]>
Commit | Line | Data |
---|---|---|
374ca955 | 1 | /************************************************************************ |
4388f060 A |
2 | * Copyright (C) 1996-2011, International Business Machines Corporation |
3 | * and others. All Rights Reserved. | |
374ca955 A |
4 | ************************************************************************ |
5 | * 2003-nov-07 srl Port from Java | |
6 | */ | |
7 | ||
8 | #include "astro.h" | |
9 | ||
10 | #if !UCONFIG_NO_FORMATTING | |
11 | ||
12 | #include "unicode/calendar.h" | |
46f4442e | 13 | #include <math.h> |
374ca955 A |
14 | #include <float.h> |
15 | #include "unicode/putil.h" | |
16 | #include "uhash.h" | |
17 | #include "umutex.h" | |
18 | #include "ucln_in.h" | |
19 | #include "putilimp.h" | |
20 | #include <stdio.h> // for toString() | |
21 | ||
729e4ab9 A |
22 | #if defined (PI) |
23 | #undef PI | |
24 | #endif | |
25 | ||
374ca955 A |
26 | #ifdef U_DEBUG_ASTRO |
27 | # include "uresimp.h" // for debugging | |
28 | ||
29 | static void debug_astro_loc(const char *f, int32_t l) | |
30 | { | |
31 | fprintf(stderr, "%s:%d: ", f, l); | |
32 | } | |
33 | ||
34 | static void debug_astro_msg(const char *pat, ...) | |
35 | { | |
36 | va_list ap; | |
37 | va_start(ap, pat); | |
38 | vfprintf(stderr, pat, ap); | |
39 | fflush(stderr); | |
40 | } | |
41 | #include "unicode/datefmt.h" | |
42 | #include "unicode/ustring.h" | |
43 | static const char * debug_astro_date(UDate d) { | |
44 | static char gStrBuf[1024]; | |
45 | static DateFormat *df = NULL; | |
46 | if(df == NULL) { | |
47 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); | |
48 | df->adoptTimeZone(TimeZone::getGMT()->clone()); | |
49 | } | |
50 | UnicodeString str; | |
51 | df->format(d,str); | |
52 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); | |
53 | return gStrBuf; | |
54 | } | |
55 | ||
56 | // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); | |
57 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} | |
58 | #else | |
59 | #define U_DEBUG_ASTRO_MSG(x) | |
60 | #endif | |
61 | ||
62 | static inline UBool isINVALID(double d) { | |
63 | return(uprv_isNaN(d)); | |
64 | } | |
65 | ||
66 | static UMTX ccLock = NULL; | |
67 | ||
68 | U_CDECL_BEGIN | |
69 | static UBool calendar_astro_cleanup(void) { | |
70 | umtx_destroy(&ccLock); | |
71 | return TRUE; | |
72 | } | |
73 | U_CDECL_END | |
74 | ||
75 | U_NAMESPACE_BEGIN | |
76 | ||
77 | /** | |
78 | * The number of standard hours in one sidereal day. | |
79 | * Approximately 24.93. | |
80 | * @internal | |
81 | * @deprecated ICU 2.4. This class may be removed or modified. | |
82 | */ | |
83 | #define SIDEREAL_DAY (23.93446960027) | |
84 | ||
85 | /** | |
86 | * The number of sidereal hours in one mean solar day. | |
87 | * Approximately 24.07. | |
88 | * @internal | |
89 | * @deprecated ICU 2.4. This class may be removed or modified. | |
90 | */ | |
91 | #define SOLAR_DAY (24.065709816) | |
92 | ||
93 | /** | |
94 | * The average number of solar days from one new moon to the next. This is the time | |
95 | * it takes for the moon to return the same ecliptic longitude as the sun. | |
96 | * It is longer than the sidereal month because the sun's longitude increases | |
97 | * during the year due to the revolution of the earth around the sun. | |
98 | * Approximately 29.53. | |
99 | * | |
100 | * @see #SIDEREAL_MONTH | |
101 | * @internal | |
102 | * @deprecated ICU 2.4. This class may be removed or modified. | |
103 | */ | |
104 | const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; | |
105 | ||
106 | /** | |
107 | * The average number of days it takes | |
108 | * for the moon to return to the same ecliptic longitude relative to the | |
109 | * stellar background. This is referred to as the sidereal month. | |
110 | * It is shorter than the synodic month due to | |
111 | * the revolution of the earth around the sun. | |
112 | * Approximately 27.32. | |
113 | * | |
114 | * @see #SYNODIC_MONTH | |
115 | * @internal | |
116 | * @deprecated ICU 2.4. This class may be removed or modified. | |
117 | */ | |
118 | #define SIDEREAL_MONTH 27.32166 | |
119 | ||
120 | /** | |
121 | * The average number number of days between successive vernal equinoxes. | |
122 | * Due to the precession of the earth's | |
123 | * axis, this is not precisely the same as the sidereal year. | |
124 | * Approximately 365.24 | |
125 | * | |
126 | * @see #SIDEREAL_YEAR | |
127 | * @internal | |
128 | * @deprecated ICU 2.4. This class may be removed or modified. | |
129 | */ | |
130 | #define TROPICAL_YEAR 365.242191 | |
131 | ||
132 | /** | |
133 | * The average number of days it takes | |
134 | * for the sun to return to the same position against the fixed stellar | |
135 | * background. This is the duration of one orbit of the earth about the sun | |
136 | * as it would appear to an outside observer. | |
137 | * Due to the precession of the earth's | |
138 | * axis, this is not precisely the same as the tropical year. | |
139 | * Approximately 365.25. | |
140 | * | |
141 | * @see #TROPICAL_YEAR | |
142 | * @internal | |
143 | * @deprecated ICU 2.4. This class may be removed or modified. | |
144 | */ | |
145 | #define SIDEREAL_YEAR 365.25636 | |
146 | ||
147 | //------------------------------------------------------------------------- | |
148 | // Time-related constants | |
149 | //------------------------------------------------------------------------- | |
150 | ||
151 | /** | |
152 | * The number of milliseconds in one second. | |
153 | * @internal | |
154 | * @deprecated ICU 2.4. This class may be removed or modified. | |
155 | */ | |
156 | #define SECOND_MS U_MILLIS_PER_SECOND | |
157 | ||
158 | /** | |
159 | * The number of milliseconds in one minute. | |
160 | * @internal | |
161 | * @deprecated ICU 2.4. This class may be removed or modified. | |
162 | */ | |
163 | #define MINUTE_MS U_MILLIS_PER_MINUTE | |
164 | ||
165 | /** | |
166 | * The number of milliseconds in one hour. | |
167 | * @internal | |
168 | * @deprecated ICU 2.4. This class may be removed or modified. | |
169 | */ | |
170 | #define HOUR_MS U_MILLIS_PER_HOUR | |
171 | ||
172 | /** | |
173 | * The number of milliseconds in one day. | |
174 | * @internal | |
175 | * @deprecated ICU 2.4. This class may be removed or modified. | |
176 | */ | |
177 | #define DAY_MS U_MILLIS_PER_DAY | |
178 | ||
179 | /** | |
180 | * The start of the julian day numbering scheme used by astronomers, which | |
181 | * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds | |
182 | * since 1/1/1970 AD (Gregorian), a negative number. | |
183 | * Note that julian day numbers and | |
184 | * the Julian calendar are <em>not</em> the same thing. Also note that | |
185 | * julian days start at <em>noon</em>, not midnight. | |
186 | * @internal | |
187 | * @deprecated ICU 2.4. This class may be removed or modified. | |
188 | */ | |
189 | #define JULIAN_EPOCH_MS -210866760000000.0 | |
190 | ||
191 | ||
192 | /** | |
193 | * Milliseconds value for 0.0 January 2000 AD. | |
194 | */ | |
195 | #define EPOCH_2000_MS 946598400000.0 | |
196 | ||
197 | //------------------------------------------------------------------------- | |
198 | // Assorted private data used for conversions | |
199 | //------------------------------------------------------------------------- | |
200 | ||
201 | // My own copies of these so compilers are more likely to optimize them away | |
202 | const double CalendarAstronomer::PI = 3.14159265358979323846; | |
203 | ||
204 | #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) | |
205 | #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours | |
206 | #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians | |
207 | #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees | |
208 | ||
46f4442e A |
209 | /*** |
210 | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. | |
211 | * The modulus operator. | |
212 | */ | |
213 | inline static double normalize(double value, double range) { | |
729e4ab9 | 214 | return value - range * ClockMath::floorDivide(value, range); |
46f4442e A |
215 | } |
216 | ||
217 | /** | |
218 | * Normalize an angle so that it's in the range 0 - 2pi. | |
219 | * For positive angles this is just (angle % 2pi), but the Java | |
220 | * mod operator doesn't work that way for negative numbers.... | |
221 | */ | |
222 | inline static double norm2PI(double angle) { | |
223 | return normalize(angle, CalendarAstronomer::PI * 2.0); | |
224 | } | |
225 | ||
226 | /** | |
227 | * Normalize an angle into the range -PI - PI | |
228 | */ | |
229 | inline static double normPI(double angle) { | |
230 | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; | |
231 | } | |
232 | ||
374ca955 A |
233 | //------------------------------------------------------------------------- |
234 | // Constructors | |
235 | //------------------------------------------------------------------------- | |
236 | ||
237 | /** | |
238 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | |
239 | * the current date and time. | |
240 | * @internal | |
241 | * @deprecated ICU 2.4. This class may be removed or modified. | |
242 | */ | |
243 | CalendarAstronomer::CalendarAstronomer(): | |
244 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | |
245 | clearCache(); | |
246 | } | |
247 | ||
248 | /** | |
249 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | |
250 | * the specified date and time. | |
251 | * @internal | |
252 | * @deprecated ICU 2.4. This class may be removed or modified. | |
253 | */ | |
254 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | |
255 | clearCache(); | |
256 | } | |
257 | ||
258 | /** | |
259 | * Construct a new <code>CalendarAstronomer</code> object with the given | |
260 | * latitude and longitude. The object's time is set to the current | |
261 | * date and time. | |
262 | * <p> | |
263 | * @param longitude The desired longitude, in <em>degrees</em> east of | |
264 | * the Greenwich meridian. | |
265 | * | |
266 | * @param latitude The desired latitude, in <em>degrees</em>. Positive | |
267 | * values signify North, negative South. | |
268 | * | |
269 | * @see java.util.Date#getTime() | |
270 | * @internal | |
271 | * @deprecated ICU 2.4. This class may be removed or modified. | |
272 | */ | |
273 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : | |
274 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { | |
275 | fLongitude = normPI(longitude * (double)DEG_RAD); | |
276 | fLatitude = normPI(latitude * (double)DEG_RAD); | |
277 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); | |
278 | clearCache(); | |
279 | } | |
280 | ||
281 | CalendarAstronomer::~CalendarAstronomer() | |
282 | { | |
283 | } | |
284 | ||
285 | //------------------------------------------------------------------------- | |
286 | // Time and date getters and setters | |
287 | //------------------------------------------------------------------------- | |
288 | ||
289 | /** | |
290 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All | |
291 | * astronomical calculations are performed based on this time setting. | |
292 | * | |
293 | * @param aTime the date and time, expressed as the number of milliseconds since | |
294 | * 1/1/1970 0:00 GMT (Gregorian). | |
295 | * | |
296 | * @see #setDate | |
297 | * @see #getTime | |
298 | * @internal | |
299 | * @deprecated ICU 2.4. This class may be removed or modified. | |
300 | */ | |
301 | void CalendarAstronomer::setTime(UDate aTime) { | |
46f4442e A |
302 | fTime = aTime; |
303 | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); | |
304 | clearCache(); | |
374ca955 A |
305 | } |
306 | ||
307 | /** | |
308 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All | |
309 | * astronomical calculations are performed based on this time setting. | |
310 | * | |
311 | * @param jdn the desired time, expressed as a "julian day number", | |
312 | * which is the number of elapsed days since | |
313 | * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day | |
314 | * numbers start at <em>noon</em>. To get the jdn for | |
315 | * the corresponding midnight, subtract 0.5. | |
316 | * | |
317 | * @see #getJulianDay | |
318 | * @see #JULIAN_EPOCH_MS | |
319 | * @internal | |
320 | * @deprecated ICU 2.4. This class may be removed or modified. | |
321 | */ | |
322 | void CalendarAstronomer::setJulianDay(double jdn) { | |
46f4442e A |
323 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
324 | clearCache(); | |
325 | julianDay = jdn; | |
374ca955 A |
326 | } |
327 | ||
328 | /** | |
329 | * Get the current time of this <code>CalendarAstronomer</code> object, | |
330 | * represented as the number of milliseconds since | |
331 | * 1/1/1970 AD 0:00 GMT (Gregorian). | |
332 | * | |
333 | * @see #setTime | |
334 | * @see #getDate | |
335 | * @internal | |
336 | * @deprecated ICU 2.4. This class may be removed or modified. | |
337 | */ | |
338 | UDate CalendarAstronomer::getTime() { | |
46f4442e | 339 | return fTime; |
374ca955 A |
340 | } |
341 | ||
342 | /** | |
343 | * Get the current time of this <code>CalendarAstronomer</code> object, | |
344 | * expressed as a "julian day number", which is the number of elapsed | |
345 | * days since 1/1/4713 BC (Julian), 12:00 GMT. | |
346 | * | |
347 | * @see #setJulianDay | |
348 | * @see #JULIAN_EPOCH_MS | |
349 | * @internal | |
350 | * @deprecated ICU 2.4. This class may be removed or modified. | |
351 | */ | |
352 | double CalendarAstronomer::getJulianDay() { | |
46f4442e A |
353 | if (isINVALID(julianDay)) { |
354 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; | |
355 | } | |
356 | return julianDay; | |
374ca955 A |
357 | } |
358 | ||
359 | /** | |
360 | * Return this object's time expressed in julian centuries: | |
361 | * the number of centuries after 1/1/1900 AD, 12:00 GMT | |
362 | * | |
363 | * @see #getJulianDay | |
364 | * @internal | |
365 | * @deprecated ICU 2.4. This class may be removed or modified. | |
366 | */ | |
367 | double CalendarAstronomer::getJulianCentury() { | |
46f4442e A |
368 | if (isINVALID(julianCentury)) { |
369 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; | |
370 | } | |
371 | return julianCentury; | |
374ca955 A |
372 | } |
373 | ||
374 | /** | |
375 | * Returns the current Greenwich sidereal time, measured in hours | |
376 | * @internal | |
377 | * @deprecated ICU 2.4. This class may be removed or modified. | |
378 | */ | |
379 | double CalendarAstronomer::getGreenwichSidereal() { | |
46f4442e A |
380 | if (isINVALID(siderealTime)) { |
381 | // See page 86 of "Practial Astronomy with your Calculator", | |
382 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 383 | |
46f4442e | 384 | double UT = normalize(fTime/(double)HOUR_MS, 24.); |
374ca955 | 385 | |
46f4442e A |
386 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
387 | } | |
388 | return siderealTime; | |
374ca955 A |
389 | } |
390 | ||
391 | double CalendarAstronomer::getSiderealOffset() { | |
46f4442e A |
392 | if (isINVALID(siderealT0)) { |
393 | double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
394 | double S = JD - 2451545.0; | |
395 | double T = S / 36525.0; | |
396 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); | |
397 | } | |
398 | return siderealT0; | |
374ca955 A |
399 | } |
400 | ||
401 | /** | |
402 | * Returns the current local sidereal time, measured in hours | |
403 | * @internal | |
404 | * @deprecated ICU 2.4. This class may be removed or modified. | |
405 | */ | |
406 | double CalendarAstronomer::getLocalSidereal() { | |
46f4442e | 407 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); |
374ca955 A |
408 | } |
409 | ||
410 | /** | |
411 | * Converts local sidereal time to Universal Time. | |
412 | * | |
413 | * @param lst The Local Sidereal Time, in hours since sidereal midnight | |
414 | * on this object's current date. | |
415 | * | |
416 | * @return The corresponding Universal Time, in milliseconds since | |
417 | * 1 Jan 1970, GMT. | |
418 | */ | |
419 | double CalendarAstronomer::lstToUT(double lst) { | |
46f4442e A |
420 | // Convert to local mean time |
421 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); | |
374ca955 | 422 | |
46f4442e | 423 | // Then find local midnight on this day |
729e4ab9 | 424 | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; |
374ca955 | 425 | |
46f4442e A |
426 | //out(" lt =" + lt + " hours"); |
427 | //out(" base=" + new Date(base)); | |
374ca955 | 428 | |
46f4442e | 429 | return base + (long)(lt * HOUR_MS); |
374ca955 A |
430 | } |
431 | ||
432 | ||
433 | //------------------------------------------------------------------------- | |
434 | // Coordinate transformations, all based on the current time of this object | |
435 | //------------------------------------------------------------------------- | |
436 | ||
437 | /** | |
438 | * Convert from ecliptic to equatorial coordinates. | |
439 | * | |
440 | * @param ecliptic A point in the sky in ecliptic coordinates. | |
441 | * @return The corresponding point in equatorial coordinates. | |
442 | * @internal | |
443 | * @deprecated ICU 2.4. This class may be removed or modified. | |
444 | */ | |
445 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) | |
446 | { | |
46f4442e | 447 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
374ca955 A |
448 | } |
449 | ||
450 | /** | |
451 | * Convert from ecliptic to equatorial coordinates. | |
452 | * | |
453 | * @param eclipLong The ecliptic longitude | |
454 | * @param eclipLat The ecliptic latitude | |
455 | * | |
456 | * @return The corresponding point in equatorial coordinates. | |
457 | * @internal | |
458 | * @deprecated ICU 2.4. This class may be removed or modified. | |
459 | */ | |
460 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) | |
461 | { | |
46f4442e A |
462 | // See page 42 of "Practial Astronomy with your Calculator", |
463 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 464 | |
46f4442e A |
465 | double obliq = eclipticObliquity(); |
466 | double sinE = ::sin(obliq); | |
467 | double cosE = cos(obliq); | |
374ca955 | 468 | |
46f4442e A |
469 | double sinL = ::sin(eclipLong); |
470 | double cosL = cos(eclipLong); | |
374ca955 | 471 | |
46f4442e A |
472 | double sinB = ::sin(eclipLat); |
473 | double cosB = cos(eclipLat); | |
474 | double tanB = tan(eclipLat); | |
374ca955 | 475 | |
46f4442e A |
476 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
477 | asin(sinB*cosE + cosB*sinE*sinL) ); | |
478 | return result; | |
374ca955 A |
479 | } |
480 | ||
481 | /** | |
482 | * Convert from ecliptic longitude to equatorial coordinates. | |
483 | * | |
484 | * @param eclipLong The ecliptic longitude | |
485 | * | |
486 | * @return The corresponding point in equatorial coordinates. | |
487 | * @internal | |
488 | * @deprecated ICU 2.4. This class may be removed or modified. | |
489 | */ | |
490 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) | |
491 | { | |
46f4442e | 492 | return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
374ca955 A |
493 | } |
494 | ||
495 | /** | |
496 | * @internal | |
497 | * @deprecated ICU 2.4. This class may be removed or modified. | |
498 | */ | |
499 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) | |
500 | { | |
46f4442e A |
501 | Equatorial equatorial; |
502 | eclipticToEquatorial(equatorial, eclipLong); | |
374ca955 | 503 | |
46f4442e | 504 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle |
374ca955 | 505 | |
46f4442e A |
506 | double sinH = ::sin(H); |
507 | double cosH = cos(H); | |
508 | double sinD = ::sin(equatorial.declination); | |
509 | double cosD = cos(equatorial.declination); | |
510 | double sinL = ::sin(fLatitude); | |
511 | double cosL = cos(fLatitude); | |
374ca955 | 512 | |
46f4442e A |
513 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
514 | double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); | |
374ca955 | 515 | |
46f4442e A |
516 | result.set(azimuth, altitude); |
517 | return result; | |
374ca955 A |
518 | } |
519 | ||
520 | ||
521 | //------------------------------------------------------------------------- | |
522 | // The Sun | |
523 | //------------------------------------------------------------------------- | |
524 | ||
525 | // | |
526 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 | |
527 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) | |
528 | // | |
529 | #define JD_EPOCH 2447891.5 // Julian day of epoch | |
530 | ||
531 | #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch | |
532 | #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee | |
533 | #define SUN_E 0.016713 // Eccentricity of orbit | |
534 | //double sunR0 1.495585e8 // Semi-major axis in KM | |
535 | //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 | |
536 | ||
537 | // The following three methods, which compute the sun parameters | |
538 | // given above for an arbitrary epoch (whatever time the object is | |
539 | // set to), make only a small difference as compared to using the | |
540 | // above constants. E.g., Sunset times might differ by ~12 | |
541 | // seconds. Furthermore, the eta-g computation is befuddled by | |
542 | // Duffet-Smith's incorrect coefficients (p.86). I've corrected | |
543 | // the first-order coefficient but the others may be off too - no | |
544 | // way of knowing without consulting another source. | |
545 | ||
546 | // /** | |
547 | // * Return the sun's ecliptic longitude at perigee for the current time. | |
548 | // * See Duffett-Smith, p. 86. | |
549 | // * @return radians | |
550 | // */ | |
551 | // private double getSunOmegaG() { | |
552 | // double T = getJulianCentury(); | |
553 | // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; | |
554 | // } | |
555 | ||
556 | // /** | |
557 | // * Return the sun's ecliptic longitude for the current time. | |
558 | // * See Duffett-Smith, p. 86. | |
559 | // * @return radians | |
560 | // */ | |
561 | // private double getSunEtaG() { | |
562 | // double T = getJulianCentury(); | |
563 | // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; | |
564 | // // | |
565 | // // The above line is from Duffett-Smith, and yields manifestly wrong | |
566 | // // results. The below constant is derived empirically to match the | |
567 | // // constant he gives for the 1990 EPOCH. | |
568 | // // | |
569 | // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; | |
570 | // } | |
571 | ||
572 | // /** | |
573 | // * Return the sun's eccentricity of orbit for the current time. | |
574 | // * See Duffett-Smith, p. 86. | |
575 | // * @return double | |
576 | // */ | |
577 | // private double getSunE() { | |
578 | // double T = getJulianCentury(); | |
579 | // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; | |
580 | // } | |
581 | ||
46f4442e A |
582 | /** |
583 | * Find the "true anomaly" (longitude) of an object from | |
584 | * its mean anomaly and the eccentricity of its orbit. This uses | |
585 | * an iterative solution to Kepler's equation. | |
586 | * | |
587 | * @param meanAnomaly The object's longitude calculated as if it were in | |
588 | * a regular, circular orbit, measured in radians | |
589 | * from the point of perigee. | |
590 | * | |
591 | * @param eccentricity The eccentricity of the orbit | |
592 | * | |
593 | * @return The true anomaly (longitude) measured in radians | |
594 | */ | |
595 | static double trueAnomaly(double meanAnomaly, double eccentricity) | |
596 | { | |
597 | // First, solve Kepler's equation iteratively | |
598 | // Duffett-Smith, p.90 | |
599 | double delta; | |
600 | double E = meanAnomaly; | |
601 | do { | |
602 | delta = E - eccentricity * ::sin(E) - meanAnomaly; | |
603 | E = E - delta / (1 - eccentricity * ::cos(E)); | |
604 | } | |
605 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad | |
606 | ||
607 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) | |
608 | /(1-eccentricity) ) ); | |
609 | } | |
610 | ||
374ca955 A |
611 | /** |
612 | * The longitude of the sun at the time specified by this object. | |
613 | * The longitude is measured in radians along the ecliptic | |
614 | * from the "first point of Aries," the point at which the ecliptic | |
615 | * crosses the earth's equatorial plane at the vernal equinox. | |
616 | * <p> | |
617 | * Currently, this method uses an approximation of the two-body Kepler's | |
618 | * equation for the earth and the sun. It does not take into account the | |
619 | * perturbations caused by the other planets, the moon, etc. | |
620 | * @internal | |
621 | * @deprecated ICU 2.4. This class may be removed or modified. | |
622 | */ | |
623 | double CalendarAstronomer::getSunLongitude() | |
624 | { | |
46f4442e A |
625 | // See page 86 of "Practial Astronomy with your Calculator", |
626 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 627 | |
46f4442e A |
628 | if (isINVALID(sunLongitude)) { |
629 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); | |
630 | } | |
631 | return sunLongitude; | |
374ca955 A |
632 | } |
633 | ||
634 | /** | |
635 | * TODO Make this public when the entire class is package-private. | |
636 | */ | |
637 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) | |
638 | { | |
46f4442e A |
639 | // See page 86 of "Practial Astronomy with your Calculator", |
640 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 641 | |
46f4442e | 642 | double day = jDay - JD_EPOCH; // Days since epoch |
374ca955 | 643 | |
46f4442e A |
644 | // Find the angular distance the sun in a fictitious |
645 | // circular orbit has travelled since the epoch. | |
646 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); | |
374ca955 | 647 | |
46f4442e A |
648 | // The epoch wasn't at the sun's perigee; find the angular distance |
649 | // since perigee, which is called the "mean anomaly" | |
650 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); | |
374ca955 | 651 | |
46f4442e A |
652 | // Now find the "true anomaly", e.g. the real solar longitude |
653 | // by solving Kepler's equation for an elliptical orbit | |
654 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different | |
655 | // equations; omega_g is to be correct. | |
656 | longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); | |
374ca955 A |
657 | } |
658 | ||
659 | /** | |
660 | * The position of the sun at this object's current date and time, | |
661 | * in equatorial coordinates. | |
662 | * @internal | |
663 | * @deprecated ICU 2.4. This class may be removed or modified. | |
664 | */ | |
665 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { | |
46f4442e | 666 | return eclipticToEquatorial(result, getSunLongitude(), 0); |
374ca955 A |
667 | } |
668 | ||
669 | ||
670 | /** | |
671 | * Constant representing the vernal equinox. | |
672 | * For use with {@link #getSunTime getSunTime}. | |
673 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. | |
674 | * @internal | |
675 | * @deprecated ICU 2.4. This class may be removed or modified. | |
676 | */ | |
73c04bcf | 677 | /*double CalendarAstronomer::VERNAL_EQUINOX() { |
374ca955 | 678 | return 0; |
73c04bcf | 679 | }*/ |
374ca955 A |
680 | |
681 | /** | |
682 | * Constant representing the summer solstice. | |
683 | * For use with {@link #getSunTime getSunTime}. | |
684 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. | |
685 | * @internal | |
686 | * @deprecated ICU 2.4. This class may be removed or modified. | |
687 | */ | |
688 | double CalendarAstronomer::SUMMER_SOLSTICE() { | |
46f4442e | 689 | return (CalendarAstronomer::PI/2); |
374ca955 A |
690 | } |
691 | ||
692 | /** | |
693 | * Constant representing the autumnal equinox. | |
694 | * For use with {@link #getSunTime getSunTime}. | |
695 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. | |
696 | * @internal | |
697 | * @deprecated ICU 2.4. This class may be removed or modified. | |
698 | */ | |
73c04bcf | 699 | /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
374ca955 | 700 | return (CalendarAstronomer::PI); |
73c04bcf | 701 | }*/ |
374ca955 A |
702 | |
703 | /** | |
704 | * Constant representing the winter solstice. | |
705 | * For use with {@link #getSunTime getSunTime}. | |
706 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. | |
707 | * @internal | |
708 | * @deprecated ICU 2.4. This class may be removed or modified. | |
709 | */ | |
46f4442e A |
710 | double CalendarAstronomer::WINTER_SOLSTICE() { |
711 | return ((CalendarAstronomer::PI*3)/2); | |
712 | } | |
73c04bcf A |
713 | |
714 | CalendarAstronomer::AngleFunc::~AngleFunc() {} | |
374ca955 A |
715 | |
716 | /** | |
717 | * Find the next time at which the sun's ecliptic longitude will have | |
718 | * the desired value. | |
719 | * @internal | |
720 | * @deprecated ICU 2.4. This class may be removed or modified. | |
721 | */ | |
722 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { | |
723 | public: | |
4388f060 | 724 | virtual ~SunTimeAngleFunc(); |
46f4442e | 725 | virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } |
374ca955 A |
726 | }; |
727 | ||
4388f060 A |
728 | SunTimeAngleFunc::~SunTimeAngleFunc() {} |
729 | ||
374ca955 A |
730 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
731 | { | |
46f4442e A |
732 | SunTimeAngleFunc func; |
733 | return timeOfAngle( func, | |
734 | desired, | |
735 | TROPICAL_YEAR, | |
736 | MINUTE_MS, | |
737 | next); | |
374ca955 A |
738 | } |
739 | ||
73c04bcf A |
740 | CalendarAstronomer::CoordFunc::~CoordFunc() {} |
741 | ||
374ca955 A |
742 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
743 | public: | |
4388f060 | 744 | virtual ~RiseSetCoordFunc(); |
46f4442e | 745 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); } |
374ca955 A |
746 | }; |
747 | ||
4388f060 A |
748 | RiseSetCoordFunc::~RiseSetCoordFunc() {} |
749 | ||
374ca955 A |
750 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
751 | { | |
46f4442e | 752 | UDate t0 = fTime; |
374ca955 | 753 | |
46f4442e | 754 | // Make a rough guess: 6am or 6pm local time on the current day |
729e4ab9 | 755 | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); |
374ca955 | 756 | |
46f4442e A |
757 | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); |
758 | setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); | |
759 | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); | |
374ca955 | 760 | |
46f4442e A |
761 | RiseSetCoordFunc func; |
762 | double t = riseOrSet(func, | |
763 | rise, | |
764 | .533 * DEG_RAD, // Angular Diameter | |
765 | 34. /60.0 * DEG_RAD, // Refraction correction | |
766 | MINUTE_MS / 12.); // Desired accuracy | |
374ca955 | 767 | |
46f4442e A |
768 | setTime(t0); |
769 | return t; | |
374ca955 A |
770 | } |
771 | ||
772 | // Commented out - currently unused. ICU 2.6, Alan | |
773 | // //------------------------------------------------------------------------- | |
774 | // // Alternate Sun Rise/Set | |
775 | // // See Duffett-Smith p.93 | |
776 | // //------------------------------------------------------------------------- | |
777 | // | |
778 | // // This yields worse results (as compared to USNO data) than getSunRiseSet(). | |
779 | // /** | |
780 | // * TODO Make this when the entire class is package-private. | |
781 | // */ | |
782 | // /*public*/ long getSunRiseSet2(boolean rise) { | |
783 | // // 1. Calculate coordinates of the sun's center for midnight | |
784 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
785 | // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; | |
786 | // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); | |
787 | // | |
788 | // // 2. Add ... to lambda to get position 24 hours later | |
789 | // double lambda2 = lambda1 + 0.985647*DEG_RAD; | |
790 | // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); | |
791 | // | |
792 | // // 3. Calculate LSTs of rising and setting for these two positions | |
793 | // double tanL = ::tan(fLatitude); | |
794 | // double H = ::acos(-tanL * ::tan(pos1.declination)); | |
795 | // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; | |
796 | // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; | |
797 | // H = ::acos(-tanL * ::tan(pos2.declination)); | |
798 | // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | |
799 | // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | |
800 | // if (lst1r > 24) lst1r -= 24; | |
801 | // if (lst1s > 24) lst1s -= 24; | |
802 | // if (lst2r > 24) lst2r -= 24; | |
803 | // if (lst2s > 24) lst2s -= 24; | |
804 | // | |
805 | // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. | |
806 | // double gst1r = lstToGst(lst1r); | |
807 | // double gst1s = lstToGst(lst1s); | |
808 | // double gst2r = lstToGst(lst2r); | |
809 | // double gst2s = lstToGst(lst2s); | |
810 | // if (gst1r > gst2r) gst2r += 24; | |
811 | // if (gst1s > gst2s) gst2s += 24; | |
812 | // | |
813 | // // 5. Calculate GST at 0h UT of this date | |
814 | // double t00 = utToGst(0); | |
815 | // | |
816 | // // 6. Calculate GST at 0h on the observer's longitude | |
817 | // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. | |
818 | // double t00p = t00 - offset*1.002737909; | |
819 | // if (t00p < 0) t00p += 24; // do NOT normalize | |
820 | // | |
821 | // // 7. Adjust | |
822 | // if (gst1r < t00p) { | |
823 | // gst1r += 24; | |
824 | // gst2r += 24; | |
825 | // } | |
826 | // if (gst1s < t00p) { | |
827 | // gst1s += 24; | |
828 | // gst2s += 24; | |
829 | // } | |
830 | // | |
831 | // // 8. | |
832 | // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); | |
833 | // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); | |
834 | // | |
835 | // // 9. Correct for parallax, refraction, and sun's diameter | |
836 | // double dec = (pos1.declination + pos2.declination) / 2; | |
837 | // double psi = ::acos(sin(fLatitude) / cos(dec)); | |
838 | // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter | |
839 | // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; | |
840 | // double delta_t = 240 * y / cos(dec) / 3600; // hours | |
841 | // | |
842 | // // 10. Add correction to GSTs, subtract from GSTr | |
843 | // gstr -= delta_t; | |
844 | // gsts += delta_t; | |
845 | // | |
846 | // // 11. Convert GST to UT and then to local civil time | |
847 | // double ut = gstToUt(rise ? gstr : gsts); | |
848 | // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); | |
849 | // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day | |
850 | // return midnight + (long) (ut * 3600000); | |
851 | // } | |
852 | ||
853 | // Commented out - currently unused. ICU 2.6, Alan | |
854 | // /** | |
855 | // * Convert local sidereal time to Greenwich sidereal time. | |
856 | // * Section 15. Duffett-Smith p.21 | |
857 | // * @param lst in hours (0..24) | |
858 | // * @return GST in hours (0..24) | |
859 | // */ | |
860 | // double lstToGst(double lst) { | |
861 | // double delta = fLongitude * 24 / CalendarAstronomer_PI2; | |
862 | // return normalize(lst - delta, 24); | |
863 | // } | |
864 | ||
865 | // Commented out - currently unused. ICU 2.6, Alan | |
866 | // /** | |
867 | // * Convert UT to GST on this date. | |
868 | // * Section 12. Duffett-Smith p.17 | |
869 | // * @param ut in hours | |
870 | // * @return GST in hours | |
871 | // */ | |
872 | // double utToGst(double ut) { | |
873 | // return normalize(getT0() + ut*1.002737909, 24); | |
874 | // } | |
875 | ||
876 | // Commented out - currently unused. ICU 2.6, Alan | |
877 | // /** | |
878 | // * Convert GST to UT on this date. | |
879 | // * Section 13. Duffett-Smith p.18 | |
880 | // * @param gst in hours | |
881 | // * @return UT in hours | |
882 | // */ | |
883 | // double gstToUt(double gst) { | |
884 | // return normalize(gst - getT0(), 24) * 0.9972695663; | |
885 | // } | |
886 | ||
887 | // Commented out - currently unused. ICU 2.6, Alan | |
888 | // double getT0() { | |
889 | // // Common computation for UT <=> GST | |
890 | // | |
891 | // // Find JD for 0h UT | |
892 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
893 | // | |
894 | // double s = jd - 2451545.0; | |
895 | // double t = s / 36525.0; | |
896 | // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; | |
897 | // return t0; | |
898 | // } | |
899 | ||
900 | // Commented out - currently unused. ICU 2.6, Alan | |
901 | // //------------------------------------------------------------------------- | |
902 | // // Alternate Sun Rise/Set | |
903 | // // See sci.astro FAQ | |
904 | // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html | |
905 | // //------------------------------------------------------------------------- | |
906 | // | |
907 | // // Note: This method appears to produce inferior accuracy as | |
908 | // // compared to getSunRiseSet(). | |
909 | // | |
910 | // /** | |
911 | // * TODO Make this when the entire class is package-private. | |
912 | // */ | |
913 | // /*public*/ long getSunRiseSet3(boolean rise) { | |
914 | // | |
915 | // // Compute day number for 0.0 Jan 2000 epoch | |
916 | // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; | |
917 | // | |
918 | // // Now compute the Local Sidereal Time, LST: | |
919 | // // | |
920 | // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ | |
921 | // fLongitude*RAD_DEG; | |
922 | // // | |
923 | // // (east long. positive). Note that LST is here expressed in degrees, | |
924 | // // where 15 degrees corresponds to one hour. Since LST really is an angle, | |
925 | // // it's convenient to use one unit---degrees---throughout. | |
926 | // | |
927 | // // COMPUTING THE SUN'S POSITION | |
928 | // // ---------------------------- | |
929 | // // | |
930 | // // To be able to compute the Sun's rise/set times, you need to be able to | |
931 | // // compute the Sun's position at any time. First compute the "day | |
932 | // // number" d as outlined above, for the desired moment. Next compute: | |
933 | // // | |
934 | // double oblecl = 23.4393 - 3.563E-7 * d; | |
935 | // // | |
936 | // double w = 282.9404 + 4.70935E-5 * d; | |
937 | // double M = 356.0470 + 0.9856002585 * d; | |
938 | // double e = 0.016709 - 1.151E-9 * d; | |
939 | // // | |
940 | // // This is the obliquity of the ecliptic, plus some of the elements of | |
941 | // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = | |
942 | // // argument of perihelion, M = mean anomaly, e = eccentricity. | |
943 | // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly | |
944 | // // true, this is still an accurate approximation). Next compute E, the | |
945 | // // eccentric anomaly: | |
946 | // // | |
947 | // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); | |
948 | // // | |
949 | // // where E and M are in degrees. This is it---no further iterations are | |
950 | // // needed because we know e has a sufficiently small value. Next compute | |
951 | // // the true anomaly, v, and the distance, r: | |
952 | // // | |
953 | // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; | |
954 | // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); | |
955 | // // | |
956 | // // and | |
957 | // // | |
958 | // // r = sqrt( A*A + B*B ) | |
959 | // double v = ::atan2( B, A )*RAD_DEG; | |
960 | // // | |
961 | // // The Sun's true longitude, slon, can now be computed: | |
962 | // // | |
963 | // double slon = v + w; | |
964 | // // | |
965 | // // Since the Sun is always at the ecliptic (or at least very very close to | |
966 | // // it), we can use simplified formulae to convert slon (the Sun's ecliptic | |
967 | // // longitude) to sRA and sDec (the Sun's RA and Dec): | |
968 | // // | |
969 | // // ::sin(slon) * cos(oblecl) | |
970 | // // tan(sRA) = ------------------------- | |
971 | // // cos(slon) | |
972 | // // | |
973 | // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) | |
974 | // // | |
975 | // // As was the case when computing az, the Azimuth, if possible use an | |
976 | // // atan2() function to compute sRA. | |
977 | // | |
978 | // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; | |
979 | // | |
980 | // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); | |
981 | // double sDec = ::asin(sin_sDec)*RAD_DEG; | |
982 | // | |
983 | // // COMPUTING RISE AND SET TIMES | |
984 | // // ---------------------------- | |
985 | // // | |
986 | // // To compute when an object rises or sets, you must compute when it | |
987 | // // passes the meridian and the HA of rise/set. Then the rise time is | |
988 | // // the meridian time minus HA for rise/set, and the set time is the | |
989 | // // meridian time plus the HA for rise/set. | |
990 | // // | |
991 | // // To find the meridian time, compute the Local Sidereal Time at 0h local | |
992 | // // time (or 0h UT if you prefer to work in UT) as outlined above---name | |
993 | // // that quantity LST0. The Meridian Time, MT, will now be: | |
994 | // // | |
995 | // // MT = RA - LST0 | |
996 | // double MT = normalize(sRA - LST, 360); | |
997 | // // | |
998 | // // where "RA" is the object's Right Ascension (in degrees!). If negative, | |
999 | // // add 360 deg to MT. If the object is the Sun, leave the time as it is, | |
1000 | // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from | |
1001 | // // sidereal to solar time. Now, compute HA for rise/set, name that | |
1002 | // // quantity HA0: | |
1003 | // // | |
1004 | // // ::sin(h0) - ::sin(lat) * ::sin(Dec) | |
1005 | // // cos(HA0) = --------------------------------- | |
1006 | // // cos(lat) * cos(Dec) | |
1007 | // // | |
1008 | // // where h0 is the altitude selected to represent rise/set. For a purely | |
1009 | // // mathematical horizon, set h0 = 0 and simplify to: | |
1010 | // // | |
1011 | // // cos(HA0) = - tan(lat) * tan(Dec) | |
1012 | // // | |
1013 | // // If you want to account for refraction on the atmosphere, set h0 = -35/60 | |
1014 | // // degrees (-35 arc minutes), and if you want to compute the rise/set times | |
1015 | // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). | |
1016 | // // | |
1017 | // double h0 = -50/60 * DEG_RAD; | |
1018 | // | |
1019 | // double HA0 = ::acos( | |
1020 | // (sin(h0) - ::sin(fLatitude) * sin_sDec) / | |
1021 | // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; | |
1022 | // | |
1023 | // // When HA0 has been computed, leave it as it is for the Sun but multiply | |
1024 | // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to | |
1025 | // // solar time. Finally compute: | |
1026 | // // | |
1027 | // // Rise time = MT - HA0 | |
1028 | // // Set time = MT + HA0 | |
1029 | // // | |
1030 | // // convert the times from degrees to hours by dividing by 15. | |
1031 | // // | |
1032 | // // If you'd like to check that your calculations are accurate or just | |
1033 | // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, | |
1034 | // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. | |
1035 | // | |
1036 | // double result = MT + (rise ? -HA0 : HA0); // in degrees | |
1037 | // | |
1038 | // // Find UT midnight on this day | |
1039 | // long midnight = DAY_MS * (time / DAY_MS); | |
1040 | // | |
1041 | // return midnight + (long) (result * 3600000 / 15); | |
1042 | // } | |
1043 | ||
1044 | //------------------------------------------------------------------------- | |
1045 | // The Moon | |
1046 | //------------------------------------------------------------------------- | |
1047 | ||
1048 | #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch | |
1049 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee | |
1050 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node | |
1051 | #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit | |
1052 | #define moonE ( 0.054900 ) // Eccentricity of orbit | |
1053 | ||
1054 | // These aren't used right now | |
1055 | #define moonA ( 3.84401e5 ) // semi-major axis (km) | |
1056 | #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A | |
1057 | #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A | |
1058 | ||
1059 | /** | |
1060 | * The position of the moon at the time set on this | |
1061 | * object, in equatorial coordinates. | |
1062 | * @internal | |
1063 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1064 | */ | |
1065 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() | |
1066 | { | |
374ca955 | 1067 | // |
46f4442e A |
1068 | // See page 142 of "Practial Astronomy with your Calculator", |
1069 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 1070 | // |
46f4442e A |
1071 | if (moonPositionSet == FALSE) { |
1072 | // Calculate the solar longitude. Has the side effect of | |
1073 | // filling in "meanAnomalySun" as well. | |
1074 | getSunLongitude(); | |
1075 | ||
1076 | // | |
1077 | // Find the # of days since the epoch of our orbital parameters. | |
1078 | // TODO: Convert the time of day portion into ephemeris time | |
1079 | // | |
1080 | double day = getJulianDay() - JD_EPOCH; // Days since epoch | |
1081 | ||
1082 | // Calculate the mean longitude and anomaly of the moon, based on | |
1083 | // a circular orbit. Similar to the corresponding solar calculation. | |
1084 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); | |
1085 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); | |
1086 | ||
1087 | // | |
1088 | // Calculate the following corrections: | |
1089 | // Evection: the sun's gravity affects the moon's eccentricity | |
1090 | // Annual Eqn: variation in the effect due to earth-sun distance | |
1091 | // A3: correction factor (for ???) | |
1092 | // | |
1093 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) | |
1094 | - meanAnomalyMoon); | |
1095 | double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); | |
1096 | double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); | |
1097 | ||
1098 | meanAnomalyMoon += evection - annual - a3; | |
1099 | ||
1100 | // | |
1101 | // More correction factors: | |
1102 | // center equation of the center correction | |
1103 | // a4 yet another error correction (???) | |
1104 | // | |
1105 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? | |
1106 | // | |
1107 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); | |
1108 | double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); | |
1109 | ||
1110 | // Now find the moon's corrected longitude | |
1111 | moonLongitude = meanLongitude + evection + center - annual + a4; | |
1112 | ||
1113 | // | |
1114 | // And finally, find the variation, caused by the fact that the sun's | |
1115 | // gravitational pull on the moon varies depending on which side of | |
1116 | // the earth the moon is on | |
1117 | // | |
1118 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); | |
1119 | ||
1120 | moonLongitude += variation; | |
1121 | ||
1122 | // | |
1123 | // What we've calculated so far is the moon's longitude in the plane | |
1124 | // of its own orbit. Now map to the ecliptic to get the latitude | |
1125 | // and longitude. First we need to find the longitude of the ascending | |
1126 | // node, the position on the ecliptic where it is crossed by the moon's | |
1127 | // orbit as it crosses from the southern to the northern hemisphere. | |
1128 | // | |
1129 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); | |
1130 | ||
1131 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); | |
1132 | ||
1133 | double y = ::sin(moonLongitude - nodeLongitude); | |
1134 | double x = cos(moonLongitude - nodeLongitude); | |
1135 | ||
1136 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; | |
1137 | double moonEclipLat = ::asin(y * ::sin(moonI)); | |
1138 | ||
1139 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); | |
1140 | moonPositionSet = TRUE; | |
1141 | } | |
1142 | return moonPosition; | |
374ca955 A |
1143 | } |
1144 | ||
1145 | /** | |
1146 | * The "age" of the moon at the time specified in this object. | |
1147 | * This is really the angle between the | |
1148 | * current ecliptic longitudes of the sun and the moon, | |
1149 | * measured in radians. | |
1150 | * | |
1151 | * @see #getMoonPhase | |
1152 | * @internal | |
1153 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1154 | */ | |
1155 | double CalendarAstronomer::getMoonAge() { | |
46f4442e A |
1156 | // See page 147 of "Practial Astronomy with your Calculator", |
1157 | // by Peter Duffet-Smith, for details on the algorithm. | |
1158 | // | |
1159 | // Force the moon's position to be calculated. We're going to use | |
1160 | // some the intermediate results cached during that calculation. | |
1161 | // | |
1162 | getMoonPosition(); | |
1163 | ||
1164 | return norm2PI(moonEclipLong - sunLongitude); | |
374ca955 A |
1165 | } |
1166 | ||
1167 | /** | |
1168 | * Calculate the phase of the moon at the time set in this object. | |
1169 | * The returned phase is a <code>double</code> in the range | |
1170 | * <code>0 <= phase < 1</code>, interpreted as follows: | |
1171 | * <ul> | |
1172 | * <li>0.00: New moon | |
1173 | * <li>0.25: First quarter | |
1174 | * <li>0.50: Full moon | |
1175 | * <li>0.75: Last quarter | |
1176 | * </ul> | |
1177 | * | |
1178 | * @see #getMoonAge | |
1179 | * @internal | |
1180 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1181 | */ | |
1182 | double CalendarAstronomer::getMoonPhase() { | |
46f4442e A |
1183 | // See page 147 of "Practial Astronomy with your Calculator", |
1184 | // by Peter Duffet-Smith, for details on the algorithm. | |
1185 | return 0.5 * (1 - cos(getMoonAge())); | |
374ca955 A |
1186 | } |
1187 | ||
1188 | /** | |
1189 | * Constant representing a new moon. | |
1190 | * For use with {@link #getMoonTime getMoonTime} | |
1191 | * @internal | |
1192 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1193 | */ | |
46f4442e A |
1194 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
1195 | return CalendarAstronomer::MoonAge(0); | |
1196 | } | |
374ca955 A |
1197 | |
1198 | /** | |
1199 | * Constant representing the moon's first quarter. | |
1200 | * For use with {@link #getMoonTime getMoonTime} | |
1201 | * @internal | |
1202 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1203 | */ | |
73c04bcf | 1204 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
374ca955 | 1205 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
73c04bcf | 1206 | }*/ |
374ca955 A |
1207 | |
1208 | /** | |
1209 | * Constant representing a full moon. | |
1210 | * For use with {@link #getMoonTime getMoonTime} | |
1211 | * @internal | |
1212 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1213 | */ | |
1214 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { | |
46f4442e | 1215 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
374ca955 A |
1216 | } |
1217 | /** | |
1218 | * Constant representing the moon's last quarter. | |
1219 | * For use with {@link #getMoonTime getMoonTime} | |
1220 | * @internal | |
1221 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1222 | */ | |
1223 | ||
1224 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { | |
1225 | public: | |
4388f060 | 1226 | virtual ~MoonTimeAngleFunc(); |
46f4442e | 1227 | virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } |
374ca955 A |
1228 | }; |
1229 | ||
4388f060 A |
1230 | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} |
1231 | ||
73c04bcf | 1232 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
374ca955 | 1233 | return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
73c04bcf | 1234 | }*/ |
374ca955 A |
1235 | |
1236 | /** | |
1237 | * Find the next or previous time at which the Moon's ecliptic | |
1238 | * longitude will have the desired value. | |
1239 | * <p> | |
1240 | * @param desired The desired longitude. | |
1241 | * @param next <tt>true</tt> if the next occurrance of the phase | |
1242 | * is desired, <tt>false</tt> for the previous occurrance. | |
1243 | * @internal | |
1244 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1245 | */ | |
1246 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) | |
1247 | { | |
46f4442e A |
1248 | MoonTimeAngleFunc func; |
1249 | return timeOfAngle( func, | |
1250 | desired, | |
1251 | SYNODIC_MONTH, | |
1252 | MINUTE_MS, | |
1253 | next); | |
374ca955 A |
1254 | } |
1255 | ||
1256 | /** | |
1257 | * Find the next or previous time at which the moon will be in the | |
1258 | * desired phase. | |
1259 | * <p> | |
1260 | * @param desired The desired phase of the moon. | |
1261 | * @param next <tt>true</tt> if the next occurrance of the phase | |
1262 | * is desired, <tt>false</tt> for the previous occurrance. | |
1263 | * @internal | |
1264 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1265 | */ | |
1266 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { | |
46f4442e | 1267 | return getMoonTime(desired.value, next); |
374ca955 A |
1268 | } |
1269 | ||
1270 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | |
1271 | public: | |
4388f060 | 1272 | virtual ~MoonRiseSetCoordFunc(); |
46f4442e | 1273 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } |
374ca955 A |
1274 | }; |
1275 | ||
4388f060 A |
1276 | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} |
1277 | ||
374ca955 A |
1278 | /** |
1279 | * Returns the time (GMT) of sunrise or sunset on the local date to which | |
1280 | * this calendar is currently set. | |
1281 | * @internal | |
1282 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1283 | */ | |
1284 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) | |
1285 | { | |
46f4442e A |
1286 | MoonRiseSetCoordFunc func; |
1287 | return riseOrSet(func, | |
1288 | rise, | |
1289 | .533 * DEG_RAD, // Angular Diameter | |
1290 | 34 /60.0 * DEG_RAD, // Refraction correction | |
1291 | MINUTE_MS); // Desired accuracy | |
374ca955 A |
1292 | } |
1293 | ||
1294 | //------------------------------------------------------------------------- | |
1295 | // Interpolation methods for finding the time at which a given event occurs | |
1296 | //------------------------------------------------------------------------- | |
1297 | ||
1298 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, | |
1299 | double periodDays, double epsilon, UBool next) | |
1300 | { | |
46f4442e A |
1301 | // Find the value of the function at the current time |
1302 | double lastAngle = func.eval(*this); | |
374ca955 | 1303 | |
46f4442e A |
1304 | // Find out how far we are from the desired angle |
1305 | double deltaAngle = norm2PI(desired - lastAngle) ; | |
374ca955 | 1306 | |
46f4442e A |
1307 | // Using the average period, estimate the next (or previous) time at |
1308 | // which the desired angle occurs. | |
1309 | double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; | |
374ca955 | 1310 | |
46f4442e A |
1311 | double lastDeltaT = deltaT; // Liu |
1312 | UDate startTime = fTime; // Liu | |
374ca955 | 1313 | |
46f4442e | 1314 | setTime(fTime + uprv_ceil(deltaT)); |
374ca955 | 1315 | |
46f4442e A |
1316 | // Now iterate until we get the error below epsilon. Throughout |
1317 | // this loop we use normPI to get values in the range -Pi to Pi, | |
1318 | // since we're using them as correction factors rather than absolute angles. | |
1319 | do { | |
1320 | // Evaluate the function at the time we've estimated | |
1321 | double angle = func.eval(*this); | |
1322 | ||
1323 | // Find the # of milliseconds per radian at this point on the curve | |
1324 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); | |
1325 | ||
1326 | // Correct the time estimate based on how far off the angle is | |
1327 | deltaT = normPI(desired - angle) * factor; | |
1328 | ||
1329 | // HACK: | |
1330 | // | |
1331 | // If abs(deltaT) begins to diverge we need to quit this loop. | |
1332 | // This only appears to happen when attempting to locate, for | |
1333 | // example, a new moon on the day of the new moon. E.g.: | |
1334 | // | |
1335 | // This result is correct: | |
1336 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= | |
1337 | // Sun Jul 22 10:57:41 CST 1990 | |
1338 | // | |
1339 | // But attempting to make the same call a day earlier causes deltaT | |
1340 | // to diverge: | |
1341 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> | |
1342 | // 1.3649828540224032E9 | |
1343 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= | |
1344 | // Sun Jul 08 13:56:15 CST 1990 | |
1345 | // | |
1346 | // As a temporary solution, we catch this specific condition and | |
1347 | // adjust our start time by one eighth period days (either forward | |
1348 | // or backward) and try again. | |
1349 | // Liu 11/9/00 | |
1350 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { | |
1351 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); | |
1352 | setTime(startTime + (next ? delta : -delta)); | |
1353 | return timeOfAngle(func, desired, periodDays, epsilon, next); | |
1354 | } | |
1355 | ||
1356 | lastDeltaT = deltaT; | |
1357 | lastAngle = angle; | |
1358 | ||
1359 | setTime(fTime + uprv_ceil(deltaT)); | |
374ca955 | 1360 | } |
46f4442e | 1361 | while (uprv_fabs(deltaT) > epsilon); |
374ca955 | 1362 | |
46f4442e | 1363 | return fTime; |
374ca955 A |
1364 | } |
1365 | ||
1366 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, | |
1367 | double diameter, double refraction, | |
1368 | double epsilon) | |
1369 | { | |
46f4442e A |
1370 | Equatorial pos; |
1371 | double tanL = ::tan(fLatitude); | |
1372 | double deltaT = 0; | |
1373 | int32_t count = 0; | |
374ca955 | 1374 | |
46f4442e A |
1375 | // |
1376 | // Calculate the object's position at the current time, then use that | |
1377 | // position to calculate the time of rising or setting. The position | |
1378 | // will be different at that time, so iterate until the error is allowable. | |
1379 | // | |
1380 | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", | |
1381 | rise?"T":"F", diameter, refraction, epsilon)); | |
1382 | do { | |
1383 | // See "Practical Astronomy With Your Calculator, section 33. | |
1384 | func.eval(pos, *this); | |
1385 | double angle = ::acos(-tanL * ::tan(pos.declination)); | |
1386 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; | |
1387 | ||
1388 | // Convert from LST to Universal Time. | |
1389 | UDate newTime = lstToUT( lst ); | |
1390 | ||
1391 | deltaT = newTime - fTime; | |
1392 | setTime(newTime); | |
1393 | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", | |
1394 | count, deltaT, angle, lst, pos.ascension, pos.declination)); | |
1395 | } | |
1396 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); | |
374ca955 | 1397 | |
46f4442e A |
1398 | // Calculate the correction due to refraction and the object's angular diameter |
1399 | double cosD = ::cos(pos.declination); | |
1400 | double psi = ::acos(sin(fLatitude) / cosD); | |
1401 | double x = diameter / 2 + refraction; | |
1402 | double y = ::asin(sin(x) / ::sin(psi)); | |
1403 | long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); | |
374ca955 | 1404 | |
46f4442e | 1405 | return fTime + (rise ? -delta : delta); |
374ca955 | 1406 | } |
46f4442e | 1407 | /** |
374ca955 A |
1408 | * Return the obliquity of the ecliptic (the angle between the ecliptic |
1409 | * and the earth's equator) at the current time. This varies due to | |
1410 | * the precession of the earth's axis. | |
1411 | * | |
1412 | * @return the obliquity of the ecliptic relative to the equator, | |
1413 | * measured in radians. | |
1414 | */ | |
1415 | double CalendarAstronomer::eclipticObliquity() { | |
46f4442e A |
1416 | if (isINVALID(eclipObliquity)) { |
1417 | const double epoch = 2451545.0; // 2000 AD, January 1.5 | |
374ca955 | 1418 | |
46f4442e | 1419 | double T = (getJulianDay() - epoch) / 36525; |
374ca955 | 1420 | |
46f4442e A |
1421 | eclipObliquity = 23.439292 |
1422 | - 46.815/3600 * T | |
1423 | - 0.0006/3600 * T*T | |
1424 | + 0.00181/3600 * T*T*T; | |
374ca955 | 1425 | |
46f4442e A |
1426 | eclipObliquity *= DEG_RAD; |
1427 | } | |
1428 | return eclipObliquity; | |
374ca955 A |
1429 | } |
1430 | ||
1431 | ||
1432 | //------------------------------------------------------------------------- | |
1433 | // Private data | |
1434 | //------------------------------------------------------------------------- | |
1435 | void CalendarAstronomer::clearCache() { | |
46f4442e A |
1436 | const double INVALID = uprv_getNaN(); |
1437 | ||
1438 | julianDay = INVALID; | |
1439 | julianCentury = INVALID; | |
1440 | sunLongitude = INVALID; | |
1441 | meanAnomalySun = INVALID; | |
1442 | moonLongitude = INVALID; | |
1443 | moonEclipLong = INVALID; | |
1444 | meanAnomalyMoon = INVALID; | |
1445 | eclipObliquity = INVALID; | |
1446 | siderealTime = INVALID; | |
1447 | siderealT0 = INVALID; | |
1448 | moonPositionSet = FALSE; | |
374ca955 A |
1449 | } |
1450 | ||
1451 | //private static void out(String s) { | |
1452 | // System.out.println(s); | |
1453 | //} | |
1454 | ||
1455 | //private static String deg(double rad) { | |
1456 | // return Double.toString(rad * RAD_DEG); | |
1457 | //} | |
1458 | ||
1459 | //private static String hours(long ms) { | |
1460 | // return Double.toString((double)ms / HOUR_MS) + " hours"; | |
1461 | //} | |
1462 | ||
1463 | /** | |
1464 | * @internal | |
1465 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1466 | */ | |
73c04bcf | 1467 | /*UDate CalendarAstronomer::local(UDate localMillis) { |
374ca955 A |
1468 | // TODO - srl ? |
1469 | TimeZone *tz = TimeZone::createDefault(); | |
1470 | int32_t rawOffset; | |
1471 | int32_t dstOffset; | |
1472 | UErrorCode status = U_ZERO_ERROR; | |
1473 | tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); | |
1474 | delete tz; | |
1475 | return localMillis - rawOffset; | |
73c04bcf | 1476 | }*/ |
374ca955 A |
1477 | |
1478 | // Debugging functions | |
1479 | UnicodeString CalendarAstronomer::Ecliptic::toString() const | |
1480 | { | |
1481 | #ifdef U_DEBUG_ASTRO | |
46f4442e A |
1482 | char tmp[800]; |
1483 | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); | |
1484 | return UnicodeString(tmp, ""); | |
374ca955 | 1485 | #else |
46f4442e | 1486 | return UnicodeString(); |
374ca955 A |
1487 | #endif |
1488 | } | |
1489 | ||
1490 | UnicodeString CalendarAstronomer::Equatorial::toString() const | |
1491 | { | |
1492 | #ifdef U_DEBUG_ASTRO | |
46f4442e A |
1493 | char tmp[400]; |
1494 | sprintf(tmp, "%f,%f", | |
1495 | (ascension*RAD_DEG), (declination*RAD_DEG)); | |
1496 | return UnicodeString(tmp, ""); | |
374ca955 | 1497 | #else |
46f4442e | 1498 | return UnicodeString(); |
374ca955 A |
1499 | #endif |
1500 | } | |
1501 | ||
1502 | UnicodeString CalendarAstronomer::Horizon::toString() const | |
1503 | { | |
1504 | #ifdef U_DEBUG_ASTRO | |
46f4442e A |
1505 | char tmp[800]; |
1506 | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); | |
1507 | return UnicodeString(tmp, ""); | |
374ca955 | 1508 | #else |
46f4442e | 1509 | return UnicodeString(); |
374ca955 A |
1510 | #endif |
1511 | } | |
1512 | ||
1513 | ||
1514 | // static private String radToHms(double angle) { | |
1515 | // int hrs = (int) (angle*RAD_HOUR); | |
1516 | // int min = (int)((angle*RAD_HOUR - hrs) * 60); | |
1517 | // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); | |
1518 | ||
1519 | // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; | |
1520 | // } | |
1521 | ||
1522 | // static private String radToDms(double angle) { | |
1523 | // int deg = (int) (angle*RAD_DEG); | |
1524 | // int min = (int)((angle*RAD_DEG - deg) * 60); | |
1525 | // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); | |
1526 | ||
1527 | // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; | |
1528 | // } | |
1529 | ||
1530 | // =============== Calendar Cache ================ | |
1531 | ||
1532 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { | |
46f4442e A |
1533 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
1534 | if(cache == NULL) { | |
1535 | status = U_MEMORY_ALLOCATION_ERROR; | |
1536 | } else { | |
1537 | *cache = new CalendarCache(32, status); | |
1538 | if(U_FAILURE(status)) { | |
1539 | delete *cache; | |
1540 | *cache = NULL; | |
1541 | } | |
73c04bcf | 1542 | } |
374ca955 A |
1543 | } |
1544 | ||
1545 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { | |
46f4442e | 1546 | int32_t res; |
374ca955 | 1547 | |
374ca955 | 1548 | if(U_FAILURE(status)) { |
46f4442e A |
1549 | return 0; |
1550 | } | |
1551 | umtx_lock(&ccLock); | |
1552 | ||
1553 | if(*cache == NULL) { | |
1554 | createCache(cache, status); | |
1555 | if(U_FAILURE(status)) { | |
1556 | umtx_unlock(&ccLock); | |
1557 | return 0; | |
1558 | } | |
374ca955 | 1559 | } |
374ca955 | 1560 | |
46f4442e A |
1561 | res = uhash_igeti((*cache)->fTable, key); |
1562 | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); | |
374ca955 | 1563 | |
46f4442e A |
1564 | umtx_unlock(&ccLock); |
1565 | return res; | |
374ca955 A |
1566 | } |
1567 | ||
1568 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { | |
374ca955 | 1569 | if(U_FAILURE(status)) { |
46f4442e A |
1570 | return; |
1571 | } | |
1572 | umtx_lock(&ccLock); | |
1573 | ||
1574 | if(*cache == NULL) { | |
1575 | createCache(cache, status); | |
1576 | if(U_FAILURE(status)) { | |
1577 | umtx_unlock(&ccLock); | |
1578 | return; | |
1579 | } | |
374ca955 | 1580 | } |
374ca955 | 1581 | |
46f4442e A |
1582 | uhash_iputi((*cache)->fTable, key, value, &status); |
1583 | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); | |
374ca955 | 1584 | |
46f4442e | 1585 | umtx_unlock(&ccLock); |
374ca955 A |
1586 | } |
1587 | ||
1588 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { | |
46f4442e A |
1589 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); |
1590 | U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); | |
374ca955 A |
1591 | } |
1592 | ||
1593 | CalendarCache::~CalendarCache() { | |
46f4442e A |
1594 | if(fTable != NULL) { |
1595 | U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); | |
1596 | uhash_close(fTable); | |
1597 | } | |
374ca955 A |
1598 | } |
1599 | ||
1600 | U_NAMESPACE_END | |
1601 | ||
1602 | #endif // !UCONFIG_NO_FORMATTING |