]>
Commit | Line | Data |
---|---|---|
46f4442e A |
1 | /* |
2 | ****************************************************************************** | |
3 | * | |
4 | * Copyright (C) 2007, International Business Machines | |
5 | * Corporation and others. All Rights Reserved. | |
6 | * | |
7 | ****************************************************************************** | |
8 | * file name: unisetspan.cpp | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2007mar01 | |
14 | * created by: Markus W. Scherer | |
15 | */ | |
16 | ||
17 | #include "unicode/utypes.h" | |
18 | #include "unicode/uniset.h" | |
19 | #include "unicode/ustring.h" | |
20 | #include "cmemory.h" | |
21 | #include "uvector.h" | |
22 | #include "unisetspan.h" | |
23 | ||
24 | U_NAMESPACE_BEGIN | |
25 | ||
26 | /* | |
27 | * List of offsets from the current position from where to try matching | |
28 | * a code point or a string. | |
29 | * Store offsets rather than indexes to simplify the code and use the same list | |
30 | * for both increments (in span()) and decrements (in spanBack()). | |
31 | * | |
32 | * Assumption: The maximum offset is limited, and the offsets that are stored | |
33 | * at any one time are relatively dense, that is, there are normally no gaps of | |
34 | * hundreds or thousands of offset values. | |
35 | * | |
36 | * The implementation uses a circular buffer of byte flags, | |
37 | * each indicating whether the corresponding offset is in the list. | |
38 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and | |
39 | * physically moving part of the list. | |
40 | * | |
41 | * Note: In principle, the caller should setMaxLength() to the maximum of the | |
42 | * max string length and U16_LENGTH/U8_LENGTH to account for | |
43 | * "long" single code points. | |
44 | * However, this implementation uses at least a staticList with more than | |
45 | * U8_LENGTH entries anyway. | |
46 | * | |
47 | * Note: If maxLength were guaranteed to be no more than 32 or 64, | |
48 | * the list could be stored as bit flags in a single integer. | |
49 | * Rather than handling a circular buffer with a start list index, | |
50 | * the integer would simply be shifted when lower offsets are removed. | |
51 | * UnicodeSet does not have a limit on the lengths of strings. | |
52 | */ | |
53 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. | |
54 | public: | |
55 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} | |
56 | ||
57 | ~OffsetList() { | |
58 | if(list!=staticList) { | |
59 | uprv_free(list); | |
60 | } | |
61 | } | |
62 | ||
63 | // Call exactly once if the list is to be used. | |
64 | void setMaxLength(int32_t maxLength) { | |
65 | if(maxLength<=(int32_t)sizeof(staticList)) { | |
66 | capacity=(int32_t)sizeof(staticList); | |
67 | } else { | |
68 | UBool *l=(UBool *)uprv_malloc(maxLength); | |
69 | if(l!=NULL) { | |
70 | list=l; | |
71 | capacity=maxLength; | |
72 | } | |
73 | } | |
74 | uprv_memset(list, 0, capacity); | |
75 | } | |
76 | ||
77 | void clear() { | |
78 | uprv_memset(list, 0, capacity); | |
79 | start=length=0; | |
80 | } | |
81 | ||
82 | UBool isEmpty() const { | |
83 | return (UBool)(length==0); | |
84 | } | |
85 | ||
86 | // Reduce all stored offsets by delta, used when the current position | |
87 | // moves by delta. | |
88 | // There must not be any offsets lower than delta. | |
89 | // If there is an offset equal to delta, it is removed. | |
90 | // delta=[1..maxLength] | |
91 | void shift(int32_t delta) { | |
92 | int32_t i=start+delta; | |
93 | if(i>=capacity) { | |
94 | i-=capacity; | |
95 | } | |
96 | if(list[i]) { | |
97 | list[i]=FALSE; | |
98 | --length; | |
99 | } | |
100 | start=i; | |
101 | } | |
102 | ||
103 | // Add an offset. The list must not contain it yet. | |
104 | // offset=[1..maxLength] | |
105 | void addOffset(int32_t offset) { | |
106 | int32_t i=start+offset; | |
107 | if(i>=capacity) { | |
108 | i-=capacity; | |
109 | } | |
110 | list[i]=TRUE; | |
111 | ++length; | |
112 | } | |
113 | ||
114 | // offset=[1..maxLength] | |
115 | UBool containsOffset(int32_t offset) const { | |
116 | int32_t i=start+offset; | |
117 | if(i>=capacity) { | |
118 | i-=capacity; | |
119 | } | |
120 | return list[i]; | |
121 | } | |
122 | ||
123 | // Find the lowest stored offset from a non-empty list, remove it, | |
124 | // and reduce all other offsets by this minimum. | |
125 | // Returns [1..maxLength]. | |
126 | int32_t popMinimum() { | |
127 | // Look for the next offset in list[start+1..capacity-1]. | |
128 | int32_t i=start, result; | |
129 | while(++i<capacity) { | |
130 | if(list[i]) { | |
131 | list[i]=FALSE; | |
132 | --length; | |
133 | result=i-start; | |
134 | start=i; | |
135 | return result; | |
136 | } | |
137 | } | |
138 | // i==capacity | |
139 | ||
140 | // Wrap around and look for the next offset in list[0..start]. | |
141 | // Since the list is not empty, there will be one. | |
142 | result=capacity-start; | |
143 | i=0; | |
144 | while(!list[i]) { | |
145 | ++i; | |
146 | } | |
147 | list[i]=FALSE; | |
148 | --length; | |
149 | start=i; | |
150 | return result+=i; | |
151 | } | |
152 | ||
153 | private: | |
154 | UBool *list; | |
155 | int32_t capacity; | |
156 | int32_t length; | |
157 | int32_t start; | |
158 | ||
159 | UBool staticList[16]; | |
160 | }; | |
161 | ||
162 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. | |
163 | static int32_t | |
164 | getUTF8Length(const UChar *s, int32_t length) { | |
165 | UErrorCode errorCode=U_ZERO_ERROR; | |
166 | int32_t length8=0; | |
167 | u_strToUTF8(NULL, 0, &length8, s, length, &errorCode); | |
168 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { | |
169 | return length8; | |
170 | } else { | |
171 | // The string contains an unpaired surrogate. | |
172 | // Ignore this string. | |
173 | return 0; | |
174 | } | |
175 | } | |
176 | ||
177 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. | |
178 | static int32_t | |
179 | appendUTF8(const UChar *s, int32_t length, uint8_t *t, int32_t capacity) { | |
180 | UErrorCode errorCode=U_ZERO_ERROR; | |
181 | int32_t length8=0; | |
182 | u_strToUTF8((char *)t, capacity, &length8, s, length, &errorCode); | |
183 | if(U_SUCCESS(errorCode)) { | |
184 | return length8; | |
185 | } else { | |
186 | // The string contains an unpaired surrogate. | |
187 | // Ignore this string. | |
188 | return 0; | |
189 | } | |
190 | } | |
191 | ||
192 | static inline uint8_t | |
193 | makeSpanLengthByte(int32_t spanLength) { | |
194 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN | |
195 | return spanLength<0xfe ? (uint8_t)spanLength : (uint8_t)0xfe; | |
196 | } | |
197 | ||
198 | // Construct for all variants of span(), or only for any one variant. | |
199 | // Initialize as little as possible, for single use. | |
200 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, | |
201 | const UVector &setStrings, | |
202 | uint32_t which) | |
203 | : spanSet(0, 0x10ffff), pSpanNotSet(NULL), strings(setStrings), | |
204 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), | |
205 | utf8Length(0), | |
206 | maxLength16(0), maxLength8(0), | |
207 | all((UBool)(which==ALL)) { | |
208 | spanSet.retainAll(set); | |
209 | if(which&NOT_CONTAINED) { | |
210 | // Default to the same sets. | |
211 | // addToSpanNotSet() will create a separate set if necessary. | |
212 | pSpanNotSet=&spanSet; | |
213 | } | |
214 | ||
215 | // Determine if the strings even need to be taken into account at all for span() etc. | |
216 | // If any string is relevant, then all strings need to be used for | |
217 | // span(longest match) but only the relevant ones for span(while contained). | |
218 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH | |
219 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. | |
220 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) | |
221 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. | |
222 | int32_t stringsLength=strings.size(); | |
223 | ||
224 | int32_t i, spanLength; | |
225 | UBool someRelevant=FALSE; | |
226 | for(i=0; i<stringsLength; ++i) { | |
227 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
228 | const UChar *s16=string.getBuffer(); | |
229 | int32_t length16=string.length(); | |
230 | UBool thisRelevant; | |
231 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |
232 | if(spanLength<length16) { // Relevant string. | |
233 | someRelevant=thisRelevant=TRUE; | |
234 | } else { | |
235 | thisRelevant=FALSE; | |
236 | } | |
237 | if((which&UTF16) && length16>maxLength16) { | |
238 | maxLength16=length16; | |
239 | } | |
240 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { | |
241 | int32_t length8=getUTF8Length(s16, length16); | |
242 | utf8Length+=length8; | |
243 | if(length8>maxLength8) { | |
244 | maxLength8=length8; | |
245 | } | |
246 | } | |
247 | } | |
248 | if(!someRelevant) { | |
249 | maxLength16=maxLength8=0; | |
250 | return; | |
251 | } | |
252 | ||
253 | // Freeze after checking for the need to use strings at all because freezing | |
254 | // a set takes some time and memory which are wasted if there are no relevant strings. | |
255 | if(all) { | |
256 | spanSet.freeze(); | |
257 | } | |
258 | ||
259 | uint8_t *spanBackLengths; | |
260 | uint8_t *spanUTF8Lengths; | |
261 | uint8_t *spanBackUTF8Lengths; | |
262 | ||
263 | // Allocate a block of meta data. | |
264 | int32_t allocSize; | |
265 | if(all) { | |
266 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |
267 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |
268 | } else { | |
269 | allocSize=stringsLength; // One set of span lengths. | |
270 | if(which&UTF8) { | |
271 | // UTF-8 lengths and UTF-8 strings. | |
272 | allocSize+=stringsLength*4+utf8Length; | |
273 | } | |
274 | } | |
275 | if(allocSize<=(int32_t)sizeof(staticLengths)) { | |
276 | utf8Lengths=staticLengths; | |
277 | } else { | |
278 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); | |
279 | if(utf8Lengths==NULL) { | |
280 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. | |
281 | return; // Out of memory. | |
282 | } | |
283 | } | |
284 | ||
285 | if(all) { | |
286 | // Store span lengths for all span() variants. | |
287 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); | |
288 | spanBackLengths=spanLengths+stringsLength; | |
289 | spanUTF8Lengths=spanBackLengths+stringsLength; | |
290 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; | |
291 | utf8=spanBackUTF8Lengths+stringsLength; | |
292 | } else { | |
293 | // Store span lengths for only one span() variant. | |
294 | if(which&UTF8) { | |
295 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); | |
296 | utf8=spanLengths+stringsLength; | |
297 | } else { | |
298 | spanLengths=(uint8_t *)utf8Lengths; | |
299 | } | |
300 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; | |
301 | } | |
302 | ||
303 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. | |
304 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. | |
305 | ||
306 | for(i=0; i<stringsLength; ++i) { | |
307 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
308 | const UChar *s16=string.getBuffer(); | |
309 | int32_t length16=string.length(); | |
310 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); | |
311 | if(spanLength<length16) { // Relevant string. | |
312 | if(which&UTF16) { | |
313 | if(which&CONTAINED) { | |
314 | if(which&FWD) { | |
315 | spanLengths[i]=makeSpanLengthByte(spanLength); | |
316 | } | |
317 | if(which&BACK) { | |
318 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); | |
319 | spanBackLengths[i]=makeSpanLengthByte(spanLength); | |
320 | } | |
321 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |
322 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. | |
323 | } | |
324 | } | |
325 | if(which&UTF8) { | |
326 | uint8_t *s8=utf8+utf8Count; | |
327 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |
328 | utf8Count+=utf8Lengths[i]=length8; | |
329 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. | |
330 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=(uint8_t)ALL_CP_CONTAINED; | |
331 | } else { // Relevant for UTF-8. | |
332 | if(which&CONTAINED) { | |
333 | if(which&FWD) { | |
334 | spanLength=spanSet.spanUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); | |
335 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |
336 | } | |
337 | if(which&BACK) { | |
338 | spanLength=length8-spanSet.spanBackUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); | |
339 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); | |
340 | } | |
341 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { | |
342 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. | |
343 | } | |
344 | } | |
345 | } | |
346 | if(which&NOT_CONTAINED) { | |
347 | // Add string start and end code points to the spanNotSet so that | |
348 | // a span(while not contained) stops before any string. | |
349 | UChar32 c; | |
350 | if(which&FWD) { | |
351 | int32_t len=0; | |
352 | U16_NEXT(s16, len, length16, c); | |
353 | addToSpanNotSet(c); | |
354 | } | |
355 | if(which&BACK) { | |
356 | int32_t len=length16; | |
357 | U16_PREV(s16, 0, len, c); | |
358 | addToSpanNotSet(c); | |
359 | } | |
360 | } | |
361 | } else { // Irrelevant string. | |
362 | if(which&UTF8) { | |
363 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. | |
364 | uint8_t *s8=utf8+utf8Count; | |
365 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); | |
366 | utf8Count+=utf8Lengths[i]=length8; | |
367 | } else { | |
368 | utf8Lengths[i]=0; | |
369 | } | |
370 | } | |
371 | if(all) { | |
372 | spanLengths[i]=spanBackLengths[i]= | |
373 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= | |
374 | (uint8_t)ALL_CP_CONTAINED; | |
375 | } else { | |
376 | // All spanXYZLengths pointers contain the same address. | |
377 | spanLengths[i]=(uint8_t)ALL_CP_CONTAINED; | |
378 | } | |
379 | } | |
380 | } | |
381 | ||
382 | // Finish. | |
383 | if(all) { | |
384 | pSpanNotSet->freeze(); | |
385 | } | |
386 | } | |
387 | ||
388 | // Copy constructor. Assumes which==ALL for a frozen set. | |
389 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, | |
390 | const UVector &newParentSetStrings) | |
391 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(NULL), strings(newParentSetStrings), | |
392 | utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), | |
393 | utf8Length(otherStringSpan.utf8Length), | |
394 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), | |
395 | all(TRUE) { | |
396 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { | |
397 | pSpanNotSet=&spanSet; | |
398 | } else { | |
399 | pSpanNotSet=(UnicodeSet *)otherStringSpan.pSpanNotSet->clone(); | |
400 | } | |
401 | ||
402 | // Allocate a block of meta data. | |
403 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. | |
404 | int32_t stringsLength=strings.size(); | |
405 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; | |
406 | if(allocSize<=(int32_t)sizeof(staticLengths)) { | |
407 | utf8Lengths=staticLengths; | |
408 | } else { | |
409 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); | |
410 | if(utf8Lengths==NULL) { | |
411 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. | |
412 | return; // Out of memory. | |
413 | } | |
414 | } | |
415 | ||
416 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); | |
417 | utf8=spanLengths+stringsLength*4; | |
418 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize); | |
419 | } | |
420 | ||
421 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { | |
422 | if(pSpanNotSet!=NULL && pSpanNotSet!=&spanSet) { | |
423 | delete pSpanNotSet; | |
424 | } | |
425 | if(utf8Lengths!=NULL && utf8Lengths!=staticLengths) { | |
426 | uprv_free(utf8Lengths); | |
427 | } | |
428 | } | |
429 | ||
430 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { | |
431 | if(pSpanNotSet==NULL || pSpanNotSet==&spanSet) { | |
432 | if(spanSet.contains(c)) { | |
433 | return; // Nothing to do. | |
434 | } | |
435 | UnicodeSet *newSet=(UnicodeSet *)spanSet.cloneAsThawed(); | |
436 | if(newSet==NULL) { | |
437 | return; // Out of memory. | |
438 | } else { | |
439 | pSpanNotSet=newSet; | |
440 | } | |
441 | } | |
442 | pSpanNotSet->add(c); | |
443 | } | |
444 | ||
445 | // Compare strings without any argument checks. Requires length>0. | |
446 | static inline UBool | |
447 | matches16(const UChar *s, const UChar *t, int32_t length) { | |
448 | do { | |
449 | if(*s++!=*t++) { | |
450 | return FALSE; | |
451 | } | |
452 | } while(--length>0); | |
453 | return TRUE; | |
454 | } | |
455 | ||
456 | static inline UBool | |
457 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { | |
458 | do { | |
459 | if(*s++!=*t++) { | |
460 | return FALSE; | |
461 | } | |
462 | } while(--length>0); | |
463 | return TRUE; | |
464 | } | |
465 | ||
466 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) | |
467 | // at code point boundaries. | |
468 | // That is, each edge of a match must not be in the middle of a surrogate pair. | |
469 | static inline UBool | |
470 | matches16CPB(const UChar *s, int32_t start, int32_t limit, const UChar *t, int32_t length) { | |
471 | s+=start; | |
472 | limit-=start; | |
473 | return matches16(s, t, length) && | |
474 | !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && | |
475 | !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); | |
476 | } | |
477 | ||
478 | // Does the set contain the next code point? | |
479 | // If so, return its length; otherwise return its negative length. | |
480 | static inline int32_t | |
481 | spanOne(const UnicodeSet &set, const UChar *s, int32_t length) { | |
482 | UChar c=*s, c2; | |
483 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])) { | |
484 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)) ? 2 : -2; | |
485 | } | |
486 | return set.contains(c) ? 1 : -1; | |
487 | } | |
488 | ||
489 | static inline int32_t | |
490 | spanOneBack(const UnicodeSet &set, const UChar *s, int32_t length) { | |
491 | UChar c=s[length-1], c2; | |
492 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])) { | |
493 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)) ? 2 : -2; | |
494 | } | |
495 | return set.contains(c) ? 1 : -1; | |
496 | } | |
497 | ||
498 | static inline int32_t | |
499 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |
500 | UChar32 c=*s; | |
501 | if((int8_t)c>=0) { | |
502 | return set.contains(c) ? 1 : -1; | |
503 | } | |
504 | // Take advantage of non-ASCII fastpaths in U8_NEXT(). | |
505 | int32_t i=0; | |
506 | U8_NEXT(s, i, length, c); | |
507 | return set.contains(c) ? i : -i; | |
508 | } | |
509 | ||
510 | static inline int32_t | |
511 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { | |
512 | UChar32 c=s[length-1]; | |
513 | if((int8_t)c>=0) { | |
514 | return set.contains(c) ? 1 : -1; | |
515 | } | |
516 | int32_t i=length-1; | |
517 | c=utf8_prevCharSafeBody(s, 0, &i, c, -1); | |
518 | length-=i; | |
519 | return set.contains(c) ? length : -length; | |
520 | } | |
521 | ||
522 | /* | |
523 | * Note: In span() when spanLength==0 (after a string match, or at the beginning | |
524 | * after an empty code point span) and in spanNot() and spanNotUTF8(), | |
525 | * string matching could use a binary search | |
526 | * because all string matches are done from the same start index. | |
527 | * | |
528 | * For UTF-8, this would require a comparison function that returns UTF-16 order. | |
529 | * | |
530 | * This optimization should not be necessary for normal UnicodeSets because | |
531 | * most sets have no strings, and most sets with strings have | |
532 | * very few very short strings. | |
533 | * For cases with many strings, it might be better to use a different API | |
534 | * and implementation with a DFA (state machine). | |
535 | */ | |
536 | ||
537 | /* | |
538 | * Algorithm for span(USET_SPAN_CONTAINED) | |
539 | * | |
540 | * Theoretical algorithm: | |
541 | * - Iterate through the string, and at each code point boundary: | |
542 | * + If the code point there is in the set, then remember to continue after it. | |
543 | * + If a set string matches at the current position, then remember to continue after it. | |
544 | * + Either recursively span for each code point or string match, | |
545 | * or recursively span for all but the shortest one and | |
546 | * iteratively continue the span with the shortest local match. | |
547 | * + Remember the longest recursive span (the farthest end point). | |
548 | * + If there is no match at the current position, neither for the code point there | |
549 | * nor for any set string, then stop and return the longest recursive span length. | |
550 | * | |
551 | * Optimized implementation: | |
552 | * | |
553 | * (We assume that most sets will have very few very short strings. | |
554 | * A span using a string-less set is extremely fast.) | |
555 | * | |
556 | * Create and cache a spanSet which contains all of the single code points | |
557 | * of the original set but none of its strings. | |
558 | * | |
559 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
560 | * - Loop: | |
561 | * + Try to match each set string at the end of the spanLength. | |
562 | * ~ Set strings that start with set-contained code points must be matched | |
563 | * with a partial overlap because the recursive algorithm would have tried | |
564 | * to match them at every position. | |
565 | * ~ Set strings that entirely consist of set-contained code points | |
566 | * are irrelevant for span(USET_SPAN_CONTAINED) because the | |
567 | * recursive algorithm would continue after them anyway | |
568 | * and find the longest recursive match from their end. | |
569 | * ~ Rather than recursing, note each end point of a set string match. | |
570 | * + If no set string matched after spanSet.span(), then return | |
571 | * with where the spanSet.span() ended. | |
572 | * + If at least one set string matched after spanSet.span(), then | |
573 | * pop the shortest string match end point and continue | |
574 | * the loop, trying to match all set strings from there. | |
575 | * + If at least one more set string matched after a previous string match, | |
576 | * then test if the code point after the previous string match is also | |
577 | * contained in the set. | |
578 | * Continue the loop with the shortest end point of either this code point | |
579 | * or a matching set string. | |
580 | * + If no more set string matched after a previous string match, | |
581 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
582 | * Stop if spanLength==0, otherwise continue the loop. | |
583 | * | |
584 | * By noting each end point of a set string match, | |
585 | * the function visits each string position at most once and finishes | |
586 | * in linear time. | |
587 | * | |
588 | * The recursive algorithm may visit the same string position many times | |
589 | * if multiple paths lead to it and finishes in exponential time. | |
590 | */ | |
591 | ||
592 | /* | |
593 | * Algorithm for span(USET_SPAN_SIMPLE) | |
594 | * | |
595 | * Theoretical algorithm: | |
596 | * - Iterate through the string, and at each code point boundary: | |
597 | * + If the code point there is in the set, then remember to continue after it. | |
598 | * + If a set string matches at the current position, then remember to continue after it. | |
599 | * + Continue from the farthest match position and ignore all others. | |
600 | * + If there is no match at the current position, | |
601 | * then stop and return the current position. | |
602 | * | |
603 | * Optimized implementation: | |
604 | * | |
605 | * (Same assumption and spanSet as above.) | |
606 | * | |
607 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
608 | * - Loop: | |
609 | * + Try to match each set string at the end of the spanLength. | |
610 | * ~ Set strings that start with set-contained code points must be matched | |
611 | * with a partial overlap because the standard algorithm would have tried | |
612 | * to match them earlier. | |
613 | * ~ Set strings that entirely consist of set-contained code points | |
614 | * must be matched with a full overlap because the longest-match algorithm | |
615 | * would hide set string matches that end earlier. | |
616 | * Such set strings need not be matched earlier inside the code point span | |
617 | * because the standard algorithm would then have continued after | |
618 | * the set string match anyway. | |
619 | * ~ Remember the longest set string match (farthest end point) from the earliest | |
620 | * starting point. | |
621 | * + If no set string matched after spanSet.span(), then return | |
622 | * with where the spanSet.span() ended. | |
623 | * + If at least one set string matched, then continue the loop after the | |
624 | * longest match from the earliest position. | |
625 | * + If no more set string matched after a previous string match, | |
626 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). | |
627 | * Stop if spanLength==0, otherwise continue the loop. | |
628 | */ | |
629 | ||
630 | int32_t UnicodeSetStringSpan::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { | |
631 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
632 | return spanNot(s, length); | |
633 | } | |
634 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); | |
635 | if(spanLength==length) { | |
636 | return length; | |
637 | } | |
638 | ||
639 | // Consider strings; they may overlap with the span. | |
640 | OffsetList offsets; | |
641 | if(spanCondition==USET_SPAN_CONTAINED) { | |
642 | // Use offset list to try all possibilities. | |
643 | offsets.setMaxLength(maxLength16); | |
644 | } | |
645 | int32_t pos=spanLength, rest=length-pos; | |
646 | int32_t i, stringsLength=strings.size(); | |
647 | for(;;) { | |
648 | if(spanCondition==USET_SPAN_CONTAINED) { | |
649 | for(i=0; i<stringsLength; ++i) { | |
650 | int32_t overlap=spanLengths[i]; | |
651 | if(overlap==ALL_CP_CONTAINED) { | |
652 | continue; // Irrelevant string. | |
653 | } | |
654 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
655 | const UChar *s16=string.getBuffer(); | |
656 | int32_t length16=string.length(); | |
657 | ||
658 | // Try to match this string at pos-overlap..pos. | |
659 | if(overlap>=LONG_SPAN) { | |
660 | overlap=length16; | |
661 | // While contained: No point matching fully inside the code point span. | |
662 | U16_BACK_1(s16, 0, overlap); // Length of the string minus the last code point. | |
663 | } | |
664 | if(overlap>spanLength) { | |
665 | overlap=spanLength; | |
666 | } | |
667 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |
668 | for(;;) { | |
669 | if(inc>rest) { | |
670 | break; | |
671 | } | |
672 | // Try to match if the increment is not listed already. | |
673 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { | |
674 | if(inc==rest) { | |
675 | return length; // Reached the end of the string. | |
676 | } | |
677 | offsets.addOffset(inc); | |
678 | } | |
679 | if(overlap==0) { | |
680 | break; | |
681 | } | |
682 | --overlap; | |
683 | ++inc; | |
684 | } | |
685 | } | |
686 | } else /* USET_SPAN_SIMPLE */ { | |
687 | int32_t maxInc=0, maxOverlap=0; | |
688 | for(i=0; i<stringsLength; ++i) { | |
689 | int32_t overlap=spanLengths[i]; | |
690 | // For longest match, we do need to try to match even an all-contained string | |
691 | // to find the match from the earliest start. | |
692 | ||
693 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
694 | const UChar *s16=string.getBuffer(); | |
695 | int32_t length16=string.length(); | |
696 | ||
697 | // Try to match this string at pos-overlap..pos. | |
698 | if(overlap>=LONG_SPAN) { | |
699 | overlap=length16; | |
700 | // Longest match: Need to match fully inside the code point span | |
701 | // to find the match from the earliest start. | |
702 | } | |
703 | if(overlap>spanLength) { | |
704 | overlap=spanLength; | |
705 | } | |
706 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. | |
707 | for(;;) { | |
708 | if(inc>rest || overlap<maxOverlap) { | |
709 | break; | |
710 | } | |
711 | // Try to match if the string is longer or starts earlier. | |
712 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && | |
713 | matches16CPB(s, pos-overlap, length, s16, length16) | |
714 | ) { | |
715 | maxInc=inc; // Longest match from earliest start. | |
716 | maxOverlap=overlap; | |
717 | break; | |
718 | } | |
719 | --overlap; | |
720 | ++inc; | |
721 | } | |
722 | } | |
723 | ||
724 | if(maxInc!=0 || maxOverlap!=0) { | |
725 | // Longest-match algorithm, and there was a string match. | |
726 | // Simply continue after it. | |
727 | pos+=maxInc; | |
728 | rest-=maxInc; | |
729 | if(rest==0) { | |
730 | return length; // Reached the end of the string. | |
731 | } | |
732 | spanLength=0; // Match strings from after a string match. | |
733 | continue; | |
734 | } | |
735 | } | |
736 | // Finished trying to match all strings at pos. | |
737 | ||
738 | if(spanLength!=0 || pos==0) { | |
739 | // The position is after an unlimited code point span (spanLength!=0), | |
740 | // not after a string match. | |
741 | // The only position where spanLength==0 after a span is pos==0. | |
742 | // Otherwise, an unlimited code point span is only tried again when no | |
743 | // strings match, and if such a non-initial span fails we stop. | |
744 | if(offsets.isEmpty()) { | |
745 | return pos; // No strings matched after a span. | |
746 | } | |
747 | // Match strings from after the next string match. | |
748 | } else { | |
749 | // The position is after a string match (or a single code point). | |
750 | if(offsets.isEmpty()) { | |
751 | // No more strings matched after a previous string match. | |
752 | // Try another code point span from after the last string match. | |
753 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); | |
754 | if( spanLength==rest || // Reached the end of the string, or | |
755 | spanLength==0 // neither strings nor span progressed. | |
756 | ) { | |
757 | return pos+spanLength; | |
758 | } | |
759 | pos+=spanLength; | |
760 | rest-=spanLength; | |
761 | continue; // spanLength>0: Match strings from after a span. | |
762 | } else { | |
763 | // Try to match only one code point from after a string match if some | |
764 | // string matched beyond it, so that we try all possible positions | |
765 | // and don't overshoot. | |
766 | spanLength=spanOne(spanSet, s+pos, rest); | |
767 | if(spanLength>0) { | |
768 | if(spanLength==rest) { | |
769 | return length; // Reached the end of the string. | |
770 | } | |
771 | // Match strings after this code point. | |
772 | // There cannot be any increments below it because UnicodeSet strings | |
773 | // contain multiple code points. | |
774 | pos+=spanLength; | |
775 | rest-=spanLength; | |
776 | offsets.shift(spanLength); | |
777 | spanLength=0; | |
778 | continue; // Match strings from after a single code point. | |
779 | } | |
780 | // Match strings from after the next string match. | |
781 | } | |
782 | } | |
783 | int32_t minOffset=offsets.popMinimum(); | |
784 | pos+=minOffset; | |
785 | rest-=minOffset; | |
786 | spanLength=0; // Match strings from after a string match. | |
787 | } | |
788 | } | |
789 | ||
790 | int32_t UnicodeSetStringSpan::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { | |
791 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
792 | return spanNotBack(s, length); | |
793 | } | |
794 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); | |
795 | if(pos==0) { | |
796 | return 0; | |
797 | } | |
798 | int32_t spanLength=length-pos; | |
799 | ||
800 | // Consider strings; they may overlap with the span. | |
801 | OffsetList offsets; | |
802 | if(spanCondition==USET_SPAN_CONTAINED) { | |
803 | // Use offset list to try all possibilities. | |
804 | offsets.setMaxLength(maxLength16); | |
805 | } | |
806 | int32_t i, stringsLength=strings.size(); | |
807 | uint8_t *spanBackLengths=spanLengths; | |
808 | if(all) { | |
809 | spanBackLengths+=stringsLength; | |
810 | } | |
811 | for(;;) { | |
812 | if(spanCondition==USET_SPAN_CONTAINED) { | |
813 | for(i=0; i<stringsLength; ++i) { | |
814 | int32_t overlap=spanBackLengths[i]; | |
815 | if(overlap==ALL_CP_CONTAINED) { | |
816 | continue; // Irrelevant string. | |
817 | } | |
818 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
819 | const UChar *s16=string.getBuffer(); | |
820 | int32_t length16=string.length(); | |
821 | ||
822 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |
823 | if(overlap>=LONG_SPAN) { | |
824 | overlap=length16; | |
825 | // While contained: No point matching fully inside the code point span. | |
826 | int32_t len1=0; | |
827 | U16_FWD_1(s16, len1, overlap); | |
828 | overlap-=len1; // Length of the string minus the first code point. | |
829 | } | |
830 | if(overlap>spanLength) { | |
831 | overlap=spanLength; | |
832 | } | |
833 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |
834 | for(;;) { | |
835 | if(dec>pos) { | |
836 | break; | |
837 | } | |
838 | // Try to match if the decrement is not listed already. | |
839 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { | |
840 | if(dec==pos) { | |
841 | return 0; // Reached the start of the string. | |
842 | } | |
843 | offsets.addOffset(dec); | |
844 | } | |
845 | if(overlap==0) { | |
846 | break; | |
847 | } | |
848 | --overlap; | |
849 | ++dec; | |
850 | } | |
851 | } | |
852 | } else /* USET_SPAN_SIMPLE */ { | |
853 | int32_t maxDec=0, maxOverlap=0; | |
854 | for(i=0; i<stringsLength; ++i) { | |
855 | int32_t overlap=spanBackLengths[i]; | |
856 | // For longest match, we do need to try to match even an all-contained string | |
857 | // to find the match from the latest end. | |
858 | ||
859 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
860 | const UChar *s16=string.getBuffer(); | |
861 | int32_t length16=string.length(); | |
862 | ||
863 | // Try to match this string at pos-(length16-overlap)..pos-length16. | |
864 | if(overlap>=LONG_SPAN) { | |
865 | overlap=length16; | |
866 | // Longest match: Need to match fully inside the code point span | |
867 | // to find the match from the latest end. | |
868 | } | |
869 | if(overlap>spanLength) { | |
870 | overlap=spanLength; | |
871 | } | |
872 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. | |
873 | for(;;) { | |
874 | if(dec>pos || overlap<maxOverlap) { | |
875 | break; | |
876 | } | |
877 | // Try to match if the string is longer or ends later. | |
878 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |
879 | matches16CPB(s, pos-dec, length, s16, length16) | |
880 | ) { | |
881 | maxDec=dec; // Longest match from latest end. | |
882 | maxOverlap=overlap; | |
883 | break; | |
884 | } | |
885 | --overlap; | |
886 | ++dec; | |
887 | } | |
888 | } | |
889 | ||
890 | if(maxDec!=0 || maxOverlap!=0) { | |
891 | // Longest-match algorithm, and there was a string match. | |
892 | // Simply continue before it. | |
893 | pos-=maxDec; | |
894 | if(pos==0) { | |
895 | return 0; // Reached the start of the string. | |
896 | } | |
897 | spanLength=0; // Match strings from before a string match. | |
898 | continue; | |
899 | } | |
900 | } | |
901 | // Finished trying to match all strings at pos. | |
902 | ||
903 | if(spanLength!=0 || pos==length) { | |
904 | // The position is before an unlimited code point span (spanLength!=0), | |
905 | // not before a string match. | |
906 | // The only position where spanLength==0 before a span is pos==length. | |
907 | // Otherwise, an unlimited code point span is only tried again when no | |
908 | // strings match, and if such a non-initial span fails we stop. | |
909 | if(offsets.isEmpty()) { | |
910 | return pos; // No strings matched before a span. | |
911 | } | |
912 | // Match strings from before the next string match. | |
913 | } else { | |
914 | // The position is before a string match (or a single code point). | |
915 | if(offsets.isEmpty()) { | |
916 | // No more strings matched before a previous string match. | |
917 | // Try another code point span from before the last string match. | |
918 | int32_t oldPos=pos; | |
919 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); | |
920 | spanLength=oldPos-pos; | |
921 | if( pos==0 || // Reached the start of the string, or | |
922 | spanLength==0 // neither strings nor span progressed. | |
923 | ) { | |
924 | return pos; | |
925 | } | |
926 | continue; // spanLength>0: Match strings from before a span. | |
927 | } else { | |
928 | // Try to match only one code point from before a string match if some | |
929 | // string matched beyond it, so that we try all possible positions | |
930 | // and don't overshoot. | |
931 | spanLength=spanOneBack(spanSet, s, pos); | |
932 | if(spanLength>0) { | |
933 | if(spanLength==pos) { | |
934 | return 0; // Reached the start of the string. | |
935 | } | |
936 | // Match strings before this code point. | |
937 | // There cannot be any decrements below it because UnicodeSet strings | |
938 | // contain multiple code points. | |
939 | pos-=spanLength; | |
940 | offsets.shift(spanLength); | |
941 | spanLength=0; | |
942 | continue; // Match strings from before a single code point. | |
943 | } | |
944 | // Match strings from before the next string match. | |
945 | } | |
946 | } | |
947 | pos-=offsets.popMinimum(); | |
948 | spanLength=0; // Match strings from before a string match. | |
949 | } | |
950 | } | |
951 | ||
952 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |
953 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
954 | return spanNotUTF8(s, length); | |
955 | } | |
956 | int32_t spanLength=spanSet.spanUTF8((const char *)s, length, USET_SPAN_CONTAINED); | |
957 | if(spanLength==length) { | |
958 | return length; | |
959 | } | |
960 | ||
961 | // Consider strings; they may overlap with the span. | |
962 | OffsetList offsets; | |
963 | if(spanCondition==USET_SPAN_CONTAINED) { | |
964 | // Use offset list to try all possibilities. | |
965 | offsets.setMaxLength(maxLength8); | |
966 | } | |
967 | int32_t pos=spanLength, rest=length-pos; | |
968 | int32_t i, stringsLength=strings.size(); | |
969 | uint8_t *spanUTF8Lengths=spanLengths; | |
970 | if(all) { | |
971 | spanUTF8Lengths+=2*stringsLength; | |
972 | } | |
973 | for(;;) { | |
974 | const uint8_t *s8=utf8; | |
975 | int32_t length8; | |
976 | if(spanCondition==USET_SPAN_CONTAINED) { | |
977 | for(i=0; i<stringsLength; ++i) { | |
978 | length8=utf8Lengths[i]; | |
979 | if(length8==0) { | |
980 | continue; // String not representable in UTF-8. | |
981 | } | |
982 | int32_t overlap=spanUTF8Lengths[i]; | |
983 | if(overlap==ALL_CP_CONTAINED) { | |
984 | s8+=length8; | |
985 | continue; // Irrelevant string. | |
986 | } | |
987 | ||
988 | // Try to match this string at pos-overlap..pos. | |
989 | if(overlap>=LONG_SPAN) { | |
990 | overlap=length8; | |
991 | // While contained: No point matching fully inside the code point span. | |
992 | U8_BACK_1(s8, 0, overlap); // Length of the string minus the last code point. | |
993 | } | |
994 | if(overlap>spanLength) { | |
995 | overlap=spanLength; | |
996 | } | |
997 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |
998 | for(;;) { | |
999 | if(inc>rest) { | |
1000 | break; | |
1001 | } | |
1002 | // Try to match if the increment is not listed already. | |
1003 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1004 | // from UTF-16 and are guaranteed to be well-formed.) | |
1005 | if( !U8_IS_TRAIL(s[pos-overlap]) && | |
1006 | !offsets.containsOffset(inc) && | |
1007 | matches8(s+pos-overlap, s8, length8) | |
1008 | ||
1009 | ) { | |
1010 | if(inc==rest) { | |
1011 | return length; // Reached the end of the string. | |
1012 | } | |
1013 | offsets.addOffset(inc); | |
1014 | } | |
1015 | if(overlap==0) { | |
1016 | break; | |
1017 | } | |
1018 | --overlap; | |
1019 | ++inc; | |
1020 | } | |
1021 | s8+=length8; | |
1022 | } | |
1023 | } else /* USET_SPAN_SIMPLE */ { | |
1024 | int32_t maxInc=0, maxOverlap=0; | |
1025 | for(i=0; i<stringsLength; ++i) { | |
1026 | length8=utf8Lengths[i]; | |
1027 | if(length8==0) { | |
1028 | continue; // String not representable in UTF-8. | |
1029 | } | |
1030 | int32_t overlap=spanUTF8Lengths[i]; | |
1031 | // For longest match, we do need to try to match even an all-contained string | |
1032 | // to find the match from the earliest start. | |
1033 | ||
1034 | // Try to match this string at pos-overlap..pos. | |
1035 | if(overlap>=LONG_SPAN) { | |
1036 | overlap=length8; | |
1037 | // Longest match: Need to match fully inside the code point span | |
1038 | // to find the match from the earliest start. | |
1039 | } | |
1040 | if(overlap>spanLength) { | |
1041 | overlap=spanLength; | |
1042 | } | |
1043 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. | |
1044 | for(;;) { | |
1045 | if(inc>rest || overlap<maxOverlap) { | |
1046 | break; | |
1047 | } | |
1048 | // Try to match if the string is longer or starts earlier. | |
1049 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1050 | // from UTF-16 and are guaranteed to be well-formed.) | |
1051 | if( !U8_IS_TRAIL(s[pos-overlap]) && | |
1052 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && | |
1053 | matches8(s+pos-overlap, s8, length8) | |
1054 | ||
1055 | ) { | |
1056 | maxInc=inc; // Longest match from earliest start. | |
1057 | maxOverlap=overlap; | |
1058 | break; | |
1059 | } | |
1060 | --overlap; | |
1061 | ++inc; | |
1062 | } | |
1063 | s8+=length8; | |
1064 | } | |
1065 | ||
1066 | if(maxInc!=0 || maxOverlap!=0) { | |
1067 | // Longest-match algorithm, and there was a string match. | |
1068 | // Simply continue after it. | |
1069 | pos+=maxInc; | |
1070 | rest-=maxInc; | |
1071 | if(rest==0) { | |
1072 | return length; // Reached the end of the string. | |
1073 | } | |
1074 | spanLength=0; // Match strings from after a string match. | |
1075 | continue; | |
1076 | } | |
1077 | } | |
1078 | // Finished trying to match all strings at pos. | |
1079 | ||
1080 | if(spanLength!=0 || pos==0) { | |
1081 | // The position is after an unlimited code point span (spanLength!=0), | |
1082 | // not after a string match. | |
1083 | // The only position where spanLength==0 after a span is pos==0. | |
1084 | // Otherwise, an unlimited code point span is only tried again when no | |
1085 | // strings match, and if such a non-initial span fails we stop. | |
1086 | if(offsets.isEmpty()) { | |
1087 | return pos; // No strings matched after a span. | |
1088 | } | |
1089 | // Match strings from after the next string match. | |
1090 | } else { | |
1091 | // The position is after a string match (or a single code point). | |
1092 | if(offsets.isEmpty()) { | |
1093 | // No more strings matched after a previous string match. | |
1094 | // Try another code point span from after the last string match. | |
1095 | spanLength=spanSet.spanUTF8((const char *)s+pos, rest, USET_SPAN_CONTAINED); | |
1096 | if( spanLength==rest || // Reached the end of the string, or | |
1097 | spanLength==0 // neither strings nor span progressed. | |
1098 | ) { | |
1099 | return pos+spanLength; | |
1100 | } | |
1101 | pos+=spanLength; | |
1102 | rest-=spanLength; | |
1103 | continue; // spanLength>0: Match strings from after a span. | |
1104 | } else { | |
1105 | // Try to match only one code point from after a string match if some | |
1106 | // string matched beyond it, so that we try all possible positions | |
1107 | // and don't overshoot. | |
1108 | spanLength=spanOneUTF8(spanSet, s+pos, rest); | |
1109 | if(spanLength>0) { | |
1110 | if(spanLength==rest) { | |
1111 | return length; // Reached the end of the string. | |
1112 | } | |
1113 | // Match strings after this code point. | |
1114 | // There cannot be any increments below it because UnicodeSet strings | |
1115 | // contain multiple code points. | |
1116 | pos+=spanLength; | |
1117 | rest-=spanLength; | |
1118 | offsets.shift(spanLength); | |
1119 | spanLength=0; | |
1120 | continue; // Match strings from after a single code point. | |
1121 | } | |
1122 | // Match strings from after the next string match. | |
1123 | } | |
1124 | } | |
1125 | int32_t minOffset=offsets.popMinimum(); | |
1126 | pos+=minOffset; | |
1127 | rest-=minOffset; | |
1128 | spanLength=0; // Match strings from after a string match. | |
1129 | } | |
1130 | } | |
1131 | ||
1132 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { | |
1133 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { | |
1134 | return spanNotBackUTF8(s, length); | |
1135 | } | |
1136 | int32_t pos=spanSet.spanBackUTF8((const char *)s, length, USET_SPAN_CONTAINED); | |
1137 | if(pos==0) { | |
1138 | return 0; | |
1139 | } | |
1140 | int32_t spanLength=length-pos; | |
1141 | ||
1142 | // Consider strings; they may overlap with the span. | |
1143 | OffsetList offsets; | |
1144 | if(spanCondition==USET_SPAN_CONTAINED) { | |
1145 | // Use offset list to try all possibilities. | |
1146 | offsets.setMaxLength(maxLength8); | |
1147 | } | |
1148 | int32_t i, stringsLength=strings.size(); | |
1149 | uint8_t *spanBackUTF8Lengths=spanLengths; | |
1150 | if(all) { | |
1151 | spanBackUTF8Lengths+=3*stringsLength; | |
1152 | } | |
1153 | for(;;) { | |
1154 | const uint8_t *s8=utf8; | |
1155 | int32_t length8; | |
1156 | if(spanCondition==USET_SPAN_CONTAINED) { | |
1157 | for(i=0; i<stringsLength; ++i) { | |
1158 | length8=utf8Lengths[i]; | |
1159 | if(length8==0) { | |
1160 | continue; // String not representable in UTF-8. | |
1161 | } | |
1162 | int32_t overlap=spanBackUTF8Lengths[i]; | |
1163 | if(overlap==ALL_CP_CONTAINED) { | |
1164 | s8+=length8; | |
1165 | continue; // Irrelevant string. | |
1166 | } | |
1167 | ||
1168 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |
1169 | if(overlap>=LONG_SPAN) { | |
1170 | overlap=length8; | |
1171 | // While contained: No point matching fully inside the code point span. | |
1172 | int32_t len1=0; | |
1173 | U8_FWD_1(s8, len1, overlap); | |
1174 | overlap-=len1; // Length of the string minus the first code point. | |
1175 | } | |
1176 | if(overlap>spanLength) { | |
1177 | overlap=spanLength; | |
1178 | } | |
1179 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |
1180 | for(;;) { | |
1181 | if(dec>pos) { | |
1182 | break; | |
1183 | } | |
1184 | // Try to match if the decrement is not listed already. | |
1185 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1186 | // from UTF-16 and are guaranteed to be well-formed.) | |
1187 | if( !U8_IS_TRAIL(s[pos-dec]) && | |
1188 | !offsets.containsOffset(dec) && | |
1189 | matches8(s+pos-dec, s8, length8) | |
1190 | ) { | |
1191 | if(dec==pos) { | |
1192 | return 0; // Reached the start of the string. | |
1193 | } | |
1194 | offsets.addOffset(dec); | |
1195 | } | |
1196 | if(overlap==0) { | |
1197 | break; | |
1198 | } | |
1199 | --overlap; | |
1200 | ++dec; | |
1201 | } | |
1202 | s8+=length8; | |
1203 | } | |
1204 | } else /* USET_SPAN_SIMPLE */ { | |
1205 | int32_t maxDec=0, maxOverlap=0; | |
1206 | for(i=0; i<stringsLength; ++i) { | |
1207 | length8=utf8Lengths[i]; | |
1208 | if(length8==0) { | |
1209 | continue; // String not representable in UTF-8. | |
1210 | } | |
1211 | int32_t overlap=spanBackUTF8Lengths[i]; | |
1212 | // For longest match, we do need to try to match even an all-contained string | |
1213 | // to find the match from the latest end. | |
1214 | ||
1215 | // Try to match this string at pos-(length8-overlap)..pos-length8. | |
1216 | if(overlap>=LONG_SPAN) { | |
1217 | overlap=length8; | |
1218 | // Longest match: Need to match fully inside the code point span | |
1219 | // to find the match from the latest end. | |
1220 | } | |
1221 | if(overlap>spanLength) { | |
1222 | overlap=spanLength; | |
1223 | } | |
1224 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. | |
1225 | for(;;) { | |
1226 | if(dec>pos || overlap<maxOverlap) { | |
1227 | break; | |
1228 | } | |
1229 | // Try to match if the string is longer or ends later. | |
1230 | // Match at code point boundaries. (The UTF-8 strings were converted | |
1231 | // from UTF-16 and are guaranteed to be well-formed.) | |
1232 | if( !U8_IS_TRAIL(s[pos-dec]) && | |
1233 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && | |
1234 | matches8(s+pos-dec, s8, length8) | |
1235 | ) { | |
1236 | maxDec=dec; // Longest match from latest end. | |
1237 | maxOverlap=overlap; | |
1238 | break; | |
1239 | } | |
1240 | --overlap; | |
1241 | ++dec; | |
1242 | } | |
1243 | s8+=length8; | |
1244 | } | |
1245 | ||
1246 | if(maxDec!=0 || maxOverlap!=0) { | |
1247 | // Longest-match algorithm, and there was a string match. | |
1248 | // Simply continue before it. | |
1249 | pos-=maxDec; | |
1250 | if(pos==0) { | |
1251 | return 0; // Reached the start of the string. | |
1252 | } | |
1253 | spanLength=0; // Match strings from before a string match. | |
1254 | continue; | |
1255 | } | |
1256 | } | |
1257 | // Finished trying to match all strings at pos. | |
1258 | ||
1259 | if(spanLength!=0 || pos==length) { | |
1260 | // The position is before an unlimited code point span (spanLength!=0), | |
1261 | // not before a string match. | |
1262 | // The only position where spanLength==0 before a span is pos==length. | |
1263 | // Otherwise, an unlimited code point span is only tried again when no | |
1264 | // strings match, and if such a non-initial span fails we stop. | |
1265 | if(offsets.isEmpty()) { | |
1266 | return pos; // No strings matched before a span. | |
1267 | } | |
1268 | // Match strings from before the next string match. | |
1269 | } else { | |
1270 | // The position is before a string match (or a single code point). | |
1271 | if(offsets.isEmpty()) { | |
1272 | // No more strings matched before a previous string match. | |
1273 | // Try another code point span from before the last string match. | |
1274 | int32_t oldPos=pos; | |
1275 | pos=spanSet.spanBackUTF8((const char *)s, oldPos, USET_SPAN_CONTAINED); | |
1276 | spanLength=oldPos-pos; | |
1277 | if( pos==0 || // Reached the start of the string, or | |
1278 | spanLength==0 // neither strings nor span progressed. | |
1279 | ) { | |
1280 | return pos; | |
1281 | } | |
1282 | continue; // spanLength>0: Match strings from before a span. | |
1283 | } else { | |
1284 | // Try to match only one code point from before a string match if some | |
1285 | // string matched beyond it, so that we try all possible positions | |
1286 | // and don't overshoot. | |
1287 | spanLength=spanOneBackUTF8(spanSet, s, pos); | |
1288 | if(spanLength>0) { | |
1289 | if(spanLength==pos) { | |
1290 | return 0; // Reached the start of the string. | |
1291 | } | |
1292 | // Match strings before this code point. | |
1293 | // There cannot be any decrements below it because UnicodeSet strings | |
1294 | // contain multiple code points. | |
1295 | pos-=spanLength; | |
1296 | offsets.shift(spanLength); | |
1297 | spanLength=0; | |
1298 | continue; // Match strings from before a single code point. | |
1299 | } | |
1300 | // Match strings from before the next string match. | |
1301 | } | |
1302 | } | |
1303 | pos-=offsets.popMinimum(); | |
1304 | spanLength=0; // Match strings from before a string match. | |
1305 | } | |
1306 | } | |
1307 | ||
1308 | /* | |
1309 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) | |
1310 | * | |
1311 | * Theoretical algorithm: | |
1312 | * - Iterate through the string, and at each code point boundary: | |
1313 | * + If the code point there is in the set, then return with the current position. | |
1314 | * + If a set string matches at the current position, then return with the current position. | |
1315 | * | |
1316 | * Optimized implementation: | |
1317 | * | |
1318 | * (Same assumption as for span() above.) | |
1319 | * | |
1320 | * Create and cache a spanNotSet which contains all of the single code points | |
1321 | * of the original set but none of its strings. | |
1322 | * For each set string add its initial code point to the spanNotSet. | |
1323 | * (Also add its final code point for spanNotBack().) | |
1324 | * | |
1325 | * - Loop: | |
1326 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). | |
1327 | * + If the current code point is in the original set, then | |
1328 | * return the current position. | |
1329 | * + If any set string matches at the current position, then | |
1330 | * return the current position. | |
1331 | * + If there is no match at the current position, neither for the code point there | |
1332 | * nor for any set string, then skip this code point and continue the loop. | |
1333 | * This happens for set-string-initial code points that were added to spanNotSet | |
1334 | * when there is not actually a match for such a set string. | |
1335 | */ | |
1336 | ||
1337 | int32_t UnicodeSetStringSpan::spanNot(const UChar *s, int32_t length) const { | |
1338 | int32_t pos=0, rest=length; | |
1339 | int32_t i, stringsLength=strings.size(); | |
1340 | do { | |
1341 | // Span until we find a code point from the set, | |
1342 | // or a code point that starts or ends some string. | |
1343 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); | |
1344 | if(i==rest) { | |
1345 | return length; // Reached the end of the string. | |
1346 | } | |
1347 | pos+=i; | |
1348 | rest-=i; | |
1349 | ||
1350 | // Check whether the current code point is in the original set, | |
1351 | // without the string starts and ends. | |
1352 | int32_t cpLength=spanOne(spanSet, s+pos, rest); | |
1353 | if(cpLength>0) { | |
1354 | return pos; // There is a set element at pos. | |
1355 | } | |
1356 | ||
1357 | // Try to match the strings at pos. | |
1358 | for(i=0; i<stringsLength; ++i) { | |
1359 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |
1360 | continue; // Irrelevant string. | |
1361 | } | |
1362 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
1363 | const UChar *s16=string.getBuffer(); | |
1364 | int32_t length16=string.length(); | |
1365 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { | |
1366 | return pos; // There is a set element at pos. | |
1367 | } | |
1368 | } | |
1369 | ||
1370 | // The span(while not contained) ended on a string start/end which is | |
1371 | // not in the original set. Skip this code point and continue. | |
1372 | // cpLength<0 | |
1373 | pos-=cpLength; | |
1374 | rest+=cpLength; | |
1375 | } while(rest!=0); | |
1376 | return length; // Reached the end of the string. | |
1377 | } | |
1378 | ||
1379 | int32_t UnicodeSetStringSpan::spanNotBack(const UChar *s, int32_t length) const { | |
1380 | int32_t pos=length; | |
1381 | int32_t i, stringsLength=strings.size(); | |
1382 | do { | |
1383 | // Span until we find a code point from the set, | |
1384 | // or a code point that starts or ends some string. | |
1385 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); | |
1386 | if(pos==0) { | |
1387 | return 0; // Reached the start of the string. | |
1388 | } | |
1389 | ||
1390 | // Check whether the current code point is in the original set, | |
1391 | // without the string starts and ends. | |
1392 | int32_t cpLength=spanOneBack(spanSet, s, pos); | |
1393 | if(cpLength>0) { | |
1394 | return pos; // There is a set element at pos. | |
1395 | } | |
1396 | ||
1397 | // Try to match the strings at pos. | |
1398 | for(i=0; i<stringsLength; ++i) { | |
1399 | // Use spanLengths rather than a spanBackLengths pointer because | |
1400 | // it is easier and we only need to know whether the string is irrelevant | |
1401 | // which is the same in either array. | |
1402 | if(spanLengths[i]==ALL_CP_CONTAINED) { | |
1403 | continue; // Irrelevant string. | |
1404 | } | |
1405 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); | |
1406 | const UChar *s16=string.getBuffer(); | |
1407 | int32_t length16=string.length(); | |
1408 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { | |
1409 | return pos; // There is a set element at pos. | |
1410 | } | |
1411 | } | |
1412 | ||
1413 | // The span(while not contained) ended on a string start/end which is | |
1414 | // not in the original set. Skip this code point and continue. | |
1415 | // cpLength<0 | |
1416 | pos+=cpLength; | |
1417 | } while(pos!=0); | |
1418 | return 0; // Reached the start of the string. | |
1419 | } | |
1420 | ||
1421 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { | |
1422 | int32_t pos=0, rest=length; | |
1423 | int32_t i, stringsLength=strings.size(); | |
1424 | uint8_t *spanUTF8Lengths=spanLengths; | |
1425 | if(all) { | |
1426 | spanUTF8Lengths+=2*stringsLength; | |
1427 | } | |
1428 | do { | |
1429 | // Span until we find a code point from the set, | |
1430 | // or a code point that starts or ends some string. | |
1431 | i=pSpanNotSet->spanUTF8((const char *)s+pos, rest, USET_SPAN_NOT_CONTAINED); | |
1432 | if(i==rest) { | |
1433 | return length; // Reached the end of the string. | |
1434 | } | |
1435 | pos+=i; | |
1436 | rest-=i; | |
1437 | ||
1438 | // Check whether the current code point is in the original set, | |
1439 | // without the string starts and ends. | |
1440 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); | |
1441 | if(cpLength>0) { | |
1442 | return pos; // There is a set element at pos. | |
1443 | } | |
1444 | ||
1445 | // Try to match the strings at pos. | |
1446 | const uint8_t *s8=utf8; | |
1447 | int32_t length8; | |
1448 | for(i=0; i<stringsLength; ++i) { | |
1449 | length8=utf8Lengths[i]; | |
1450 | // ALL_CP_CONTAINED: Irrelevant string. | |
1451 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { | |
1452 | return pos; // There is a set element at pos. | |
1453 | } | |
1454 | s8+=length8; | |
1455 | } | |
1456 | ||
1457 | // The span(while not contained) ended on a string start/end which is | |
1458 | // not in the original set. Skip this code point and continue. | |
1459 | // cpLength<0 | |
1460 | pos-=cpLength; | |
1461 | rest+=cpLength; | |
1462 | } while(rest!=0); | |
1463 | return length; // Reached the end of the string. | |
1464 | } | |
1465 | ||
1466 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { | |
1467 | int32_t pos=length; | |
1468 | int32_t i, stringsLength=strings.size(); | |
1469 | uint8_t *spanBackUTF8Lengths=spanLengths; | |
1470 | if(all) { | |
1471 | spanBackUTF8Lengths+=3*stringsLength; | |
1472 | } | |
1473 | do { | |
1474 | // Span until we find a code point from the set, | |
1475 | // or a code point that starts or ends some string. | |
1476 | pos=pSpanNotSet->spanBackUTF8((const char *)s, pos, USET_SPAN_NOT_CONTAINED); | |
1477 | if(pos==0) { | |
1478 | return 0; // Reached the start of the string. | |
1479 | } | |
1480 | ||
1481 | // Check whether the current code point is in the original set, | |
1482 | // without the string starts and ends. | |
1483 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); | |
1484 | if(cpLength>0) { | |
1485 | return pos; // There is a set element at pos. | |
1486 | } | |
1487 | ||
1488 | // Try to match the strings at pos. | |
1489 | const uint8_t *s8=utf8; | |
1490 | int32_t length8; | |
1491 | for(i=0; i<stringsLength; ++i) { | |
1492 | length8=utf8Lengths[i]; | |
1493 | // ALL_CP_CONTAINED: Irrelevant string. | |
1494 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { | |
1495 | return pos; // There is a set element at pos. | |
1496 | } | |
1497 | s8+=length8; | |
1498 | } | |
1499 | ||
1500 | // The span(while not contained) ended on a string start/end which is | |
1501 | // not in the original set. Skip this code point and continue. | |
1502 | // cpLength<0 | |
1503 | pos+=cpLength; | |
1504 | } while(pos!=0); | |
1505 | return 0; // Reached the start of the string. | |
1506 | } | |
1507 | ||
1508 | U_NAMESPACE_END |