]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ***************************************************************************** | |
73c04bcf | 3 | * Copyright (C) 1996-2006, International Business Machines Corporation and * |
b75a7d8f A |
4 | * others. All Rights Reserved. * |
5 | ***************************************************************************** | |
6 | */ | |
7 | ||
8 | #include "unicode/utypes.h" | |
9 | ||
10 | #if !UCONFIG_NO_NORMALIZATION | |
11 | ||
12 | #include "unicode/uset.h" | |
13 | #include "unicode/ustring.h" | |
14 | #include "hash.h" | |
15 | #include "unormimp.h" | |
16 | #include "unicode/caniter.h" | |
17 | #include "unicode/normlzr.h" | |
18 | #include "unicode/uchar.h" | |
19 | #include "cmemory.h" | |
20 | ||
21 | /** | |
22 | * This class allows one to iterate through all the strings that are canonically equivalent to a given | |
23 | * string. For example, here are some sample results: | |
24 | Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
25 | 1: \u0041\u030A\u0064\u0307\u0327 | |
26 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
27 | 2: \u0041\u030A\u0064\u0327\u0307 | |
28 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
29 | 3: \u0041\u030A\u1E0B\u0327 | |
30 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
31 | 4: \u0041\u030A\u1E11\u0307 | |
32 | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
33 | 5: \u00C5\u0064\u0307\u0327 | |
34 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
35 | 6: \u00C5\u0064\u0327\u0307 | |
36 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
37 | 7: \u00C5\u1E0B\u0327 | |
38 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
39 | 8: \u00C5\u1E11\u0307 | |
40 | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
41 | 9: \u212B\u0064\u0307\u0327 | |
42 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} | |
43 | 10: \u212B\u0064\u0327\u0307 | |
44 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} | |
45 | 11: \u212B\u1E0B\u0327 | |
46 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} | |
47 | 12: \u212B\u1E11\u0307 | |
48 | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} | |
49 | *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, | |
50 | * since it has not been optimized for that situation. | |
51 | *@author M. Davis | |
52 | *@draft | |
53 | */ | |
b75a7d8f | 54 | |
b75a7d8f A |
55 | // public |
56 | ||
57 | U_NAMESPACE_BEGIN | |
58 | ||
59 | // TODO: add boilerplate methods. | |
60 | ||
374ca955 | 61 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
b75a7d8f A |
62 | |
63 | /** | |
64 | *@param source string to get results for | |
65 | */ | |
66 | CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : | |
67 | pieces(NULL), | |
68 | pieces_length(0), | |
69 | pieces_lengths(NULL), | |
70 | current(NULL), | |
71 | current_length(0) | |
72 | { | |
73 | if(U_SUCCESS(status)) { | |
74 | setSource(sourceStr, status); | |
75 | } | |
76 | } | |
77 | ||
78 | CanonicalIterator::~CanonicalIterator() { | |
79 | cleanPieces(); | |
80 | } | |
81 | ||
82 | void CanonicalIterator::cleanPieces() { | |
73c04bcf A |
83 | int32_t i = 0; |
84 | if(pieces != NULL) { | |
85 | for(i = 0; i < pieces_length; i++) { | |
86 | if(pieces[i] != NULL) { | |
87 | delete[] pieces[i]; | |
88 | } | |
89 | } | |
90 | uprv_free(pieces); | |
91 | pieces = NULL; | |
92 | pieces_length = 0; | |
93 | } | |
b75a7d8f | 94 | if(pieces_lengths != NULL) { |
73c04bcf A |
95 | uprv_free(pieces_lengths); |
96 | pieces_lengths = NULL; | |
b75a7d8f | 97 | } |
b75a7d8f | 98 | if(current != NULL) { |
73c04bcf A |
99 | uprv_free(current); |
100 | current = NULL; | |
101 | current_length = 0; | |
b75a7d8f | 102 | } |
b75a7d8f A |
103 | } |
104 | ||
105 | /** | |
106 | *@return gets the source: NOTE: it is the NFD form of source | |
107 | */ | |
108 | UnicodeString CanonicalIterator::getSource() { | |
109 | return source; | |
110 | } | |
111 | ||
112 | /** | |
113 | * Resets the iterator so that one can start again from the beginning. | |
114 | */ | |
115 | void CanonicalIterator::reset() { | |
116 | done = FALSE; | |
117 | for (int i = 0; i < current_length; ++i) { | |
118 | current[i] = 0; | |
119 | } | |
120 | } | |
121 | ||
122 | /** | |
123 | *@return the next string that is canonically equivalent. The value null is returned when | |
124 | * the iteration is done. | |
125 | */ | |
126 | UnicodeString CanonicalIterator::next() { | |
127 | int32_t i = 0; | |
128 | ||
129 | if (done) { | |
130 | buffer.setToBogus(); | |
131 | return buffer; | |
132 | } | |
133 | ||
134 | // delete old contents | |
135 | buffer.remove(); | |
136 | ||
137 | // construct return value | |
138 | ||
139 | for (i = 0; i < pieces_length; ++i) { | |
140 | buffer.append(pieces[i][current[i]]); | |
141 | } | |
142 | //String result = buffer.toString(); // not needed | |
143 | ||
144 | // find next value for next time | |
145 | ||
146 | for (i = current_length - 1; ; --i) { | |
147 | if (i < 0) { | |
148 | done = TRUE; | |
149 | break; | |
150 | } | |
151 | current[i]++; | |
152 | if (current[i] < pieces_lengths[i]) break; // got sequence | |
153 | current[i] = 0; | |
154 | } | |
155 | return buffer; | |
156 | } | |
157 | ||
158 | /** | |
159 | *@param set the source string to iterate against. This allows the same iterator to be used | |
160 | * while changing the source string, saving object creation. | |
161 | */ | |
162 | void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { | |
73c04bcf A |
163 | int32_t list_length = 0; |
164 | UChar32 cp = 0; | |
165 | int32_t start = 0; | |
166 | int32_t i = 0; | |
167 | UnicodeString *list = NULL; | |
168 | ||
b75a7d8f A |
169 | Normalizer::normalize(newSource, UNORM_NFD, 0, source, status); |
170 | if(U_FAILURE(status)) { | |
171 | return; | |
172 | } | |
173 | done = FALSE; | |
174 | ||
175 | cleanPieces(); | |
176 | ||
177 | // catch degenerate case | |
178 | if (newSource.length() == 0) { | |
b75a7d8f | 179 | pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); |
73c04bcf A |
180 | pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
181 | pieces_length = 1; | |
b75a7d8f | 182 | current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
73c04bcf A |
183 | current_length = 1; |
184 | if (pieces == NULL || pieces_lengths == NULL || current == NULL) { | |
b75a7d8f | 185 | status = U_MEMORY_ALLOCATION_ERROR; |
73c04bcf | 186 | goto CleanPartialInitialization; |
b75a7d8f A |
187 | } |
188 | current[0] = 0; | |
189 | pieces[0] = new UnicodeString[1]; | |
73c04bcf | 190 | pieces_lengths[0] = 1; |
b75a7d8f A |
191 | if (pieces[0] == 0) { |
192 | status = U_MEMORY_ALLOCATION_ERROR; | |
73c04bcf | 193 | goto CleanPartialInitialization; |
b75a7d8f | 194 | } |
b75a7d8f A |
195 | return; |
196 | } | |
197 | ||
198 | ||
73c04bcf | 199 | list = new UnicodeString[source.length()]; |
b75a7d8f A |
200 | if (list == 0) { |
201 | status = U_MEMORY_ALLOCATION_ERROR; | |
73c04bcf | 202 | goto CleanPartialInitialization; |
b75a7d8f A |
203 | } |
204 | ||
b75a7d8f A |
205 | // i should initialy be the number of code units at the |
206 | // start of the string | |
73c04bcf | 207 | i = UTF16_CHAR_LENGTH(source.char32At(0)); |
b75a7d8f A |
208 | //int32_t i = 1; |
209 | // find the segments | |
210 | // This code iterates through the source string and | |
211 | // extracts segments that end up on a codepoint that | |
212 | // doesn't start any decompositions. (Analysis is done | |
213 | // on the NFD form - see above). | |
214 | for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { | |
215 | cp = source.char32At(i); | |
216 | if (unorm_isCanonSafeStart(cp)) { | |
217 | source.extract(start, i-start, list[list_length++]); // add up to i | |
218 | start = i; | |
219 | } | |
220 | } | |
221 | source.extract(start, i-start, list[list_length++]); // add last one | |
222 | ||
223 | ||
224 | // allocate the arrays, and find the strings that are CE to each segment | |
225 | pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); | |
b75a7d8f A |
226 | pieces_length = list_length; |
227 | pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); | |
b75a7d8f | 228 | current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
73c04bcf A |
229 | current_length = list_length; |
230 | if (pieces == NULL || pieces_lengths == NULL || current == NULL) { | |
b75a7d8f | 231 | status = U_MEMORY_ALLOCATION_ERROR; |
73c04bcf | 232 | goto CleanPartialInitialization; |
b75a7d8f | 233 | } |
73c04bcf | 234 | |
b75a7d8f | 235 | for (i = 0; i < current_length; i++) { |
73c04bcf | 236 | current[i] = 0; |
b75a7d8f A |
237 | } |
238 | // for each segment, get all the combinations that can produce | |
239 | // it after NFD normalization | |
240 | for (i = 0; i < pieces_length; ++i) { | |
241 | //if (PROGRESS) printf("SEGMENT\n"); | |
242 | pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); | |
243 | } | |
244 | ||
245 | delete[] list; | |
73c04bcf A |
246 | return; |
247 | // Common section to cleanup all local variables and reset object variables. | |
248 | CleanPartialInitialization: | |
249 | if (list != NULL) { | |
250 | delete[] list; | |
251 | } | |
252 | cleanPieces(); | |
b75a7d8f A |
253 | } |
254 | ||
255 | /** | |
256 | * Dumb recursive implementation of permutation. | |
257 | * TODO: optimize | |
258 | * @param source the string to find permutations for | |
259 | * @return the results in a set. | |
260 | */ | |
374ca955 | 261 | void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { |
b75a7d8f | 262 | if(U_FAILURE(status)) { |
73c04bcf | 263 | return; |
b75a7d8f A |
264 | } |
265 | //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); | |
266 | int32_t i = 0; | |
267 | ||
268 | // optimization: | |
269 | // if zero or one character, just return a set with it | |
270 | // we check for length < 2 to keep from counting code points all the time | |
271 | if (source.length() <= 2 && source.countChar32() <= 1) { | |
73c04bcf A |
272 | UnicodeString *toPut = new UnicodeString(source); |
273 | /* test for NULL */ | |
274 | if (toPut == 0) { | |
275 | status = U_MEMORY_ALLOCATION_ERROR; | |
276 | return; | |
277 | } | |
278 | result->put(source, toPut, status); | |
279 | return; | |
b75a7d8f A |
280 | } |
281 | ||
282 | // otherwise iterate through the string, and recursively permute all the other characters | |
283 | UChar32 cp; | |
73c04bcf A |
284 | Hashtable subpermute(status); |
285 | if(U_FAILURE(status)) { | |
b75a7d8f A |
286 | return; |
287 | } | |
73c04bcf | 288 | subpermute.setValueDeleter(uhash_deleteUnicodeString); |
b75a7d8f A |
289 | |
290 | for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { | |
291 | cp = source.char32At(i); | |
292 | const UHashElement *ne = NULL; | |
293 | int32_t el = -1; | |
294 | UnicodeString subPermuteString = source; | |
295 | ||
296 | // optimization: | |
297 | // if the character is canonical combining class zero, | |
298 | // don't permute it | |
299 | if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { | |
300 | //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); | |
301 | continue; | |
302 | } | |
303 | ||
73c04bcf | 304 | subpermute.removeAll(); |
b75a7d8f A |
305 | |
306 | // see what the permutations of the characters before and after this one are | |
307 | //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); | |
73c04bcf | 308 | permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status); |
b75a7d8f A |
309 | /* Test for buffer overflows */ |
310 | if(U_FAILURE(status)) { | |
b75a7d8f A |
311 | return; |
312 | } | |
313 | // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents | |
314 | // of source at this point. | |
315 | ||
316 | // prefix this character to all of them | |
73c04bcf | 317 | ne = subpermute.nextElement(el); |
b75a7d8f | 318 | while (ne != NULL) { |
73c04bcf A |
319 | UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); |
320 | UnicodeString *chStr = new UnicodeString(cp); | |
321 | //test for NULL | |
322 | if (chStr == NULL) { | |
323 | status = U_MEMORY_ALLOCATION_ERROR; | |
324 | return; | |
325 | } | |
b75a7d8f A |
326 | chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); |
327 | //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); | |
328 | result->put(*chStr, chStr, status); | |
73c04bcf | 329 | ne = subpermute.nextElement(el); |
b75a7d8f A |
330 | } |
331 | } | |
b75a7d8f A |
332 | //return result; |
333 | } | |
334 | ||
335 | // privates | |
336 | ||
337 | // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. | |
338 | UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { | |
73c04bcf A |
339 | Hashtable result(status); |
340 | Hashtable permutations(status); | |
341 | Hashtable basic(status); | |
342 | if (U_FAILURE(status)) { | |
b75a7d8f A |
343 | return 0; |
344 | } | |
73c04bcf A |
345 | result.setValueDeleter(uhash_deleteUnicodeString); |
346 | permutations.setValueDeleter(uhash_deleteUnicodeString); | |
347 | basic.setValueDeleter(uhash_deleteUnicodeString); | |
348 | ||
b75a7d8f A |
349 | UChar USeg[256]; |
350 | int32_t segLen = segment.extract(USeg, 256, status); | |
73c04bcf | 351 | getEquivalents2(&basic, USeg, segLen, status); |
b75a7d8f A |
352 | |
353 | // now get all the permutations | |
354 | // add only the ones that are canonically equivalent | |
355 | // TODO: optimize by not permuting any class zero. | |
356 | ||
b75a7d8f A |
357 | const UHashElement *ne = NULL; |
358 | int32_t el = -1; | |
359 | //Iterator it = basic.iterator(); | |
73c04bcf | 360 | ne = basic.nextElement(el); |
b75a7d8f A |
361 | //while (it.hasNext()) |
362 | while (ne != NULL) { | |
363 | //String item = (String) it.next(); | |
364 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); | |
365 | ||
73c04bcf A |
366 | permutations.removeAll(); |
367 | permute(item, CANITER_SKIP_ZEROES, &permutations, status); | |
b75a7d8f A |
368 | const UHashElement *ne2 = NULL; |
369 | int32_t el2 = -1; | |
370 | //Iterator it2 = permutations.iterator(); | |
73c04bcf | 371 | ne2 = permutations.nextElement(el2); |
b75a7d8f A |
372 | //while (it2.hasNext()) |
373 | while (ne2 != NULL) { | |
374 | //String possible = (String) it2.next(); | |
375 | //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); | |
376 | UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); | |
377 | UnicodeString attempt; | |
378 | Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status); | |
379 | ||
380 | // TODO: check if operator == is semanticaly the same as attempt.equals(segment) | |
381 | if (attempt==segment) { | |
382 | //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); | |
383 | // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). | |
73c04bcf | 384 | result.put(possible, new UnicodeString(possible), status); //add(possible); |
b75a7d8f A |
385 | } else { |
386 | //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); | |
387 | } | |
388 | ||
73c04bcf | 389 | ne2 = permutations.nextElement(el2); |
b75a7d8f | 390 | } |
73c04bcf | 391 | ne = basic.nextElement(el); |
b75a7d8f A |
392 | } |
393 | ||
394 | /* Test for buffer overflows */ | |
395 | if(U_FAILURE(status)) { | |
b75a7d8f A |
396 | return 0; |
397 | } | |
398 | // convert into a String[] to clean up storage | |
399 | //String[] finalResult = new String[result.size()]; | |
400 | UnicodeString *finalResult = NULL; | |
401 | int32_t resultCount; | |
73c04bcf A |
402 | if((resultCount = result.count())) { |
403 | finalResult = new UnicodeString[resultCount]; | |
404 | if (finalResult == 0) { | |
405 | status = U_MEMORY_ALLOCATION_ERROR; | |
406 | return NULL; | |
407 | } | |
408 | } | |
409 | else { | |
410 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
411 | return NULL; | |
b75a7d8f A |
412 | } |
413 | //result.toArray(finalResult); | |
414 | result_len = 0; | |
415 | el = -1; | |
73c04bcf | 416 | ne = result.nextElement(el); |
b75a7d8f | 417 | while(ne != NULL) { |
73c04bcf A |
418 | finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); |
419 | ne = result.nextElement(el); | |
b75a7d8f A |
420 | } |
421 | ||
422 | ||
b75a7d8f A |
423 | return finalResult; |
424 | } | |
425 | ||
73c04bcf | 426 | Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { |
b75a7d8f | 427 | |
73c04bcf A |
428 | if (U_FAILURE(status)) { |
429 | return NULL; | |
b75a7d8f A |
430 | } |
431 | ||
432 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); | |
433 | ||
434 | UnicodeString toPut(segment, segLen); | |
435 | ||
73c04bcf | 436 | fillinResult->put(toPut, new UnicodeString(toPut), status); |
b75a7d8f A |
437 | |
438 | USerializedSet starts; | |
439 | ||
440 | // cycle through all the characters | |
441 | UChar32 cp, end = 0; | |
442 | int32_t i = 0, j; | |
443 | for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) { | |
444 | // see if any character is at the start of some decomposition | |
445 | UTF_GET_CHAR(segment, 0, i, segLen, cp); | |
446 | if (!unorm_getCanonStartSet(cp, &starts)) { | |
73c04bcf | 447 | continue; |
b75a7d8f A |
448 | } |
449 | // if so, see which decompositions match | |
450 | for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) { | |
73c04bcf A |
451 | Hashtable remainder(status); |
452 | remainder.setValueDeleter(uhash_deleteUnicodeString); | |
453 | if (extract(&remainder, cp, segment, segLen, i, status) == NULL) { | |
454 | continue; | |
455 | } | |
b75a7d8f A |
456 | |
457 | // there were some matches, so add all the possibilities to the set. | |
458 | UnicodeString prefix(segment, i); | |
459 | prefix += cp; | |
460 | ||
b75a7d8f | 461 | int32_t el = -1; |
73c04bcf | 462 | const UHashElement *ne = remainder.nextElement(el); |
b75a7d8f A |
463 | while (ne != NULL) { |
464 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); | |
465 | UnicodeString *toAdd = new UnicodeString(prefix); | |
466 | /* test for NULL */ | |
467 | if (toAdd == 0) { | |
468 | status = U_MEMORY_ALLOCATION_ERROR; | |
73c04bcf | 469 | return NULL; |
b75a7d8f A |
470 | } |
471 | *toAdd += item; | |
73c04bcf | 472 | fillinResult->put(*toAdd, toAdd, status); |
b75a7d8f A |
473 | |
474 | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); | |
475 | ||
73c04bcf | 476 | ne = remainder.nextElement(el); |
b75a7d8f | 477 | } |
b75a7d8f A |
478 | } |
479 | } | |
480 | ||
481 | /* Test for buffer overflows */ | |
482 | if(U_FAILURE(status)) { | |
73c04bcf | 483 | return NULL; |
b75a7d8f | 484 | } |
73c04bcf | 485 | return fillinResult; |
b75a7d8f A |
486 | } |
487 | ||
488 | /** | |
489 | * See if the decomposition of cp2 is at segment starting at segmentPos | |
490 | * (with canonical rearrangment!) | |
491 | * If so, take the remainder, and return the equivalents | |
492 | */ | |
73c04bcf | 493 | Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
b75a7d8f A |
494 | //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
495 | //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); | |
496 | //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); | |
497 | ||
73c04bcf A |
498 | if (U_FAILURE(status)) { |
499 | return NULL; | |
500 | } | |
501 | ||
b75a7d8f A |
502 | const int32_t bufSize = 256; |
503 | int32_t bufLen = 0; | |
504 | UChar temp[bufSize]; | |
505 | ||
374ca955 A |
506 | int32_t inputLen = 0, decompLen; |
507 | UChar stackBuffer[4]; | |
508 | const UChar *decomp; | |
b75a7d8f A |
509 | |
510 | U16_APPEND_UNSAFE(temp, inputLen, comp); | |
374ca955 A |
511 | decomp = unorm_getCanonicalDecomposition(comp, stackBuffer, &decompLen); |
512 | if(decomp == NULL) { | |
513 | /* copy temp */ | |
514 | stackBuffer[0] = temp[0]; | |
515 | if(inputLen > 1) { | |
516 | stackBuffer[1] = temp[1]; | |
517 | } | |
518 | decomp = stackBuffer; | |
519 | decompLen = inputLen; | |
b75a7d8f A |
520 | } |
521 | ||
522 | UChar *buff = temp+inputLen; | |
523 | ||
524 | // See if it matches the start of segment (at segmentPos) | |
525 | UBool ok = FALSE; | |
526 | UChar32 cp; | |
527 | int32_t decompPos = 0; | |
528 | UChar32 decompCp; | |
529 | UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp); | |
530 | ||
531 | int32_t i; | |
532 | UBool overflow = FALSE; | |
533 | ||
534 | i = segmentPos; | |
535 | while(i < segLen) { | |
73c04bcf | 536 | UTF_NEXT_CHAR(segment, i, segLen, cp); |
b75a7d8f A |
537 | |
538 | if (cp == decompCp) { // if equal, eat another cp from decomp | |
539 | ||
540 | //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); | |
541 | ||
542 | if (decompPos == decompLen) { // done, have all decomp characters! | |
543 | //u_strcat(buff+bufLen, segment+i); | |
544 | uprv_memcpy(buff+bufLen, segment+i, (segLen-i)*sizeof(UChar)); | |
545 | bufLen+=segLen-i; | |
546 | ||
547 | ok = TRUE; | |
548 | break; | |
549 | } | |
550 | UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp); | |
551 | } else { | |
552 | //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); | |
553 | ||
554 | // brute force approach | |
555 | ||
556 | U16_APPEND(buff, bufLen, bufSize, cp, overflow); | |
557 | ||
558 | if(overflow) { | |
559 | /* | |
560 | * ### TODO handle buffer overflow | |
561 | * The buffer is large, but an overflow may still happen with | |
562 | * unusual input (many combining marks?). | |
563 | * Reallocate buffer and continue. | |
564 | * markus 20020929 | |
565 | */ | |
566 | ||
567 | overflow = FALSE; | |
568 | } | |
569 | ||
570 | /* TODO: optimize | |
571 | // since we know that the classes are monotonically increasing, after zero | |
572 | // e.g. 0 5 7 9 0 3 | |
573 | // we can do an optimization | |
574 | // there are only a few cases that work: zero, less, same, greater | |
575 | // if both classes are the same, we fail | |
576 | // if the decomp class < the segment class, we fail | |
577 | ||
578 | segClass = getClass(cp); | |
579 | if (decompClass <= segClass) return null; | |
580 | */ | |
581 | } | |
582 | } | |
73c04bcf A |
583 | if (!ok) |
584 | return NULL; // we failed, characters left over | |
b75a7d8f A |
585 | |
586 | //if (PROGRESS) printf("Matches\n"); | |
587 | ||
588 | if (bufLen == 0) { | |
73c04bcf A |
589 | fillinResult->put(UnicodeString(), new UnicodeString(), status); |
590 | return fillinResult; // succeed, but no remainder | |
b75a7d8f A |
591 | } |
592 | ||
593 | // brute force approach | |
594 | // check to make sure result is canonically equivalent | |
595 | int32_t tempLen = inputLen + bufLen; | |
596 | ||
597 | UChar trial[bufSize]; | |
598 | unorm_decompose(trial, bufSize, temp, tempLen, FALSE, 0, &status); | |
599 | ||
73c04bcf A |
600 | if(U_FAILURE(status) |
601 | || uprv_memcmp(segment+segmentPos, trial, (segLen - segmentPos)*sizeof(UChar)) != 0) | |
602 | { | |
603 | return NULL; | |
b75a7d8f A |
604 | } |
605 | ||
73c04bcf | 606 | return getEquivalents2(fillinResult, buff, bufLen, status); |
b75a7d8f A |
607 | } |
608 | ||
609 | U_NAMESPACE_END | |
610 | ||
611 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |