]>
Commit | Line | Data |
---|---|---|
73c04bcf A |
1 | /* |
2 | ** This file is in the public domain, so clarified as of | |
3 | ** 1996-06-05 by Arthur David Olson. | |
4 | */ | |
5 | ||
6 | #ifndef lint | |
7 | #ifndef NOID | |
8 | static char elsieid[] = "@(#)localtime.c 8.5"; | |
9 | #endif /* !defined NOID */ | |
10 | #endif /* !defined lint */ | |
11 | ||
12 | /* | |
13 | ** Leap second handling from Bradley White. | |
14 | ** POSIX-style TZ environment variable handling from Guy Harris. | |
15 | */ | |
16 | ||
17 | /*LINTLIBRARY*/ | |
18 | ||
19 | #include "private.h" | |
20 | #include "tzfile.h" | |
21 | #include "fcntl.h" | |
22 | #include "float.h" /* for FLT_MAX and DBL_MAX */ | |
23 | ||
24 | #ifndef TZ_ABBR_MAX_LEN | |
25 | #define TZ_ABBR_MAX_LEN 16 | |
26 | #endif /* !defined TZ_ABBR_MAX_LEN */ | |
27 | ||
28 | #ifndef TZ_ABBR_CHAR_SET | |
29 | #define TZ_ABBR_CHAR_SET \ | |
30 | "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" | |
31 | #endif /* !defined TZ_ABBR_CHAR_SET */ | |
32 | ||
33 | #ifndef TZ_ABBR_ERR_CHAR | |
34 | #define TZ_ABBR_ERR_CHAR '_' | |
35 | #endif /* !defined TZ_ABBR_ERR_CHAR */ | |
36 | ||
37 | /* | |
38 | ** SunOS 4.1.1 headers lack O_BINARY. | |
39 | */ | |
40 | ||
41 | #ifdef O_BINARY | |
42 | #define OPEN_MODE (O_RDONLY | O_BINARY) | |
43 | #endif /* defined O_BINARY */ | |
44 | #ifndef O_BINARY | |
45 | #define OPEN_MODE O_RDONLY | |
46 | #endif /* !defined O_BINARY */ | |
47 | ||
48 | #ifndef WILDABBR | |
49 | /* | |
50 | ** Someone might make incorrect use of a time zone abbreviation: | |
51 | ** 1. They might reference tzname[0] before calling tzset (explicitly | |
52 | ** or implicitly). | |
53 | ** 2. They might reference tzname[1] before calling tzset (explicitly | |
54 | ** or implicitly). | |
55 | ** 3. They might reference tzname[1] after setting to a time zone | |
56 | ** in which Daylight Saving Time is never observed. | |
57 | ** 4. They might reference tzname[0] after setting to a time zone | |
58 | ** in which Standard Time is never observed. | |
59 | ** 5. They might reference tm.TM_ZONE after calling offtime. | |
60 | ** What's best to do in the above cases is open to debate; | |
61 | ** for now, we just set things up so that in any of the five cases | |
62 | ** WILDABBR is used. Another possibility: initialize tzname[0] to the | |
63 | ** string "tzname[0] used before set", and similarly for the other cases. | |
64 | ** And another: initialize tzname[0] to "ERA", with an explanation in the | |
65 | ** manual page of what this "time zone abbreviation" means (doing this so | |
66 | ** that tzname[0] has the "normal" length of three characters). | |
67 | */ | |
68 | #define WILDABBR " " | |
69 | #endif /* !defined WILDABBR */ | |
70 | ||
71 | static char wildabbr[] = WILDABBR; | |
72 | ||
73 | static const char gmt[] = "GMT"; | |
74 | ||
75 | /* | |
76 | ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. | |
77 | ** We default to US rules as of 1999-08-17. | |
78 | ** POSIX 1003.1 section 8.1.1 says that the default DST rules are | |
79 | ** implementation dependent; for historical reasons, US rules are a | |
80 | ** common default. | |
81 | */ | |
82 | #ifndef TZDEFRULESTRING | |
83 | #define TZDEFRULESTRING ",M4.1.0,M10.5.0" | |
84 | #endif /* !defined TZDEFDST */ | |
85 | ||
86 | struct ttinfo { /* time type information */ | |
87 | long tt_gmtoff; /* UTC offset in seconds */ | |
88 | int tt_isdst; /* used to set tm_isdst */ | |
89 | int tt_abbrind; /* abbreviation list index */ | |
90 | int tt_ttisstd; /* TRUE if transition is std time */ | |
91 | int tt_ttisgmt; /* TRUE if transition is UTC */ | |
92 | }; | |
93 | ||
94 | struct lsinfo { /* leap second information */ | |
95 | time_t ls_trans; /* transition time */ | |
96 | long ls_corr; /* correction to apply */ | |
97 | }; | |
98 | ||
99 | #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) | |
100 | ||
101 | #ifdef TZNAME_MAX | |
102 | #define MY_TZNAME_MAX TZNAME_MAX | |
103 | #endif /* defined TZNAME_MAX */ | |
104 | #ifndef TZNAME_MAX | |
105 | #define MY_TZNAME_MAX 255 | |
106 | #endif /* !defined TZNAME_MAX */ | |
107 | ||
108 | struct state { | |
109 | int leapcnt; | |
110 | int timecnt; | |
111 | int typecnt; | |
112 | int charcnt; | |
113 | int goback; | |
114 | int goahead; | |
115 | time_t ats[TZ_MAX_TIMES]; | |
116 | unsigned char types[TZ_MAX_TIMES]; | |
117 | struct ttinfo ttis[TZ_MAX_TYPES]; | |
118 | char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), | |
119 | (2 * (MY_TZNAME_MAX + 1)))]; | |
120 | struct lsinfo lsis[TZ_MAX_LEAPS]; | |
121 | }; | |
122 | ||
123 | struct rule { | |
124 | int r_type; /* type of rule--see below */ | |
125 | int r_day; /* day number of rule */ | |
126 | int r_week; /* week number of rule */ | |
127 | int r_mon; /* month number of rule */ | |
128 | long r_time; /* transition time of rule */ | |
129 | }; | |
130 | ||
131 | #define JULIAN_DAY 0 /* Jn - Julian day */ | |
132 | #define DAY_OF_YEAR 1 /* n - day of year */ | |
133 | #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ | |
134 | ||
135 | /* | |
136 | ** Prototypes for static functions. | |
137 | */ | |
138 | ||
139 | static long detzcode P((const char * codep)); | |
140 | static time_t detzcode64 P((const char * codep)); | |
141 | static int differ_by_repeat P((time_t t1, time_t t0)); | |
142 | static const char * getzname P((const char * strp)); | |
143 | static const char * getqzname P((const char * strp, const int delim)); | |
144 | static const char * getnum P((const char * strp, int * nump, int min, | |
145 | int max)); | |
146 | static const char * getsecs P((const char * strp, long * secsp)); | |
147 | static const char * getoffset P((const char * strp, long * offsetp)); | |
148 | static const char * getrule P((const char * strp, struct rule * rulep)); | |
149 | static void gmtload P((struct state * sp)); | |
150 | static struct tm * gmtsub P((const time_t * timep, long offset, | |
151 | struct tm * tmp)); | |
152 | static struct tm * localsub P((const time_t * timep, long offset, | |
153 | struct tm * tmp)); | |
154 | static int increment_overflow P((int * number, int delta)); | |
155 | static int leaps_thru_end_of P((int y)); | |
156 | static int long_increment_overflow P((long * number, int delta)); | |
157 | static int long_normalize_overflow P((long * tensptr, | |
158 | int * unitsptr, int base)); | |
159 | static int normalize_overflow P((int * tensptr, int * unitsptr, | |
160 | int base)); | |
161 | static void settzname P((void)); | |
162 | static time_t time1 P((struct tm * tmp, | |
163 | struct tm * (*funcp) P((const time_t *, | |
164 | long, struct tm *)), | |
165 | long offset)); | |
166 | static time_t time2 P((struct tm *tmp, | |
167 | struct tm * (*funcp) P((const time_t *, | |
168 | long, struct tm*)), | |
169 | long offset, int * okayp)); | |
170 | static time_t time2sub P((struct tm *tmp, | |
171 | struct tm * (*funcp) P((const time_t *, | |
172 | long, struct tm*)), | |
173 | long offset, int * okayp, int do_norm_secs)); | |
174 | static struct tm * timesub P((const time_t * timep, long offset, | |
175 | const struct state * sp, struct tm * tmp)); | |
176 | static int tmcomp P((const struct tm * atmp, | |
177 | const struct tm * btmp)); | |
178 | static time_t transtime P((time_t janfirst, int year, | |
179 | const struct rule * rulep, long offset)); | |
180 | static int tzload P((const char * name, struct state * sp, | |
181 | int doextend)); | |
182 | static int tzparse P((const char * name, struct state * sp, | |
183 | int lastditch)); | |
184 | ||
185 | #ifdef ALL_STATE | |
186 | static struct state * lclptr; | |
187 | static struct state * gmtptr; | |
188 | #endif /* defined ALL_STATE */ | |
189 | ||
190 | #ifndef ALL_STATE | |
191 | static struct state lclmem; | |
192 | static struct state gmtmem; | |
193 | #define lclptr (&lclmem) | |
194 | #define gmtptr (&gmtmem) | |
195 | #endif /* State Farm */ | |
196 | ||
197 | #ifndef TZ_STRLEN_MAX | |
198 | #define TZ_STRLEN_MAX 255 | |
199 | #endif /* !defined TZ_STRLEN_MAX */ | |
200 | ||
201 | static char lcl_TZname[TZ_STRLEN_MAX + 1]; | |
202 | static int lcl_is_set; | |
203 | static int gmt_is_set; | |
204 | ||
205 | char * tzname[2] = { | |
206 | wildabbr, | |
207 | wildabbr | |
208 | }; | |
209 | ||
210 | /* | |
211 | ** Section 4.12.3 of X3.159-1989 requires that | |
212 | ** Except for the strftime function, these functions [asctime, | |
213 | ** ctime, gmtime, localtime] return values in one of two static | |
214 | ** objects: a broken-down time structure and an array of char. | |
215 | ** Thanks to Paul Eggert for noting this. | |
216 | */ | |
217 | ||
218 | static struct tm tm; | |
219 | ||
220 | #ifdef USG_COMPAT | |
221 | time_t timezone = 0; | |
222 | int daylight = 0; | |
223 | #endif /* defined USG_COMPAT */ | |
224 | ||
225 | #ifdef ALTZONE | |
226 | time_t altzone = 0; | |
227 | #endif /* defined ALTZONE */ | |
228 | ||
229 | static long | |
230 | detzcode(codep) | |
231 | const char * const codep; | |
232 | { | |
233 | register long result; | |
234 | register int i; | |
235 | ||
236 | result = (codep[0] & 0x80) ? ~0L : 0; | |
237 | for (i = 0; i < 4; ++i) | |
238 | result = (result << 8) | (codep[i] & 0xff); | |
239 | return result; | |
240 | } | |
241 | ||
242 | static time_t | |
243 | detzcode64(codep) | |
244 | const char * const codep; | |
245 | { | |
246 | register time_t result; | |
247 | register int i; | |
248 | ||
249 | result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0; | |
250 | for (i = 0; i < 8; ++i) | |
251 | result = result * 256 + (codep[i] & 0xff); | |
252 | return result; | |
253 | } | |
254 | ||
255 | static void | |
256 | settzname P((void)) | |
257 | { | |
258 | register struct state * const sp = lclptr; | |
259 | register int i; | |
260 | ||
261 | tzname[0] = wildabbr; | |
262 | tzname[1] = wildabbr; | |
263 | #ifdef USG_COMPAT | |
264 | daylight = 0; | |
265 | timezone = 0; | |
266 | #endif /* defined USG_COMPAT */ | |
267 | #ifdef ALTZONE | |
268 | altzone = 0; | |
269 | #endif /* defined ALTZONE */ | |
270 | #ifdef ALL_STATE | |
271 | if (sp == NULL) { | |
272 | tzname[0] = tzname[1] = gmt; | |
273 | return; | |
274 | } | |
275 | #endif /* defined ALL_STATE */ | |
276 | for (i = 0; i < sp->typecnt; ++i) { | |
277 | register const struct ttinfo * const ttisp = &sp->ttis[i]; | |
278 | ||
279 | tzname[ttisp->tt_isdst] = | |
280 | &sp->chars[ttisp->tt_abbrind]; | |
281 | #ifdef USG_COMPAT | |
282 | if (ttisp->tt_isdst) | |
283 | daylight = 1; | |
284 | if (i == 0 || !ttisp->tt_isdst) | |
285 | timezone = -(ttisp->tt_gmtoff); | |
286 | #endif /* defined USG_COMPAT */ | |
287 | #ifdef ALTZONE | |
288 | if (i == 0 || ttisp->tt_isdst) | |
289 | altzone = -(ttisp->tt_gmtoff); | |
290 | #endif /* defined ALTZONE */ | |
291 | } | |
292 | /* | |
293 | ** And to get the latest zone names into tzname. . . | |
294 | */ | |
295 | for (i = 0; i < sp->timecnt; ++i) { | |
296 | register const struct ttinfo * const ttisp = | |
297 | &sp->ttis[ | |
298 | sp->types[i]]; | |
299 | ||
300 | tzname[ttisp->tt_isdst] = | |
301 | &sp->chars[ttisp->tt_abbrind]; | |
302 | } | |
303 | /* | |
304 | ** Finally, scrub the abbreviations. | |
305 | ** First, replace bogus characters. | |
306 | */ | |
307 | for (i = 0; i < sp->charcnt; ++i) | |
308 | if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) | |
309 | sp->chars[i] = TZ_ABBR_ERR_CHAR; | |
310 | /* | |
311 | ** Second, truncate long abbreviations. | |
312 | */ | |
313 | for (i = 0; i < sp->typecnt; ++i) { | |
314 | register const struct ttinfo * const ttisp = &sp->ttis[i]; | |
315 | register char * cp = &sp->chars[ttisp->tt_abbrind]; | |
316 | ||
317 | if (strlen(cp) > TZ_ABBR_MAX_LEN && | |
318 | strcmp(cp, GRANDPARENTED) != 0) | |
319 | *(cp + TZ_ABBR_MAX_LEN) = '\0'; | |
320 | } | |
321 | } | |
322 | ||
323 | static int | |
324 | differ_by_repeat(t1, t0) | |
325 | const time_t t1; | |
326 | const time_t t0; | |
327 | { | |
328 | if (TYPE_INTEGRAL(time_t) && | |
329 | TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) | |
330 | return 0; | |
331 | return t1 - t0 == SECSPERREPEAT; | |
332 | } | |
333 | ||
334 | static int | |
335 | tzload(name, sp, doextend) | |
336 | register const char * name; | |
337 | register struct state * const sp; | |
338 | register const int doextend; | |
339 | { | |
340 | register const char * p; | |
341 | register int i; | |
342 | register int fid; | |
343 | register int stored; | |
344 | register int nread; | |
345 | union { | |
346 | struct tzhead tzhead; | |
347 | char buf[2 * sizeof(struct tzhead) + | |
348 | 2 * sizeof *sp + | |
349 | 4 * TZ_MAX_TIMES]; | |
350 | } u; | |
351 | ||
352 | if (name == NULL && (name = TZDEFAULT) == NULL) | |
353 | return -1; | |
354 | { | |
355 | register int doaccess; | |
356 | /* | |
357 | ** Section 4.9.1 of the C standard says that | |
358 | ** "FILENAME_MAX expands to an integral constant expression | |
359 | ** that is the size needed for an array of char large enough | |
360 | ** to hold the longest file name string that the implementation | |
361 | ** guarantees can be opened." | |
362 | */ | |
363 | char fullname[FILENAME_MAX + 1]; | |
364 | ||
365 | if (name[0] == ':') | |
366 | ++name; | |
367 | doaccess = name[0] == '/'; | |
368 | if (!doaccess) { | |
369 | if ((p = TZDIR) == NULL) | |
370 | return -1; | |
371 | if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) | |
372 | return -1; | |
373 | (void) strcpy(fullname, p); | |
374 | (void) strcat(fullname, "/"); | |
375 | (void) strcat(fullname, name); | |
376 | /* | |
377 | ** Set doaccess if '.' (as in "../") shows up in name. | |
378 | */ | |
379 | if (strchr(name, '.') != NULL) | |
380 | doaccess = TRUE; | |
381 | name = fullname; | |
382 | } | |
383 | if (doaccess && access(name, R_OK) != 0) | |
384 | return -1; | |
385 | if ((fid = open(name, OPEN_MODE)) == -1) | |
386 | return -1; | |
387 | } | |
388 | nread = read(fid, u.buf, sizeof u.buf); | |
389 | if (close(fid) < 0 || nread <= 0) | |
390 | return -1; | |
391 | for (stored = 4; stored <= 8; stored *= 2) { | |
392 | int ttisstdcnt; | |
393 | int ttisgmtcnt; | |
394 | ||
395 | ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); | |
396 | ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); | |
397 | sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); | |
398 | sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); | |
399 | sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); | |
400 | sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); | |
401 | p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; | |
402 | if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || | |
403 | sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || | |
404 | sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || | |
405 | sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || | |
406 | (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || | |
407 | (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) | |
408 | return -1; | |
409 | if (nread - (p - u.buf) < | |
410 | sp->timecnt * stored + /* ats */ | |
411 | sp->timecnt + /* types */ | |
412 | sp->typecnt * 6 + /* ttinfos */ | |
413 | sp->charcnt + /* chars */ | |
414 | sp->leapcnt * (stored + 4) + /* lsinfos */ | |
415 | ttisstdcnt + /* ttisstds */ | |
416 | ttisgmtcnt) /* ttisgmts */ | |
417 | return -1; | |
418 | for (i = 0; i < sp->timecnt; ++i) { | |
419 | sp->ats[i] = (stored == 4) ? | |
420 | detzcode(p) : detzcode64(p); | |
421 | p += stored; | |
422 | } | |
423 | for (i = 0; i < sp->timecnt; ++i) { | |
424 | sp->types[i] = (unsigned char) *p++; | |
425 | if (sp->types[i] >= sp->typecnt) | |
426 | return -1; | |
427 | } | |
428 | for (i = 0; i < sp->typecnt; ++i) { | |
429 | register struct ttinfo * ttisp; | |
430 | ||
431 | ttisp = &sp->ttis[i]; | |
432 | ttisp->tt_gmtoff = detzcode(p); | |
433 | p += 4; | |
434 | ttisp->tt_isdst = (unsigned char) *p++; | |
435 | if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) | |
436 | return -1; | |
437 | ttisp->tt_abbrind = (unsigned char) *p++; | |
438 | if (ttisp->tt_abbrind < 0 || | |
439 | ttisp->tt_abbrind > sp->charcnt) | |
440 | return -1; | |
441 | } | |
442 | for (i = 0; i < sp->charcnt; ++i) | |
443 | sp->chars[i] = *p++; | |
444 | sp->chars[i] = '\0'; /* ensure '\0' at end */ | |
445 | for (i = 0; i < sp->leapcnt; ++i) { | |
446 | register struct lsinfo * lsisp; | |
447 | ||
448 | lsisp = &sp->lsis[i]; | |
449 | lsisp->ls_trans = (stored == 4) ? | |
450 | detzcode(p) : detzcode64(p); | |
451 | p += stored; | |
452 | lsisp->ls_corr = detzcode(p); | |
453 | p += 4; | |
454 | } | |
455 | for (i = 0; i < sp->typecnt; ++i) { | |
456 | register struct ttinfo * ttisp; | |
457 | ||
458 | ttisp = &sp->ttis[i]; | |
459 | if (ttisstdcnt == 0) | |
460 | ttisp->tt_ttisstd = FALSE; | |
461 | else { | |
462 | ttisp->tt_ttisstd = *p++; | |
463 | if (ttisp->tt_ttisstd != TRUE && | |
464 | ttisp->tt_ttisstd != FALSE) | |
465 | return -1; | |
466 | } | |
467 | } | |
468 | for (i = 0; i < sp->typecnt; ++i) { | |
469 | register struct ttinfo * ttisp; | |
470 | ||
471 | ttisp = &sp->ttis[i]; | |
472 | if (ttisgmtcnt == 0) | |
473 | ttisp->tt_ttisgmt = FALSE; | |
474 | else { | |
475 | ttisp->tt_ttisgmt = *p++; | |
476 | if (ttisp->tt_ttisgmt != TRUE && | |
477 | ttisp->tt_ttisgmt != FALSE) | |
478 | return -1; | |
479 | } | |
480 | } | |
481 | /* | |
482 | ** Out-of-sort ats should mean we're running on a | |
483 | ** signed time_t system but using a data file with | |
484 | ** unsigned values (or vice versa). | |
485 | */ | |
486 | for (i = 0; i < sp->timecnt - 2; ++i) | |
487 | if (sp->ats[i] > sp->ats[i + 1]) { | |
488 | ++i; | |
489 | if (TYPE_SIGNED(time_t)) { | |
490 | /* | |
491 | ** Ignore the end (easy). | |
492 | */ | |
493 | sp->timecnt = i; | |
494 | } else { | |
495 | /* | |
496 | ** Ignore the beginning (harder). | |
497 | */ | |
498 | register int j; | |
499 | ||
500 | for (j = 0; j + i < sp->timecnt; ++j) { | |
501 | sp->ats[j] = sp->ats[j + i]; | |
502 | sp->types[j] = sp->types[j + i]; | |
503 | } | |
504 | sp->timecnt = j; | |
505 | } | |
506 | break; | |
507 | } | |
508 | /* | |
509 | ** If this is an old file, we're done. | |
510 | */ | |
511 | if (u.tzhead.tzh_version[0] == '\0') | |
512 | break; | |
513 | nread -= p - u.buf; | |
514 | for (i = 0; i < nread; ++i) | |
515 | u.buf[i] = p[i]; | |
516 | /* | |
517 | ** If this is a narrow integer time_t system, we're done. | |
518 | */ | |
519 | if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t)) | |
520 | break; | |
521 | } | |
522 | if (doextend && nread > 2 && | |
523 | u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && | |
524 | sp->typecnt + 2 <= TZ_MAX_TYPES) { | |
525 | struct state ts; | |
526 | register int result; | |
527 | ||
528 | u.buf[nread - 1] = '\0'; | |
529 | result = tzparse(&u.buf[1], &ts, FALSE); | |
530 | if (result == 0 && ts.typecnt == 2 && | |
531 | sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { | |
532 | for (i = 0; i < 2; ++i) | |
533 | ts.ttis[i].tt_abbrind += | |
534 | sp->charcnt; | |
535 | for (i = 0; i < ts.charcnt; ++i) | |
536 | sp->chars[sp->charcnt++] = | |
537 | ts.chars[i]; | |
538 | i = 0; | |
539 | while (i < ts.timecnt && | |
540 | ts.ats[i] <= | |
541 | sp->ats[sp->timecnt - 1]) | |
542 | ++i; | |
543 | while (i < ts.timecnt && | |
544 | sp->timecnt < TZ_MAX_TIMES) { | |
545 | sp->ats[sp->timecnt] = | |
546 | ts.ats[i]; | |
547 | sp->types[sp->timecnt] = | |
548 | sp->typecnt + | |
549 | ts.types[i]; | |
550 | ++sp->timecnt; | |
551 | ++i; | |
552 | } | |
553 | sp->ttis[sp->typecnt++] = ts.ttis[0]; | |
554 | sp->ttis[sp->typecnt++] = ts.ttis[1]; | |
555 | } | |
556 | } | |
557 | i = 2 * YEARSPERREPEAT; | |
558 | sp->goback = sp->goahead = sp->timecnt > i; | |
559 | sp->goback = sp->goback && sp->types[i] == sp->types[0] && | |
560 | differ_by_repeat(sp->ats[i], sp->ats[0]); | |
561 | sp->goahead = sp->goahead && | |
562 | sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] && | |
563 | differ_by_repeat(sp->ats[sp->timecnt - 1], | |
564 | sp->ats[sp->timecnt - 1 - i]); | |
565 | return 0; | |
566 | } | |
567 | ||
568 | static const int mon_lengths[2][MONSPERYEAR] = { | |
569 | { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, | |
570 | { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } | |
571 | }; | |
572 | ||
573 | static const int year_lengths[2] = { | |
574 | DAYSPERNYEAR, DAYSPERLYEAR | |
575 | }; | |
576 | ||
577 | /* | |
578 | ** Given a pointer into a time zone string, scan until a character that is not | |
579 | ** a valid character in a zone name is found. Return a pointer to that | |
580 | ** character. | |
581 | */ | |
582 | ||
583 | static const char * | |
584 | getzname(strp) | |
585 | register const char * strp; | |
586 | { | |
587 | register char c; | |
588 | ||
589 | while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && | |
590 | c != '+') | |
591 | ++strp; | |
592 | return strp; | |
593 | } | |
594 | ||
595 | /* | |
596 | ** Given a pointer into an extended time zone string, scan until the ending | |
597 | ** delimiter of the zone name is located. Return a pointer to the delimiter. | |
598 | ** | |
599 | ** As with getzname above, the legal character set is actually quite | |
600 | ** restricted, with other characters producing undefined results. | |
601 | ** We don't do any checking here; checking is done later in common-case code. | |
602 | */ | |
603 | ||
604 | static const char * | |
605 | getqzname(register const char *strp, const int delim) | |
606 | { | |
607 | register int c; | |
608 | ||
609 | while ((c = *strp) != '\0' && c != delim) | |
610 | ++strp; | |
611 | return strp; | |
612 | } | |
613 | ||
614 | /* | |
615 | ** Given a pointer into a time zone string, extract a number from that string. | |
616 | ** Check that the number is within a specified range; if it is not, return | |
617 | ** NULL. | |
618 | ** Otherwise, return a pointer to the first character not part of the number. | |
619 | */ | |
620 | ||
621 | static const char * | |
622 | getnum(strp, nump, min, max) | |
623 | register const char * strp; | |
624 | int * const nump; | |
625 | const int min; | |
626 | const int max; | |
627 | { | |
628 | register char c; | |
629 | register int num; | |
630 | ||
631 | if (strp == NULL || !is_digit(c = *strp)) | |
632 | return NULL; | |
633 | num = 0; | |
634 | do { | |
635 | num = num * 10 + (c - '0'); | |
636 | if (num > max) | |
637 | return NULL; /* illegal value */ | |
638 | c = *++strp; | |
639 | } while (is_digit(c)); | |
640 | if (num < min) | |
641 | return NULL; /* illegal value */ | |
642 | *nump = num; | |
643 | return strp; | |
644 | } | |
645 | ||
646 | /* | |
647 | ** Given a pointer into a time zone string, extract a number of seconds, | |
648 | ** in hh[:mm[:ss]] form, from the string. | |
649 | ** If any error occurs, return NULL. | |
650 | ** Otherwise, return a pointer to the first character not part of the number | |
651 | ** of seconds. | |
652 | */ | |
653 | ||
654 | static const char * | |
655 | getsecs(strp, secsp) | |
656 | register const char * strp; | |
657 | long * const secsp; | |
658 | { | |
659 | int num; | |
660 | ||
661 | /* | |
662 | ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like | |
663 | ** "M10.4.6/26", which does not conform to Posix, | |
664 | ** but which specifies the equivalent of | |
665 | ** ``02:00 on the first Sunday on or after 23 Oct''. | |
666 | */ | |
667 | strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); | |
668 | if (strp == NULL) | |
669 | return NULL; | |
670 | *secsp = num * (long) SECSPERHOUR; | |
671 | if (*strp == ':') { | |
672 | ++strp; | |
673 | strp = getnum(strp, &num, 0, MINSPERHOUR - 1); | |
674 | if (strp == NULL) | |
675 | return NULL; | |
676 | *secsp += num * SECSPERMIN; | |
677 | if (*strp == ':') { | |
678 | ++strp; | |
679 | /* `SECSPERMIN' allows for leap seconds. */ | |
680 | strp = getnum(strp, &num, 0, SECSPERMIN); | |
681 | if (strp == NULL) | |
682 | return NULL; | |
683 | *secsp += num; | |
684 | } | |
685 | } | |
686 | return strp; | |
687 | } | |
688 | ||
689 | /* | |
690 | ** Given a pointer into a time zone string, extract an offset, in | |
691 | ** [+-]hh[:mm[:ss]] form, from the string. | |
692 | ** If any error occurs, return NULL. | |
693 | ** Otherwise, return a pointer to the first character not part of the time. | |
694 | */ | |
695 | ||
696 | static const char * | |
697 | getoffset(strp, offsetp) | |
698 | register const char * strp; | |
699 | long * const offsetp; | |
700 | { | |
701 | register int neg = 0; | |
702 | ||
703 | if (*strp == '-') { | |
704 | neg = 1; | |
705 | ++strp; | |
706 | } else if (*strp == '+') | |
707 | ++strp; | |
708 | strp = getsecs(strp, offsetp); | |
709 | if (strp == NULL) | |
710 | return NULL; /* illegal time */ | |
711 | if (neg) | |
712 | *offsetp = -*offsetp; | |
713 | return strp; | |
714 | } | |
715 | ||
716 | /* | |
717 | ** Given a pointer into a time zone string, extract a rule in the form | |
718 | ** date[/time]. See POSIX section 8 for the format of "date" and "time". | |
719 | ** If a valid rule is not found, return NULL. | |
720 | ** Otherwise, return a pointer to the first character not part of the rule. | |
721 | */ | |
722 | ||
723 | static const char * | |
724 | getrule(strp, rulep) | |
725 | const char * strp; | |
726 | register struct rule * const rulep; | |
727 | { | |
728 | if (*strp == 'J') { | |
729 | /* | |
730 | ** Julian day. | |
731 | */ | |
732 | rulep->r_type = JULIAN_DAY; | |
733 | ++strp; | |
734 | strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); | |
735 | } else if (*strp == 'M') { | |
736 | /* | |
737 | ** Month, week, day. | |
738 | */ | |
739 | rulep->r_type = MONTH_NTH_DAY_OF_WEEK; | |
740 | ++strp; | |
741 | strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); | |
742 | if (strp == NULL) | |
743 | return NULL; | |
744 | if (*strp++ != '.') | |
745 | return NULL; | |
746 | strp = getnum(strp, &rulep->r_week, 1, 5); | |
747 | if (strp == NULL) | |
748 | return NULL; | |
749 | if (*strp++ != '.') | |
750 | return NULL; | |
751 | strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); | |
752 | } else if (is_digit(*strp)) { | |
753 | /* | |
754 | ** Day of year. | |
755 | */ | |
756 | rulep->r_type = DAY_OF_YEAR; | |
757 | strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); | |
758 | } else return NULL; /* invalid format */ | |
759 | if (strp == NULL) | |
760 | return NULL; | |
761 | if (*strp == '/') { | |
762 | /* | |
763 | ** Time specified. | |
764 | */ | |
765 | ++strp; | |
766 | strp = getsecs(strp, &rulep->r_time); | |
767 | } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ | |
768 | return strp; | |
769 | } | |
770 | ||
771 | /* | |
772 | ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the | |
773 | ** year, a rule, and the offset from UTC at the time that rule takes effect, | |
774 | ** calculate the Epoch-relative time that rule takes effect. | |
775 | */ | |
776 | ||
777 | static time_t | |
778 | transtime(janfirst, year, rulep, offset) | |
779 | const time_t janfirst; | |
780 | const int year; | |
781 | register const struct rule * const rulep; | |
782 | const long offset; | |
783 | { | |
784 | register int leapyear; | |
785 | register time_t value; | |
786 | register int i; | |
787 | int d, m1, yy0, yy1, yy2, dow; | |
788 | ||
789 | INITIALIZE(value); | |
790 | leapyear = isleap(year); | |
791 | switch (rulep->r_type) { | |
792 | ||
793 | case JULIAN_DAY: | |
794 | /* | |
795 | ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap | |
796 | ** years. | |
797 | ** In non-leap years, or if the day number is 59 or less, just | |
798 | ** add SECSPERDAY times the day number-1 to the time of | |
799 | ** January 1, midnight, to get the day. | |
800 | */ | |
801 | value = janfirst + (rulep->r_day - 1) * SECSPERDAY; | |
802 | if (leapyear && rulep->r_day >= 60) | |
803 | value += SECSPERDAY; | |
804 | break; | |
805 | ||
806 | case DAY_OF_YEAR: | |
807 | /* | |
808 | ** n - day of year. | |
809 | ** Just add SECSPERDAY times the day number to the time of | |
810 | ** January 1, midnight, to get the day. | |
811 | */ | |
812 | value = janfirst + rulep->r_day * SECSPERDAY; | |
813 | break; | |
814 | ||
815 | case MONTH_NTH_DAY_OF_WEEK: | |
816 | /* | |
817 | ** Mm.n.d - nth "dth day" of month m. | |
818 | */ | |
819 | value = janfirst; | |
820 | for (i = 0; i < rulep->r_mon - 1; ++i) | |
821 | value += mon_lengths[leapyear][i] * SECSPERDAY; | |
822 | ||
823 | /* | |
824 | ** Use Zeller's Congruence to get day-of-week of first day of | |
825 | ** month. | |
826 | */ | |
827 | m1 = (rulep->r_mon + 9) % 12 + 1; | |
828 | yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; | |
829 | yy1 = yy0 / 100; | |
830 | yy2 = yy0 % 100; | |
831 | dow = ((26 * m1 - 2) / 10 + | |
832 | 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; | |
833 | if (dow < 0) | |
834 | dow += DAYSPERWEEK; | |
835 | ||
836 | /* | |
837 | ** "dow" is the day-of-week of the first day of the month. Get | |
838 | ** the day-of-month (zero-origin) of the first "dow" day of the | |
839 | ** month. | |
840 | */ | |
841 | d = rulep->r_day - dow; | |
842 | if (d < 0) | |
843 | d += DAYSPERWEEK; | |
844 | for (i = 1; i < rulep->r_week; ++i) { | |
845 | if (d + DAYSPERWEEK >= | |
846 | mon_lengths[leapyear][rulep->r_mon - 1]) | |
847 | break; | |
848 | d += DAYSPERWEEK; | |
849 | } | |
850 | ||
851 | /* | |
852 | ** "d" is the day-of-month (zero-origin) of the day we want. | |
853 | */ | |
854 | value += d * SECSPERDAY; | |
855 | break; | |
856 | } | |
857 | ||
858 | /* | |
859 | ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in | |
860 | ** question. To get the Epoch-relative time of the specified local | |
861 | ** time on that day, add the transition time and the current offset | |
862 | ** from UTC. | |
863 | */ | |
864 | return value + rulep->r_time + offset; | |
865 | } | |
866 | ||
867 | /* | |
868 | ** Given a POSIX section 8-style TZ string, fill in the rule tables as | |
869 | ** appropriate. | |
870 | */ | |
871 | ||
872 | static int | |
873 | tzparse(name, sp, lastditch) | |
874 | const char * name; | |
875 | register struct state * const sp; | |
876 | const int lastditch; | |
877 | { | |
878 | const char * stdname; | |
879 | const char * dstname; | |
880 | size_t stdlen; | |
881 | size_t dstlen; | |
882 | long stdoffset; | |
883 | long dstoffset; | |
884 | register time_t * atp; | |
885 | register unsigned char * typep; | |
886 | register char * cp; | |
887 | register int load_result; | |
888 | ||
889 | INITIALIZE(dstname); | |
890 | stdname = name; | |
891 | if (lastditch) { | |
892 | stdlen = strlen(name); /* length of standard zone name */ | |
893 | name += stdlen; | |
894 | if (stdlen >= sizeof sp->chars) | |
895 | stdlen = (sizeof sp->chars) - 1; | |
896 | stdoffset = 0; | |
897 | } else { | |
898 | if (*name == '<') { | |
899 | name++; | |
900 | stdname = name; | |
901 | name = getqzname(name, '>'); | |
902 | if (*name != '>') | |
903 | return (-1); | |
904 | stdlen = name - stdname; | |
905 | name++; | |
906 | } else { | |
907 | name = getzname(name); | |
908 | stdlen = name - stdname; | |
909 | } | |
910 | if (*name == '\0') | |
911 | return -1; | |
912 | name = getoffset(name, &stdoffset); | |
913 | if (name == NULL) | |
914 | return -1; | |
915 | } | |
916 | load_result = tzload(TZDEFRULES, sp, FALSE); | |
917 | if (load_result != 0) | |
918 | sp->leapcnt = 0; /* so, we're off a little */ | |
919 | if (*name != '\0') { | |
920 | if (*name == '<') { | |
921 | dstname = ++name; | |
922 | name = getqzname(name, '>'); | |
923 | if (*name != '>') | |
924 | return -1; | |
925 | dstlen = name - dstname; | |
926 | name++; | |
927 | } else { | |
928 | dstname = name; | |
929 | name = getzname(name); | |
930 | dstlen = name - dstname; /* length of DST zone name */ | |
931 | } | |
932 | if (*name != '\0' && *name != ',' && *name != ';') { | |
933 | name = getoffset(name, &dstoffset); | |
934 | if (name == NULL) | |
935 | return -1; | |
936 | } else dstoffset = stdoffset - SECSPERHOUR; | |
937 | if (*name == '\0' && load_result != 0) | |
938 | name = TZDEFRULESTRING; | |
939 | if (*name == ',' || *name == ';') { | |
940 | struct rule start; | |
941 | struct rule end; | |
942 | register int year; | |
943 | register time_t janfirst; | |
944 | time_t starttime; | |
945 | time_t endtime; | |
946 | ||
947 | ++name; | |
948 | if ((name = getrule(name, &start)) == NULL) | |
949 | return -1; | |
950 | if (*name++ != ',') | |
951 | return -1; | |
952 | if ((name = getrule(name, &end)) == NULL) | |
953 | return -1; | |
954 | if (*name != '\0') | |
955 | return -1; | |
956 | sp->typecnt = 2; /* standard time and DST */ | |
957 | /* | |
958 | ** Two transitions per year, from EPOCH_YEAR forward. | |
959 | */ | |
960 | sp->ttis[0].tt_gmtoff = -dstoffset; | |
961 | sp->ttis[0].tt_isdst = 1; | |
962 | sp->ttis[0].tt_abbrind = stdlen + 1; | |
963 | sp->ttis[1].tt_gmtoff = -stdoffset; | |
964 | sp->ttis[1].tt_isdst = 0; | |
965 | sp->ttis[1].tt_abbrind = 0; | |
966 | atp = sp->ats; | |
967 | typep = sp->types; | |
968 | janfirst = 0; | |
969 | sp->timecnt = 0; | |
970 | for (year = EPOCH_YEAR; | |
971 | sp->timecnt + 2 <= TZ_MAX_TIMES; | |
972 | ++year) { | |
973 | time_t newfirst; | |
974 | ||
975 | starttime = transtime(janfirst, year, &start, | |
976 | stdoffset); | |
977 | endtime = transtime(janfirst, year, &end, | |
978 | dstoffset); | |
979 | if (starttime > endtime) { | |
980 | *atp++ = endtime; | |
981 | *typep++ = 1; /* DST ends */ | |
982 | *atp++ = starttime; | |
983 | *typep++ = 0; /* DST begins */ | |
984 | } else { | |
985 | *atp++ = starttime; | |
986 | *typep++ = 0; /* DST begins */ | |
987 | *atp++ = endtime; | |
988 | *typep++ = 1; /* DST ends */ | |
989 | } | |
990 | sp->timecnt += 2; | |
991 | newfirst = janfirst; | |
992 | newfirst += year_lengths[isleap(year)] * | |
993 | SECSPERDAY; | |
994 | if (newfirst <= janfirst) | |
995 | break; | |
996 | janfirst = newfirst; | |
997 | } | |
998 | } else { | |
999 | register long theirstdoffset; | |
1000 | register long theirdstoffset; | |
1001 | register long theiroffset; | |
1002 | register int isdst; | |
1003 | register int i; | |
1004 | register int j; | |
1005 | ||
1006 | if (*name != '\0') | |
1007 | return -1; | |
1008 | /* | |
1009 | ** Initial values of theirstdoffset and theirdstoffset. | |
1010 | */ | |
1011 | theirstdoffset = 0; | |
1012 | for (i = 0; i < sp->timecnt; ++i) { | |
1013 | j = sp->types[i]; | |
1014 | if (!sp->ttis[j].tt_isdst) { | |
1015 | theirstdoffset = | |
1016 | -sp->ttis[j].tt_gmtoff; | |
1017 | break; | |
1018 | } | |
1019 | } | |
1020 | theirdstoffset = 0; | |
1021 | for (i = 0; i < sp->timecnt; ++i) { | |
1022 | j = sp->types[i]; | |
1023 | if (sp->ttis[j].tt_isdst) { | |
1024 | theirdstoffset = | |
1025 | -sp->ttis[j].tt_gmtoff; | |
1026 | break; | |
1027 | } | |
1028 | } | |
1029 | /* | |
1030 | ** Initially we're assumed to be in standard time. | |
1031 | */ | |
1032 | isdst = FALSE; | |
1033 | theiroffset = theirstdoffset; | |
1034 | /* | |
1035 | ** Now juggle transition times and types | |
1036 | ** tracking offsets as you do. | |
1037 | */ | |
1038 | for (i = 0; i < sp->timecnt; ++i) { | |
1039 | j = sp->types[i]; | |
1040 | sp->types[i] = sp->ttis[j].tt_isdst; | |
1041 | if (sp->ttis[j].tt_ttisgmt) { | |
1042 | /* No adjustment to transition time */ | |
1043 | } else { | |
1044 | /* | |
1045 | ** If summer time is in effect, and the | |
1046 | ** transition time was not specified as | |
1047 | ** standard time, add the summer time | |
1048 | ** offset to the transition time; | |
1049 | ** otherwise, add the standard time | |
1050 | ** offset to the transition time. | |
1051 | */ | |
1052 | /* | |
1053 | ** Transitions from DST to DDST | |
1054 | ** will effectively disappear since | |
1055 | ** POSIX provides for only one DST | |
1056 | ** offset. | |
1057 | */ | |
1058 | if (isdst && !sp->ttis[j].tt_ttisstd) { | |
1059 | sp->ats[i] += dstoffset - | |
1060 | theirdstoffset; | |
1061 | } else { | |
1062 | sp->ats[i] += stdoffset - | |
1063 | theirstdoffset; | |
1064 | } | |
1065 | } | |
1066 | theiroffset = -sp->ttis[j].tt_gmtoff; | |
1067 | if (sp->ttis[j].tt_isdst) | |
1068 | theirdstoffset = theiroffset; | |
1069 | else theirstdoffset = theiroffset; | |
1070 | } | |
1071 | /* | |
1072 | ** Finally, fill in ttis. | |
1073 | ** ttisstd and ttisgmt need not be handled. | |
1074 | */ | |
1075 | sp->ttis[0].tt_gmtoff = -stdoffset; | |
1076 | sp->ttis[0].tt_isdst = FALSE; | |
1077 | sp->ttis[0].tt_abbrind = 0; | |
1078 | sp->ttis[1].tt_gmtoff = -dstoffset; | |
1079 | sp->ttis[1].tt_isdst = TRUE; | |
1080 | sp->ttis[1].tt_abbrind = stdlen + 1; | |
1081 | sp->typecnt = 2; | |
1082 | } | |
1083 | } else { | |
1084 | dstlen = 0; | |
1085 | sp->typecnt = 1; /* only standard time */ | |
1086 | sp->timecnt = 0; | |
1087 | sp->ttis[0].tt_gmtoff = -stdoffset; | |
1088 | sp->ttis[0].tt_isdst = 0; | |
1089 | sp->ttis[0].tt_abbrind = 0; | |
1090 | } | |
1091 | sp->charcnt = stdlen + 1; | |
1092 | if (dstlen != 0) | |
1093 | sp->charcnt += dstlen + 1; | |
1094 | if ((size_t) sp->charcnt > sizeof sp->chars) | |
1095 | return -1; | |
1096 | cp = sp->chars; | |
1097 | (void) strncpy(cp, stdname, stdlen); | |
1098 | cp += stdlen; | |
1099 | *cp++ = '\0'; | |
1100 | if (dstlen != 0) { | |
1101 | (void) strncpy(cp, dstname, dstlen); | |
1102 | *(cp + dstlen) = '\0'; | |
1103 | } | |
1104 | return 0; | |
1105 | } | |
1106 | ||
1107 | static void | |
1108 | gmtload(sp) | |
1109 | struct state * const sp; | |
1110 | { | |
1111 | if (tzload(gmt, sp, TRUE) != 0) | |
1112 | (void) tzparse(gmt, sp, TRUE); | |
1113 | } | |
1114 | ||
1115 | #ifndef STD_INSPIRED | |
1116 | /* | |
1117 | ** A non-static declaration of tzsetwall in a system header file | |
1118 | ** may cause a warning about this upcoming static declaration... | |
1119 | */ | |
1120 | static | |
1121 | #endif /* !defined STD_INSPIRED */ | |
1122 | void | |
1123 | tzsetwall P((void)) | |
1124 | { | |
1125 | if (lcl_is_set < 0) | |
1126 | return; | |
1127 | lcl_is_set = -1; | |
1128 | ||
1129 | #ifdef ALL_STATE | |
1130 | if (lclptr == NULL) { | |
1131 | lclptr = (struct state *) malloc(sizeof *lclptr); | |
1132 | if (lclptr == NULL) { | |
1133 | settzname(); /* all we can do */ | |
1134 | return; | |
1135 | } | |
1136 | } | |
1137 | #endif /* defined ALL_STATE */ | |
1138 | if (tzload((char *) NULL, lclptr, TRUE) != 0) | |
1139 | gmtload(lclptr); | |
1140 | settzname(); | |
1141 | } | |
1142 | ||
1143 | void | |
1144 | tzset P((void)) | |
1145 | { | |
1146 | register const char * name; | |
1147 | ||
1148 | name = getenv("TZ"); | |
1149 | if (name == NULL) { | |
1150 | tzsetwall(); | |
1151 | return; | |
1152 | } | |
1153 | ||
1154 | if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) | |
1155 | return; | |
1156 | lcl_is_set = strlen(name) < sizeof lcl_TZname; | |
1157 | if (lcl_is_set) | |
1158 | (void) strcpy(lcl_TZname, name); | |
1159 | ||
1160 | #ifdef ALL_STATE | |
1161 | if (lclptr == NULL) { | |
1162 | lclptr = (struct state *) malloc(sizeof *lclptr); | |
1163 | if (lclptr == NULL) { | |
1164 | settzname(); /* all we can do */ | |
1165 | return; | |
1166 | } | |
1167 | } | |
1168 | #endif /* defined ALL_STATE */ | |
1169 | if (*name == '\0') { | |
1170 | /* | |
1171 | ** User wants it fast rather than right. | |
1172 | */ | |
1173 | lclptr->leapcnt = 0; /* so, we're off a little */ | |
1174 | lclptr->timecnt = 0; | |
1175 | lclptr->typecnt = 0; | |
1176 | lclptr->ttis[0].tt_isdst = 0; | |
1177 | lclptr->ttis[0].tt_gmtoff = 0; | |
1178 | lclptr->ttis[0].tt_abbrind = 0; | |
1179 | (void) strcpy(lclptr->chars, gmt); | |
1180 | } else if (tzload(name, lclptr, TRUE) != 0) | |
1181 | if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) | |
1182 | (void) gmtload(lclptr); | |
1183 | settzname(); | |
1184 | } | |
1185 | ||
1186 | /* | |
1187 | ** The easy way to behave "as if no library function calls" localtime | |
1188 | ** is to not call it--so we drop its guts into "localsub", which can be | |
1189 | ** freely called. (And no, the PANS doesn't require the above behavior-- | |
1190 | ** but it *is* desirable.) | |
1191 | ** | |
1192 | ** The unused offset argument is for the benefit of mktime variants. | |
1193 | */ | |
1194 | ||
1195 | /*ARGSUSED*/ | |
1196 | static struct tm * | |
1197 | localsub(timep, offset, tmp) | |
1198 | const time_t * const timep; | |
1199 | const long offset; | |
1200 | struct tm * const tmp; | |
1201 | { | |
1202 | register struct state * sp; | |
1203 | register const struct ttinfo * ttisp; | |
1204 | register int i; | |
1205 | register struct tm * result; | |
1206 | const time_t t = *timep; | |
1207 | ||
1208 | sp = lclptr; | |
1209 | #ifdef ALL_STATE | |
1210 | if (sp == NULL) | |
1211 | return gmtsub(timep, offset, tmp); | |
1212 | #endif /* defined ALL_STATE */ | |
1213 | if ((sp->goback && t < sp->ats[0]) || | |
1214 | (sp->goahead && t > sp->ats[sp->timecnt - 1])) { | |
1215 | time_t newt = t; | |
1216 | register time_t seconds; | |
1217 | register time_t tcycles; | |
1218 | register int_fast64_t icycles; | |
1219 | ||
1220 | if (t < sp->ats[0]) | |
1221 | seconds = sp->ats[0] - t; | |
1222 | else seconds = t - sp->ats[sp->timecnt - 1]; | |
1223 | --seconds; | |
1224 | tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; | |
1225 | ++tcycles; | |
1226 | icycles = tcycles; | |
1227 | if (tcycles - icycles >= 1 || icycles - tcycles >= 1) | |
1228 | return NULL; | |
1229 | seconds = icycles; | |
1230 | seconds *= YEARSPERREPEAT; | |
1231 | seconds *= AVGSECSPERYEAR; | |
1232 | if (t < sp->ats[0]) | |
1233 | newt += seconds; | |
1234 | else newt -= seconds; | |
1235 | if (newt < sp->ats[0] || | |
1236 | newt > sp->ats[sp->timecnt - 1]) | |
1237 | return NULL; /* "cannot happen" */ | |
1238 | result = localsub(&newt, offset, tmp); | |
1239 | if (result == tmp) { | |
1240 | register time_t newy; | |
1241 | ||
1242 | newy = tmp->tm_year; | |
1243 | if (t < sp->ats[0]) | |
1244 | newy -= icycles * YEARSPERREPEAT; | |
1245 | else newy += icycles * YEARSPERREPEAT; | |
1246 | tmp->tm_year = newy; | |
1247 | if (tmp->tm_year != newy) | |
1248 | return NULL; | |
1249 | } | |
1250 | return result; | |
1251 | } | |
1252 | if (sp->timecnt == 0 || t < sp->ats[0]) { | |
1253 | i = 0; | |
1254 | while (sp->ttis[i].tt_isdst) | |
1255 | if (++i >= sp->typecnt) { | |
1256 | i = 0; | |
1257 | break; | |
1258 | } | |
1259 | } else { | |
1260 | register int lo = 1; | |
1261 | register int hi = sp->timecnt; | |
1262 | ||
1263 | while (lo < hi) { | |
1264 | register int mid = (lo + hi) >> 1; | |
1265 | ||
1266 | if (t < sp->ats[mid]) | |
1267 | hi = mid; | |
1268 | else lo = mid + 1; | |
1269 | } | |
1270 | i = (int) sp->types[lo - 1]; | |
1271 | } | |
1272 | ttisp = &sp->ttis[i]; | |
1273 | /* | |
1274 | ** To get (wrong) behavior that's compatible with System V Release 2.0 | |
1275 | ** you'd replace the statement below with | |
1276 | ** t += ttisp->tt_gmtoff; | |
1277 | ** timesub(&t, 0L, sp, tmp); | |
1278 | */ | |
1279 | result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); | |
1280 | tmp->tm_isdst = ttisp->tt_isdst; | |
1281 | tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; | |
1282 | #ifdef TM_ZONE | |
1283 | tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; | |
1284 | #endif /* defined TM_ZONE */ | |
1285 | return result; | |
1286 | } | |
1287 | ||
1288 | struct tm * | |
1289 | localtime(timep) | |
1290 | const time_t * const timep; | |
1291 | { | |
1292 | tzset(); | |
1293 | return localsub(timep, 0L, &tm); | |
1294 | } | |
1295 | ||
1296 | /* | |
1297 | ** Re-entrant version of localtime. | |
1298 | */ | |
1299 | ||
1300 | struct tm * | |
1301 | localtime_r(timep, tmp) | |
1302 | const time_t * const timep; | |
1303 | struct tm * tmp; | |
1304 | { | |
1305 | return localsub(timep, 0L, tmp); | |
1306 | } | |
1307 | ||
1308 | /* | |
1309 | ** gmtsub is to gmtime as localsub is to localtime. | |
1310 | */ | |
1311 | ||
1312 | static struct tm * | |
1313 | gmtsub(timep, offset, tmp) | |
1314 | const time_t * const timep; | |
1315 | const long offset; | |
1316 | struct tm * const tmp; | |
1317 | { | |
1318 | register struct tm * result; | |
1319 | ||
1320 | if (!gmt_is_set) { | |
1321 | gmt_is_set = TRUE; | |
1322 | #ifdef ALL_STATE | |
1323 | gmtptr = (struct state *) malloc(sizeof *gmtptr); | |
1324 | if (gmtptr != NULL) | |
1325 | #endif /* defined ALL_STATE */ | |
1326 | gmtload(gmtptr); | |
1327 | } | |
1328 | result = timesub(timep, offset, gmtptr, tmp); | |
1329 | #ifdef TM_ZONE | |
1330 | /* | |
1331 | ** Could get fancy here and deliver something such as | |
1332 | ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, | |
1333 | ** but this is no time for a treasure hunt. | |
1334 | */ | |
1335 | if (offset != 0) | |
1336 | tmp->TM_ZONE = wildabbr; | |
1337 | else { | |
1338 | #ifdef ALL_STATE | |
1339 | if (gmtptr == NULL) | |
1340 | tmp->TM_ZONE = gmt; | |
1341 | else tmp->TM_ZONE = gmtptr->chars; | |
1342 | #endif /* defined ALL_STATE */ | |
1343 | #ifndef ALL_STATE | |
1344 | tmp->TM_ZONE = gmtptr->chars; | |
1345 | #endif /* State Farm */ | |
1346 | } | |
1347 | #endif /* defined TM_ZONE */ | |
1348 | return result; | |
1349 | } | |
1350 | ||
1351 | struct tm * | |
1352 | gmtime(timep) | |
1353 | const time_t * const timep; | |
1354 | { | |
1355 | return gmtsub(timep, 0L, &tm); | |
1356 | } | |
1357 | ||
1358 | /* | |
1359 | * Re-entrant version of gmtime. | |
1360 | */ | |
1361 | ||
1362 | struct tm * | |
1363 | gmtime_r(timep, tmp) | |
1364 | const time_t * const timep; | |
1365 | struct tm * tmp; | |
1366 | { | |
1367 | return gmtsub(timep, 0L, tmp); | |
1368 | } | |
1369 | ||
1370 | #ifdef STD_INSPIRED | |
1371 | ||
1372 | struct tm * | |
1373 | offtime(timep, offset) | |
1374 | const time_t * const timep; | |
1375 | const long offset; | |
1376 | { | |
1377 | return gmtsub(timep, offset, &tm); | |
1378 | } | |
1379 | ||
1380 | #endif /* defined STD_INSPIRED */ | |
1381 | ||
1382 | /* | |
1383 | ** Return the number of leap years through the end of the given year | |
1384 | ** where, to make the math easy, the answer for year zero is defined as zero. | |
1385 | */ | |
1386 | ||
1387 | static int | |
1388 | leaps_thru_end_of(y) | |
1389 | register const int y; | |
1390 | { | |
1391 | return (y >= 0) ? (y / 4 - y / 100 + y / 400) : | |
1392 | -(leaps_thru_end_of(-(y + 1)) + 1); | |
1393 | } | |
1394 | ||
1395 | static struct tm * | |
1396 | timesub(timep, offset, sp, tmp) | |
1397 | const time_t * const timep; | |
1398 | const long offset; | |
1399 | register const struct state * const sp; | |
1400 | register struct tm * const tmp; | |
1401 | { | |
1402 | register const struct lsinfo * lp; | |
1403 | register time_t tdays; | |
1404 | register int idays; /* unsigned would be so 2003 */ | |
1405 | register long rem; | |
1406 | int y; | |
1407 | register const int * ip; | |
1408 | register long corr; | |
1409 | register int hit; | |
1410 | register int i; | |
1411 | ||
1412 | corr = 0; | |
1413 | hit = 0; | |
1414 | #ifdef ALL_STATE | |
1415 | i = (sp == NULL) ? 0 : sp->leapcnt; | |
1416 | #endif /* defined ALL_STATE */ | |
1417 | #ifndef ALL_STATE | |
1418 | i = sp->leapcnt; | |
1419 | #endif /* State Farm */ | |
1420 | while (--i >= 0) { | |
1421 | lp = &sp->lsis[i]; | |
1422 | if (*timep >= lp->ls_trans) { | |
1423 | if (*timep == lp->ls_trans) { | |
1424 | hit = ((i == 0 && lp->ls_corr > 0) || | |
1425 | lp->ls_corr > sp->lsis[i - 1].ls_corr); | |
1426 | if (hit) | |
1427 | while (i > 0 && | |
1428 | sp->lsis[i].ls_trans == | |
1429 | sp->lsis[i - 1].ls_trans + 1 && | |
1430 | sp->lsis[i].ls_corr == | |
1431 | sp->lsis[i - 1].ls_corr + 1) { | |
1432 | ++hit; | |
1433 | --i; | |
1434 | } | |
1435 | } | |
1436 | corr = lp->ls_corr; | |
1437 | break; | |
1438 | } | |
1439 | } | |
1440 | y = EPOCH_YEAR; | |
1441 | tdays = *timep / SECSPERDAY; | |
1442 | rem = *timep - tdays * SECSPERDAY; | |
1443 | while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { | |
1444 | int newy; | |
1445 | register time_t tdelta; | |
1446 | register int idelta; | |
1447 | register int leapdays; | |
1448 | ||
1449 | tdelta = tdays / DAYSPERLYEAR; | |
1450 | idelta = tdelta; | |
1451 | if (tdelta - idelta >= 1 || idelta - tdelta >= 1) | |
1452 | return NULL; | |
1453 | if (idelta == 0) | |
1454 | idelta = (tdays < 0) ? -1 : 1; | |
1455 | newy = y; | |
1456 | if (increment_overflow(&newy, idelta)) | |
1457 | return NULL; | |
1458 | leapdays = leaps_thru_end_of(newy - 1) - | |
1459 | leaps_thru_end_of(y - 1); | |
1460 | tdays -= ((time_t) newy - y) * DAYSPERNYEAR; | |
1461 | tdays -= leapdays; | |
1462 | y = newy; | |
1463 | } | |
1464 | { | |
1465 | register long seconds; | |
1466 | ||
1467 | seconds = tdays * SECSPERDAY + 0.5; | |
1468 | tdays = seconds / SECSPERDAY; | |
1469 | rem += seconds - tdays * SECSPERDAY; | |
1470 | } | |
1471 | /* | |
1472 | ** Given the range, we can now fearlessly cast... | |
1473 | */ | |
1474 | idays = tdays; | |
1475 | rem += offset - corr; | |
1476 | while (rem < 0) { | |
1477 | rem += SECSPERDAY; | |
1478 | --idays; | |
1479 | } | |
1480 | while (rem >= SECSPERDAY) { | |
1481 | rem -= SECSPERDAY; | |
1482 | ++idays; | |
1483 | } | |
1484 | while (idays < 0) { | |
1485 | if (increment_overflow(&y, -1)) | |
1486 | return NULL; | |
1487 | idays += year_lengths[isleap(y)]; | |
1488 | } | |
1489 | while (idays >= year_lengths[isleap(y)]) { | |
1490 | idays -= year_lengths[isleap(y)]; | |
1491 | if (increment_overflow(&y, 1)) | |
1492 | return NULL; | |
1493 | } | |
1494 | tmp->tm_year = y; | |
1495 | if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) | |
1496 | return NULL; | |
1497 | tmp->tm_yday = idays; | |
1498 | /* | |
1499 | ** The "extra" mods below avoid overflow problems. | |
1500 | */ | |
1501 | tmp->tm_wday = EPOCH_WDAY + | |
1502 | ((y - EPOCH_YEAR) % DAYSPERWEEK) * | |
1503 | (DAYSPERNYEAR % DAYSPERWEEK) + | |
1504 | leaps_thru_end_of(y - 1) - | |
1505 | leaps_thru_end_of(EPOCH_YEAR - 1) + | |
1506 | idays; | |
1507 | tmp->tm_wday %= DAYSPERWEEK; | |
1508 | if (tmp->tm_wday < 0) | |
1509 | tmp->tm_wday += DAYSPERWEEK; | |
1510 | tmp->tm_hour = (int) (rem / SECSPERHOUR); | |
1511 | rem %= SECSPERHOUR; | |
1512 | tmp->tm_min = (int) (rem / SECSPERMIN); | |
1513 | /* | |
1514 | ** A positive leap second requires a special | |
1515 | ** representation. This uses "... ??:59:60" et seq. | |
1516 | */ | |
1517 | tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; | |
1518 | ip = mon_lengths[isleap(y)]; | |
1519 | for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) | |
1520 | idays -= ip[tmp->tm_mon]; | |
1521 | tmp->tm_mday = (int) (idays + 1); | |
1522 | tmp->tm_isdst = 0; | |
1523 | #ifdef TM_GMTOFF | |
1524 | tmp->TM_GMTOFF = offset; | |
1525 | #endif /* defined TM_GMTOFF */ | |
1526 | return tmp; | |
1527 | } | |
1528 | ||
1529 | char * | |
1530 | ctime(timep) | |
1531 | const time_t * const timep; | |
1532 | { | |
1533 | /* | |
1534 | ** Section 4.12.3.2 of X3.159-1989 requires that | |
1535 | ** The ctime function converts the calendar time pointed to by timer | |
1536 | ** to local time in the form of a string. It is equivalent to | |
1537 | ** asctime(localtime(timer)) | |
1538 | */ | |
1539 | return asctime(localtime(timep)); | |
1540 | } | |
1541 | ||
1542 | char * | |
1543 | ctime_r(timep, buf) | |
1544 | const time_t * const timep; | |
1545 | char * buf; | |
1546 | { | |
1547 | struct tm mytm; | |
1548 | ||
1549 | return asctime_r(localtime_r(timep, &mytm), buf); | |
1550 | } | |
1551 | ||
1552 | /* | |
1553 | ** Adapted from code provided by Robert Elz, who writes: | |
1554 | ** The "best" way to do mktime I think is based on an idea of Bob | |
1555 | ** Kridle's (so its said...) from a long time ago. | |
1556 | ** It does a binary search of the time_t space. Since time_t's are | |
1557 | ** just 32 bits, its a max of 32 iterations (even at 64 bits it | |
1558 | ** would still be very reasonable). | |
1559 | */ | |
1560 | ||
1561 | #ifndef WRONG | |
1562 | #define WRONG (-1) | |
1563 | #endif /* !defined WRONG */ | |
1564 | ||
1565 | /* | |
1566 | ** Simplified normalize logic courtesy Paul Eggert. | |
1567 | */ | |
1568 | ||
1569 | static int | |
1570 | increment_overflow(number, delta) | |
1571 | int * number; | |
1572 | int delta; | |
1573 | { | |
1574 | int number0; | |
1575 | ||
1576 | number0 = *number; | |
1577 | *number += delta; | |
1578 | return (*number < number0) != (delta < 0); | |
1579 | } | |
1580 | ||
1581 | static int | |
1582 | long_increment_overflow(number, delta) | |
1583 | long * number; | |
1584 | int delta; | |
1585 | { | |
1586 | long number0; | |
1587 | ||
1588 | number0 = *number; | |
1589 | *number += delta; | |
1590 | return (*number < number0) != (delta < 0); | |
1591 | } | |
1592 | ||
1593 | static int | |
1594 | normalize_overflow(tensptr, unitsptr, base) | |
1595 | int * const tensptr; | |
1596 | int * const unitsptr; | |
1597 | const int base; | |
1598 | { | |
1599 | register int tensdelta; | |
1600 | ||
1601 | tensdelta = (*unitsptr >= 0) ? | |
1602 | (*unitsptr / base) : | |
1603 | (-1 - (-1 - *unitsptr) / base); | |
1604 | *unitsptr -= tensdelta * base; | |
1605 | return increment_overflow(tensptr, tensdelta); | |
1606 | } | |
1607 | ||
1608 | static int | |
1609 | long_normalize_overflow(tensptr, unitsptr, base) | |
1610 | long * const tensptr; | |
1611 | int * const unitsptr; | |
1612 | const int base; | |
1613 | { | |
1614 | register int tensdelta; | |
1615 | ||
1616 | tensdelta = (*unitsptr >= 0) ? | |
1617 | (*unitsptr / base) : | |
1618 | (-1 - (-1 - *unitsptr) / base); | |
1619 | *unitsptr -= tensdelta * base; | |
1620 | return long_increment_overflow(tensptr, tensdelta); | |
1621 | } | |
1622 | ||
1623 | static int | |
1624 | tmcomp(atmp, btmp) | |
1625 | register const struct tm * const atmp; | |
1626 | register const struct tm * const btmp; | |
1627 | { | |
1628 | register int result; | |
1629 | ||
1630 | if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && | |
1631 | (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && | |
1632 | (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && | |
1633 | (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && | |
1634 | (result = (atmp->tm_min - btmp->tm_min)) == 0) | |
1635 | result = atmp->tm_sec - btmp->tm_sec; | |
1636 | return result; | |
1637 | } | |
1638 | ||
1639 | static time_t | |
1640 | time2sub(tmp, funcp, offset, okayp, do_norm_secs) | |
1641 | struct tm * const tmp; | |
1642 | struct tm * (* const funcp) P((const time_t*, long, struct tm*)); | |
1643 | const long offset; | |
1644 | int * const okayp; | |
1645 | const int do_norm_secs; | |
1646 | { | |
1647 | register const struct state * sp; | |
1648 | register int dir; | |
1649 | register int i, j; | |
1650 | register int saved_seconds; | |
1651 | register long li; | |
1652 | register time_t lo; | |
1653 | register time_t hi; | |
1654 | long y; | |
1655 | time_t newt; | |
1656 | time_t t; | |
1657 | struct tm yourtm, mytm; | |
1658 | ||
1659 | *okayp = FALSE; | |
1660 | yourtm = *tmp; | |
1661 | if (do_norm_secs) { | |
1662 | if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, | |
1663 | SECSPERMIN)) | |
1664 | return WRONG; | |
1665 | } | |
1666 | if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) | |
1667 | return WRONG; | |
1668 | if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) | |
1669 | return WRONG; | |
1670 | y = yourtm.tm_year; | |
1671 | if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) | |
1672 | return WRONG; | |
1673 | /* | |
1674 | ** Turn y into an actual year number for now. | |
1675 | ** It is converted back to an offset from TM_YEAR_BASE later. | |
1676 | */ | |
1677 | if (long_increment_overflow(&y, TM_YEAR_BASE)) | |
1678 | return WRONG; | |
1679 | while (yourtm.tm_mday <= 0) { | |
1680 | if (long_increment_overflow(&y, -1)) | |
1681 | return WRONG; | |
1682 | li = y + (1 < yourtm.tm_mon); | |
1683 | yourtm.tm_mday += year_lengths[isleap(li)]; | |
1684 | } | |
1685 | while (yourtm.tm_mday > DAYSPERLYEAR) { | |
1686 | li = y + (1 < yourtm.tm_mon); | |
1687 | yourtm.tm_mday -= year_lengths[isleap(li)]; | |
1688 | if (long_increment_overflow(&y, 1)) | |
1689 | return WRONG; | |
1690 | } | |
1691 | for ( ; ; ) { | |
1692 | i = mon_lengths[isleap(y)][yourtm.tm_mon]; | |
1693 | if (yourtm.tm_mday <= i) | |
1694 | break; | |
1695 | yourtm.tm_mday -= i; | |
1696 | if (++yourtm.tm_mon >= MONSPERYEAR) { | |
1697 | yourtm.tm_mon = 0; | |
1698 | if (long_increment_overflow(&y, 1)) | |
1699 | return WRONG; | |
1700 | } | |
1701 | } | |
1702 | if (long_increment_overflow(&y, -TM_YEAR_BASE)) | |
1703 | return WRONG; | |
1704 | yourtm.tm_year = y; | |
1705 | if (yourtm.tm_year != y) | |
1706 | return WRONG; | |
1707 | if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) | |
1708 | saved_seconds = 0; | |
1709 | else if (y + TM_YEAR_BASE < EPOCH_YEAR) { | |
1710 | /* | |
1711 | ** We can't set tm_sec to 0, because that might push the | |
1712 | ** time below the minimum representable time. | |
1713 | ** Set tm_sec to 59 instead. | |
1714 | ** This assumes that the minimum representable time is | |
1715 | ** not in the same minute that a leap second was deleted from, | |
1716 | ** which is a safer assumption than using 58 would be. | |
1717 | */ | |
1718 | if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) | |
1719 | return WRONG; | |
1720 | saved_seconds = yourtm.tm_sec; | |
1721 | yourtm.tm_sec = SECSPERMIN - 1; | |
1722 | } else { | |
1723 | saved_seconds = yourtm.tm_sec; | |
1724 | yourtm.tm_sec = 0; | |
1725 | } | |
1726 | /* | |
1727 | ** Do a binary search (this works whatever time_t's type is). | |
1728 | */ | |
1729 | if (!TYPE_SIGNED(time_t)) { | |
1730 | lo = 0; | |
1731 | hi = lo - 1; | |
1732 | } else if (!TYPE_INTEGRAL(time_t)) { | |
1733 | if (sizeof(time_t) > sizeof(float)) | |
1734 | hi = (time_t) DBL_MAX; | |
1735 | else hi = (time_t) FLT_MAX; | |
1736 | lo = -hi; | |
1737 | } else { | |
1738 | lo = 1; | |
1739 | for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) | |
1740 | lo *= 2; | |
1741 | hi = -(lo + 1); | |
1742 | } | |
1743 | for ( ; ; ) { | |
1744 | t = lo / 2 + hi / 2; | |
1745 | if (t < lo) | |
1746 | t = lo; | |
1747 | else if (t > hi) | |
1748 | t = hi; | |
1749 | if ((*funcp)(&t, offset, &mytm) == NULL) { | |
1750 | /* | |
1751 | ** Assume that t is too extreme to be represented in | |
1752 | ** a struct tm; arrange things so that it is less | |
1753 | ** extreme on the next pass. | |
1754 | */ | |
1755 | dir = (t > 0) ? 1 : -1; | |
1756 | } else dir = tmcomp(&mytm, &yourtm); | |
1757 | if (dir != 0) { | |
1758 | if (t == lo) { | |
1759 | ++t; | |
1760 | if (t <= lo) | |
1761 | return WRONG; | |
1762 | ++lo; | |
1763 | } else if (t == hi) { | |
1764 | --t; | |
1765 | if (t >= hi) | |
1766 | return WRONG; | |
1767 | --hi; | |
1768 | } | |
1769 | if (lo > hi) | |
1770 | return WRONG; | |
1771 | if (dir > 0) | |
1772 | hi = t; | |
1773 | else lo = t; | |
1774 | continue; | |
1775 | } | |
1776 | if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) | |
1777 | break; | |
1778 | /* | |
1779 | ** Right time, wrong type. | |
1780 | ** Hunt for right time, right type. | |
1781 | ** It's okay to guess wrong since the guess | |
1782 | ** gets checked. | |
1783 | */ | |
1784 | /* | |
1785 | ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. | |
1786 | */ | |
1787 | sp = (const struct state *) | |
1788 | (((void *) funcp == (void *) localsub) ? | |
1789 | lclptr : gmtptr); | |
1790 | #ifdef ALL_STATE | |
1791 | if (sp == NULL) | |
1792 | return WRONG; | |
1793 | #endif /* defined ALL_STATE */ | |
1794 | for (i = sp->typecnt - 1; i >= 0; --i) { | |
1795 | if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) | |
1796 | continue; | |
1797 | for (j = sp->typecnt - 1; j >= 0; --j) { | |
1798 | if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) | |
1799 | continue; | |
1800 | newt = t + sp->ttis[j].tt_gmtoff - | |
1801 | sp->ttis[i].tt_gmtoff; | |
1802 | if ((*funcp)(&newt, offset, &mytm) == NULL) | |
1803 | continue; | |
1804 | if (tmcomp(&mytm, &yourtm) != 0) | |
1805 | continue; | |
1806 | if (mytm.tm_isdst != yourtm.tm_isdst) | |
1807 | continue; | |
1808 | /* | |
1809 | ** We have a match. | |
1810 | */ | |
1811 | t = newt; | |
1812 | goto label; | |
1813 | } | |
1814 | } | |
1815 | return WRONG; | |
1816 | } | |
1817 | label: | |
1818 | newt = t + saved_seconds; | |
1819 | if ((newt < t) != (saved_seconds < 0)) | |
1820 | return WRONG; | |
1821 | t = newt; | |
1822 | if ((*funcp)(&t, offset, tmp)) | |
1823 | *okayp = TRUE; | |
1824 | return t; | |
1825 | } | |
1826 | ||
1827 | static time_t | |
1828 | time2(tmp, funcp, offset, okayp) | |
1829 | struct tm * const tmp; | |
1830 | struct tm * (* const funcp) P((const time_t*, long, struct tm*)); | |
1831 | const long offset; | |
1832 | int * const okayp; | |
1833 | { | |
1834 | time_t t; | |
1835 | ||
1836 | /* | |
1837 | ** First try without normalization of seconds | |
1838 | ** (in case tm_sec contains a value associated with a leap second). | |
1839 | ** If that fails, try with normalization of seconds. | |
1840 | */ | |
1841 | t = time2sub(tmp, funcp, offset, okayp, FALSE); | |
1842 | return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); | |
1843 | } | |
1844 | ||
1845 | static time_t | |
1846 | time1(tmp, funcp, offset) | |
1847 | struct tm * const tmp; | |
1848 | struct tm * (* const funcp) P((const time_t *, long, struct tm *)); | |
1849 | const long offset; | |
1850 | { | |
1851 | register time_t t; | |
1852 | register const struct state * sp; | |
1853 | register int samei, otheri; | |
1854 | register int sameind, otherind; | |
1855 | register int i; | |
1856 | register int nseen; | |
1857 | int seen[TZ_MAX_TYPES]; | |
1858 | int types[TZ_MAX_TYPES]; | |
1859 | int okay; | |
1860 | ||
1861 | if (tmp->tm_isdst > 1) | |
1862 | tmp->tm_isdst = 1; | |
1863 | t = time2(tmp, funcp, offset, &okay); | |
1864 | #ifdef PCTS | |
1865 | /* | |
1866 | ** PCTS code courtesy Grant Sullivan. | |
1867 | */ | |
1868 | if (okay) | |
1869 | return t; | |
1870 | if (tmp->tm_isdst < 0) | |
1871 | tmp->tm_isdst = 0; /* reset to std and try again */ | |
1872 | #endif /* defined PCTS */ | |
1873 | #ifndef PCTS | |
1874 | if (okay || tmp->tm_isdst < 0) | |
1875 | return t; | |
1876 | #endif /* !defined PCTS */ | |
1877 | /* | |
1878 | ** We're supposed to assume that somebody took a time of one type | |
1879 | ** and did some math on it that yielded a "struct tm" that's bad. | |
1880 | ** We try to divine the type they started from and adjust to the | |
1881 | ** type they need. | |
1882 | */ | |
1883 | /* | |
1884 | ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. | |
1885 | */ | |
1886 | sp = (const struct state *) (((void *) funcp == (void *) localsub) ? | |
1887 | lclptr : gmtptr); | |
1888 | #ifdef ALL_STATE | |
1889 | if (sp == NULL) | |
1890 | return WRONG; | |
1891 | #endif /* defined ALL_STATE */ | |
1892 | for (i = 0; i < sp->typecnt; ++i) | |
1893 | seen[i] = FALSE; | |
1894 | nseen = 0; | |
1895 | for (i = sp->timecnt - 1; i >= 0; --i) | |
1896 | if (!seen[sp->types[i]]) { | |
1897 | seen[sp->types[i]] = TRUE; | |
1898 | types[nseen++] = sp->types[i]; | |
1899 | } | |
1900 | for (sameind = 0; sameind < nseen; ++sameind) { | |
1901 | samei = types[sameind]; | |
1902 | if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) | |
1903 | continue; | |
1904 | for (otherind = 0; otherind < nseen; ++otherind) { | |
1905 | otheri = types[otherind]; | |
1906 | if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) | |
1907 | continue; | |
1908 | tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - | |
1909 | sp->ttis[samei].tt_gmtoff; | |
1910 | tmp->tm_isdst = !tmp->tm_isdst; | |
1911 | t = time2(tmp, funcp, offset, &okay); | |
1912 | if (okay) | |
1913 | return t; | |
1914 | tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - | |
1915 | sp->ttis[samei].tt_gmtoff; | |
1916 | tmp->tm_isdst = !tmp->tm_isdst; | |
1917 | } | |
1918 | } | |
1919 | return WRONG; | |
1920 | } | |
1921 | ||
1922 | time_t | |
1923 | mktime(tmp) | |
1924 | struct tm * const tmp; | |
1925 | { | |
1926 | tzset(); | |
1927 | return time1(tmp, localsub, 0L); | |
1928 | } | |
1929 | ||
1930 | #ifdef STD_INSPIRED | |
1931 | ||
1932 | time_t | |
1933 | timelocal(tmp) | |
1934 | struct tm * const tmp; | |
1935 | { | |
1936 | tmp->tm_isdst = -1; /* in case it wasn't initialized */ | |
1937 | return mktime(tmp); | |
1938 | } | |
1939 | ||
1940 | time_t | |
1941 | timegm(tmp) | |
1942 | struct tm * const tmp; | |
1943 | { | |
1944 | tmp->tm_isdst = 0; | |
1945 | return time1(tmp, gmtsub, 0L); | |
1946 | } | |
1947 | ||
1948 | time_t | |
1949 | timeoff(tmp, offset) | |
1950 | struct tm * const tmp; | |
1951 | const long offset; | |
1952 | { | |
1953 | tmp->tm_isdst = 0; | |
1954 | return time1(tmp, gmtsub, offset); | |
1955 | } | |
1956 | ||
1957 | #endif /* defined STD_INSPIRED */ | |
1958 | ||
1959 | #ifdef CMUCS | |
1960 | ||
1961 | /* | |
1962 | ** The following is supplied for compatibility with | |
1963 | ** previous versions of the CMUCS runtime library. | |
1964 | */ | |
1965 | ||
1966 | long | |
1967 | gtime(tmp) | |
1968 | struct tm * const tmp; | |
1969 | { | |
1970 | const time_t t = mktime(tmp); | |
1971 | ||
1972 | if (t == WRONG) | |
1973 | return -1; | |
1974 | return t; | |
1975 | } | |
1976 | ||
1977 | #endif /* defined CMUCS */ | |
1978 | ||
1979 | /* | |
1980 | ** XXX--is the below the right way to conditionalize?? | |
1981 | */ | |
1982 | ||
1983 | #ifdef STD_INSPIRED | |
1984 | ||
1985 | /* | |
1986 | ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 | |
1987 | ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which | |
1988 | ** is not the case if we are accounting for leap seconds. | |
1989 | ** So, we provide the following conversion routines for use | |
1990 | ** when exchanging timestamps with POSIX conforming systems. | |
1991 | */ | |
1992 | ||
1993 | static long | |
1994 | leapcorr(timep) | |
1995 | time_t * timep; | |
1996 | { | |
1997 | register struct state * sp; | |
1998 | register struct lsinfo * lp; | |
1999 | register int i; | |
2000 | ||
2001 | sp = lclptr; | |
2002 | i = sp->leapcnt; | |
2003 | while (--i >= 0) { | |
2004 | lp = &sp->lsis[i]; | |
2005 | if (*timep >= lp->ls_trans) | |
2006 | return lp->ls_corr; | |
2007 | } | |
2008 | return 0; | |
2009 | } | |
2010 | ||
2011 | time_t | |
2012 | time2posix(t) | |
2013 | time_t t; | |
2014 | { | |
2015 | tzset(); | |
2016 | return t - leapcorr(&t); | |
2017 | } | |
2018 | ||
2019 | time_t | |
2020 | posix2time(t) | |
2021 | time_t t; | |
2022 | { | |
2023 | time_t x; | |
2024 | time_t y; | |
2025 | ||
2026 | tzset(); | |
2027 | /* | |
2028 | ** For a positive leap second hit, the result | |
2029 | ** is not unique. For a negative leap second | |
2030 | ** hit, the corresponding time doesn't exist, | |
2031 | ** so we return an adjacent second. | |
2032 | */ | |
2033 | x = t + leapcorr(&t); | |
2034 | y = x - leapcorr(&x); | |
2035 | if (y < t) { | |
2036 | do { | |
2037 | x++; | |
2038 | y = x - leapcorr(&x); | |
2039 | } while (y < t); | |
2040 | if (t != y) | |
2041 | return x - 1; | |
2042 | } else if (y > t) { | |
2043 | do { | |
2044 | --x; | |
2045 | y = x - leapcorr(&x); | |
2046 | } while (y > t); | |
2047 | if (t != y) | |
2048 | return x + 1; | |
2049 | } | |
2050 | return x; | |
2051 | } | |
2052 | ||
2053 | #endif /* defined STD_INSPIRED */ |