]>
Commit | Line | Data |
---|---|---|
374ca955 | 1 | /* |
73c04bcf | 2 | ****************************************************************************** |
46f4442e | 3 | * Copyright (C) 2003-2008, International Business Machines Corporation |
73c04bcf A |
4 | * and others. All Rights Reserved. |
5 | ****************************************************************************** | |
46f4442e A |
6 | * |
7 | * File HEBRWCAL.CPP | |
8 | * | |
9 | * Modification History: | |
10 | * | |
11 | * Date Name Description | |
12 | * 12/03/2003 srl ported from java HebrewCalendar | |
13 | ***************************************************************************** | |
14 | */ | |
374ca955 A |
15 | |
16 | #include "hebrwcal.h" | |
17 | ||
18 | #if !UCONFIG_NO_FORMATTING | |
19 | ||
46f4442e | 20 | #include "umutex.h" |
374ca955 A |
21 | #include <float.h> |
22 | #include "gregoimp.h" // Math | |
23 | #include "astro.h" // CalendarAstronomer | |
24 | #include "uhash.h" | |
25 | #include "ucln_in.h" | |
26 | ||
27 | // Hebrew Calendar implementation | |
28 | ||
29 | /** | |
46f4442e A |
30 | * The absolute date, in milliseconds since 1/1/1970 AD, Gregorian, |
31 | * of the start of the Hebrew calendar. In order to keep this calendar's | |
32 | * time of day in sync with that of the Gregorian calendar, we use | |
33 | * midnight, rather than sunset the day before. | |
34 | */ | |
73c04bcf | 35 | //static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY |
374ca955 A |
36 | |
37 | static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { | |
46f4442e A |
38 | // Minimum Greatest Least Maximum |
39 | // Minimum Maximum | |
40 | { 0, 0, 0, 0}, // ERA | |
41 | { -5000000, -5000000, 5000000, 5000000}, // YEAR | |
42 | { 0, 0, 12, 12}, // MONTH | |
43 | { 1, 1, 51, 56}, // WEEK_OF_YEAR | |
44 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH | |
45 | { 1, 1, 29, 30}, // DAY_OF_MONTH | |
46 | { 1, 1, 353, 385}, // DAY_OF_YEAR | |
47 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK | |
48 | { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH | |
49 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM | |
50 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR | |
51 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY | |
52 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE | |
53 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND | |
54 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND | |
55 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET | |
56 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET | |
57 | { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY | |
58 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL | |
59 | { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR | |
60 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY | |
61 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY | |
62 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH | |
374ca955 A |
63 | }; |
64 | ||
65 | /** | |
46f4442e A |
66 | * The lengths of the Hebrew months. This is complicated, because there |
67 | * are three different types of years, or six if you count leap years. | |
68 | * Due to the rules for postponing the start of the year to avoid having | |
69 | * certain holidays fall on the sabbath, the year can end up being three | |
70 | * different lengths, called "deficient", "normal", and "complete". | |
71 | */ | |
72 | static const int8_t MONTH_LENGTH[][3] = { | |
73 | // Deficient Normal Complete | |
74 | { 30, 30, 30 }, //Tishri | |
75 | { 29, 29, 30 }, //Heshvan | |
76 | { 29, 30, 30 }, //Kislev | |
77 | { 29, 29, 29 }, //Tevet | |
78 | { 30, 30, 30 }, //Shevat | |
79 | { 30, 30, 30 }, //Adar I (leap years only) | |
80 | { 29, 29, 29 }, //Adar | |
81 | { 30, 30, 30 }, //Nisan | |
82 | { 29, 29, 29 }, //Iyar | |
83 | { 30, 30, 30 }, //Sivan | |
84 | { 29, 29, 29 }, //Tammuz | |
85 | { 30, 30, 30 }, //Av | |
86 | { 29, 29, 29 }, //Elul | |
374ca955 A |
87 | }; |
88 | ||
89 | /** | |
46f4442e A |
90 | * The cumulative # of days to the end of each month in a non-leap year |
91 | * Although this can be calculated from the MONTH_LENGTH table, | |
92 | * keeping it around separately makes some calculations a lot faster | |
93 | */ | |
94 | ||
95 | static const int16_t MONTH_START[][3] = { | |
96 | // Deficient Normal Complete | |
97 | { 0, 0, 0 }, // (placeholder) | |
98 | { 30, 30, 30 }, // Tishri | |
99 | { 59, 59, 60 }, // Heshvan | |
100 | { 88, 89, 90 }, // Kislev | |
101 | { 117, 118, 119 }, // Tevet | |
102 | { 147, 148, 149 }, // Shevat | |
103 | { 147, 148, 149 }, // (Adar I placeholder) | |
104 | { 176, 177, 178 }, // Adar | |
105 | { 206, 207, 208 }, // Nisan | |
106 | { 235, 236, 237 }, // Iyar | |
107 | { 265, 266, 267 }, // Sivan | |
108 | { 294, 295, 296 }, // Tammuz | |
109 | { 324, 325, 326 }, // Av | |
110 | { 353, 354, 355 }, // Elul | |
374ca955 A |
111 | }; |
112 | ||
113 | /** | |
46f4442e A |
114 | * The cumulative # of days to the end of each month in a leap year |
115 | */ | |
116 | static const int16_t LEAP_MONTH_START[][3] = { | |
117 | // Deficient Normal Complete | |
118 | { 0, 0, 0 }, // (placeholder) | |
119 | { 30, 30, 30 }, // Tishri | |
120 | { 59, 59, 60 }, // Heshvan | |
121 | { 88, 89, 90 }, // Kislev | |
122 | { 117, 118, 119 }, // Tevet | |
123 | { 147, 148, 149 }, // Shevat | |
124 | { 177, 178, 179 }, // Adar I | |
125 | { 206, 207, 208 }, // Adar II | |
126 | { 236, 237, 238 }, // Nisan | |
127 | { 265, 266, 267 }, // Iyar | |
128 | { 295, 296, 297 }, // Sivan | |
129 | { 324, 325, 326 }, // Tammuz | |
130 | { 354, 355, 356 }, // Av | |
131 | { 383, 384, 385 }, // Elul | |
374ca955 A |
132 | }; |
133 | ||
46f4442e | 134 | static U_NAMESPACE_QUALIFIER CalendarCache *gCache = NULL; |
374ca955 A |
135 | |
136 | U_CDECL_BEGIN | |
137 | static UBool calendar_hebrew_cleanup(void) { | |
46f4442e A |
138 | delete gCache; |
139 | gCache = NULL; | |
140 | return TRUE; | |
374ca955 A |
141 | } |
142 | U_CDECL_END | |
143 | ||
144 | U_NAMESPACE_BEGIN | |
145 | //------------------------------------------------------------------------- | |
146 | // Constructors... | |
147 | //------------------------------------------------------------------------- | |
148 | ||
149 | /** | |
46f4442e A |
150 | * Constructs a default <code>HebrewCalendar</code> using the current time |
151 | * in the default time zone with the default locale. | |
152 | * @internal | |
153 | */ | |
374ca955 | 154 | HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success) |
46f4442e | 155 | : Calendar(TimeZone::createDefault(), aLocale, success) |
374ca955 A |
156 | |
157 | { | |
46f4442e | 158 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
374ca955 A |
159 | } |
160 | ||
161 | ||
162 | HebrewCalendar::~HebrewCalendar() { | |
163 | } | |
164 | ||
165 | const char *HebrewCalendar::getType() const { | |
46f4442e | 166 | return "hebrew"; |
374ca955 A |
167 | } |
168 | ||
169 | Calendar* HebrewCalendar::clone() const { | |
46f4442e | 170 | return new HebrewCalendar(*this); |
374ca955 A |
171 | } |
172 | ||
173 | HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) { | |
174 | } | |
175 | ||
176 | ||
177 | //------------------------------------------------------------------------- | |
178 | // Rolling and adding functions overridden from Calendar | |
179 | // | |
180 | // These methods call through to the default implementation in IBMCalendar | |
181 | // for most of the fields and only handle the unusual ones themselves. | |
182 | //------------------------------------------------------------------------- | |
183 | ||
184 | /** | |
46f4442e A |
185 | * Add a signed amount to a specified field, using this calendar's rules. |
186 | * For example, to add three days to the current date, you can call | |
187 | * <code>add(Calendar.DATE, 3)</code>. | |
188 | * <p> | |
189 | * When adding to certain fields, the values of other fields may conflict and | |
190 | * need to be changed. For example, when adding one to the {@link #MONTH MONTH} field | |
191 | * for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field | |
192 | * must be adjusted so that the result is "29 Elul 5758" rather than the invalid | |
193 | * "30 Elul 5758". | |
194 | * <p> | |
195 | * This method is able to add to | |
196 | * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, | |
197 | * and {@link #ZONE_OFFSET ZONE_OFFSET}. | |
198 | * <p> | |
199 | * <b>Note:</b> You should always use {@link #roll roll} and add rather | |
200 | * than attempting to perform arithmetic operations directly on the fields | |
201 | * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves | |
202 | * discontinuously in non-leap years, simple arithmetic can give invalid results. | |
203 | * <p> | |
204 | * @param field the time field. | |
205 | * @param amount the amount to add to the field. | |
206 | * | |
207 | * @exception IllegalArgumentException if the field is invalid or refers | |
208 | * to a field that cannot be handled by this method. | |
209 | * @internal | |
210 | */ | |
374ca955 A |
211 | void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
212 | { | |
46f4442e A |
213 | if(U_FAILURE(status)) { |
214 | return; | |
215 | } | |
216 | switch (field) { | |
374ca955 | 217 | case UCAL_MONTH: |
46f4442e A |
218 | { |
219 | // We can't just do a set(MONTH, get(MONTH) + amount). The | |
220 | // reason is ADAR_1. Suppose amount is +2 and we land in | |
221 | // ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But | |
222 | // if amount is -2 and we land in ADAR_1, then we have to | |
223 | // bump the other way -- down to SHEVAT. - Alan 11/00 | |
224 | int32_t month = get(UCAL_MONTH, status); | |
225 | int32_t year = get(UCAL_YEAR, status); | |
226 | UBool acrossAdar1; | |
227 | if (amount > 0) { | |
228 | acrossAdar1 = (month < ADAR_1); // started before ADAR_1? | |
229 | month += amount; | |
230 | for (;;) { | |
231 | if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) { | |
232 | ++month; | |
233 | } | |
234 | if (month <= ELUL) { | |
235 | break; | |
236 | } | |
237 | month -= ELUL+1; | |
238 | ++year; | |
239 | acrossAdar1 = TRUE; | |
240 | } | |
241 | } else { | |
242 | acrossAdar1 = (month > ADAR_1); // started after ADAR_1? | |
243 | month += amount; | |
244 | for (;;) { | |
245 | if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) { | |
246 | --month; | |
247 | } | |
248 | if (month >= 0) { | |
249 | break; | |
250 | } | |
251 | month += ELUL+1; | |
252 | --year; | |
253 | acrossAdar1 = TRUE; | |
254 | } | |
374ca955 | 255 | } |
46f4442e A |
256 | set(UCAL_MONTH, month); |
257 | set(UCAL_YEAR, year); | |
258 | pinField(UCAL_DAY_OF_MONTH, status); | |
259 | break; | |
374ca955 | 260 | } |
46f4442e A |
261 | |
262 | default: | |
263 | Calendar::add(field, amount, status); | |
374ca955 A |
264 | break; |
265 | } | |
374ca955 A |
266 | } |
267 | ||
73c04bcf | 268 | /** |
46f4442e A |
269 | * @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields |
270 | */ | |
73c04bcf A |
271 | void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) |
272 | { | |
273 | add((UCalendarDateFields)field, amount, status); | |
274 | } | |
275 | ||
374ca955 | 276 | /** |
46f4442e A |
277 | * Rolls (up/down) a specified amount time on the given field. For |
278 | * example, to roll the current date up by three days, you can call | |
279 | * <code>roll(Calendar.DATE, 3)</code>. If the | |
280 | * field is rolled past its maximum allowable value, it will "wrap" back | |
281 | * to its minimum and continue rolling. | |
282 | * For example, calling <code>roll(Calendar.DATE, 10)</code> | |
283 | * on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758". | |
284 | * <p> | |
285 | * When rolling certain fields, the values of other fields may conflict and | |
286 | * need to be changed. For example, when rolling the {@link #MONTH MONTH} field | |
287 | * upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field | |
288 | * must be adjusted so that the result is "29 Elul 5758" rather than the invalid | |
289 | * "30 Elul". | |
290 | * <p> | |
291 | * This method is able to roll | |
292 | * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, | |
293 | * and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for | |
294 | * additional fields in their overrides of <code>roll</code>. | |
295 | * <p> | |
296 | * <b>Note:</b> You should always use roll and {@link #add add} rather | |
297 | * than attempting to perform arithmetic operations directly on the fields | |
298 | * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves | |
299 | * discontinuously in non-leap years, simple arithmetic can give invalid results. | |
300 | * <p> | |
301 | * @param field the time field. | |
302 | * @param amount the amount by which the field should be rolled. | |
303 | * | |
304 | * @exception IllegalArgumentException if the field is invalid or refers | |
305 | * to a field that cannot be handled by this method. | |
306 | * @internal | |
307 | */ | |
374ca955 A |
308 | void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
309 | { | |
46f4442e A |
310 | if(U_FAILURE(status)) { |
311 | return; | |
312 | } | |
313 | switch (field) { | |
374ca955 | 314 | case UCAL_MONTH: |
46f4442e A |
315 | { |
316 | int32_t month = get(UCAL_MONTH, status); | |
317 | int32_t year = get(UCAL_YEAR, status); | |
318 | ||
319 | UBool leapYear = isLeapYear(year); | |
320 | int32_t yearLength = monthsInYear(year); | |
321 | int32_t newMonth = month + (amount % yearLength); | |
322 | // | |
323 | // If it's not a leap year and we're rolling past the missing month | |
324 | // of ADAR_1, we need to roll an extra month to make up for it. | |
325 | // | |
326 | if (!leapYear) { | |
327 | if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) { | |
328 | newMonth++; | |
329 | } else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) { | |
330 | newMonth--; | |
331 | } | |
332 | } | |
333 | set(UCAL_MONTH, (newMonth + 13) % 13); | |
334 | pinField(UCAL_DAY_OF_MONTH, status); | |
335 | return; | |
374ca955 | 336 | } |
374ca955 | 337 | default: |
46f4442e A |
338 | Calendar::roll(field, amount, status); |
339 | } | |
374ca955 A |
340 | } |
341 | ||
342 | void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { | |
46f4442e | 343 | roll((UCalendarDateFields)field, amount, status); |
374ca955 A |
344 | } |
345 | ||
346 | //------------------------------------------------------------------------- | |
347 | // Support methods | |
348 | //------------------------------------------------------------------------- | |
349 | ||
350 | // Hebrew date calculations are performed in terms of days, hours, and | |
351 | // "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds. | |
352 | static const int32_t HOUR_PARTS = 1080; | |
353 | static const int32_t DAY_PARTS = 24*HOUR_PARTS; | |
354 | ||
355 | // An approximate value for the length of a lunar month. | |
356 | // It is used to calculate the approximate year and month of a given | |
357 | // absolute date. | |
358 | static const int32_t MONTH_DAYS = 29; | |
359 | static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793; | |
360 | static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT; | |
46f4442e | 361 | |
374ca955 A |
362 | // The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch) |
363 | // counting from noon on the day before. BAHARAD is an abbreviation of | |
364 | // Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204). | |
365 | static const int32_t BAHARAD = 11*HOUR_PARTS + 204; | |
366 | ||
367 | /** | |
46f4442e A |
368 | * Finds the day # of the first day in the given Hebrew year. |
369 | * To do this, we want to calculate the time of the Tishri 1 new moon | |
370 | * in that year. | |
371 | * <p> | |
372 | * The algorithm here is similar to ones described in a number of | |
373 | * references, including: | |
374 | * <ul> | |
375 | * <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold, | |
376 | * Cambridge University Press, 1997, pages 85-91. | |
377 | * | |
378 | * <li>Hebrew Calendar Science and Myths, | |
379 | * <a href="http://www.geocities.com/Athens/1584/"> | |
380 | * http://www.geocities.com/Athens/1584/</a> | |
381 | * | |
382 | * <li>The Calendar FAQ, | |
383 | * <a href="http://www.faqs.org/faqs/calendars/faq/"> | |
384 | * http://www.faqs.org/faqs/calendars/faq/</a> | |
385 | * </ul> | |
386 | */ | |
374ca955 A |
387 | int32_t HebrewCalendar::startOfYear(int32_t year, UErrorCode &status) |
388 | { | |
46f4442e A |
389 | ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup); |
390 | int32_t day = CalendarCache::get(&gCache, year, status); | |
391 | ||
392 | if (day == 0) { | |
393 | int32_t months = (235 * year - 234) / 19; // # of months before year | |
394 | ||
395 | int64_t frac = (int64_t)months * MONTH_FRACT + BAHARAD; // Fractional part of day # | |
396 | day = months * 29 + (int32_t)(frac / DAY_PARTS); // Whole # part of calculation | |
397 | frac = frac % DAY_PARTS; // Time of day | |
398 | ||
399 | int32_t wd = (day % 7); // Day of week (0 == Monday) | |
400 | ||
401 | if (wd == 2 || wd == 4 || wd == 6) { | |
402 | // If the 1st is on Sun, Wed, or Fri, postpone to the next day | |
403 | day += 1; | |
404 | wd = (day % 7); | |
405 | } | |
406 | if (wd == 1 && frac > 15*HOUR_PARTS+204 && !isLeapYear(year) ) { | |
407 | // If the new moon falls after 3:11:20am (15h204p from the previous noon) | |
408 | // on a Tuesday and it is not a leap year, postpone by 2 days. | |
409 | // This prevents 356-day years. | |
410 | day += 2; | |
411 | } | |
412 | else if (wd == 0 && frac > 21*HOUR_PARTS+589 && isLeapYear(year-1) ) { | |
413 | // If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon) | |
414 | // on a Monday and *last* year was a leap year, postpone by 1 day. | |
415 | // Prevents 382-day years. | |
416 | day += 1; | |
417 | } | |
418 | CalendarCache::put(&gCache, year, day, status); | |
374ca955 | 419 | } |
46f4442e | 420 | return day; |
374ca955 A |
421 | } |
422 | ||
423 | /** | |
46f4442e A |
424 | * Find the day of the week for a given day |
425 | * | |
426 | * @param day The # of days since the start of the Hebrew calendar, | |
427 | * 1-based (i.e. 1/1/1 AM is day 1). | |
428 | */ | |
374ca955 A |
429 | int32_t HebrewCalendar::absoluteDayToDayOfWeek(int32_t day) |
430 | { | |
46f4442e A |
431 | // We know that 1/1/1 AM is a Monday, which makes the math easy... |
432 | return (day % 7) + 1; | |
374ca955 A |
433 | } |
434 | ||
435 | /** | |
46f4442e A |
436 | * Returns the the type of a given year. |
437 | * 0 "Deficient" year with 353 or 383 days | |
438 | * 1 "Normal" year with 354 or 384 days | |
439 | * 2 "Complete" year with 355 or 385 days | |
440 | */ | |
374ca955 A |
441 | int32_t HebrewCalendar::yearType(int32_t year) const |
442 | { | |
46f4442e A |
443 | int32_t yearLength = handleGetYearLength(year); |
444 | ||
445 | if (yearLength > 380) { | |
446 | yearLength -= 30; // Subtract length of leap month. | |
447 | } | |
374ca955 | 448 | |
46f4442e | 449 | int type = 0; |
374ca955 | 450 | |
46f4442e | 451 | switch (yearLength) { |
374ca955 | 452 | case 353: |
46f4442e | 453 | type = 0; break; |
374ca955 | 454 | case 354: |
46f4442e | 455 | type = 1; break; |
374ca955 | 456 | case 355: |
46f4442e | 457 | type = 2; break; |
374ca955 | 458 | default: |
46f4442e A |
459 | //throw new RuntimeException("Illegal year length " + yearLength + " in year " + year); |
460 | type = 1; | |
461 | } | |
462 | return type; | |
374ca955 A |
463 | } |
464 | ||
465 | /** | |
46f4442e A |
466 | * Determine whether a given Hebrew year is a leap year |
467 | * | |
468 | * The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17. | |
469 | * The formula below performs the same test, believe it or not. | |
470 | */ | |
374ca955 | 471 | UBool HebrewCalendar::isLeapYear(int32_t year) { |
46f4442e A |
472 | //return (year * 12 + 17) % 19 >= 12; |
473 | int32_t x = (year*12 + 17) % 19; | |
474 | return x >= ((x < 0) ? -7 : 12); | |
374ca955 A |
475 | } |
476 | ||
477 | int32_t HebrewCalendar::monthsInYear(int32_t year) { | |
46f4442e | 478 | return isLeapYear(year) ? 13 : 12; |
374ca955 A |
479 | } |
480 | ||
481 | //------------------------------------------------------------------------- | |
482 | // Calendar framework | |
483 | //------------------------------------------------------------------------- | |
484 | ||
485 | /** | |
46f4442e A |
486 | * @internal |
487 | */ | |
374ca955 | 488 | int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
46f4442e | 489 | return LIMITS[field][limitType]; |
374ca955 A |
490 | } |
491 | ||
492 | /** | |
46f4442e A |
493 | * Returns the length of the given month in the given year |
494 | * @internal | |
495 | */ | |
374ca955 | 496 | int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { |
46f4442e A |
497 | // Resolve out-of-range months. This is necessary in order to |
498 | // obtain the correct year. We correct to | |
499 | // a 12- or 13-month year (add/subtract 12 or 13, depending | |
500 | // on the year) but since we _always_ number from 0..12, and | |
501 | // the leap year determines whether or not month 5 (Adar 1) | |
502 | // is present, we allow 0..12 in any given year. | |
503 | while (month < 0) { | |
504 | month += monthsInYear(--extendedYear); | |
505 | } | |
506 | // Careful: allow 0..12 in all years | |
507 | while (month > 12) { | |
508 | month -= monthsInYear(extendedYear++); | |
509 | } | |
510 | ||
511 | switch (month) { | |
512 | case HESHVAN: | |
513 | case KISLEV: | |
514 | // These two month lengths can vary | |
515 | return MONTH_LENGTH[month][yearType(extendedYear)]; | |
516 | ||
517 | default: | |
518 | // The rest are a fixed length | |
519 | return MONTH_LENGTH[month][0]; | |
520 | } | |
374ca955 A |
521 | } |
522 | ||
523 | /** | |
46f4442e A |
524 | * Returns the number of days in the given Hebrew year |
525 | * @internal | |
526 | */ | |
374ca955 | 527 | int32_t HebrewCalendar::handleGetYearLength(int32_t eyear) const { |
46f4442e A |
528 | UErrorCode status = U_ZERO_ERROR; |
529 | return startOfYear(eyear+1, status) - startOfYear(eyear, status); | |
374ca955 A |
530 | } |
531 | ||
532 | //------------------------------------------------------------------------- | |
533 | // Functions for converting from milliseconds to field values | |
534 | //------------------------------------------------------------------------- | |
535 | ||
536 | /** | |
46f4442e A |
537 | * Subclasses may override this method to compute several fields |
538 | * specific to each calendar system. These are: | |
539 | * | |
540 | * <ul><li>ERA | |
541 | * <li>YEAR | |
542 | * <li>MONTH | |
543 | * <li>DAY_OF_MONTH | |
544 | * <li>DAY_OF_YEAR | |
545 | * <li>EXTENDED_YEAR</ul> | |
546 | * | |
547 | * Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields, | |
548 | * which will be set when this method is called. Subclasses can | |
549 | * also call the getGregorianXxx() methods to obtain Gregorian | |
550 | * calendar equivalents for the given Julian day. | |
551 | * | |
552 | * <p>In addition, subclasses should compute any subclass-specific | |
553 | * fields, that is, fields from BASE_FIELD_COUNT to | |
554 | * getFieldCount() - 1. | |
555 | * @internal | |
556 | */ | |
374ca955 | 557 | void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) { |
46f4442e A |
558 | int32_t d = julianDay - 347997; |
559 | double m = ((d * (double)DAY_PARTS)/ (double) MONTH_PARTS); // Months (approx) | |
560 | int32_t year = (int32_t)( ((19. * m + 234.) / 235.) + 1.); // Years (approx) | |
561 | int32_t ys = startOfYear(year, status); // 1st day of year | |
562 | int32_t dayOfYear = (d - ys); | |
563 | ||
564 | // Because of the postponement rules, it's possible to guess wrong. Fix it. | |
565 | while (dayOfYear < 1) { | |
566 | year--; | |
567 | ys = startOfYear(year, status); | |
568 | dayOfYear = (d - ys); | |
569 | } | |
570 | ||
571 | // Now figure out which month we're in, and the date within that month | |
572 | int32_t type = yearType(year); | |
573 | UBool isLeap = isLeapYear(year); | |
574 | ||
575 | int32_t month = 0; | |
576 | int32_t momax = sizeof(MONTH_START) / (3 * sizeof(MONTH_START[0][0])); | |
577 | while (month < momax && dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) { | |
578 | month++; | |
579 | } | |
580 | if (month >= momax || month<=0) { | |
581 | // TODO: I found dayOfYear could be out of range when | |
582 | // a large value is set to julianDay. I patched startOfYear | |
583 | // to reduce the chace, but it could be still reproduced either | |
584 | // by startOfYear or other places. For now, we check | |
585 | // the month is in valid range to avoid out of array index | |
586 | // access problem here. However, we need to carefully review | |
587 | // the calendar implementation to check the extreme limit of | |
588 | // each calendar field and the code works well for any values | |
589 | // in the valid value range. -yoshito | |
590 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
591 | return; | |
592 | } | |
593 | month--; | |
594 | int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]); | |
595 | ||
596 | internalSet(UCAL_ERA, 0); | |
597 | internalSet(UCAL_YEAR, year); | |
598 | internalSet(UCAL_EXTENDED_YEAR, year); | |
599 | internalSet(UCAL_MONTH, month); | |
600 | internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); | |
601 | internalSet(UCAL_DAY_OF_YEAR, dayOfYear); | |
374ca955 A |
602 | } |
603 | ||
604 | //------------------------------------------------------------------------- | |
605 | // Functions for converting from field values to milliseconds | |
606 | //------------------------------------------------------------------------- | |
607 | ||
608 | /** | |
46f4442e A |
609 | * @internal |
610 | */ | |
374ca955 | 611 | int32_t HebrewCalendar::handleGetExtendedYear() { |
46f4442e A |
612 | int32_t year; |
613 | if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { | |
614 | year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 | |
615 | } else { | |
616 | year = internalGet(UCAL_YEAR, 1); // Default to year 1 | |
617 | } | |
618 | return year; | |
374ca955 A |
619 | } |
620 | ||
621 | /** | |
46f4442e A |
622 | * Return JD of start of given month/year. |
623 | * @internal | |
624 | */ | |
374ca955 | 625 | int32_t HebrewCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /*useMonth*/) const { |
46f4442e A |
626 | UErrorCode status = U_ZERO_ERROR; |
627 | // Resolve out-of-range months. This is necessary in order to | |
628 | // obtain the correct year. We correct to | |
629 | // a 12- or 13-month year (add/subtract 12 or 13, depending | |
630 | // on the year) but since we _always_ number from 0..12, and | |
631 | // the leap year determines whether or not month 5 (Adar 1) | |
632 | // is present, we allow 0..12 in any given year. | |
633 | while (month < 0) { | |
634 | month += monthsInYear(--eyear); | |
635 | } | |
636 | // Careful: allow 0..12 in all years | |
637 | while (month > 12) { | |
638 | month -= monthsInYear(eyear++); | |
639 | } | |
640 | ||
641 | int32_t day = startOfYear(eyear, status); | |
642 | ||
643 | if(U_FAILURE(status)) { | |
644 | return 0; | |
374ca955 | 645 | } |
46f4442e A |
646 | |
647 | if (month != 0) { | |
648 | if (isLeapYear(eyear)) { | |
649 | day += LEAP_MONTH_START[month][yearType(eyear)]; | |
650 | } else { | |
651 | day += MONTH_START[month][yearType(eyear)]; | |
652 | } | |
653 | } | |
654 | ||
655 | return (int) (day + 347997); | |
374ca955 A |
656 | } |
657 | ||
658 | UBool | |
659 | HebrewCalendar::inDaylightTime(UErrorCode& status) const | |
660 | { | |
46f4442e A |
661 | // copied from GregorianCalendar |
662 | if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) | |
663 | return FALSE; | |
374ca955 A |
664 | |
665 | // Force an update of the state of the Calendar. | |
46f4442e | 666 | ((HebrewCalendar*)this)->complete(status); // cast away const |
374ca955 | 667 | |
46f4442e | 668 | return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
374ca955 A |
669 | } |
670 | ||
671 | // default century | |
672 | const UDate HebrewCalendar::fgSystemDefaultCentury = DBL_MIN; | |
673 | const int32_t HebrewCalendar::fgSystemDefaultCenturyYear = -1; | |
674 | ||
675 | UDate HebrewCalendar::fgSystemDefaultCenturyStart = DBL_MIN; | |
676 | int32_t HebrewCalendar::fgSystemDefaultCenturyStartYear = -1; | |
677 | ||
678 | ||
679 | UBool HebrewCalendar::haveDefaultCentury() const | |
680 | { | |
46f4442e | 681 | return TRUE; |
374ca955 A |
682 | } |
683 | ||
684 | UDate HebrewCalendar::defaultCenturyStart() const | |
685 | { | |
46f4442e | 686 | return internalGetDefaultCenturyStart(); |
374ca955 A |
687 | } |
688 | ||
689 | int32_t HebrewCalendar::defaultCenturyStartYear() const | |
690 | { | |
46f4442e | 691 | return internalGetDefaultCenturyStartYear(); |
374ca955 A |
692 | } |
693 | ||
694 | UDate | |
695 | HebrewCalendar::internalGetDefaultCenturyStart() const | |
696 | { | |
46f4442e A |
697 | // lazy-evaluate systemDefaultCenturyStart |
698 | UBool needsUpdate; | |
699 | UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); | |
700 | ||
701 | if (needsUpdate) { | |
702 | initializeSystemDefaultCentury(); | |
703 | } | |
704 | ||
705 | // use defaultCenturyStart unless it's the flag value; | |
706 | // then use systemDefaultCenturyStart | |
707 | ||
708 | return fgSystemDefaultCenturyStart; | |
374ca955 A |
709 | } |
710 | ||
711 | int32_t | |
712 | HebrewCalendar::internalGetDefaultCenturyStartYear() const | |
713 | { | |
46f4442e A |
714 | // lazy-evaluate systemDefaultCenturyStartYear |
715 | UBool needsUpdate; | |
716 | UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); | |
717 | ||
718 | if (needsUpdate) { | |
719 | initializeSystemDefaultCentury(); | |
720 | } | |
721 | ||
722 | // use defaultCenturyStart unless it's the flag value; | |
723 | // then use systemDefaultCenturyStartYear | |
724 | ||
725 | return fgSystemDefaultCenturyStartYear; | |
374ca955 A |
726 | } |
727 | ||
728 | void | |
729 | HebrewCalendar::initializeSystemDefaultCentury() | |
730 | { | |
46f4442e A |
731 | // initialize systemDefaultCentury and systemDefaultCenturyYear based |
732 | // on the current time. They'll be set to 80 years before | |
733 | // the current time. | |
734 | // No point in locking as it should be idempotent. | |
735 | if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) | |
374ca955 | 736 | { |
46f4442e A |
737 | UErrorCode status = U_ZERO_ERROR; |
738 | HebrewCalendar calendar(Locale("@calendar=hebrew"),status); | |
739 | if (U_SUCCESS(status)) | |
740 | { | |
741 | calendar.setTime(Calendar::getNow(), status); | |
742 | calendar.add(UCAL_YEAR, -80, status); | |
743 | UDate newStart = calendar.getTime(status); | |
744 | int32_t newYear = calendar.get(UCAL_YEAR, status); | |
745 | { | |
746 | umtx_lock(NULL); | |
747 | fgSystemDefaultCenturyStart = newStart; | |
748 | fgSystemDefaultCenturyStartYear = newYear; | |
749 | umtx_unlock(NULL); | |
750 | } | |
751 | } | |
752 | // We have no recourse upon failure unless we want to propagate the failure | |
753 | // out. | |
374ca955 | 754 | } |
374ca955 A |
755 | } |
756 | ||
73c04bcf | 757 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar) |
374ca955 A |
758 | |
759 | U_NAMESPACE_END | |
760 | ||
761 | #endif // UCONFIG_NO_FORMATTING | |
762 |