ca955 A |
5512 | if( cnv->subChar1!=0 && |
5513 | (cnv->sharedData->mbcs.extIndexes!=NULL ? | |
5514 | cnv->useSubChar1 : | |
5515 | (cnv->invalidUCharBuffer[0]<=0xff)) | |
5516 | ) { | |
b75a7d8f A |
5517 | /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */ |
5518 | subchar=(char *)&cnv->subChar1; | |
5519 | length=1; | |
5520 | } else { | |
5521 | /* select subChar in all other cases */ | |
73c04bcf | 5522 | subchar=(char *)cnv->subChars; |
b75a7d8f A |
5523 | length=cnv->subCharLen; |
5524 | } | |
5525 | ||
374ca955 A |
5526 | /* reset the selector for the next code point */ |
5527 | cnv->useSubChar1=FALSE; | |
5528 | ||
46f4442e | 5529 | if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { |
b75a7d8f A |
5530 | p=buffer; |
5531 | ||
5532 | /* fromUnicodeStatus contains prevLength */ | |
5533 | switch(length) { | |
5534 | case 1: | |
5535 | if(cnv->fromUnicodeStatus==2) { | |
5536 | /* DBCS mode and SBCS sub char: change to SBCS */ | |
5537 | cnv->fromUnicodeStatus=1; | |
5538 | *p++=UCNV_SI; | |
5539 | } | |
5540 | *p++=subchar[0]; | |
5541 | break; | |
5542 | case 2: | |
374ca955 | 5543 | if(cnv->fromUnicodeStatus<=1) { |
b75a7d8f A |
5544 | /* SBCS mode and DBCS sub char: change to DBCS */ |
5545 | cnv->fromUnicodeStatus=2; | |
5546 | *p++=UCNV_SO; | |
5547 | } | |
5548 | *p++=subchar[0]; | |
5549 | *p++=subchar[1]; | |
5550 | break; | |
5551 | default: | |
5552 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
5553 | return; | |
5554 | } | |
46f4442e A |
5555 | subchar=buffer; |
5556 | length=(int32_t)(p-buffer); | |
b75a7d8f | 5557 | } |
46f4442e A |
5558 | |
5559 | ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); | |
b75a7d8f A |
5560 | } |
5561 | ||
5562 | U_CFUNC UConverterType | |
374ca955 | 5563 | ucnv_MBCSGetType(const UConverter* converter) { |
b75a7d8f | 5564 | /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */ |
374ca955 | 5565 | if(converter->sharedData->mbcs.countStates==1) { |
b75a7d8f | 5566 | return (UConverterType)UCNV_SBCS; |
374ca955 | 5567 | } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) { |
b75a7d8f A |
5568 | return (UConverterType)UCNV_EBCDIC_STATEFUL; |
5569 | } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) { | |
5570 | return (UConverterType)UCNV_DBCS; | |
5571 | } | |
5572 | return (UConverterType)UCNV_MBCS; | |
5573 | } | |
5574 | ||
46f4442e A |
5575 | static const UConverterImpl _SBCSUTF8Impl={ |
5576 | UCNV_MBCS, | |
5577 | ||
5578 | ucnv_MBCSLoad, | |
5579 | ucnv_MBCSUnload, | |
5580 | ||
5581 | ucnv_MBCSOpen, | |
5582 | NULL, | |
5583 | NULL, | |
5584 | ||
5585 | ucnv_MBCSToUnicodeWithOffsets, | |
5586 | ucnv_MBCSToUnicodeWithOffsets, | |
5587 | ucnv_MBCSFromUnicodeWithOffsets, | |
5588 | ucnv_MBCSFromUnicodeWithOffsets, | |
5589 | ucnv_MBCSGetNextUChar, | |
5590 | ||
5591 | ucnv_MBCSGetStarters, | |
5592 | ucnv_MBCSGetName, | |
5593 | ucnv_MBCSWriteSub, | |
5594 | NULL, | |
5595 | ucnv_MBCSGetUnicodeSet, | |
5596 | ||
5597 | NULL, | |
5598 | ucnv_SBCSFromUTF8 | |
5599 | }; | |
5600 | ||
5601 | static const UConverterImpl _DBCSUTF8Impl={ | |
5602 | UCNV_MBCS, | |
5603 | ||
5604 | ucnv_MBCSLoad, | |
5605 | ucnv_MBCSUnload, | |
5606 | ||
5607 | ucnv_MBCSOpen, | |
5608 | NULL, | |
5609 | NULL, | |
5610 | ||
5611 | ucnv_MBCSToUnicodeWithOffsets, | |
5612 | ucnv_MBCSToUnicodeWithOffsets, | |
5613 | ucnv_MBCSFromUnicodeWithOffsets, | |
5614 | ucnv_MBCSFromUnicodeWithOffsets, | |
5615 | ucnv_MBCSGetNextUChar, | |
5616 | ||
5617 | ucnv_MBCSGetStarters, | |
5618 | ucnv_MBCSGetName, | |
5619 | ucnv_MBCSWriteSub, | |
5620 | NULL, | |
5621 | ucnv_MBCSGetUnicodeSet, | |
5622 | ||
5623 | NULL, | |
5624 | ucnv_DBCSFromUTF8 | |
5625 | }; | |
5626 | ||
b75a7d8f A |
5627 | static const UConverterImpl _MBCSImpl={ |
5628 | UCNV_MBCS, | |
5629 | ||
374ca955 A |
5630 | ucnv_MBCSLoad, |
5631 | ucnv_MBCSUnload, | |
b75a7d8f | 5632 | |
374ca955 A |
5633 | ucnv_MBCSOpen, |
5634 | NULL, | |
b75a7d8f | 5635 | NULL, |
b75a7d8f | 5636 | |
374ca955 A |
5637 | ucnv_MBCSToUnicodeWithOffsets, |
5638 | ucnv_MBCSToUnicodeWithOffsets, | |
5639 | ucnv_MBCSFromUnicodeWithOffsets, | |
5640 | ucnv_MBCSFromUnicodeWithOffsets, | |
5641 | ucnv_MBCSGetNextUChar, | |
b75a7d8f | 5642 | |
374ca955 A |
5643 | ucnv_MBCSGetStarters, |
5644 | ucnv_MBCSGetName, | |
5645 | ucnv_MBCSWriteSub, | |
b75a7d8f | 5646 | NULL, |
374ca955 | 5647 | ucnv_MBCSGetUnicodeSet |
b75a7d8f A |
5648 | }; |
5649 | ||
5650 | ||
5651 | /* Static data is in tools/makeconv/ucnvstat.c for data-based | |
5652 | * converters. Be sure to update it as well. | |
5653 | */ | |
5654 | ||
5655 | const UConverterSharedData _MBCSData={ | |
5656 | sizeof(UConverterSharedData), 1, | |
5657 | NULL, NULL, NULL, FALSE, &_MBCSImpl, | |
5658 | 0 | |
5659 | }; | |
5660 | ||
b75a7d8f | 5661 | #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |