]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ******************************************************************************* | |
3 | * | |
374ca955 | 4 | * Copyright (C) 2001-2004, International Business Machines |
b75a7d8f A |
5 | * Corporation and others. All Rights Reserved. |
6 | * | |
7 | ******************************************************************************* | |
8 | * file name: ucol_bld.cpp | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created 02/22/2001 | |
14 | * created by: Vladimir Weinstein | |
15 | * | |
16 | * This module builds a collator based on the rule set. | |
17 | * | |
18 | */ | |
19 | ||
20 | #include "unicode/utypes.h" | |
21 | ||
22 | #if !UCONFIG_NO_COLLATION | |
23 | ||
24 | #include "unicode/ucoleitr.h" | |
25 | #include "unicode/uchar.h" | |
26 | #include "ucol_bld.h" | |
27 | #include "ucln_in.h" | |
28 | #include "umutex.h" | |
29 | #include "unicode/uniset.h" | |
30 | ||
374ca955 | 31 | static const InverseUCATableHeader* _staticInvUCA = NULL; |
b75a7d8f A |
32 | static UDataMemory* invUCA_DATA_MEM = NULL; |
33 | ||
34 | U_CDECL_BEGIN | |
35 | static UBool U_CALLCONV | |
36 | isAcceptableInvUCA(void * /*context*/, | |
37 | const char * /*type*/, const char * /*name*/, | |
38 | const UDataInfo *pInfo){ | |
39 | /* context, type & name are intentionally not used */ | |
40 | if( pInfo->size>=20 && | |
41 | pInfo->isBigEndian==U_IS_BIG_ENDIAN && | |
42 | pInfo->charsetFamily==U_CHARSET_FAMILY && | |
374ca955 A |
43 | pInfo->dataFormat[0]==INVUCA_DATA_FORMAT_0 && /* dataFormat="InvC" */ |
44 | pInfo->dataFormat[1]==INVUCA_DATA_FORMAT_1 && | |
45 | pInfo->dataFormat[2]==INVUCA_DATA_FORMAT_2 && | |
46 | pInfo->dataFormat[3]==INVUCA_DATA_FORMAT_3 && | |
47 | pInfo->formatVersion[0]==INVUCA_FORMAT_VERSION_0 && | |
48 | pInfo->formatVersion[1]>=INVUCA_FORMAT_VERSION_1 //&& | |
49 | //pInfo->formatVersion[1]==INVUCA_FORMAT_VERSION_1 && | |
50 | //pInfo->formatVersion[2]==INVUCA_FORMAT_VERSION_2 && | |
51 | //pInfo->formatVersion[3]==INVUCA_FORMAT_VERSION_3 && | |
b75a7d8f A |
52 | ) { |
53 | UVersionInfo UCDVersion; | |
54 | u_getUnicodeVersion(UCDVersion); | |
55 | if(pInfo->dataVersion[0]==UCDVersion[0] && | |
56 | pInfo->dataVersion[1]==UCDVersion[1]) { | |
57 | //pInfo->dataVersion[1]==invUcaDataInfo.dataVersion[1] && | |
58 | //pInfo->dataVersion[2]==invUcaDataInfo.dataVersion[2] && | |
59 | //pInfo->dataVersion[3]==invUcaDataInfo.dataVersion[3]) { | |
60 | return TRUE; | |
61 | } else { | |
62 | return FALSE; | |
63 | } | |
64 | } else { | |
65 | return FALSE; | |
66 | } | |
67 | } | |
68 | U_CDECL_END | |
69 | ||
70 | static | |
374ca955 A |
71 | int32_t ucol_inv_findCE(const UColTokenParser *src, uint32_t CE, uint32_t SecondCE) { |
72 | uint32_t bottom = 0, top = src->invUCA->tableSize; | |
b75a7d8f A |
73 | uint32_t i = 0; |
74 | uint32_t first = 0, second = 0; | |
374ca955 | 75 | uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
b75a7d8f A |
76 | |
77 | while(bottom < top-1) { | |
78 | i = (top+bottom)/2; | |
79 | first = *(CETable+3*i); | |
80 | second = *(CETable+3*i+1); | |
81 | if(first > CE) { | |
82 | top = i; | |
83 | } else if(first < CE) { | |
84 | bottom = i; | |
85 | } else { | |
86 | if(second > SecondCE) { | |
87 | top = i; | |
88 | } else if(second < SecondCE) { | |
89 | bottom = i; | |
90 | } else { | |
91 | break; | |
92 | } | |
93 | } | |
94 | } | |
95 | ||
96 | /* weiv: */ | |
97 | /* in searching for elements, I have removed the failure */ | |
98 | /* The reason for this is that the builder does not rely */ | |
99 | /* on search mechanism telling it that it didn't find an */ | |
100 | /* element. However, indirect positioning relies on being */ | |
101 | /* able to find the elements around any CE, even if it is */ | |
102 | /* not defined in the UCA. */ | |
103 | return i; | |
104 | /* | |
105 | if((first == CE && second == SecondCE)) { | |
106 | return i; | |
107 | } else { | |
108 | return -1; | |
109 | } | |
110 | */ | |
111 | } | |
112 | ||
113 | static const uint32_t strengthMask[UCOL_CE_STRENGTH_LIMIT] = { | |
114 | 0xFFFF0000, | |
115 | 0xFFFFFF00, | |
116 | 0xFFFFFFFF | |
117 | }; | |
118 | ||
374ca955 A |
119 | U_CAPI int32_t U_EXPORT2 ucol_inv_getNextCE(const UColTokenParser *src, |
120 | uint32_t CE, uint32_t contCE, | |
b75a7d8f A |
121 | uint32_t *nextCE, uint32_t *nextContCE, |
122 | uint32_t strength) { | |
374ca955 | 123 | uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
b75a7d8f A |
124 | int32_t iCE; |
125 | ||
374ca955 | 126 | iCE = ucol_inv_findCE(src, CE, contCE); |
b75a7d8f A |
127 | |
128 | if(iCE<0) { | |
129 | *nextCE = UCOL_NOT_FOUND; | |
130 | return -1; | |
131 | } | |
132 | ||
133 | CE &= strengthMask[strength]; | |
134 | contCE &= strengthMask[strength]; | |
135 | ||
136 | *nextCE = CE; | |
137 | *nextContCE = contCE; | |
138 | ||
139 | while((*nextCE & strengthMask[strength]) == CE | |
140 | && (*nextContCE & strengthMask[strength]) == contCE) { | |
141 | *nextCE = (*(CETable+3*(++iCE))); | |
142 | *nextContCE = (*(CETable+3*(iCE)+1)); | |
143 | } | |
144 | ||
145 | return iCE; | |
146 | } | |
147 | ||
374ca955 A |
148 | U_CAPI int32_t U_EXPORT2 ucol_inv_getPrevCE(const UColTokenParser *src, |
149 | uint32_t CE, uint32_t contCE, | |
b75a7d8f A |
150 | uint32_t *prevCE, uint32_t *prevContCE, |
151 | uint32_t strength) { | |
374ca955 | 152 | uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
b75a7d8f A |
153 | int32_t iCE; |
154 | ||
374ca955 | 155 | iCE = ucol_inv_findCE(src, CE, contCE); |
b75a7d8f A |
156 | |
157 | if(iCE<0) { | |
158 | *prevCE = UCOL_NOT_FOUND; | |
159 | return -1; | |
160 | } | |
161 | ||
162 | CE &= strengthMask[strength]; | |
163 | contCE &= strengthMask[strength]; | |
164 | ||
165 | *prevCE = CE; | |
166 | *prevContCE = contCE; | |
167 | ||
168 | while((*prevCE & strengthMask[strength]) == CE | |
169 | && (*prevContCE & strengthMask[strength])== contCE | |
170 | && iCE > 0) { /* this condition should prevent falling off the edge of the world */ | |
171 | /* here, we end up in a singularity - zero */ | |
172 | *prevCE = (*(CETable+3*(--iCE))); | |
173 | *prevContCE = (*(CETable+3*(iCE)+1)); | |
174 | } | |
175 | ||
176 | return iCE; | |
177 | } | |
178 | ||
374ca955 A |
179 | U_CAPI uint32_t U_EXPORT2 ucol_getCEStrengthDifference(uint32_t CE, uint32_t contCE, |
180 | uint32_t prevCE, uint32_t prevContCE) { | |
181 | uint32_t strength = UCOL_TERTIARY; | |
182 | while(((prevCE & strengthMask[strength]) != (CE & strengthMask[strength]) | |
183 | || (prevContCE & strengthMask[strength]) != (contCE & strengthMask[strength])) | |
184 | && strength) { | |
185 | strength--; | |
186 | } | |
187 | return strength; | |
188 | ||
189 | } | |
190 | ||
191 | ||
b75a7d8f | 192 | static |
374ca955 | 193 | inline int32_t ucol_inv_getPrevious(UColTokenParser *src, UColTokListHeader *lh, uint32_t strength) { |
b75a7d8f A |
194 | |
195 | uint32_t CE = lh->baseCE; | |
196 | uint32_t SecondCE = lh->baseContCE; | |
197 | ||
374ca955 | 198 | uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
b75a7d8f A |
199 | uint32_t previousCE, previousContCE; |
200 | int32_t iCE; | |
201 | ||
374ca955 | 202 | iCE = ucol_inv_findCE(src, CE, SecondCE); |
b75a7d8f A |
203 | |
204 | if(iCE<0) { | |
205 | return -1; | |
206 | } | |
207 | ||
208 | CE &= strengthMask[strength]; | |
209 | SecondCE &= strengthMask[strength]; | |
210 | ||
211 | previousCE = CE; | |
212 | previousContCE = SecondCE; | |
213 | ||
214 | while((previousCE & strengthMask[strength]) == CE && (previousContCE & strengthMask[strength])== SecondCE) { | |
215 | previousCE = (*(CETable+3*(--iCE))); | |
216 | previousContCE = (*(CETable+3*(iCE)+1)); | |
217 | } | |
218 | lh->previousCE = previousCE; | |
219 | lh->previousContCE = previousContCE; | |
220 | ||
221 | return iCE; | |
222 | } | |
223 | ||
224 | static | |
374ca955 | 225 | inline int32_t ucol_inv_getNext(UColTokenParser *src, UColTokListHeader *lh, uint32_t strength) { |
b75a7d8f A |
226 | uint32_t CE = lh->baseCE; |
227 | uint32_t SecondCE = lh->baseContCE; | |
228 | ||
374ca955 | 229 | uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
b75a7d8f A |
230 | uint32_t nextCE, nextContCE; |
231 | int32_t iCE; | |
232 | ||
374ca955 | 233 | iCE = ucol_inv_findCE(src, CE, SecondCE); |
b75a7d8f A |
234 | |
235 | if(iCE<0) { | |
236 | return -1; | |
237 | } | |
238 | ||
239 | CE &= strengthMask[strength]; | |
240 | SecondCE &= strengthMask[strength]; | |
241 | ||
242 | nextCE = CE; | |
243 | nextContCE = SecondCE; | |
244 | ||
245 | while((nextCE & strengthMask[strength]) == CE | |
246 | && (nextContCE & strengthMask[strength]) == SecondCE) { | |
247 | nextCE = (*(CETable+3*(++iCE))); | |
248 | nextContCE = (*(CETable+3*(iCE)+1)); | |
249 | } | |
250 | ||
251 | lh->nextCE = nextCE; | |
252 | lh->nextContCE = nextContCE; | |
253 | ||
254 | return iCE; | |
255 | } | |
256 | ||
257 | U_CFUNC void ucol_inv_getGapPositions(UColTokenParser *src, UColTokListHeader *lh, UErrorCode *status) { | |
258 | /* reset all the gaps */ | |
259 | int32_t i = 0; | |
374ca955 | 260 | uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
b75a7d8f A |
261 | uint32_t st = 0; |
262 | uint32_t t1, t2; | |
263 | int32_t pos; | |
264 | ||
265 | UColToken *tok = lh->first; | |
266 | uint32_t tokStrength = tok->strength; | |
267 | ||
268 | for(i = 0; i<3; i++) { | |
269 | lh->gapsHi[3*i] = 0; | |
270 | lh->gapsHi[3*i+1] = 0; | |
271 | lh->gapsHi[3*i+2] = 0; | |
272 | lh->gapsLo[3*i] = 0; | |
273 | lh->gapsLo[3*i+1] = 0; | |
274 | lh->gapsLo[3*i+2] = 0; | |
275 | lh->numStr[i] = 0; | |
276 | lh->fStrToken[i] = NULL; | |
277 | lh->lStrToken[i] = NULL; | |
278 | lh->pos[i] = -1; | |
279 | } | |
280 | ||
281 | UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts); | |
282 | ||
374ca955 | 283 | if((lh->baseCE & 0xFF000000)>= (consts->UCA_PRIMARY_IMPLICIT_MIN<<24) && (lh->baseCE & 0xFF000000) <= (consts->UCA_PRIMARY_IMPLICIT_MAX<<24) ) { /* implicits - */ |
b75a7d8f A |
284 | //if(lh->baseCE >= PRIMARY_IMPLICIT_MIN && lh->baseCE < PRIMARY_IMPLICIT_MAX ) { /* implicits - */ |
285 | lh->pos[0] = 0; | |
286 | t1 = lh->baseCE; | |
287 | t2 = lh->baseContCE; | |
288 | lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
289 | lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; | |
290 | lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; | |
374ca955 A |
291 | uint32_t primaryCE = t1 & UCOL_PRIMARYMASK | (t2 & UCOL_PRIMARYMASK) >> 16; |
292 | primaryCE = uprv_uca_getImplicitFromRaw(uprv_uca_getRawFromImplicit(primaryCE)+1); | |
293 | ||
294 | t1 = primaryCE & UCOL_PRIMARYMASK | 0x0505; | |
295 | t2 = (primaryCE << 16) & UCOL_PRIMARYMASK | UCOL_CONTINUATION_MARKER; | |
296 | ||
b75a7d8f A |
297 | lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
298 | lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; | |
299 | lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; | |
300 | } else if(lh->indirect == TRUE && lh->nextCE != 0) { | |
301 | //} else if(lh->baseCE == UCOL_RESET_TOP_VALUE && lh->baseContCE == 0) { | |
302 | lh->pos[0] = 0; | |
303 | t1 = lh->baseCE; | |
304 | t2 = lh->baseContCE; | |
305 | lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
306 | lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; | |
307 | lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; | |
308 | t1 = lh->nextCE; | |
309 | t2 = lh->nextContCE; | |
310 | lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
311 | lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; | |
312 | lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; | |
313 | } else { | |
314 | for(;;) { | |
315 | if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { | |
374ca955 | 316 | if((lh->pos[tokStrength] = ucol_inv_getNext(src, lh, tokStrength)) >= 0) { |
b75a7d8f A |
317 | lh->fStrToken[tokStrength] = tok; |
318 | } else { /* The CE must be implicit, since it's not in the table */ | |
319 | /* Error */ | |
320 | *status = U_INTERNAL_PROGRAM_ERROR; | |
321 | } | |
322 | } | |
323 | ||
324 | while(tok != NULL && tok->strength >= tokStrength) { | |
325 | if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { | |
326 | lh->lStrToken[tokStrength] = tok; | |
327 | } | |
328 | tok = tok->next; | |
329 | } | |
330 | if(tokStrength < UCOL_CE_STRENGTH_LIMIT-1) { | |
331 | /* check if previous interval is the same and merge the intervals if it is so */ | |
332 | if(lh->pos[tokStrength] == lh->pos[tokStrength+1]) { | |
333 | lh->fStrToken[tokStrength] = lh->fStrToken[tokStrength+1]; | |
334 | lh->fStrToken[tokStrength+1] = NULL; | |
335 | lh->lStrToken[tokStrength+1] = NULL; | |
336 | lh->pos[tokStrength+1] = -1; | |
337 | } | |
338 | } | |
339 | if(tok != NULL) { | |
340 | tokStrength = tok->strength; | |
341 | } else { | |
342 | break; | |
343 | } | |
344 | } | |
345 | for(st = 0; st < 3; st++) { | |
346 | if((pos = lh->pos[st]) >= 0) { | |
347 | t1 = *(CETable+3*(pos)); | |
348 | t2 = *(CETable+3*(pos)+1); | |
349 | lh->gapsHi[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; | |
350 | lh->gapsHi[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; | |
351 | //lh->gapsHi[3*st+2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; | |
352 | lh->gapsHi[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; | |
374ca955 A |
353 | //pos--; |
354 | //t1 = *(CETable+3*(pos)); | |
355 | //t2 = *(CETable+3*(pos)+1); | |
356 | t1 = lh->baseCE; | |
357 | t2 = lh->baseContCE; | |
b75a7d8f A |
358 | lh->gapsLo[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
359 | lh->gapsLo[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; | |
360 | lh->gapsLo[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; | |
361 | } | |
362 | } | |
363 | } | |
364 | } | |
365 | ||
366 | ||
367 | #define ucol_countBytes(value, noOfBytes) \ | |
368 | { \ | |
369 | uint32_t mask = 0xFFFFFFFF; \ | |
370 | (noOfBytes) = 0; \ | |
371 | while(mask != 0) { \ | |
372 | if(((value) & mask) != 0) { \ | |
373 | (noOfBytes)++; \ | |
374 | } \ | |
375 | mask >>= 8; \ | |
376 | } \ | |
377 | } | |
378 | ||
379 | U_CFUNC uint32_t ucol_getNextGenerated(ucolCEGenerator *g, UErrorCode *status) { | |
380 | if(U_SUCCESS(*status)) { | |
381 | g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); | |
382 | } | |
383 | return g->current; | |
384 | } | |
385 | ||
386 | U_CFUNC uint32_t ucol_getSimpleCEGenerator(ucolCEGenerator *g, UColToken *tok, uint32_t strength, UErrorCode *status) { | |
387 | /* TODO: rename to enum names */ | |
388 | uint32_t high, low, count=1; | |
389 | uint32_t maxByte = (strength == UCOL_TERTIARY)?0x3F:0xFF; | |
390 | ||
391 | if(strength == UCOL_SECONDARY) { | |
392 | low = UCOL_COMMON_TOP2<<24; | |
393 | high = 0xFFFFFFFF; | |
394 | count = 0xFF - UCOL_COMMON_TOP2; | |
395 | } else { | |
396 | low = UCOL_BYTE_COMMON << 24; //0x05000000; | |
397 | high = 0x40000000; | |
398 | count = 0x40 - UCOL_BYTE_COMMON; | |
399 | } | |
400 | ||
401 | if(tok->next != NULL && tok->next->strength == strength) { | |
402 | count = tok->next->toInsert; | |
403 | } | |
404 | ||
405 | g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); | |
406 | g->current = UCOL_BYTE_COMMON<<24; | |
407 | ||
408 | if(g->noOfRanges == 0) { | |
409 | *status = U_INTERNAL_PROGRAM_ERROR; | |
410 | } | |
411 | return g->current; | |
412 | } | |
413 | ||
414 | U_CFUNC uint32_t ucol_getCEGenerator(ucolCEGenerator *g, uint32_t* lows, uint32_t* highs, UColToken *tok, uint32_t fStrength, UErrorCode *status) { | |
415 | uint32_t strength = tok->strength; | |
416 | uint32_t low = lows[fStrength*3+strength]; | |
417 | uint32_t high = highs[fStrength*3+strength]; | |
374ca955 A |
418 | uint32_t maxByte = 0; |
419 | if(strength == UCOL_TERTIARY) { | |
420 | maxByte = 0x3F; | |
421 | } else if(strength == UCOL_PRIMARY) { | |
422 | maxByte = 0xFE; | |
423 | } else { | |
424 | maxByte = 0xFF; | |
425 | } | |
b75a7d8f A |
426 | |
427 | uint32_t count = tok->toInsert; | |
428 | ||
429 | if(low >= high && strength > UCOL_PRIMARY) { | |
430 | int32_t s = strength; | |
431 | for(;;) { | |
432 | s--; | |
433 | if(lows[fStrength*3+s] != highs[fStrength*3+s]) { | |
434 | if(strength == UCOL_SECONDARY) { | |
435 | low = UCOL_COMMON_TOP2<<24; | |
436 | high = 0xFFFFFFFF; | |
437 | } else { | |
438 | //low = 0x02000000; // This needs to be checked - what if low is | |
439 | // not good... | |
440 | high = 0x40000000; | |
441 | } | |
442 | break; | |
443 | } | |
444 | if(s<0) { | |
445 | *status = U_INTERNAL_PROGRAM_ERROR; | |
446 | return 0; | |
447 | } | |
448 | } | |
449 | } | |
450 | ||
451 | if(low == 0) { | |
452 | low = 0x01000000; | |
453 | } | |
454 | ||
455 | if(strength == UCOL_SECONDARY) { /* similar as simple */ | |
456 | if(low >= (UCOL_COMMON_BOT2<<24) && low < (uint32_t)(UCOL_COMMON_TOP2<<24)) { | |
457 | low = UCOL_COMMON_TOP2<<24; | |
458 | } | |
459 | if(high > (UCOL_COMMON_BOT2<<24) && high < (uint32_t)(UCOL_COMMON_TOP2<<24)) { | |
460 | high = UCOL_COMMON_TOP2<<24; | |
461 | } | |
374ca955 A |
462 | if(low < (UCOL_COMMON_BOT2<<24)) { |
463 | g->noOfRanges = ucol_allocWeights(UCOL_BYTE_UNSHIFTED_MIN<<24, high, count, maxByte, g->ranges); | |
464 | g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); | |
465 | //g->current = UCOL_COMMON_BOT2<<24; | |
b75a7d8f A |
466 | return g->current; |
467 | } | |
468 | } | |
469 | ||
470 | g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); | |
471 | if(g->noOfRanges == 0) { | |
472 | *status = U_INTERNAL_PROGRAM_ERROR; | |
473 | } | |
474 | g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); | |
475 | return g->current; | |
476 | } | |
477 | ||
374ca955 A |
478 | static |
479 | uint32_t u_toLargeKana(const UChar *source, const uint32_t sourceLen, UChar *resBuf, const uint32_t resLen, UErrorCode *status) { | |
480 | uint32_t i = 0; | |
481 | UChar c; | |
482 | ||
483 | if(U_FAILURE(*status)) { | |
484 | return 0; | |
485 | } | |
486 | ||
487 | if(sourceLen > resLen) { | |
488 | *status = U_MEMORY_ALLOCATION_ERROR; | |
489 | return 0; | |
490 | } | |
491 | ||
492 | for(i = 0; i < sourceLen; i++) { | |
493 | c = source[i]; | |
494 | if(0x3042 < c && c < 0x30ef) { /* Kana range */ | |
495 | switch(c - 0x3000) { | |
496 | case 0x41: case 0x43: case 0x45: case 0x47: case 0x49: case 0x63: case 0x83: case 0x85: case 0x8E: | |
497 | case 0xA1: case 0xA3: case 0xA5: case 0xA7: case 0xA9: case 0xC3: case 0xE3: case 0xE5: case 0xEE: | |
498 | c++; | |
499 | break; | |
500 | case 0xF5: | |
501 | c = 0x30AB; | |
502 | break; | |
503 | case 0xF6: | |
504 | c = 0x30B1; | |
505 | break; | |
506 | } | |
507 | } | |
508 | resBuf[i] = c; | |
509 | } | |
510 | return sourceLen; | |
511 | } | |
512 | ||
513 | static | |
514 | uint32_t u_toSmallKana(const UChar *source, const uint32_t sourceLen, UChar *resBuf, const uint32_t resLen, UErrorCode *status) { | |
515 | uint32_t i = 0; | |
516 | UChar c; | |
517 | ||
518 | if(U_FAILURE(*status)) { | |
519 | return 0; | |
520 | } | |
521 | ||
522 | if(sourceLen > resLen) { | |
523 | *status = U_MEMORY_ALLOCATION_ERROR; | |
524 | return 0; | |
525 | } | |
526 | ||
527 | for(i = 0; i < sourceLen; i++) { | |
528 | c = source[i]; | |
529 | if(0x3042 < c && c < 0x30ef) { /* Kana range */ | |
530 | switch(c - 0x3000) { | |
531 | case 0x42: case 0x44: case 0x46: case 0x48: case 0x4A: case 0x64: case 0x84: case 0x86: case 0x8F: | |
532 | case 0xA2: case 0xA4: case 0xA6: case 0xA8: case 0xAA: case 0xC4: case 0xE4: case 0xE6: case 0xEF: | |
533 | c--; | |
534 | break; | |
535 | case 0xAB: | |
536 | c = 0x30F5; | |
537 | break; | |
538 | case 0xB1: | |
539 | c = 0x30F6; | |
540 | break; | |
541 | } | |
542 | } | |
543 | resBuf[i] = c; | |
544 | } | |
545 | return sourceLen; | |
546 | } | |
547 | ||
548 | static | |
549 | uint8_t ucol_uprv_getCaseBits(const UCollator *UCA, const UChar *src, uint32_t len, UErrorCode *status) { | |
550 | uint32_t i = 0; | |
551 | UChar n[128]; | |
552 | uint32_t nLen = 0; | |
553 | uint32_t uCount = 0, lCount = 0; | |
554 | ||
555 | collIterate s; | |
556 | uint32_t order = 0; | |
557 | ||
558 | if(U_FAILURE(*status)) { | |
559 | return UCOL_LOWER_CASE; | |
560 | } | |
561 | ||
562 | nLen = unorm_normalize(src, len, UNORM_NFKD, 0, n, 128, status); | |
563 | if(U_SUCCESS(*status)) { | |
564 | for(i = 0; i < nLen; i++) { | |
565 | uprv_init_collIterate(UCA, &n[i], 1, &s); | |
566 | order = ucol_getNextCE(UCA, &s, status); | |
567 | if(isContinuation(order)) { | |
568 | *status = U_INTERNAL_PROGRAM_ERROR; | |
569 | return UCOL_LOWER_CASE; | |
570 | } | |
571 | if((order&UCOL_CASE_BIT_MASK)== UCOL_UPPER_CASE) { | |
572 | uCount++; | |
573 | } else { | |
574 | if(u_islower(n[i])) { | |
575 | lCount++; | |
576 | } else { | |
577 | UChar sk[1], lk[1]; | |
578 | u_toSmallKana(&n[i], 1, sk, 1, status); | |
579 | u_toLargeKana(&n[i], 1, lk, 1, status); | |
580 | if(sk[0] == n[i] && lk[0] != n[i]) { | |
581 | lCount++; | |
582 | } | |
583 | } | |
584 | } | |
585 | } | |
586 | } | |
587 | ||
588 | if(uCount != 0 && lCount != 0) { | |
589 | return UCOL_MIXED_CASE; | |
590 | } else if(uCount != 0) { | |
591 | return UCOL_UPPER_CASE; | |
592 | } else { | |
593 | return UCOL_LOWER_CASE; | |
594 | } | |
595 | } | |
596 | ||
597 | ||
598 | U_CFUNC void ucol_doCE(UColTokenParser *src, uint32_t *CEparts, UColToken *tok, UErrorCode *status) { | |
b75a7d8f A |
599 | /* this one makes the table and stuff */ |
600 | uint32_t noOfBytes[3]; | |
601 | uint32_t i; | |
602 | ||
603 | for(i = 0; i<3; i++) { | |
604 | ucol_countBytes(CEparts[i], noOfBytes[i]); | |
605 | } | |
606 | ||
607 | /* Here we have to pack CEs from parts */ | |
608 | ||
609 | uint32_t CEi = 0; | |
610 | uint32_t value = 0; | |
611 | ||
612 | while(2*CEi<noOfBytes[0] || CEi<noOfBytes[1] || CEi<noOfBytes[2]) { | |
613 | if(CEi > 0) { | |
614 | value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ | |
615 | } else { | |
616 | value = 0; | |
617 | } | |
618 | ||
619 | if(2*CEi<noOfBytes[0]) { | |
620 | value |= ((CEparts[0]>>(32-16*(CEi+1))) & 0xFFFF) << 16; | |
621 | } | |
622 | if(CEi<noOfBytes[1]) { | |
623 | value |= ((CEparts[1]>>(32-8*(CEi+1))) & 0xFF) << 8; | |
624 | } | |
625 | if(CEi<noOfBytes[2]) { | |
626 | value |= ((CEparts[2]>>(32-8*(CEi+1))) & 0x3F); | |
627 | } | |
628 | tok->CEs[CEi] = value; | |
629 | CEi++; | |
630 | } | |
631 | if(CEi == 0) { /* totally ignorable */ | |
632 | tok->noOfCEs = 1; | |
633 | tok->CEs[0] = 0; | |
634 | } else { /* there is at least something */ | |
635 | tok->noOfCEs = CEi; | |
636 | } | |
637 | ||
374ca955 A |
638 | |
639 | // we want to set case bits here and now, not later. | |
640 | // Case bits handling | |
641 | tok->CEs[0] &= 0xFFFFFF3F; // Clean the case bits field | |
642 | int32_t cSize = (tok->source & 0xFF000000) >> 24; | |
643 | UChar *cPoints = (tok->source & 0x00FFFFFF) + src->source; | |
644 | ||
645 | if(cSize > 1) { | |
646 | // Do it manually | |
647 | tok->CEs[0] |= ucol_uprv_getCaseBits(src->UCA, cPoints, cSize, status); | |
648 | } else { | |
649 | // Copy it from the UCA | |
650 | uint32_t caseCE = ucol_getFirstCE(src->UCA, cPoints[0], status); | |
651 | tok->CEs[0] |= (caseCE & 0xC0); | |
652 | } | |
653 | ||
b75a7d8f A |
654 | #if UCOL_DEBUG==2 |
655 | fprintf(stderr, "%04X str: %i, [%08X, %08X, %08X]: tok: ", tok->debugSource, tok->strength, CEparts[0] >> (32-8*noOfBytes[0]), CEparts[1] >> (32-8*noOfBytes[1]), CEparts[2]>> (32-8*noOfBytes[2])); | |
656 | for(i = 0; i<tok->noOfCEs; i++) { | |
657 | fprintf(stderr, "%08X ", tok->CEs[i]); | |
658 | } | |
659 | fprintf(stderr, "\n"); | |
660 | #endif | |
661 | } | |
662 | ||
663 | U_CFUNC void ucol_initBuffers(UColTokenParser *src, UColTokListHeader *lh, UErrorCode *status) { | |
664 | ucolCEGenerator Gens[UCOL_CE_STRENGTH_LIMIT]; | |
665 | uint32_t CEparts[UCOL_CE_STRENGTH_LIMIT]; | |
666 | ||
667 | UColToken *tok = lh->last; | |
668 | uint32_t t[UCOL_STRENGTH_LIMIT]; | |
669 | ||
670 | uprv_memset(t, 0, UCOL_STRENGTH_LIMIT*sizeof(uint32_t)); | |
671 | ||
672 | tok->toInsert = 1; | |
673 | t[tok->strength] = 1; | |
674 | ||
675 | while(tok->previous != NULL) { | |
676 | if(tok->previous->strength < tok->strength) { /* going up */ | |
677 | t[tok->strength] = 0; | |
678 | t[tok->previous->strength]++; | |
679 | } else if(tok->previous->strength > tok->strength) { /* going down */ | |
680 | t[tok->previous->strength] = 1; | |
681 | } else { | |
682 | t[tok->strength]++; | |
683 | } | |
684 | tok=tok->previous; | |
685 | tok->toInsert = t[tok->strength]; | |
686 | } | |
687 | ||
688 | tok->toInsert = t[tok->strength]; | |
689 | ucol_inv_getGapPositions(src, lh, status); | |
690 | ||
691 | #if UCOL_DEBUG | |
692 | fprintf(stderr, "BaseCE: %08X %08X\n", lh->baseCE, lh->baseContCE); | |
693 | int32_t j = 2; | |
694 | for(j = 2; j >= 0; j--) { | |
695 | fprintf(stderr, "gapsLo[%i] [%08X %08X %08X]\n", j, lh->gapsLo[j*3], lh->gapsLo[j*3+1], lh->gapsLo[j*3+2]); | |
696 | fprintf(stderr, "gapsHi[%i] [%08X %08X %08X]\n", j, lh->gapsHi[j*3], lh->gapsHi[j*3+1], lh->gapsHi[j*3+2]); | |
697 | } | |
698 | tok=lh->first[UCOL_TOK_POLARITY_POSITIVE]; | |
699 | ||
700 | do { | |
701 | fprintf(stderr,"%i", tok->strength); | |
702 | tok = tok->next; | |
703 | } while(tok != NULL); | |
704 | fprintf(stderr, "\n"); | |
705 | ||
706 | tok=lh->first[UCOL_TOK_POLARITY_POSITIVE]; | |
707 | ||
708 | do { | |
709 | fprintf(stderr,"%i", tok->toInsert); | |
710 | tok = tok->next; | |
711 | } while(tok != NULL); | |
712 | #endif | |
713 | ||
714 | tok = lh->first; | |
715 | uint32_t fStrength = UCOL_IDENTICAL; | |
716 | uint32_t initStrength = UCOL_IDENTICAL; | |
717 | ||
718 | ||
719 | CEparts[UCOL_PRIMARY] = (lh->baseCE & UCOL_PRIMARYMASK) | (lh->baseContCE & UCOL_PRIMARYMASK) >> 16; | |
720 | CEparts[UCOL_SECONDARY] = (lh->baseCE & UCOL_SECONDARYMASK) << 16 | (lh->baseContCE & UCOL_SECONDARYMASK) << 8; | |
721 | CEparts[UCOL_TERTIARY] = (UCOL_TERTIARYORDER(lh->baseCE)) << 24 | (UCOL_TERTIARYORDER(lh->baseContCE)) << 16; | |
722 | ||
723 | while (tok != NULL && U_SUCCESS(*status)) { | |
724 | fStrength = tok->strength; | |
725 | if(fStrength < initStrength) { | |
726 | initStrength = fStrength; | |
727 | if(lh->pos[fStrength] == -1) { | |
728 | while(lh->pos[fStrength] == -1 && fStrength > 0) { | |
729 | fStrength--; | |
730 | } | |
731 | if(lh->pos[fStrength] == -1) { | |
732 | *status = U_INTERNAL_PROGRAM_ERROR; | |
733 | return; | |
734 | } | |
735 | } | |
736 | if(initStrength == UCOL_TERTIARY) { /* starting with tertiary */ | |
737 | CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; | |
738 | CEparts[UCOL_SECONDARY] = lh->gapsLo[fStrength*3+1]; | |
739 | /*CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], lh->gapsLo[fStrength*3+2], lh->gapsHi[fStrength*3+2], tok, UCOL_TERTIARY); */ | |
740 | CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[UCOL_TERTIARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); | |
741 | } else if(initStrength == UCOL_SECONDARY) { /* secondaries */ | |
742 | CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; | |
743 | /*CEparts[1] = ucol_getCEGenerator(&Gens[1], lh->gapsLo[fStrength*3+1], lh->gapsHi[fStrength*3+1], tok, 1);*/ | |
744 | CEparts[UCOL_SECONDARY] = ucol_getCEGenerator(&Gens[UCOL_SECONDARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); | |
745 | CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); | |
746 | } else { /* primaries */ | |
747 | /*CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[0], lh->gapsLo[0], lh->gapsHi[0], tok, UCOL_PRIMARY);*/ | |
748 | CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[UCOL_PRIMARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); | |
749 | CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_SECONDARY], tok, UCOL_SECONDARY, status); | |
750 | CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); | |
751 | } | |
752 | } else { | |
753 | if(tok->strength == UCOL_TERTIARY) { | |
754 | CEparts[UCOL_TERTIARY] = ucol_getNextGenerated(&Gens[UCOL_TERTIARY], status); | |
755 | } else if(tok->strength == UCOL_SECONDARY) { | |
756 | CEparts[UCOL_SECONDARY] = ucol_getNextGenerated(&Gens[UCOL_SECONDARY], status); | |
757 | CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); | |
758 | } else if(tok->strength == UCOL_PRIMARY) { | |
759 | CEparts[UCOL_PRIMARY] = ucol_getNextGenerated(&Gens[UCOL_PRIMARY], status); | |
760 | CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_SECONDARY], tok, UCOL_SECONDARY, status); | |
761 | CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); | |
762 | } | |
763 | } | |
374ca955 | 764 | ucol_doCE(src, CEparts, tok, status); |
b75a7d8f A |
765 | tok = tok->next; |
766 | } | |
767 | } | |
768 | ||
b75a7d8f A |
769 | U_CFUNC void ucol_createElements(UColTokenParser *src, tempUCATable *t, UColTokListHeader *lh, UErrorCode *status) { |
770 | UCAElements el; | |
771 | UColToken *tok = lh->first; | |
772 | UColToken *expt = NULL; | |
773 | uint32_t i = 0, j = 0; | |
774 | ||
775 | while(tok != NULL && U_SUCCESS(*status)) { | |
776 | /* first, check if there are any expansions */ | |
777 | /* if there are expansions, we need to do a little bit more processing */ | |
778 | /* since parts of expansion can be tailored, while others are not */ | |
779 | if(tok->expansion != 0) { | |
780 | uint32_t len = tok->expansion >> 24; | |
781 | uint32_t currentSequenceLen = len; | |
782 | uint32_t expOffset = tok->expansion & 0x00FFFFFF; | |
783 | //uint32_t exp = currentSequenceLen | expOffset; | |
784 | UColToken exp; | |
785 | exp.source = currentSequenceLen | expOffset; | |
786 | exp.rulesToParse = src->source; | |
787 | ||
788 | while(len > 0) { | |
789 | currentSequenceLen = len; | |
790 | while(currentSequenceLen > 0) { | |
791 | exp.source = (currentSequenceLen << 24) | expOffset; | |
792 | if((expt = (UColToken *)uhash_get(src->tailored, &exp)) != NULL && expt->strength != UCOL_TOK_RESET) { /* expansion is tailored */ | |
793 | uint32_t noOfCEsToCopy = expt->noOfCEs; | |
794 | for(j = 0; j<noOfCEsToCopy; j++) { | |
795 | tok->expCEs[tok->noOfExpCEs + j] = expt->CEs[j]; | |
796 | } | |
797 | tok->noOfExpCEs += noOfCEsToCopy; | |
798 | // Smart people never try to add codepoints and CEs. | |
799 | // For some odd reason, it won't work. | |
800 | expOffset += currentSequenceLen; //noOfCEsToCopy; | |
801 | len -= currentSequenceLen; //noOfCEsToCopy; | |
802 | break; | |
803 | } else { | |
804 | currentSequenceLen--; | |
805 | } | |
806 | } | |
807 | if(currentSequenceLen == 0) { /* couldn't find any tailored subsequence */ | |
808 | /* will have to get one from UCA */ | |
809 | /* first, get the UChars from the rules */ | |
810 | /* then pick CEs out until there is no more and stuff them into expansion */ | |
811 | collIterate s; | |
812 | uint32_t order = 0; | |
813 | uprv_init_collIterate(src->UCA, expOffset + src->source, 1, &s); | |
814 | ||
815 | for(;;) { | |
816 | order = ucol_getNextCE(src->UCA, &s, status); | |
817 | if(order == UCOL_NO_MORE_CES) { | |
818 | break; | |
819 | } | |
820 | tok->expCEs[tok->noOfExpCEs++] = order; | |
821 | } | |
822 | expOffset++; | |
823 | len--; | |
824 | } | |
825 | } | |
826 | } else { | |
827 | tok->noOfExpCEs = 0; | |
828 | } | |
829 | ||
830 | /* set the ucaelement with obtained values */ | |
831 | el.noOfCEs = tok->noOfCEs + tok->noOfExpCEs; | |
832 | /* copy CEs */ | |
833 | for(i = 0; i<tok->noOfCEs; i++) { | |
834 | el.CEs[i] = tok->CEs[i]; | |
835 | } | |
836 | for(i = 0; i<tok->noOfExpCEs; i++) { | |
837 | el.CEs[i+tok->noOfCEs] = tok->expCEs[i]; | |
838 | } | |
839 | ||
840 | /* copy UChars */ | |
841 | // We kept prefix and source kind of together, as it is a kind of a contraction. | |
842 | // However, now we have to slice the prefix off the main thing - | |
843 | el.prefix = el.prefixChars; | |
844 | el.cPoints = el.uchars; | |
845 | if(tok->prefix != 0) { // we will just copy the prefix here, and adjust accordingly in the | |
846 | // addPrefix function in ucol_elm. The reason is that we need to add both composed AND | |
847 | // decomposed elements to the unsaf table. | |
848 | el.prefixSize = tok->prefix>>24; | |
849 | uprv_memcpy(el.prefix, src->source + (tok->prefix & 0x00FFFFFF), el.prefixSize*sizeof(UChar)); | |
850 | ||
851 | el.cSize = (tok->source >> 24)-(tok->prefix>>24); | |
852 | uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF)+(tok->prefix>>24) + src->source, el.cSize*sizeof(UChar)); | |
853 | } else { | |
854 | el.prefixSize = 0; | |
855 | *el.prefix = 0; | |
856 | ||
857 | el.cSize = (tok->source >> 24); | |
858 | uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, el.cSize*sizeof(UChar)); | |
859 | } | |
860 | ||
861 | if(UCOL_ISTHAIPREVOWEL(el.cPoints[0])) { | |
862 | el.isThai = TRUE; | |
863 | } else { | |
864 | el.isThai = FALSE; | |
865 | } | |
866 | ||
867 | if(src->UCA != NULL) { | |
868 | for(i = 0; i<el.cSize; i++) { | |
869 | if(UCOL_ISJAMO(el.cPoints[i])) { | |
870 | t->image->jamoSpecial = TRUE; | |
871 | } | |
872 | } | |
873 | } | |
874 | ||
374ca955 A |
875 | #if 0 |
876 | // we do case bits in doCE now, since we will mess up expansions otherwise. | |
b75a7d8f A |
877 | // Case bits handling |
878 | el.CEs[0] &= 0xFFFFFF3F; // Clean the case bits field | |
879 | if(el.cSize > 1) { | |
880 | // Do it manually | |
881 | el.CEs[0] |= ucol_uprv_getCaseBits(src->UCA, el.cPoints, el.cSize, status); | |
882 | } else { | |
883 | // Copy it from the UCA | |
884 | uint32_t caseCE = ucol_getFirstCE(src->UCA, el.cPoints[0], status); | |
885 | el.CEs[0] |= (caseCE & 0xC0); | |
886 | } | |
374ca955 | 887 | #endif |
b75a7d8f A |
888 | |
889 | /* and then, add it */ | |
890 | #if UCOL_DEBUG==2 | |
891 | fprintf(stderr, "Adding: %04X with %08X\n", el.cPoints[0], el.CEs[0]); | |
892 | #endif | |
893 | uprv_uca_addAnElement(t, &el, status); | |
894 | ||
895 | #if 0 | |
896 | if(el.cSize > 1) { // this is a contraction, we should check whether a composed form should also be included | |
897 | UChar composed[256]; | |
898 | uint32_t compLen = unorm_normalize(el.cPoints, el.cSize, UNORM_NFC, 0, composed, 256, status);; | |
899 | ||
900 | if(compLen != el.cSize || uprv_memcmp(composed, el.cPoints, el.cSize*sizeof(UChar))) { | |
901 | // composed form of a contraction is different than the decomposed form! | |
902 | // do it! | |
903 | #ifdef UCOL_DEBUG | |
904 | fprintf(stderr, "Adding composed for %04X->%04X\n", *element->cPoints, *composed); | |
905 | #endif | |
906 | el.cSize = compLen; | |
907 | uprv_memcpy(el.cPoints, composed, el.cSize*sizeof(UChar)); | |
908 | uprv_uca_addAnElement(t, &el, status); | |
909 | } | |
910 | } | |
911 | #endif | |
912 | ||
913 | #if UCOL_DEBUG_DUPLICATES | |
914 | if(*status != U_ZERO_ERROR) { | |
915 | fprintf(stderr, "replaced CE for %04X with CE for %04X\n", el.cPoints[0], tok->debugSource); | |
916 | *status = U_ZERO_ERROR; | |
917 | } | |
918 | #endif | |
919 | ||
920 | tok = tok->next; | |
921 | } | |
922 | } | |
923 | ||
924 | U_CDECL_BEGIN | |
925 | static UBool U_CALLCONV | |
926 | _processUCACompleteIgnorables(const void *context, UChar32 start, UChar32 limit, uint32_t value) { | |
927 | UErrorCode status = U_ZERO_ERROR; | |
928 | tempUCATable *t = (tempUCATable *)context; | |
929 | if(value == 0) { | |
930 | while(start < limit) { | |
931 | uint32_t CE = utrie_get32(t->mapping, start, NULL); | |
932 | if(CE == UCOL_NOT_FOUND) { | |
933 | UCAElements el; | |
934 | el.isThai = FALSE; | |
935 | el.prefixSize = 0; | |
936 | el.prefixChars[0] = 0; | |
937 | el.prefix = el.prefixChars; | |
938 | el.cPoints = el.uchars; | |
939 | ||
940 | el.cSize = 0; | |
941 | UTF_APPEND_CHAR(el.uchars, el.cSize, 1024, start); | |
942 | ||
943 | el.noOfCEs = 1; | |
944 | el.CEs[0] = 0; | |
945 | uprv_uca_addAnElement(t, &el, &status); | |
946 | ||
947 | } | |
948 | start++; | |
949 | } | |
950 | } | |
951 | if(U_FAILURE(status)) { | |
952 | return FALSE; | |
953 | } else { | |
954 | return TRUE; | |
955 | } | |
956 | } | |
957 | U_CDECL_END | |
958 | ||
959 | static void | |
960 | ucol_uprv_bld_copyRangeFromUCA(UColTokenParser *src, tempUCATable *t, | |
961 | UChar32 start, UChar32 end, | |
962 | UErrorCode *status) { | |
963 | //UChar decomp[256]; | |
964 | uint32_t CE = UCOL_NOT_FOUND; | |
965 | UChar32 u = 0; | |
966 | UCAElements el; | |
967 | el.isThai = FALSE; | |
968 | el.prefixSize = 0; | |
969 | el.prefixChars[0] = 0; | |
970 | collIterate colIt; | |
971 | ||
972 | if(U_SUCCESS(*status)) { | |
973 | for(u = start; u<=end; u++) { | |
974 | if((CE = utrie_get32(t->mapping, u, NULL)) == UCOL_NOT_FOUND | |
975 | /* this test is for contractions that are missing the starting element. */ | |
976 | || ((isCntTableElement(CE)) && | |
977 | (uprv_cnttab_getCE(t->contractions, CE, 0, status) == UCOL_NOT_FOUND)) | |
978 | ) { | |
979 | el.cSize = 0; | |
980 | U16_APPEND_UNSAFE(el.uchars, el.cSize, u); | |
981 | //decomp[0] = (UChar)u; | |
982 | //el.uchars[0] = (UChar)u; | |
983 | el.cPoints = el.uchars; | |
984 | //el.cSize = 1; | |
985 | el.noOfCEs = 0; | |
986 | el.prefix = el.prefixChars; | |
987 | el.prefixSize = 0; | |
988 | //uprv_init_collIterate(src->UCA, decomp, 1, &colIt); | |
989 | // We actually want to check whether this element is a special | |
990 | // If it is an implicit element (hangul, CJK - we want to copy the | |
991 | // special, not the resolved CEs) - for hangul, copying resolved | |
992 | // would just make things the same (there is an expansion and it | |
993 | // takes approximately the same amount of time to resolve as | |
994 | // falling back to the UCA). | |
995 | /* | |
996 | UTRIE_GET32(src->UCA->mapping, u, CE); | |
997 | tag = getCETag(CE); | |
998 | if(tag == HANGUL_SYLLABLE_TAG || tag == CJK_IMPLICIT_TAG | |
999 | || tag == IMPLICIT_TAG || tag == TRAIL_SURROGATE_TAG | |
1000 | || tag == LEAD_SURROGATE_TAG) { | |
1001 | el.CEs[el.noOfCEs++] = CE; | |
1002 | } else { | |
1003 | */ | |
1004 | // It turns out that it does not make sense to keep implicits | |
1005 | // unresolved. The cost of resolving them is big enough so that | |
1006 | // it doesn't make any difference whether we have to go to the UCA | |
1007 | // or not. | |
1008 | { | |
1009 | uprv_init_collIterate(src->UCA, el.uchars, el.cSize, &colIt); | |
1010 | while(CE != UCOL_NO_MORE_CES) { | |
1011 | CE = ucol_getNextCE(src->UCA, &colIt, status); | |
1012 | if(CE != UCOL_NO_MORE_CES) { | |
1013 | el.CEs[el.noOfCEs++] = CE; | |
1014 | } | |
1015 | } | |
1016 | } | |
1017 | uprv_uca_addAnElement(t, &el, status); | |
1018 | } | |
1019 | } | |
1020 | } | |
1021 | } | |
1022 | ||
1023 | UCATableHeader *ucol_assembleTailoringTable(UColTokenParser *src, UErrorCode *status) { | |
1024 | uint32_t i = 0; | |
1025 | if(U_FAILURE(*status)) { | |
1026 | return NULL; | |
1027 | } | |
1028 | /* | |
1029 | 2. Eliminate the negative lists by doing the following for each non-null negative list: | |
1030 | o if previousCE(baseCE, strongestN) != some ListHeader X's baseCE, | |
1031 | create new ListHeader X | |
1032 | o reverse the list, add to the end of X's positive list. Reset the strength of the | |
1033 | first item you add, based on the stronger strength levels of the two lists. | |
1034 | */ | |
1035 | /* | |
1036 | 3. For each ListHeader with a non-null positive list: | |
1037 | */ | |
1038 | /* | |
1039 | o Find all character strings with CEs between the baseCE and the | |
1040 | next/previous CE, at the strength of the first token. Add these to the | |
1041 | tailoring. | |
1042 | ? That is, if UCA has ... x <<< X << x' <<< X' < y ..., and the | |
1043 | tailoring has & x < z... | |
1044 | ? Then we change the tailoring to & x <<< X << x' <<< X' < z ... | |
1045 | */ | |
1046 | /* It is possible that this part should be done even while constructing list */ | |
1047 | /* The problem is that it is unknown what is going to be the strongest weight */ | |
1048 | /* So we might as well do it here */ | |
1049 | ||
1050 | /* | |
1051 | o Allocate CEs for each token in the list, based on the total number N of the | |
1052 | largest level difference, and the gap G between baseCE and nextCE at that | |
1053 | level. The relation * between the last item and nextCE is the same as the | |
1054 | strongest strength. | |
1055 | o Example: baseCE < a << b <<< q << c < d < e * nextCE(X,1) | |
1056 | ? There are 3 primary items: a, d, e. Fit them into the primary gap. | |
1057 | Then fit b and c into the secondary gap between a and d, then fit q | |
1058 | into the tertiary gap between b and c. | |
1059 | ||
1060 | o Example: baseCE << b <<< q << c * nextCE(X,2) | |
1061 | ? There are 2 secondary items: b, c. Fit them into the secondary gap. | |
1062 | Then fit q into the tertiary gap between b and c. | |
1063 | o When incrementing primary values, we will not cross high byte | |
1064 | boundaries except where there is only a single-byte primary. That is to | |
1065 | ensure that the script reordering will continue to work. | |
1066 | */ | |
1067 | UCATableHeader *image = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader)); | |
1068 | /* test for NULL */ | |
1069 | if (image == NULL) { | |
1070 | *status = U_MEMORY_ALLOCATION_ERROR; | |
1071 | return NULL; | |
1072 | } | |
1073 | uprv_memcpy(image, src->UCA->image, sizeof(UCATableHeader)); | |
1074 | ||
1075 | for(i = 0; i<src->resultLen; i++) { | |
1076 | /* now we need to generate the CEs */ | |
1077 | /* We stuff the initial value in the buffers, and increase the appropriate buffer */ | |
1078 | /* According to strength */ | |
1079 | if(U_SUCCESS(*status)) { | |
374ca955 A |
1080 | if(src->lh[i].first) { // if there are any elements |
1081 | // due to the way parser works, subsequent tailorings | |
1082 | // may remove all the elements from a sequence, therefore | |
1083 | // leaving an empty tailoring sequence. | |
1084 | ucol_initBuffers(src, &src->lh[i], status); | |
1085 | } | |
b75a7d8f A |
1086 | } |
1087 | if(U_FAILURE(*status)) { | |
1088 | return NULL; | |
1089 | } | |
1090 | ||
1091 | } | |
1092 | ||
1093 | if(src->varTop != NULL) { /* stuff the variable top value */ | |
1094 | src->opts->variableTopValue = (*(src->varTop->CEs))>>16; | |
1095 | /* remove it from the list */ | |
1096 | if(src->varTop->listHeader->first == src->varTop) { /* first in list */ | |
1097 | src->varTop->listHeader->first = src->varTop->next; | |
1098 | } | |
1099 | if(src->varTop->listHeader->last == src->varTop) { /* first in list */ | |
1100 | src->varTop->listHeader->last = src->varTop->previous; | |
1101 | } | |
1102 | if(src->varTop->next != NULL) { | |
1103 | src->varTop->next->previous = src->varTop->previous; | |
1104 | } | |
1105 | if(src->varTop->previous != NULL) { | |
1106 | src->varTop->previous->next = src->varTop->next; | |
1107 | } | |
1108 | } | |
1109 | ||
1110 | ||
374ca955 | 1111 | tempUCATable *t = uprv_uca_initTempTable(image, src->opts, src->UCA, NOT_FOUND_TAG, NOT_FOUND_TAG, status); |
b75a7d8f A |
1112 | |
1113 | ||
1114 | /* After this, we have assigned CE values to all regular CEs */ | |
1115 | /* now we will go through list once more and resolve expansions, */ | |
1116 | /* make UCAElements structs and add them to table */ | |
1117 | for(i = 0; i<src->resultLen; i++) { | |
1118 | /* now we need to generate the CEs */ | |
1119 | /* We stuff the initial value in the buffers, and increase the appropriate buffer */ | |
1120 | /* According to strength */ | |
1121 | if(U_SUCCESS(*status)) { | |
1122 | ucol_createElements(src, t, &src->lh[i], status); | |
1123 | } | |
1124 | } | |
1125 | ||
1126 | UCAElements el; | |
1127 | el.isThai = FALSE; | |
1128 | el.prefixSize = 0; | |
1129 | el.prefixChars[0] = 0; | |
1130 | ||
1131 | /* add latin-1 stuff */ | |
1132 | ucol_uprv_bld_copyRangeFromUCA(src, t, 0, 0xFF, status); | |
1133 | ||
1134 | /* add stuff for copying */ | |
1135 | if(src->copySet != NULL) { | |
1136 | int32_t i = 0; | |
1137 | UnicodeSet *set = (UnicodeSet *)src->copySet; | |
1138 | for(i = 0; i < set->getRangeCount(); i++) { | |
1139 | ucol_uprv_bld_copyRangeFromUCA(src, t, set->getRangeStart(i), set->getRangeEnd(i), status); | |
1140 | } | |
1141 | } | |
1142 | ||
1143 | if(U_SUCCESS(*status)) { | |
1144 | /* copy contractions from the UCA - this is felt mostly for cyrillic*/ | |
1145 | ||
1146 | uint32_t tailoredCE = UCOL_NOT_FOUND; | |
1147 | //UChar *conts = (UChar *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts+sizeof(UCAConstants)); | |
1148 | UChar *conts = (UChar *)((uint8_t *)src->UCA->image + src->UCA->image->contractionUCACombos); | |
1149 | UCollationElements *ucaEl = ucol_openElements(src->UCA, NULL, 0, status); | |
1150 | while(*conts != 0) { | |
1151 | /*tailoredCE = ucmpe32_get(t->mapping, *conts);*/ | |
1152 | tailoredCE = utrie_get32(t->mapping, *conts, NULL); | |
1153 | if(tailoredCE != UCOL_NOT_FOUND) { | |
1154 | UBool needToAdd = TRUE; | |
1155 | if(isCntTableElement(tailoredCE)) { | |
1156 | if(uprv_cnttab_isTailored(t->contractions, tailoredCE, conts+1, status) == TRUE) { | |
1157 | needToAdd = FALSE; | |
1158 | } | |
1159 | } | |
1160 | if(src->removeSet != NULL && uset_contains(src->removeSet, *conts)) { | |
1161 | needToAdd = FALSE; | |
1162 | } | |
1163 | ||
1164 | if(needToAdd == TRUE) { // we need to add if this contraction is not tailored. | |
1165 | el.prefix = el.prefixChars; | |
1166 | el.prefixSize = 0; | |
1167 | el.cPoints = el.uchars; | |
1168 | el.noOfCEs = 0; | |
1169 | el.uchars[0] = *conts; | |
1170 | el.uchars[1] = *(conts+1); | |
1171 | if(*(conts+2)!=0) { | |
1172 | el.uchars[2] = *(conts+2); | |
1173 | el.cSize = 3; | |
1174 | } else { | |
1175 | el.cSize = 2; | |
1176 | } | |
1177 | ucol_setText(ucaEl, el.uchars, el.cSize, status); | |
374ca955 | 1178 | while ((int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaEl, status)) != UCOL_NULLORDER) { |
b75a7d8f A |
1179 | el.noOfCEs++; |
1180 | } | |
1181 | uprv_uca_addAnElement(t, &el, status); | |
1182 | } | |
1183 | ||
1184 | } else if(src->removeSet != NULL && uset_contains(src->removeSet, *conts)) { | |
1185 | ucol_uprv_bld_copyRangeFromUCA(src, t, *conts, *conts, status); | |
1186 | } | |
1187 | conts+=3; | |
1188 | } | |
1189 | ucol_closeElements(ucaEl); | |
1190 | } | |
1191 | ||
1192 | // Add completely ignorable elements | |
1193 | utrie_enum(t->UCA->mapping, NULL, _processUCACompleteIgnorables, t); | |
1194 | ||
1195 | ||
1196 | // canonical closure | |
1197 | uprv_uca_canonicalClosure(t, status); | |
1198 | ||
1199 | ||
1200 | /* still need to produce compatibility closure */ | |
1201 | ||
1202 | UCATableHeader *myData = uprv_uca_assembleTable(t, status); | |
1203 | ||
1204 | uprv_uca_closeTempTable(t); | |
1205 | uprv_free(image); | |
1206 | ||
1207 | return myData; | |
1208 | } | |
1209 | ||
374ca955 A |
1210 | U_CDECL_BEGIN |
1211 | static UBool U_CALLCONV | |
b75a7d8f A |
1212 | ucol_bld_cleanup(void) |
1213 | { | |
1214 | udata_close(invUCA_DATA_MEM); | |
1215 | invUCA_DATA_MEM = NULL; | |
374ca955 | 1216 | _staticInvUCA = NULL; |
b75a7d8f A |
1217 | return TRUE; |
1218 | } | |
374ca955 | 1219 | U_CDECL_END |
b75a7d8f A |
1220 | |
1221 | U_CAPI const InverseUCATableHeader * U_EXPORT2 | |
1222 | ucol_initInverseUCA(UErrorCode *status) | |
1223 | { | |
1224 | if(U_FAILURE(*status)) return NULL; | |
1225 | ||
1226 | umtx_lock(NULL); | |
374ca955 | 1227 | UBool f = (_staticInvUCA == NULL); |
b75a7d8f A |
1228 | umtx_unlock(NULL); |
1229 | ||
1230 | if(f) { | |
1231 | InverseUCATableHeader *newInvUCA = NULL; | |
1232 | UDataMemory *result = udata_openChoice(NULL, INVC_DATA_TYPE, INVC_DATA_NAME, isAcceptableInvUCA, NULL, status); | |
1233 | ||
1234 | if(U_FAILURE(*status)) { | |
1235 | if (result) { | |
1236 | udata_close(result); | |
1237 | } | |
1238 | // This is not needed, as we are talking about | |
1239 | // memory we got from UData | |
1240 | //uprv_free(newInvUCA); | |
1241 | } | |
1242 | ||
1243 | if(result != NULL) { /* It looks like sometimes we can fail to find the data file */ | |
1244 | newInvUCA = (InverseUCATableHeader *)udata_getMemory(result); | |
1245 | UCollator *UCA = ucol_initUCA(status); | |
1246 | // UCA versions of UCA and inverse UCA should match | |
1247 | if(uprv_memcmp(newInvUCA->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo)) != 0) { | |
1248 | *status = U_INVALID_FORMAT_ERROR; | |
1249 | udata_close(result); | |
1250 | return NULL; | |
1251 | } | |
1252 | ||
1253 | umtx_lock(NULL); | |
374ca955 A |
1254 | if(_staticInvUCA == NULL) { |
1255 | _staticInvUCA = newInvUCA; | |
b75a7d8f A |
1256 | invUCA_DATA_MEM = result; |
1257 | result = NULL; | |
1258 | newInvUCA = NULL; | |
1259 | } | |
1260 | umtx_unlock(NULL); | |
1261 | ||
1262 | if(newInvUCA != NULL) { | |
1263 | udata_close(result); | |
1264 | // This is not needed, as we are talking about | |
1265 | // memory we got from UData | |
1266 | //uprv_free(newInvUCA); | |
1267 | } | |
1268 | else { | |
374ca955 | 1269 | ucln_i18n_registerCleanup(UCLN_I18N_UCOL_BLD, ucol_bld_cleanup); |
b75a7d8f A |
1270 | } |
1271 | } | |
1272 | } | |
374ca955 | 1273 | return _staticInvUCA; |
b75a7d8f A |
1274 | } |
1275 | ||
1276 | #endif /* #if !UCONFIG_NO_COLLATION */ |