]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
b75a7d8f A |
3 | /* |
4 | ****************************************************************************** | |
2ca993e8 | 5 | * Copyright (C) 1997-2015, International Business Machines |
b75a7d8f A |
6 | * Corporation and others. All Rights Reserved. |
7 | ****************************************************************************** | |
8 | * file name: nfrule.cpp | |
f3c0d7a5 | 9 | * encoding: UTF-8 |
b75a7d8f A |
10 | * tab size: 8 (not used) |
11 | * indentation:4 | |
12 | * | |
13 | * Modification history | |
14 | * Date Name Comments | |
15 | * 10/11/2001 Doug Ported from ICU4J | |
16 | */ | |
17 | ||
18 | #include "nfrule.h" | |
19 | ||
20 | #if U_HAVE_RBNF | |
21 | ||
57a6839d | 22 | #include "unicode/localpointer.h" |
b75a7d8f A |
23 | #include "unicode/rbnf.h" |
24 | #include "unicode/tblcoll.h" | |
b331163b A |
25 | #include "unicode/plurfmt.h" |
26 | #include "unicode/upluralrules.h" | |
b75a7d8f A |
27 | #include "unicode/coleitr.h" |
28 | #include "unicode/uchar.h" | |
29 | #include "nfrs.h" | |
30 | #include "nfrlist.h" | |
31 | #include "nfsubs.h" | |
4388f060 | 32 | #include "patternprops.h" |
f3c0d7a5 | 33 | #include "putilimp.h" |
b75a7d8f A |
34 | |
35 | U_NAMESPACE_BEGIN | |
36 | ||
2ca993e8 | 37 | NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status) |
b75a7d8f | 38 | : baseValue((int32_t)0) |
2ca993e8 | 39 | , radix(10) |
b75a7d8f | 40 | , exponent(0) |
2ca993e8 | 41 | , decimalPoint(0) |
3d1f044b | 42 | , fRuleText(_ruleText) |
b75a7d8f A |
43 | , sub1(NULL) |
44 | , sub2(NULL) | |
45 | , formatter(_rbnf) | |
b331163b | 46 | , rulePatternFormat(NULL) |
b75a7d8f | 47 | { |
3d1f044b A |
48 | if (!fRuleText.isEmpty()) { |
49 | parseRuleDescriptor(fRuleText, status); | |
2ca993e8 | 50 | } |
b75a7d8f A |
51 | } |
52 | ||
53 | NFRule::~NFRule() | |
54 | { | |
b331163b A |
55 | if (sub1 != sub2) { |
56 | delete sub2; | |
2ca993e8 | 57 | sub2 = NULL; |
b331163b A |
58 | } |
59 | delete sub1; | |
2ca993e8 | 60 | sub1 = NULL; |
b331163b | 61 | delete rulePatternFormat; |
2ca993e8 | 62 | rulePatternFormat = NULL; |
b75a7d8f A |
63 | } |
64 | ||
65 | static const UChar gLeftBracket = 0x005b; | |
66 | static const UChar gRightBracket = 0x005d; | |
67 | static const UChar gColon = 0x003a; | |
68 | static const UChar gZero = 0x0030; | |
69 | static const UChar gNine = 0x0039; | |
70 | static const UChar gSpace = 0x0020; | |
71 | static const UChar gSlash = 0x002f; | |
72 | static const UChar gGreaterThan = 0x003e; | |
73c04bcf | 73 | static const UChar gLessThan = 0x003c; |
b75a7d8f A |
74 | static const UChar gComma = 0x002c; |
75 | static const UChar gDot = 0x002e; | |
76 | static const UChar gTick = 0x0027; | |
73c04bcf | 77 | //static const UChar gMinus = 0x002d; |
b75a7d8f | 78 | static const UChar gSemicolon = 0x003b; |
2ca993e8 | 79 | static const UChar gX = 0x0078; |
b75a7d8f A |
80 | |
81 | static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ | |
2ca993e8 A |
82 | static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */ |
83 | static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */ | |
b75a7d8f | 84 | |
b331163b A |
85 | static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */ |
86 | static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */ | |
87 | ||
b75a7d8f A |
88 | static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ |
89 | static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ | |
90 | static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ | |
91 | static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ | |
92 | static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ | |
93 | static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ | |
94 | static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ | |
95 | static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ | |
96 | static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ | |
97 | static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ | |
98 | static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ | |
b75a7d8f A |
99 | static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ |
100 | ||
2ca993e8 | 101 | static const UChar * const RULE_PREFIXES[] = { |
b75a7d8f A |
102 | gLessLess, gLessPercent, gLessHash, gLessZero, |
103 | gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, | |
104 | gEqualPercent, gEqualHash, gEqualZero, NULL | |
105 | }; | |
106 | ||
107 | void | |
108 | NFRule::makeRules(UnicodeString& description, | |
2ca993e8 | 109 | NFRuleSet *owner, |
b75a7d8f A |
110 | const NFRule *predecessor, |
111 | const RuleBasedNumberFormat *rbnf, | |
112 | NFRuleList& rules, | |
113 | UErrorCode& status) | |
114 | { | |
115 | // we know we're making at least one rule, so go ahead and | |
116 | // new it up and initialize its basevalue and divisor | |
117 | // (this also strips the rule descriptor, if any, off the | |
118 | // descripton string) | |
2ca993e8 | 119 | NFRule* rule1 = new NFRule(rbnf, description, status); |
b75a7d8f A |
120 | /* test for NULL */ |
121 | if (rule1 == 0) { | |
122 | status = U_MEMORY_ALLOCATION_ERROR; | |
123 | return; | |
124 | } | |
3d1f044b | 125 | description = rule1->fRuleText; |
b75a7d8f A |
126 | |
127 | // check the description to see whether there's text enclosed | |
128 | // in brackets | |
129 | int32_t brack1 = description.indexOf(gLeftBracket); | |
2ca993e8 | 130 | int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket); |
b75a7d8f A |
131 | |
132 | // if the description doesn't contain a matched pair of brackets, | |
133 | // or if it's of a type that doesn't recognize bracketed text, | |
134 | // then leave the description alone, initialize the rule's | |
135 | // rule text and substitutions, and return that rule | |
2ca993e8 | 136 | if (brack2 < 0 || brack1 > brack2 |
b75a7d8f | 137 | || rule1->getType() == kProperFractionRule |
2ca993e8 A |
138 | || rule1->getType() == kNegativeNumberRule |
139 | || rule1->getType() == kInfinityRule | |
140 | || rule1->getType() == kNaNRule) | |
141 | { | |
142 | rule1->extractSubstitutions(owner, description, predecessor, status); | |
143 | } | |
144 | else { | |
b75a7d8f A |
145 | // if the description does contain a matched pair of brackets, |
146 | // then it's really shorthand for two rules (with one exception) | |
147 | NFRule* rule2 = NULL; | |
148 | UnicodeString sbuf; | |
149 | ||
150 | // we'll actually only split the rule into two rules if its | |
151 | // base value is an even multiple of its divisor (or it's one | |
152 | // of the special rules) | |
153 | if ((rule1->baseValue > 0 | |
154 | && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) | |
155 | || rule1->getType() == kImproperFractionRule | |
156 | || rule1->getType() == kMasterRule) { | |
157 | ||
158 | // if it passes that test, new up the second rule. If the | |
159 | // rule set both rules will belong to is a fraction rule | |
160 | // set, they both have the same base value; otherwise, | |
161 | // increment the original rule's base value ("rule1" actually | |
162 | // goes SECOND in the rule set's rule list) | |
2ca993e8 | 163 | rule2 = new NFRule(rbnf, UnicodeString(), status); |
b75a7d8f A |
164 | /* test for NULL */ |
165 | if (rule2 == 0) { | |
166 | status = U_MEMORY_ALLOCATION_ERROR; | |
167 | return; | |
168 | } | |
169 | if (rule1->baseValue >= 0) { | |
170 | rule2->baseValue = rule1->baseValue; | |
2ca993e8 | 171 | if (!owner->isFractionRuleSet()) { |
b75a7d8f A |
172 | ++rule1->baseValue; |
173 | } | |
174 | } | |
175 | ||
176 | // if the description began with "x.x" and contains bracketed | |
177 | // text, it describes both the improper fraction rule and | |
178 | // the proper fraction rule | |
179 | else if (rule1->getType() == kImproperFractionRule) { | |
180 | rule2->setType(kProperFractionRule); | |
181 | } | |
182 | ||
183 | // if the description began with "x.0" and contains bracketed | |
184 | // text, it describes both the master rule and the | |
185 | // improper fraction rule | |
186 | else if (rule1->getType() == kMasterRule) { | |
187 | rule2->baseValue = rule1->baseValue; | |
188 | rule1->setType(kImproperFractionRule); | |
189 | } | |
190 | ||
191 | // both rules have the same radix and exponent (i.e., the | |
192 | // same divisor) | |
193 | rule2->radix = rule1->radix; | |
194 | rule2->exponent = rule1->exponent; | |
195 | ||
196 | // rule2's rule text omits the stuff in brackets: initalize | |
197 | // its rule text and substitutions accordingly | |
198 | sbuf.append(description, 0, brack1); | |
199 | if (brack2 + 1 < description.length()) { | |
200 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); | |
201 | } | |
2ca993e8 | 202 | rule2->extractSubstitutions(owner, sbuf, predecessor, status); |
b75a7d8f A |
203 | } |
204 | ||
205 | // rule1's text includes the text in the brackets but omits | |
206 | // the brackets themselves: initialize _its_ rule text and | |
207 | // substitutions accordingly | |
208 | sbuf.setTo(description, 0, brack1); | |
209 | sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); | |
210 | if (brack2 + 1 < description.length()) { | |
211 | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); | |
212 | } | |
2ca993e8 | 213 | rule1->extractSubstitutions(owner, sbuf, predecessor, status); |
b75a7d8f A |
214 | |
215 | // if we only have one rule, return it; if we have two, return | |
216 | // a two-element array containing them (notice that rule2 goes | |
217 | // BEFORE rule1 in the list: in all cases, rule2 OMITS the | |
218 | // material in the brackets and rule1 INCLUDES the material | |
219 | // in the brackets) | |
220 | if (rule2 != NULL) { | |
2ca993e8 A |
221 | if (rule2->baseValue >= kNoBase) { |
222 | rules.add(rule2); | |
223 | } | |
224 | else { | |
225 | owner->setNonNumericalRule(rule2); | |
226 | } | |
b75a7d8f | 227 | } |
2ca993e8 A |
228 | } |
229 | if (rule1->baseValue >= kNoBase) { | |
b75a7d8f A |
230 | rules.add(rule1); |
231 | } | |
2ca993e8 A |
232 | else { |
233 | owner->setNonNumericalRule(rule1); | |
234 | } | |
b75a7d8f A |
235 | } |
236 | ||
237 | /** | |
238 | * This function parses the rule's rule descriptor (i.e., the base | |
239 | * value and/or other tokens that precede the rule's rule text | |
240 | * in the description) and sets the rule's base value, radix, and | |
241 | * exponent according to the descriptor. (If the description doesn't | |
242 | * include a rule descriptor, then this function sets everything to | |
243 | * default values and the rule set sets the rule's real base value). | |
244 | * @param description The rule's description | |
245 | * @return If "description" included a rule descriptor, this is | |
246 | * "description" with the descriptor and any trailing whitespace | |
247 | * stripped off. Otherwise; it's "descriptor" unchangd. | |
248 | */ | |
249 | void | |
250 | NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) | |
251 | { | |
252 | // the description consists of a rule descriptor and a rule body, | |
253 | // separated by a colon. The rule descriptor is optional. If | |
254 | // it's omitted, just set the base value to 0. | |
255 | int32_t p = description.indexOf(gColon); | |
2ca993e8 | 256 | if (p != -1) { |
b75a7d8f A |
257 | // copy the descriptor out into its own string and strip it, |
258 | // along with any trailing whitespace, out of the original | |
259 | // description | |
260 | UnicodeString descriptor; | |
261 | descriptor.setTo(description, 0, p); | |
262 | ||
263 | ++p; | |
4388f060 | 264 | while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { |
b75a7d8f A |
265 | ++p; |
266 | } | |
267 | description.removeBetween(0, p); | |
268 | ||
269 | // check first to see if the rule descriptor matches the token | |
270 | // for one of the special rules. If it does, set the base | |
2ca993e8 A |
271 | // value to the correct identifier value |
272 | int descriptorLength = descriptor.length(); | |
273 | UChar firstChar = descriptor.charAt(0); | |
274 | UChar lastChar = descriptor.charAt(descriptorLength - 1); | |
275 | if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) { | |
276 | // if the rule descriptor begins with a digit, it's a descriptor | |
277 | // for a normal rule | |
278 | // since we don't have Long.parseLong, and this isn't much work anyway, | |
279 | // just build up the value as we encounter the digits. | |
b75a7d8f A |
280 | int64_t val = 0; |
281 | p = 0; | |
282 | UChar c = gSpace; | |
283 | ||
284 | // begin parsing the descriptor: copy digits | |
285 | // into "tempValue", skip periods, commas, and spaces, | |
286 | // stop on a slash or > sign (or at the end of the string), | |
287 | // and throw an exception on any other character | |
288 | int64_t ll_10 = 10; | |
2ca993e8 | 289 | while (p < descriptorLength) { |
b75a7d8f A |
290 | c = descriptor.charAt(p); |
291 | if (c >= gZero && c <= gNine) { | |
292 | val = val * ll_10 + (int32_t)(c - gZero); | |
293 | } | |
294 | else if (c == gSlash || c == gGreaterThan) { | |
295 | break; | |
296 | } | |
4388f060 | 297 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
b75a7d8f A |
298 | } |
299 | else { | |
300 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); | |
301 | status = U_PARSE_ERROR; | |
302 | return; | |
303 | } | |
304 | ++p; | |
305 | } | |
306 | ||
307 | // we have the base value, so set it | |
374ca955 | 308 | setBaseValue(val, status); |
b75a7d8f A |
309 | |
310 | // if we stopped the previous loop on a slash, we're | |
311 | // now parsing the rule's radix. Again, accumulate digits | |
312 | // in tempValue, skip punctuation, stop on a > mark, and | |
313 | // throw an exception on anything else | |
314 | if (c == gSlash) { | |
315 | val = 0; | |
316 | ++p; | |
3d1f044b | 317 | ll_10 = 10; |
2ca993e8 | 318 | while (p < descriptorLength) { |
b75a7d8f A |
319 | c = descriptor.charAt(p); |
320 | if (c >= gZero && c <= gNine) { | |
321 | val = val * ll_10 + (int32_t)(c - gZero); | |
322 | } | |
323 | else if (c == gGreaterThan) { | |
324 | break; | |
325 | } | |
4388f060 | 326 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
b75a7d8f A |
327 | } |
328 | else { | |
329 | // throw new IllegalArgumentException("Illegal character is rule descriptor"); | |
330 | status = U_PARSE_ERROR; | |
331 | return; | |
332 | } | |
333 | ++p; | |
334 | } | |
335 | ||
336 | // tempValue now contain's the rule's radix. Set it | |
337 | // accordingly, and recalculate the rule's exponent | |
374ca955 | 338 | radix = (int32_t)val; |
b75a7d8f A |
339 | if (radix == 0) { |
340 | // throw new IllegalArgumentException("Rule can't have radix of 0"); | |
341 | status = U_PARSE_ERROR; | |
342 | } | |
343 | ||
344 | exponent = expectedExponent(); | |
345 | } | |
346 | ||
347 | // if we stopped the previous loop on a > sign, then continue | |
348 | // for as long as we still see > signs. For each one, | |
349 | // decrement the exponent (unless the exponent is already 0). | |
350 | // If we see another character before reaching the end of | |
351 | // the descriptor, that's also a syntax error. | |
352 | if (c == gGreaterThan) { | |
353 | while (p < descriptor.length()) { | |
354 | c = descriptor.charAt(p); | |
355 | if (c == gGreaterThan && exponent > 0) { | |
356 | --exponent; | |
357 | } else { | |
358 | // throw new IllegalArgumentException("Illegal character in rule descriptor"); | |
359 | status = U_PARSE_ERROR; | |
360 | return; | |
361 | } | |
362 | ++p; | |
363 | } | |
364 | } | |
365 | } | |
2ca993e8 A |
366 | else if (0 == descriptor.compare(gMinusX, 2)) { |
367 | setType(kNegativeNumberRule); | |
368 | } | |
369 | else if (descriptorLength == 3) { | |
370 | if (firstChar == gZero && lastChar == gX) { | |
371 | setBaseValue(kProperFractionRule, status); | |
372 | decimalPoint = descriptor.charAt(1); | |
373 | } | |
374 | else if (firstChar == gX && lastChar == gX) { | |
375 | setBaseValue(kImproperFractionRule, status); | |
376 | decimalPoint = descriptor.charAt(1); | |
377 | } | |
378 | else if (firstChar == gX && lastChar == gZero) { | |
379 | setBaseValue(kMasterRule, status); | |
380 | decimalPoint = descriptor.charAt(1); | |
381 | } | |
382 | else if (descriptor.compare(gNaN, 3) == 0) { | |
383 | setBaseValue(kNaNRule, status); | |
384 | } | |
385 | else if (descriptor.compare(gInf, 3) == 0) { | |
386 | setBaseValue(kInfinityRule, status); | |
387 | } | |
388 | } | |
b75a7d8f | 389 | } |
2ca993e8 | 390 | // else use the default base value for now. |
b75a7d8f A |
391 | |
392 | // finally, if the rule body begins with an apostrophe, strip it off | |
393 | // (this is generally used to put whitespace at the beginning of | |
394 | // a rule's rule text) | |
395 | if (description.length() > 0 && description.charAt(0) == gTick) { | |
396 | description.removeBetween(0, 1); | |
397 | } | |
398 | ||
399 | // return the description with all the stuff we've just waded through | |
400 | // stripped off the front. It now contains just the rule body. | |
401 | // return description; | |
402 | } | |
403 | ||
404 | /** | |
405 | * Searches the rule's rule text for the substitution tokens, | |
406 | * creates the substitutions, and removes the substitution tokens | |
407 | * from the rule's rule text. | |
408 | * @param owner The rule set containing this rule | |
409 | * @param predecessor The rule preseding this one in "owners" rule list | |
410 | * @param ownersOwner The RuleBasedFormat that owns this rule | |
411 | */ | |
412 | void | |
413 | NFRule::extractSubstitutions(const NFRuleSet* ruleSet, | |
b331163b | 414 | const UnicodeString &ruleText, |
b75a7d8f | 415 | const NFRule* predecessor, |
b75a7d8f A |
416 | UErrorCode& status) |
417 | { | |
b331163b A |
418 | if (U_FAILURE(status)) { |
419 | return; | |
420 | } | |
3d1f044b | 421 | fRuleText = ruleText; |
b331163b | 422 | sub1 = extractSubstitution(ruleSet, predecessor, status); |
2ca993e8 | 423 | if (sub1 == NULL) { |
b331163b | 424 | // Small optimization. There is no need to create a redundant NullSubstitution. |
2ca993e8 | 425 | sub2 = NULL; |
b331163b A |
426 | } |
427 | else { | |
428 | sub2 = extractSubstitution(ruleSet, predecessor, status); | |
429 | } | |
3d1f044b A |
430 | int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
431 | int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1); | |
b331163b | 432 | if (pluralRuleEnd >= 0) { |
3d1f044b | 433 | int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart); |
b331163b A |
434 | if (endType < 0) { |
435 | status = U_PARSE_ERROR; | |
436 | return; | |
437 | } | |
3d1f044b | 438 | UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2)); |
b331163b A |
439 | UPluralType pluralType; |
440 | if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) { | |
441 | pluralType = UPLURAL_TYPE_CARDINAL; | |
442 | } | |
443 | else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) { | |
444 | pluralType = UPLURAL_TYPE_ORDINAL; | |
445 | } | |
446 | else { | |
447 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
448 | return; | |
449 | } | |
450 | rulePatternFormat = formatter->createPluralFormat(pluralType, | |
3d1f044b | 451 | fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status); |
b75a7d8f A |
452 | } |
453 | } | |
454 | ||
455 | /** | |
456 | * Searches the rule's rule text for the first substitution token, | |
457 | * creates a substitution based on it, and removes the token from | |
458 | * the rule's rule text. | |
459 | * @param owner The rule set containing this rule | |
460 | * @param predecessor The rule preceding this one in the rule set's | |
461 | * rule list | |
462 | * @param ownersOwner The RuleBasedNumberFormat that owns this rule | |
463 | * @return The newly-created substitution. This is never null; if | |
464 | * the rule text doesn't contain any substitution tokens, this will | |
465 | * be a NullSubstitution. | |
466 | */ | |
467 | NFSubstitution * | |
468 | NFRule::extractSubstitution(const NFRuleSet* ruleSet, | |
469 | const NFRule* predecessor, | |
b75a7d8f A |
470 | UErrorCode& status) |
471 | { | |
472 | NFSubstitution* result = NULL; | |
473 | ||
474 | // search the rule's rule text for the first two characters of | |
475 | // a substitution token | |
2ca993e8 | 476 | int32_t subStart = indexOfAnyRulePrefix(); |
b75a7d8f A |
477 | int32_t subEnd = subStart; |
478 | ||
479 | // if we didn't find one, create a null substitution positioned | |
480 | // at the end of the rule text | |
481 | if (subStart == -1) { | |
2ca993e8 | 482 | return NULL; |
b75a7d8f A |
483 | } |
484 | ||
485 | // special-case the ">>>" token, since searching for the > at the | |
486 | // end will actually find the > in the middle | |
3d1f044b | 487 | if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { |
b75a7d8f A |
488 | subEnd = subStart + 2; |
489 | ||
490 | // otherwise the substitution token ends with the same character | |
491 | // it began with | |
492 | } else { | |
3d1f044b A |
493 | UChar c = fRuleText.charAt(subStart); |
494 | subEnd = fRuleText.indexOf(c, subStart + 1); | |
73c04bcf | 495 | // special case for '<%foo<<' |
3d1f044b | 496 | if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) { |
73c04bcf A |
497 | // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle |
498 | // occurs because of the juxtaposition of two different rules. The check for '<' is a hack | |
499 | // to get around this. Having the duplicate at the front would cause problems with | |
500 | // rules like "<<%" to format, say, percents... | |
501 | ++subEnd; | |
502 | } | |
503 | } | |
b75a7d8f A |
504 | |
505 | // if we don't find the end of the token (i.e., if we're on a single, | |
506 | // unmatched token character), create a null substitution positioned | |
507 | // at the end of the rule | |
508 | if (subEnd == -1) { | |
2ca993e8 | 509 | return NULL; |
b75a7d8f A |
510 | } |
511 | ||
512 | // if we get here, we have a real substitution token (or at least | |
513 | // some text bounded by substitution token characters). Use | |
514 | // makeSubstitution() to create the right kind of substitution | |
515 | UnicodeString subToken; | |
3d1f044b | 516 | subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart); |
b75a7d8f | 517 | result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, |
b331163b | 518 | this->formatter, subToken, status); |
b75a7d8f A |
519 | |
520 | // remove the substitution from the rule text | |
3d1f044b | 521 | fRuleText.removeBetween(subStart, subEnd+1); |
b75a7d8f A |
522 | |
523 | return result; | |
524 | } | |
525 | ||
526 | /** | |
527 | * Sets the rule's base value, and causes the radix and exponent | |
528 | * to be recalculated. This is used during construction when we | |
529 | * don't know the rule's base value until after it's been | |
530 | * constructed. It should be used at any other time. | |
531 | * @param The new base value for the rule. | |
532 | */ | |
533 | void | |
374ca955 | 534 | NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) |
b75a7d8f A |
535 | { |
536 | // set the base value | |
537 | baseValue = newBaseValue; | |
2ca993e8 | 538 | radix = 10; |
b75a7d8f A |
539 | |
540 | // if this isn't a special rule, recalculate the radix and exponent | |
541 | // (the radix always defaults to 10; if it's supposed to be something | |
542 | // else, it's cleaned up by the caller and the exponent is | |
543 | // recalculated again-- the only function that does this is | |
544 | // NFRule.parseRuleDescriptor() ) | |
545 | if (baseValue >= 1) { | |
b75a7d8f A |
546 | exponent = expectedExponent(); |
547 | ||
548 | // this function gets called on a fully-constructed rule whose | |
549 | // description didn't specify a base value. This means it | |
550 | // has substitutions, and some substitutions hold on to copies | |
551 | // of the rule's divisor. Fix their copies of the divisor. | |
552 | if (sub1 != NULL) { | |
374ca955 | 553 | sub1->setDivisor(radix, exponent, status); |
b75a7d8f A |
554 | } |
555 | if (sub2 != NULL) { | |
374ca955 | 556 | sub2->setDivisor(radix, exponent, status); |
b75a7d8f A |
557 | } |
558 | ||
559 | // if this is a special rule, its radix and exponent are basically | |
560 | // ignored. Set them to "safe" default values | |
561 | } else { | |
b75a7d8f A |
562 | exponent = 0; |
563 | } | |
564 | } | |
565 | ||
566 | /** | |
567 | * This calculates the rule's exponent based on its radix and base | |
568 | * value. This will be the highest power the radix can be raised to | |
569 | * and still produce a result less than or equal to the base value. | |
570 | */ | |
571 | int16_t | |
572 | NFRule::expectedExponent() const | |
573 | { | |
574 | // since the log of 0, or the log base 0 of something, causes an | |
575 | // error, declare the exponent in these cases to be 0 (we also | |
576 | // deal with the special-rule identifiers here) | |
577 | if (radix == 0 || baseValue < 1) { | |
578 | return 0; | |
579 | } | |
580 | ||
581 | // we get rounding error in some cases-- for example, log 1000 / log 10 | |
582 | // gives us 1.9999999996 instead of 2. The extra logic here is to take | |
583 | // that into account | |
584 | int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); | |
585 | int64_t temp = util64_pow(radix, tempResult + 1); | |
586 | if (temp <= baseValue) { | |
587 | tempResult += 1; | |
588 | } | |
589 | return tempResult; | |
590 | } | |
591 | ||
592 | /** | |
593 | * Searches the rule's rule text for any of the specified strings. | |
b75a7d8f A |
594 | * @return The index of the first match in the rule's rule text |
595 | * (i.e., the first substring in the rule's rule text that matches | |
596 | * _any_ of the strings in "strings"). If none of the strings in | |
597 | * "strings" is found in the rule's rule text, returns -1. | |
598 | */ | |
599 | int32_t | |
2ca993e8 | 600 | NFRule::indexOfAnyRulePrefix() const |
b75a7d8f A |
601 | { |
602 | int result = -1; | |
2ca993e8 | 603 | for (int i = 0; RULE_PREFIXES[i]; i++) { |
3d1f044b | 604 | int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]); |
b75a7d8f A |
605 | if (pos != -1 && (result == -1 || pos < result)) { |
606 | result = pos; | |
607 | } | |
608 | } | |
609 | return result; | |
610 | } | |
611 | ||
612 | //----------------------------------------------------------------------- | |
613 | // boilerplate | |
614 | //----------------------------------------------------------------------- | |
615 | ||
2ca993e8 A |
616 | static UBool |
617 | util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2) | |
618 | { | |
619 | if (sub1) { | |
620 | if (sub2) { | |
621 | return *sub1 == *sub2; | |
622 | } | |
623 | } else if (!sub2) { | |
624 | return TRUE; | |
625 | } | |
626 | return FALSE; | |
627 | } | |
628 | ||
b75a7d8f A |
629 | /** |
630 | * Tests two rules for equality. | |
631 | * @param that The rule to compare this one against | |
632 | * @return True is the two rules are functionally equivalent | |
633 | */ | |
634 | UBool | |
635 | NFRule::operator==(const NFRule& rhs) const | |
636 | { | |
637 | return baseValue == rhs.baseValue | |
638 | && radix == rhs.radix | |
639 | && exponent == rhs.exponent | |
3d1f044b | 640 | && fRuleText == rhs.fRuleText |
2ca993e8 A |
641 | && util_equalSubstitutions(sub1, rhs.sub1) |
642 | && util_equalSubstitutions(sub2, rhs.sub2); | |
b75a7d8f A |
643 | } |
644 | ||
645 | /** | |
646 | * Returns a textual representation of the rule. This won't | |
647 | * necessarily be the same as the description that this rule | |
648 | * was created with, but it will produce the same result. | |
649 | * @return A textual description of the rule | |
650 | */ | |
651 | static void util_append64(UnicodeString& result, int64_t n) | |
652 | { | |
653 | UChar buffer[256]; | |
654 | int32_t len = util64_tou(n, buffer, sizeof(buffer)); | |
655 | UnicodeString temp(buffer, len); | |
656 | result.append(temp); | |
657 | } | |
658 | ||
659 | void | |
73c04bcf | 660 | NFRule::_appendRuleText(UnicodeString& result) const |
b75a7d8f A |
661 | { |
662 | switch (getType()) { | |
4388f060 | 663 | case kNegativeNumberRule: result.append(gMinusX, 2); break; |
2ca993e8 A |
664 | case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
665 | case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; | |
666 | case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break; | |
667 | case kInfinityRule: result.append(gInf, 3); break; | |
668 | case kNaNRule: result.append(gNaN, 3); break; | |
b75a7d8f A |
669 | default: |
670 | // for a normal rule, write out its base value, and if the radix is | |
671 | // something other than 10, write out the radix (with the preceding | |
672 | // slash, of course). Then calculate the expected exponent and if | |
673 | // if isn't the same as the actual exponent, write an appropriate | |
674 | // number of > signs. Finally, terminate the whole thing with | |
675 | // a colon. | |
676 | util_append64(result, baseValue); | |
677 | if (radix != 10) { | |
678 | result.append(gSlash); | |
679 | util_append64(result, radix); | |
680 | } | |
681 | int numCarets = expectedExponent() - exponent; | |
682 | for (int i = 0; i < numCarets; i++) { | |
683 | result.append(gGreaterThan); | |
684 | } | |
685 | break; | |
686 | } | |
687 | result.append(gColon); | |
688 | result.append(gSpace); | |
689 | ||
690 | // if the rule text begins with a space, write an apostrophe | |
691 | // (whitespace after the rule descriptor is ignored; the | |
692 | // apostrophe is used to make the whitespace significant) | |
3d1f044b | 693 | if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) { |
b75a7d8f A |
694 | result.append(gTick); |
695 | } | |
696 | ||
697 | // now, write the rule's rule text, inserting appropriate | |
698 | // substitution tokens in the appropriate places | |
699 | UnicodeString ruleTextCopy; | |
3d1f044b | 700 | ruleTextCopy.setTo(fRuleText); |
b75a7d8f A |
701 | |
702 | UnicodeString temp; | |
2ca993e8 A |
703 | if (sub2 != NULL) { |
704 | sub2->toString(temp); | |
705 | ruleTextCopy.insert(sub2->getPos(), temp); | |
706 | } | |
707 | if (sub1 != NULL) { | |
708 | sub1->toString(temp); | |
709 | ruleTextCopy.insert(sub1->getPos(), temp); | |
710 | } | |
b75a7d8f A |
711 | |
712 | result.append(ruleTextCopy); | |
713 | ||
714 | // and finally, top the whole thing off with a semicolon and | |
715 | // return the result | |
716 | result.append(gSemicolon); | |
717 | } | |
718 | ||
f3c0d7a5 A |
719 | int64_t NFRule::getDivisor() const |
720 | { | |
721 | return util64_pow(radix, exponent); | |
722 | } | |
723 | ||
724 | ||
b75a7d8f A |
725 | //----------------------------------------------------------------------- |
726 | // formatting | |
727 | //----------------------------------------------------------------------- | |
728 | ||
729 | /** | |
730 | * Formats the number, and inserts the resulting text into | |
731 | * toInsertInto. | |
732 | * @param number The number being formatted | |
733 | * @param toInsertInto The string where the resultant text should | |
734 | * be inserted | |
735 | * @param pos The position in toInsertInto where the resultant text | |
736 | * should be inserted | |
737 | */ | |
738 | void | |
2ca993e8 | 739 | NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
b75a7d8f A |
740 | { |
741 | // first, insert the rule's rule text into toInsertInto at the | |
742 | // specified position, then insert the results of the substitutions | |
743 | // into the right places in toInsertInto (notice we do the | |
744 | // substitutions in reverse order so that the offsets don't get | |
745 | // messed up) | |
3d1f044b | 746 | int32_t pluralRuleStart = fRuleText.length(); |
b331163b A |
747 | int32_t lengthOffset = 0; |
748 | if (!rulePatternFormat) { | |
3d1f044b | 749 | toInsertInto.insert(pos, fRuleText); |
b331163b A |
750 | } |
751 | else { | |
3d1f044b A |
752 | pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
753 | int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); | |
b331163b | 754 | int initialLength = toInsertInto.length(); |
3d1f044b A |
755 | if (pluralRuleEnd < fRuleText.length() - 1) { |
756 | toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2)); | |
b331163b A |
757 | } |
758 | toInsertInto.insert(pos, | |
f3c0d7a5 | 759 | rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status)); |
b331163b | 760 | if (pluralRuleStart > 0) { |
3d1f044b | 761 | toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart)); |
b331163b | 762 | } |
3d1f044b | 763 | lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength); |
b331163b A |
764 | } |
765 | ||
2ca993e8 A |
766 | if (sub2 != NULL) { |
767 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); | |
b331163b | 768 | } |
2ca993e8 A |
769 | if (sub1 != NULL) { |
770 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); | |
b331163b | 771 | } |
b75a7d8f A |
772 | } |
773 | ||
774 | /** | |
775 | * Formats the number, and inserts the resulting text into | |
776 | * toInsertInto. | |
777 | * @param number The number being formatted | |
778 | * @param toInsertInto The string where the resultant text should | |
779 | * be inserted | |
780 | * @param pos The position in toInsertInto where the resultant text | |
781 | * should be inserted | |
782 | */ | |
783 | void | |
2ca993e8 | 784 | NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
b75a7d8f A |
785 | { |
786 | // first, insert the rule's rule text into toInsertInto at the | |
787 | // specified position, then insert the results of the substitutions | |
788 | // into the right places in toInsertInto | |
789 | // [again, we have two copies of this routine that do the same thing | |
790 | // so that we don't sacrifice precision in a long by casting it | |
791 | // to a double] | |
3d1f044b | 792 | int32_t pluralRuleStart = fRuleText.length(); |
b331163b A |
793 | int32_t lengthOffset = 0; |
794 | if (!rulePatternFormat) { | |
3d1f044b | 795 | toInsertInto.insert(pos, fRuleText); |
b331163b A |
796 | } |
797 | else { | |
3d1f044b A |
798 | pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
799 | int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); | |
b331163b | 800 | int initialLength = toInsertInto.length(); |
3d1f044b A |
801 | if (pluralRuleEnd < fRuleText.length() - 1) { |
802 | toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2)); | |
b331163b | 803 | } |
2ca993e8 A |
804 | double pluralVal = number; |
805 | if (0 <= pluralVal && pluralVal < 1) { | |
806 | // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior. | |
807 | // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors. | |
f3c0d7a5 | 808 | pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent)); |
2ca993e8 A |
809 | } |
810 | else { | |
f3c0d7a5 | 811 | pluralVal = pluralVal / util64_pow(radix, exponent); |
2ca993e8 A |
812 | } |
813 | toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status)); | |
b331163b | 814 | if (pluralRuleStart > 0) { |
3d1f044b | 815 | toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart)); |
b331163b | 816 | } |
3d1f044b | 817 | lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength); |
b331163b A |
818 | } |
819 | ||
2ca993e8 A |
820 | if (sub2 != NULL) { |
821 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); | |
b331163b | 822 | } |
2ca993e8 A |
823 | if (sub1 != NULL) { |
824 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); | |
b331163b | 825 | } |
b75a7d8f A |
826 | } |
827 | ||
828 | /** | |
829 | * Used by the owning rule set to determine whether to invoke the | |
830 | * rollback rule (i.e., whether this rule or the one that precedes | |
831 | * it in the rule set's list should be used to format the number) | |
832 | * @param The number being formatted | |
833 | * @return True if the rule set should use the rule that precedes | |
834 | * this one in its list; false if it should use this rule | |
835 | */ | |
836 | UBool | |
f3c0d7a5 | 837 | NFRule::shouldRollBack(int64_t number) const |
b75a7d8f A |
838 | { |
839 | // we roll back if the rule contains a modulus substitution, | |
840 | // the number being formatted is an even multiple of the rule's | |
841 | // divisor, and the rule's base value is NOT an even multiple | |
842 | // of its divisor | |
843 | // In other words, if the original description had | |
844 | // 100: << hundred[ >>]; | |
845 | // that expands into | |
846 | // 100: << hundred; | |
847 | // 101: << hundred >>; | |
848 | // internally. But when we're formatting 200, if we use the rule | |
849 | // at 101, which would normally apply, we get "two hundred zero". | |
850 | // To prevent this, we roll back and use the rule at 100 instead. | |
851 | // This is the logic that makes this happen: the rule at 101 has | |
852 | // a modulus substitution, its base value isn't an even multiple | |
853 | // of 100, and the value we're trying to format _is_ an even | |
854 | // multiple of 100. This is called the "rollback rule." | |
2ca993e8 | 855 | if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) { |
b75a7d8f | 856 | int64_t re = util64_pow(radix, exponent); |
f3c0d7a5 | 857 | return (number % re) == 0 && (baseValue % re) != 0; |
b75a7d8f A |
858 | } |
859 | return FALSE; | |
860 | } | |
861 | ||
862 | //----------------------------------------------------------------------- | |
863 | // parsing | |
864 | //----------------------------------------------------------------------- | |
865 | ||
866 | /** | |
867 | * Attempts to parse the string with this rule. | |
868 | * @param text The string being parsed | |
869 | * @param parsePosition On entry, the value is ignored and assumed to | |
870 | * be 0. On exit, this has been updated with the position of the first | |
871 | * character not consumed by matching the text against this rule | |
872 | * (if this rule doesn't match the text at all, the parse position | |
873 | * if left unchanged (presumably at 0) and the function returns | |
874 | * new Long(0)). | |
875 | * @param isFractionRule True if this rule is contained within a | |
876 | * fraction rule set. This is only used if the rule has no | |
877 | * substitutions. | |
878 | * @return If this rule matched the text, this is the rule's base value | |
879 | * combined appropriately with the results of parsing the substitutions. | |
880 | * If nothing matched, this is new Long(0) and the parse position is | |
881 | * left unchanged. The result will be an instance of Long if the | |
882 | * result is an integer and Double otherwise. The result is never null. | |
883 | */ | |
884 | #ifdef RBNF_DEBUG | |
885 | #include <stdio.h> | |
886 | ||
887 | static void dumpUS(FILE* f, const UnicodeString& us) { | |
888 | int len = us.length(); | |
889 | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; | |
46f4442e A |
890 | if (buf != NULL) { |
891 | us.extract(0, len, buf); | |
892 | buf[len] = 0; | |
893 | fprintf(f, "%s", buf); | |
894 | uprv_free(buf); //delete[] buf; | |
895 | } | |
b75a7d8f A |
896 | } |
897 | #endif | |
b75a7d8f A |
898 | UBool |
899 | NFRule::doParse(const UnicodeString& text, | |
900 | ParsePosition& parsePosition, | |
901 | UBool isFractionRule, | |
902 | double upperBound, | |
0f5d89e8 | 903 | uint32_t nonNumericalExecutedRuleMask, |
729e4ab9 A |
904 | Formattable& resVal, |
905 | UBool isDecimFmtParseable) const | |
b75a7d8f A |
906 | { |
907 | // internally we operate on a copy of the string being parsed | |
908 | // (because we're going to change it) and use our own ParsePosition | |
909 | ParsePosition pp; | |
910 | UnicodeString workText(text); | |
911 | ||
3d1f044b A |
912 | int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length(); |
913 | int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length(); | |
2ca993e8 | 914 | |
b75a7d8f A |
915 | // check to see whether the text before the first substitution |
916 | // matches the text at the beginning of the string being | |
917 | // parsed. If it does, strip that off the front of workText; | |
918 | // otherwise, dump out with a mismatch | |
919 | UnicodeString prefix; | |
3d1f044b | 920 | prefix.setTo(fRuleText, 0, sub1Pos); |
b75a7d8f A |
921 | |
922 | #ifdef RBNF_DEBUG | |
2ca993e8 | 923 | fprintf(stderr, "doParse %p ", this); |
b75a7d8f A |
924 | { |
925 | UnicodeString rt; | |
73c04bcf | 926 | _appendRuleText(rt); |
b75a7d8f A |
927 | dumpUS(stderr, rt); |
928 | } | |
929 | ||
2ca993e8 | 930 | fprintf(stderr, " text: '"); |
b75a7d8f A |
931 | dumpUS(stderr, text); |
932 | fprintf(stderr, "' prefix: '"); | |
933 | dumpUS(stderr, prefix); | |
934 | #endif | |
935 | stripPrefix(workText, prefix, pp); | |
936 | int32_t prefixLength = text.length() - workText.length(); | |
937 | ||
938 | #ifdef RBNF_DEBUG | |
2ca993e8 | 939 | fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos); |
b75a7d8f A |
940 | #endif |
941 | ||
2ca993e8 | 942 | if (pp.getIndex() == 0 && sub1Pos != 0) { |
b75a7d8f A |
943 | // commented out because ParsePosition doesn't have error index in 1.1.x |
944 | // restored for ICU4C port | |
945 | parsePosition.setErrorIndex(pp.getErrorIndex()); | |
946 | resVal.setLong(0); | |
947 | return TRUE; | |
948 | } | |
2ca993e8 A |
949 | if (baseValue == kInfinityRule) { |
950 | // If you match this, don't try to perform any calculations on it. | |
951 | parsePosition.setIndex(pp.getIndex()); | |
952 | resVal.setDouble(uprv_getInfinity()); | |
953 | return TRUE; | |
954 | } | |
955 | if (baseValue == kNaNRule) { | |
956 | // If you match this, don't try to perform any calculations on it. | |
957 | parsePosition.setIndex(pp.getIndex()); | |
958 | resVal.setDouble(uprv_getNaN()); | |
959 | return TRUE; | |
960 | } | |
b75a7d8f | 961 | |
729e4ab9 A |
962 | // Detect when this rule's main job is to parse a decimal format and we're not |
963 | // supposed to. | |
2ca993e8 A |
964 | if (!isDecimFmtParseable && sub1 != NULL && sub1->isDecimalFormatSubstitutionOnly()) { |
965 | // This is trying to detect a rule like "x.x: =#,##0.#=;" | |
966 | // We used to also check sub2->isRuleSetSubstitutionOnly() to detect this | |
967 | // but now sub2 is usually NULL when we get here, and that test no longer seems to matter. | |
968 | // Need to check into this more. | |
969 | parsePosition.setErrorIndex(pp.getErrorIndex()); | |
970 | resVal.setLong(0); | |
971 | return TRUE; | |
729e4ab9 A |
972 | } |
973 | ||
b75a7d8f A |
974 | // this is the fun part. The basic guts of the rule-matching |
975 | // logic is matchToDelimiter(), which is called twice. The first | |
976 | // time it searches the input string for the rule text BETWEEN | |
977 | // the substitutions and tries to match the intervening text | |
978 | // in the input string with the first substitution. If that | |
979 | // succeeds, it then calls it again, this time to look for the | |
980 | // rule text after the second substitution and to match the | |
981 | // intervening input text against the second substitution. | |
982 | // | |
983 | // For example, say we have a rule that looks like this: | |
984 | // first << middle >> last; | |
985 | // and input text that looks like this: | |
986 | // first one middle two last | |
987 | // First we use stripPrefix() to match "first " in both places and | |
988 | // strip it off the front, leaving | |
989 | // one middle two last | |
990 | // Then we use matchToDelimiter() to match " middle " and try to | |
991 | // match "one" against a substitution. If it's successful, we now | |
992 | // have | |
993 | // two last | |
994 | // We use matchToDelimiter() a second time to match " last" and | |
995 | // try to match "two" against a substitution. If "two" matches | |
996 | // the substitution, we have a successful parse. | |
997 | // | |
998 | // Since it's possible in many cases to find multiple instances | |
999 | // of each of these pieces of rule text in the input string, | |
1000 | // we need to try all the possible combinations of these | |
1001 | // locations. This prevents us from prematurely declaring a mismatch, | |
1002 | // and makes sure we match as much input text as we can. | |
1003 | int highWaterMark = 0; | |
1004 | double result = 0; | |
1005 | int start = 0; | |
1006 | double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); | |
1007 | ||
1008 | UnicodeString temp; | |
1009 | do { | |
1010 | // our partial parse result starts out as this rule's base | |
1011 | // value. If it finds a successful match, matchToDelimiter() | |
1012 | // will compose this in some way with what it gets back from | |
1013 | // the substitution, giving us a new partial parse result | |
1014 | pp.setIndex(0); | |
1015 | ||
3d1f044b | 1016 | temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos); |
b75a7d8f A |
1017 | double partialResult = matchToDelimiter(workText, start, tempBaseValue, |
1018 | temp, pp, sub1, | |
0f5d89e8 | 1019 | nonNumericalExecutedRuleMask, |
b75a7d8f A |
1020 | upperBound); |
1021 | ||
1022 | // if we got a successful match (or were trying to match a | |
1023 | // null substitution), pp is now pointing at the first unmatched | |
1024 | // character. Take note of that, and try matchToDelimiter() | |
1025 | // on the input text again | |
2ca993e8 | 1026 | if (pp.getIndex() != 0 || sub1 == NULL) { |
b75a7d8f A |
1027 | start = pp.getIndex(); |
1028 | ||
1029 | UnicodeString workText2; | |
1030 | workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); | |
1031 | ParsePosition pp2; | |
1032 | ||
1033 | // the second matchToDelimiter() will compose our previous | |
1034 | // partial result with whatever it gets back from its | |
1035 | // substitution if there's a successful match, giving us | |
1036 | // a real result | |
3d1f044b | 1037 | temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos); |
b75a7d8f A |
1038 | partialResult = matchToDelimiter(workText2, 0, partialResult, |
1039 | temp, pp2, sub2, | |
0f5d89e8 | 1040 | nonNumericalExecutedRuleMask, |
b75a7d8f A |
1041 | upperBound); |
1042 | ||
1043 | // if we got a successful match on this second | |
1044 | // matchToDelimiter() call, update the high-water mark | |
1045 | // and result (if necessary) | |
2ca993e8 | 1046 | if (pp2.getIndex() != 0 || sub2 == NULL) { |
b75a7d8f A |
1047 | if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { |
1048 | highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); | |
1049 | result = partialResult; | |
1050 | } | |
1051 | } | |
b75a7d8f | 1052 | else { |
2ca993e8 A |
1053 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1054 | // restored for ICU4C port | |
3d1f044b A |
1055 | int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex(); |
1056 | if (i_temp> parsePosition.getErrorIndex()) { | |
1057 | parsePosition.setErrorIndex(i_temp); | |
b75a7d8f A |
1058 | } |
1059 | } | |
1060 | } | |
b75a7d8f | 1061 | else { |
2ca993e8 A |
1062 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1063 | // restored for ICU4C port | |
3d1f044b A |
1064 | int32_t i_temp = sub1Pos + pp.getErrorIndex(); |
1065 | if (i_temp > parsePosition.getErrorIndex()) { | |
1066 | parsePosition.setErrorIndex(i_temp); | |
b75a7d8f A |
1067 | } |
1068 | } | |
1069 | // keep trying to match things until the outer matchToDelimiter() | |
1070 | // call fails to make a match (each time, it picks up where it | |
1071 | // left off the previous time) | |
2ca993e8 | 1072 | } while (sub1Pos != sub2Pos |
b75a7d8f A |
1073 | && pp.getIndex() > 0 |
1074 | && pp.getIndex() < workText.length() | |
1075 | && pp.getIndex() != start); | |
1076 | ||
1077 | // update the caller's ParsePosition with our high-water mark | |
1078 | // (i.e., it now points at the first character this function | |
1079 | // didn't match-- the ParsePosition is therefore unchanged if | |
1080 | // we didn't match anything) | |
1081 | parsePosition.setIndex(highWaterMark); | |
1082 | // commented out because ParsePosition doesn't have error index in 1.1.x | |
1083 | // restored for ICU4C port | |
1084 | if (highWaterMark > 0) { | |
1085 | parsePosition.setErrorIndex(0); | |
1086 | } | |
1087 | ||
1088 | // this is a hack for one unusual condition: Normally, whether this | |
1089 | // rule belong to a fraction rule set or not is handled by its | |
1090 | // substitutions. But if that rule HAS NO substitutions, then | |
1091 | // we have to account for it here. By definition, if the matching | |
1092 | // rule in a fraction rule set has no substitutions, its numerator | |
1093 | // is 1, and so the result is the reciprocal of its base value. | |
2ca993e8 | 1094 | if (isFractionRule && highWaterMark > 0 && sub1 == NULL) { |
b75a7d8f A |
1095 | result = 1 / result; |
1096 | } | |
1097 | ||
1098 | resVal.setDouble(result); | |
1099 | return TRUE; // ??? do we need to worry if it is a long or a double? | |
1100 | } | |
1101 | ||
1102 | /** | |
1103 | * This function is used by parse() to match the text being parsed | |
1104 | * against a possible prefix string. This function | |
1105 | * matches characters from the beginning of the string being parsed | |
1106 | * to characters from the prospective prefix. If they match, pp is | |
1107 | * updated to the first character not matched, and the result is | |
1108 | * the unparsed part of the string. If they don't match, the whole | |
1109 | * string is returned, and pp is left unchanged. | |
1110 | * @param text The string being parsed | |
1111 | * @param prefix The text to match against | |
1112 | * @param pp On entry, ignored and assumed to be 0. On exit, points | |
1113 | * to the first unmatched character (assuming the whole prefix matched), | |
1114 | * or is unchanged (if the whole prefix didn't match). | |
1115 | * @return If things match, this is the unparsed part of "text"; | |
1116 | * if they didn't match, this is "text". | |
1117 | */ | |
1118 | void | |
1119 | NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const | |
1120 | { | |
1121 | // if the prefix text is empty, dump out without doing anything | |
1122 | if (prefix.length() != 0) { | |
46f4442e | 1123 | UErrorCode status = U_ZERO_ERROR; |
b75a7d8f A |
1124 | // use prefixLength() to match the beginning of |
1125 | // "text" against "prefix". This function returns the | |
1126 | // number of characters from "text" that matched (or 0 if | |
1127 | // we didn't match the whole prefix) | |
46f4442e A |
1128 | int32_t pfl = prefixLength(text, prefix, status); |
1129 | if (U_FAILURE(status)) { // Memory allocation error. | |
1130 | return; | |
1131 | } | |
b75a7d8f A |
1132 | if (pfl != 0) { |
1133 | // if we got a successful match, update the parse position | |
1134 | // and strip the prefix off of "text" | |
1135 | pp.setIndex(pp.getIndex() + pfl); | |
1136 | text.remove(0, pfl); | |
1137 | } | |
1138 | } | |
1139 | } | |
1140 | ||
1141 | /** | |
1142 | * Used by parse() to match a substitution and any following text. | |
1143 | * "text" is searched for instances of "delimiter". For each instance | |
1144 | * of delimiter, the intervening text is tested to see whether it | |
1145 | * matches the substitution. The longest match wins. | |
1146 | * @param text The string being parsed | |
1147 | * @param startPos The position in "text" where we should start looking | |
1148 | * for "delimiter". | |
1149 | * @param baseValue A partial parse result (often the rule's base value), | |
1150 | * which is combined with the result from matching the substitution | |
1151 | * @param delimiter The string to search "text" for. | |
1152 | * @param pp Ignored and presumed to be 0 on entry. If there's a match, | |
1153 | * on exit this will point to the first unmatched character. | |
1154 | * @param sub If we find "delimiter" in "text", this substitution is used | |
1155 | * to match the text between the beginning of the string and the | |
1156 | * position of "delimiter." (If "delimiter" is the empty string, then | |
1157 | * this function just matches against this substitution and updates | |
1158 | * everything accordingly.) | |
1159 | * @param upperBound When matching the substitution, it will only | |
1160 | * consider rules with base values lower than this value. | |
1161 | * @return If there's a match, this is the result of composing | |
1162 | * baseValue with the result of matching the substitution. Otherwise, | |
1163 | * this is new Long(0). It's never null. If the result is an integer, | |
1164 | * this will be an instance of Long; otherwise, it's an instance of | |
1165 | * Double. | |
1166 | * | |
1167 | * !!! note {dlf} in point of fact, in the java code the caller always converts | |
1168 | * the result to a double, so we might as well return one. | |
1169 | */ | |
1170 | double | |
1171 | NFRule::matchToDelimiter(const UnicodeString& text, | |
1172 | int32_t startPos, | |
1173 | double _baseValue, | |
1174 | const UnicodeString& delimiter, | |
1175 | ParsePosition& pp, | |
1176 | const NFSubstitution* sub, | |
0f5d89e8 | 1177 | uint32_t nonNumericalExecutedRuleMask, |
b75a7d8f A |
1178 | double upperBound) const |
1179 | { | |
46f4442e | 1180 | UErrorCode status = U_ZERO_ERROR; |
b75a7d8f A |
1181 | // if "delimiter" contains real (i.e., non-ignorable) text, search |
1182 | // it for "delimiter" beginning at "start". If that succeeds, then | |
1183 | // use "sub"'s doParse() method to match the text before the | |
1184 | // instance of "delimiter" we just found. | |
46f4442e A |
1185 | if (!allIgnorable(delimiter, status)) { |
1186 | if (U_FAILURE(status)) { //Memory allocation error. | |
1187 | return 0; | |
1188 | } | |
b75a7d8f A |
1189 | ParsePosition tempPP; |
1190 | Formattable result; | |
1191 | ||
1192 | // use findText() to search for "delimiter". It returns a two- | |
1193 | // element array: element 0 is the position of the match, and | |
1194 | // element 1 is the number of characters that matched | |
1195 | // "delimiter". | |
1196 | int32_t dLen; | |
1197 | int32_t dPos = findText(text, delimiter, startPos, &dLen); | |
1198 | ||
1199 | // if findText() succeeded, isolate the text preceding the | |
1200 | // match, and use "sub" to match that text | |
1201 | while (dPos >= 0) { | |
1202 | UnicodeString subText; | |
1203 | subText.setTo(text, 0, dPos); | |
1204 | if (subText.length() > 0) { | |
1205 | UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, | |
1206 | #if UCONFIG_NO_COLLATION | |
1207 | FALSE, | |
1208 | #else | |
1209 | formatter->isLenient(), | |
1210 | #endif | |
0f5d89e8 | 1211 | nonNumericalExecutedRuleMask, |
b75a7d8f A |
1212 | result); |
1213 | ||
1214 | // if the substitution could match all the text up to | |
1215 | // where we found "delimiter", then this function has | |
1216 | // a successful match. Bump the caller's parse position | |
1217 | // to point to the first character after the text | |
1218 | // that matches "delimiter", and return the result | |
1219 | // we got from parsing the substitution. | |
1220 | if (success && tempPP.getIndex() == dPos) { | |
1221 | pp.setIndex(dPos + dLen); | |
1222 | return result.getDouble(); | |
1223 | } | |
b75a7d8f | 1224 | else { |
2ca993e8 A |
1225 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1226 | // restored for ICU4C port | |
b75a7d8f A |
1227 | if (tempPP.getErrorIndex() > 0) { |
1228 | pp.setErrorIndex(tempPP.getErrorIndex()); | |
1229 | } else { | |
1230 | pp.setErrorIndex(tempPP.getIndex()); | |
1231 | } | |
1232 | } | |
1233 | } | |
1234 | ||
1235 | // if we didn't match the substitution, search for another | |
1236 | // copy of "delimiter" in "text" and repeat the loop if | |
1237 | // we find it | |
1238 | tempPP.setIndex(0); | |
1239 | dPos = findText(text, delimiter, dPos + dLen, &dLen); | |
1240 | } | |
1241 | // if we make it here, this was an unsuccessful match, and we | |
1242 | // leave pp unchanged and return 0 | |
1243 | pp.setIndex(0); | |
1244 | return 0; | |
1245 | ||
1246 | // if "delimiter" is empty, or consists only of ignorable characters | |
1247 | // (i.e., is semantically empty), thwe we obviously can't search | |
1248 | // for "delimiter". Instead, just use "sub" to parse as much of | |
1249 | // "text" as possible. | |
2ca993e8 A |
1250 | } |
1251 | else if (sub == NULL) { | |
1252 | return _baseValue; | |
1253 | } | |
1254 | else { | |
b75a7d8f A |
1255 | ParsePosition tempPP; |
1256 | Formattable result; | |
1257 | ||
1258 | // try to match the whole string against the substitution | |
1259 | UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, | |
1260 | #if UCONFIG_NO_COLLATION | |
1261 | FALSE, | |
1262 | #else | |
1263 | formatter->isLenient(), | |
1264 | #endif | |
0f5d89e8 | 1265 | nonNumericalExecutedRuleMask, |
b75a7d8f | 1266 | result); |
2ca993e8 | 1267 | if (success && (tempPP.getIndex() != 0)) { |
b75a7d8f A |
1268 | // if there's a successful match (or it's a null |
1269 | // substitution), update pp to point to the first | |
1270 | // character we didn't match, and pass the result from | |
1271 | // sub.doParse() on through to the caller | |
1272 | pp.setIndex(tempPP.getIndex()); | |
1273 | return result.getDouble(); | |
1274 | } | |
b75a7d8f | 1275 | else { |
2ca993e8 A |
1276 | // commented out because ParsePosition doesn't have error index in 1.1.x |
1277 | // restored for ICU4C port | |
b75a7d8f A |
1278 | pp.setErrorIndex(tempPP.getErrorIndex()); |
1279 | } | |
1280 | ||
1281 | // and if we get to here, then nothing matched, so we return | |
1282 | // 0 and leave pp alone | |
1283 | return 0; | |
1284 | } | |
1285 | } | |
1286 | ||
1287 | /** | |
1288 | * Used by stripPrefix() to match characters. If lenient parse mode | |
1289 | * is off, this just calls startsWith(). If lenient parse mode is on, | |
1290 | * this function uses CollationElementIterators to match characters in | |
1291 | * the strings (only primary-order differences are significant in | |
1292 | * determining whether there's a match). | |
1293 | * @param str The string being tested | |
1294 | * @param prefix The text we're hoping to see at the beginning | |
1295 | * of "str" | |
1296 | * @return If "prefix" is found at the beginning of "str", this | |
1297 | * is the number of characters in "str" that were matched (this | |
1298 | * isn't necessarily the same as the length of "prefix" when matching | |
1299 | * text with a collator). If there's no match, this is 0. | |
1300 | */ | |
1301 | int32_t | |
46f4442e | 1302 | NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const |
b75a7d8f A |
1303 | { |
1304 | // if we're looking for an empty prefix, it obviously matches | |
1305 | // zero characters. Just go ahead and return 0. | |
1306 | if (prefix.length() == 0) { | |
1307 | return 0; | |
1308 | } | |
1309 | ||
1310 | #if !UCONFIG_NO_COLLATION | |
1311 | // go through all this grief if we're in lenient-parse mode | |
1312 | if (formatter->isLenient()) { | |
1313 | // get the formatter's collator and use it to create two | |
1314 | // collation element iterators, one over the target string | |
1315 | // and another over the prefix (right now, we'll throw an | |
1316 | // exception if the collator we get back from the formatter | |
1317 | // isn't a RuleBasedCollator, because RuleBasedCollator defines | |
1318 | // the CollationElementIterator protocol. Hopefully, this | |
1319 | // will change someday.) | |
57a6839d A |
1320 | const RuleBasedCollator* collator = formatter->getCollator(); |
1321 | if (collator == NULL) { | |
1322 | status = U_MEMORY_ALLOCATION_ERROR; | |
1323 | return 0; | |
1324 | } | |
1325 | LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str)); | |
1326 | LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix)); | |
46f4442e | 1327 | // Check for memory allocation error. |
57a6839d A |
1328 | if (strIter.isNull() || prefixIter.isNull()) { |
1329 | status = U_MEMORY_ALLOCATION_ERROR; | |
1330 | return 0; | |
46f4442e | 1331 | } |
b75a7d8f A |
1332 | |
1333 | UErrorCode err = U_ZERO_ERROR; | |
1334 | ||
1335 | // The original code was problematic. Consider this match: | |
1336 | // prefix = "fifty-" | |
1337 | // string = " fifty-7" | |
1338 | // The intent is to match string up to the '7', by matching 'fifty-' at position 1 | |
1339 | // in the string. Unfortunately, we were getting a match, and then computing where | |
1340 | // the match terminated by rematching the string. The rematch code was using as an | |
1341 | // initial guess the substring of string between 0 and prefix.length. Because of | |
1342 | // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving | |
1343 | // the position before the hyphen in the string. Recursing down, we then parsed the | |
1344 | // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). | |
1345 | // This was not pretty, especially since the string "fifty-7" parsed just fine. | |
1346 | // | |
1347 | // We have newer APIs now, so we can use calls on the iterator to determine what we | |
1348 | // matched up to. If we terminate because we hit the last element in the string, | |
1349 | // our match terminates at this length. If we terminate because we hit the last element | |
1350 | // in the target, our match terminates at one before the element iterator position. | |
1351 | ||
1352 | // match collation elements between the strings | |
1353 | int32_t oStr = strIter->next(err); | |
1354 | int32_t oPrefix = prefixIter->next(err); | |
1355 | ||
1356 | while (oPrefix != CollationElementIterator::NULLORDER) { | |
1357 | // skip over ignorable characters in the target string | |
1358 | while (CollationElementIterator::primaryOrder(oStr) == 0 | |
1359 | && oStr != CollationElementIterator::NULLORDER) { | |
1360 | oStr = strIter->next(err); | |
1361 | } | |
1362 | ||
1363 | // skip over ignorable characters in the prefix | |
1364 | while (CollationElementIterator::primaryOrder(oPrefix) == 0 | |
1365 | && oPrefix != CollationElementIterator::NULLORDER) { | |
1366 | oPrefix = prefixIter->next(err); | |
1367 | } | |
1368 | ||
1369 | // dlf: move this above following test, if we consume the | |
1370 | // entire target, aren't we ok even if the source was also | |
1371 | // entirely consumed? | |
1372 | ||
1373 | // if skipping over ignorables brought to the end of | |
1374 | // the prefix, we DID match: drop out of the loop | |
1375 | if (oPrefix == CollationElementIterator::NULLORDER) { | |
1376 | break; | |
1377 | } | |
1378 | ||
1379 | // if skipping over ignorables brought us to the end | |
1380 | // of the target string, we didn't match and return 0 | |
1381 | if (oStr == CollationElementIterator::NULLORDER) { | |
b75a7d8f A |
1382 | return 0; |
1383 | } | |
1384 | ||
1385 | // match collation elements from the two strings | |
1386 | // (considering only primary differences). If we | |
1387 | // get a mismatch, dump out and return 0 | |
1388 | if (CollationElementIterator::primaryOrder(oStr) | |
1389 | != CollationElementIterator::primaryOrder(oPrefix)) { | |
b75a7d8f A |
1390 | return 0; |
1391 | ||
1392 | // otherwise, advance to the next character in each string | |
1393 | // and loop (we drop out of the loop when we exhaust | |
1394 | // collation elements in the prefix) | |
1395 | } else { | |
1396 | oStr = strIter->next(err); | |
1397 | oPrefix = prefixIter->next(err); | |
1398 | } | |
1399 | } | |
1400 | ||
1401 | int32_t result = strIter->getOffset(); | |
1402 | if (oStr != CollationElementIterator::NULLORDER) { | |
1403 | --result; // back over character that we don't want to consume; | |
1404 | } | |
1405 | ||
1406 | #ifdef RBNF_DEBUG | |
1407 | fprintf(stderr, "prefix length: %d\n", result); | |
1408 | #endif | |
b75a7d8f A |
1409 | return result; |
1410 | #if 0 | |
1411 | //---------------------------------------------------------------- | |
1412 | // JDK 1.2-specific API call | |
1413 | // return strIter.getOffset(); | |
1414 | //---------------------------------------------------------------- | |
1415 | // JDK 1.1 HACK (take out for 1.2-specific code) | |
1416 | ||
1417 | // if we make it to here, we have a successful match. Now we | |
1418 | // have to find out HOW MANY characters from the target string | |
1419 | // matched the prefix (there isn't necessarily a one-to-one | |
1420 | // mapping between collation elements and characters). | |
1421 | // In JDK 1.2, there's a simple getOffset() call we can use. | |
1422 | // In JDK 1.1, on the other hand, we have to go through some | |
1423 | // ugly contortions. First, use the collator to compare the | |
1424 | // same number of characters from the prefix and target string. | |
1425 | // If they're equal, we're done. | |
1426 | collator->setStrength(Collator::PRIMARY); | |
1427 | if (str.length() >= prefix.length()) { | |
1428 | UnicodeString temp; | |
1429 | temp.setTo(str, 0, prefix.length()); | |
1430 | if (collator->equals(temp, prefix)) { | |
1431 | #ifdef RBNF_DEBUG | |
1432 | fprintf(stderr, "returning: %d\n", prefix.length()); | |
1433 | #endif | |
1434 | return prefix.length(); | |
1435 | } | |
1436 | } | |
1437 | ||
1438 | // if they're not equal, then we have to compare successively | |
1439 | // larger and larger substrings of the target string until we | |
1440 | // get to one that matches the prefix. At that point, we know | |
1441 | // how many characters matched the prefix, and we can return. | |
1442 | int32_t p = 1; | |
1443 | while (p <= str.length()) { | |
1444 | UnicodeString temp; | |
1445 | temp.setTo(str, 0, p); | |
1446 | if (collator->equals(temp, prefix)) { | |
1447 | return p; | |
1448 | } else { | |
1449 | ++p; | |
1450 | } | |
1451 | } | |
1452 | ||
1453 | // SHOULD NEVER GET HERE!!! | |
1454 | return 0; | |
1455 | //---------------------------------------------------------------- | |
1456 | #endif | |
1457 | ||
1458 | // If lenient parsing is turned off, forget all that crap above. | |
1459 | // Just use String.startsWith() and be done with it. | |
1460 | } else | |
1461 | #endif | |
1462 | { | |
1463 | if (str.startsWith(prefix)) { | |
1464 | return prefix.length(); | |
1465 | } else { | |
1466 | return 0; | |
1467 | } | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | /** | |
1472 | * Searches a string for another string. If lenient parsing is off, | |
1473 | * this just calls indexOf(). If lenient parsing is on, this function | |
1474 | * uses CollationElementIterator to match characters, and only | |
1475 | * primary-order differences are significant in determining whether | |
1476 | * there's a match. | |
1477 | * @param str The string to search | |
1478 | * @param key The string to search "str" for | |
1479 | * @param startingAt The index into "str" where the search is to | |
1480 | * begin | |
1481 | * @return A two-element array of ints. Element 0 is the position | |
1482 | * of the match, or -1 if there was no match. Element 1 is the | |
1483 | * number of characters in "str" that matched (which isn't necessarily | |
1484 | * the same as the length of "key") | |
1485 | */ | |
1486 | int32_t | |
1487 | NFRule::findText(const UnicodeString& str, | |
1488 | const UnicodeString& key, | |
1489 | int32_t startingAt, | |
1490 | int32_t* length) const | |
1491 | { | |
b331163b A |
1492 | if (rulePatternFormat) { |
1493 | Formattable result; | |
1494 | FieldPosition position(UNUM_INTEGER_FIELD); | |
1495 | position.setBeginIndex(startingAt); | |
1496 | rulePatternFormat->parseType(str, this, result, position); | |
1497 | int start = position.getBeginIndex(); | |
1498 | if (start >= 0) { | |
3d1f044b A |
1499 | int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0); |
1500 | int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2; | |
b331163b | 1501 | int32_t matchLen = position.getEndIndex() - start; |
3d1f044b A |
1502 | UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart)); |
1503 | UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix)); | |
b331163b A |
1504 | if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0 |
1505 | && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0) | |
1506 | { | |
1507 | *length = matchLen + prefix.length() + suffix.length(); | |
1508 | return start - prefix.length(); | |
1509 | } | |
1510 | } | |
1511 | *length = 0; | |
1512 | return -1; | |
1513 | } | |
b75a7d8f | 1514 | if (!formatter->isLenient()) { |
b331163b A |
1515 | // if lenient parsing is turned off, this is easy: just call |
1516 | // String.indexOf() and we're done | |
b75a7d8f A |
1517 | *length = key.length(); |
1518 | return str.indexOf(key, startingAt); | |
b331163b A |
1519 | } |
1520 | else { | |
b75a7d8f A |
1521 | // but if lenient parsing is turned ON, we've got some work |
1522 | // ahead of us | |
b331163b A |
1523 | return findTextLenient(str, key, startingAt, length); |
1524 | } | |
1525 | } | |
b75a7d8f | 1526 | |
b331163b A |
1527 | int32_t |
1528 | NFRule::findTextLenient(const UnicodeString& str, | |
1529 | const UnicodeString& key, | |
1530 | int32_t startingAt, | |
1531 | int32_t* length) const | |
1532 | { | |
1533 | //---------------------------------------------------------------- | |
1534 | // JDK 1.1 HACK (take out of 1.2-specific code) | |
1535 | ||
1536 | // in JDK 1.2, CollationElementIterator provides us with an | |
1537 | // API to map between character offsets and collation elements | |
1538 | // and we can do this by marching through the string comparing | |
1539 | // collation elements. We can't do that in JDK 1.1. Insted, | |
1540 | // we have to go through this horrible slow mess: | |
1541 | int32_t p = startingAt; | |
1542 | int32_t keyLen = 0; | |
1543 | ||
1544 | // basically just isolate smaller and smaller substrings of | |
1545 | // the target string (each running to the end of the string, | |
1546 | // and with the first one running from startingAt to the end) | |
1547 | // and then use prefixLength() to see if the search key is at | |
1548 | // the beginning of each substring. This is excruciatingly | |
1549 | // slow, but it will locate the key and tell use how long the | |
1550 | // matching text was. | |
1551 | UnicodeString temp; | |
1552 | UErrorCode status = U_ZERO_ERROR; | |
1553 | while (p < str.length() && keyLen == 0) { | |
1554 | temp.setTo(str, p, str.length() - p); | |
1555 | keyLen = prefixLength(temp, key, status); | |
1556 | if (U_FAILURE(status)) { | |
1557 | break; | |
1558 | } | |
1559 | if (keyLen != 0) { | |
1560 | *length = keyLen; | |
1561 | return p; | |
1562 | } | |
1563 | ++p; | |
b75a7d8f | 1564 | } |
b331163b A |
1565 | // if we make it to here, we didn't find it. Return -1 for the |
1566 | // location. The length should be ignored, but set it to 0, | |
1567 | // which should be "safe" | |
1568 | *length = 0; | |
1569 | return -1; | |
b75a7d8f A |
1570 | } |
1571 | ||
1572 | /** | |
1573 | * Checks to see whether a string consists entirely of ignorable | |
1574 | * characters. | |
1575 | * @param str The string to test. | |
1576 | * @return true if the string is empty of consists entirely of | |
1577 | * characters that the number formatter's collator says are | |
1578 | * ignorable at the primary-order level. false otherwise. | |
1579 | */ | |
1580 | UBool | |
46f4442e | 1581 | NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const |
b75a7d8f A |
1582 | { |
1583 | // if the string is empty, we can just return true | |
1584 | if (str.length() == 0) { | |
1585 | return TRUE; | |
1586 | } | |
1587 | ||
1588 | #if !UCONFIG_NO_COLLATION | |
1589 | // if lenient parsing is turned on, walk through the string with | |
1590 | // a collation element iterator and make sure each collation | |
1591 | // element is 0 (ignorable) at the primary level | |
1592 | if (formatter->isLenient()) { | |
57a6839d A |
1593 | const RuleBasedCollator* collator = formatter->getCollator(); |
1594 | if (collator == NULL) { | |
1595 | status = U_MEMORY_ALLOCATION_ERROR; | |
1596 | return FALSE; | |
1597 | } | |
1598 | LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str)); | |
1599 | ||
46f4442e | 1600 | // Memory allocation error check. |
57a6839d A |
1601 | if (iter.isNull()) { |
1602 | status = U_MEMORY_ALLOCATION_ERROR; | |
1603 | return FALSE; | |
46f4442e | 1604 | } |
b75a7d8f A |
1605 | |
1606 | UErrorCode err = U_ZERO_ERROR; | |
1607 | int32_t o = iter->next(err); | |
1608 | while (o != CollationElementIterator::NULLORDER | |
1609 | && CollationElementIterator::primaryOrder(o) == 0) { | |
1610 | o = iter->next(err); | |
1611 | } | |
1612 | ||
b75a7d8f A |
1613 | return o == CollationElementIterator::NULLORDER; |
1614 | } | |
1615 | #endif | |
1616 | ||
1617 | // if lenient parsing is turned off, there is no such thing as | |
1618 | // an ignorable character: return true only if the string is empty | |
1619 | return FALSE; | |
1620 | } | |
1621 | ||
2ca993e8 A |
1622 | void |
1623 | NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) { | |
1624 | if (sub1 != NULL) { | |
1625 | sub1->setDecimalFormatSymbols(newSymbols, status); | |
1626 | } | |
1627 | if (sub2 != NULL) { | |
1628 | sub2->setDecimalFormatSymbols(newSymbols, status); | |
1629 | } | |
1630 | } | |
1631 | ||
b75a7d8f A |
1632 | U_NAMESPACE_END |
1633 | ||
1634 | /* U_HAVE_RBNF */ | |
1635 | #endif |