]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | |
2 | // | |
3 | // file: regexcmp.cpp | |
4 | // | |
374ca955 | 5 | // Copyright (C) 2002-2004 International Business Machines Corporation and others. |
b75a7d8f A |
6 | // All Rights Reserved. |
7 | // | |
8 | // This file contains the ICU regular expression compiler, which is responsible | |
9 | // for processing a regular expression pattern into the compiled form that | |
10 | // is used by the match finding engine. | |
11 | // | |
12 | ||
13 | #include "unicode/utypes.h" | |
14 | ||
15 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS | |
16 | ||
17 | #include "unicode/unistr.h" | |
18 | #include "unicode/uniset.h" | |
19 | #include "unicode/uchar.h" | |
20 | #include "unicode/uchriter.h" | |
21 | #include "unicode/parsepos.h" | |
22 | #include "unicode/parseerr.h" | |
23 | #include "unicode/regex.h" | |
374ca955 | 24 | #include "util.h" |
b75a7d8f A |
25 | #include "cmemory.h" |
26 | #include "cstring.h" | |
27 | #include "uvectr32.h" | |
28 | #include "uassert.h" | |
29 | #include "ucln_in.h" | |
30 | #include "mutex.h" | |
31 | ||
32 | #include "regeximp.h" | |
33 | #include "regexcst.h" // Contains state table for the regex pattern parser. | |
34 | // generated by a Perl script. | |
35 | #include "regexcmp.h" | |
36 | #include "regexst.h" | |
37 | ||
38 | ||
39 | ||
40 | U_NAMESPACE_BEGIN | |
41 | ||
42 | ||
43 | ||
44 | ||
45 | ||
46 | //---------------------------------------------------------------------------------------- | |
47 | // | |
48 | // Constructor. | |
49 | // | |
50 | //---------------------------------------------------------------------------------------- | |
51 | RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) : fParenStack(status) | |
52 | { | |
53 | fStatus = &status; | |
54 | ||
55 | fRXPat = rxp; | |
56 | fScanIndex = 0; | |
57 | fNextIndex = 0; | |
58 | fPeekChar = -1; | |
59 | fLineNum = 1; | |
60 | fCharNum = 0; | |
61 | fQuoteMode = FALSE; | |
62 | fInBackslashQuote = FALSE; | |
63 | fModeFlags = fRXPat->fFlags; | |
64 | fEOLComments = TRUE; | |
65 | ||
66 | fMatchOpenParen = -1; | |
67 | fMatchCloseParen = -1; | |
68 | fStringOpStart = -1; | |
69 | ||
70 | if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) { | |
71 | status = rxp->fDeferredStatus; | |
72 | } | |
73 | } | |
74 | ||
75 | ||
76 | ||
77 | //---------------------------------------------------------------------------------------- | |
78 | // | |
79 | // Destructor | |
80 | // | |
81 | //---------------------------------------------------------------------------------------- | |
82 | RegexCompile::~RegexCompile() { | |
83 | } | |
84 | ||
b75a7d8f A |
85 | //--------------------------------------------------------------------------------- |
86 | // | |
87 | // Compile regex pattern. The state machine for rexexp pattern parsing is here. | |
88 | // The state tables are hand-written in the file regexcst.txt, | |
89 | // and converted to the form used here by a perl | |
90 | // script regexcst.pl | |
91 | // | |
92 | //--------------------------------------------------------------------------------- | |
93 | void RegexCompile::compile( | |
94 | const UnicodeString &pat, // Source pat to be compiled. | |
95 | UParseError &pp, // Error position info | |
96 | UErrorCode &e) // Error Code | |
97 | { | |
98 | fStatus = &e; | |
99 | fParseErr = &pp; | |
100 | fStackPtr = 0; | |
101 | fStack[fStackPtr] = 0; | |
102 | ||
103 | if (U_FAILURE(*fStatus)) { | |
104 | return; | |
105 | } | |
106 | ||
107 | // There should be no pattern stuff in the RegexPattern object. They can not be reused. | |
108 | U_ASSERT(fRXPat->fPattern.length() == 0); | |
109 | ||
110 | // Prepare the RegexPattern object to receive the compiled pattern. | |
111 | // TODO: remove per-instance field, and just use globals directly. (But check perf) | |
112 | fRXPat->fPattern = pat; | |
113 | fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets; | |
114 | fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8; | |
115 | ||
116 | ||
117 | // Initialize the pattern scanning state machine | |
118 | fPatternLength = pat.length(); | |
119 | uint16_t state = 1; | |
120 | const RegexTableEl *tableEl; | |
121 | nextChar(fC); // Fetch the first char from the pattern string. | |
122 | ||
123 | // | |
124 | // Main loop for the regex pattern parsing state machine. | |
125 | // Runs once per state transition. | |
126 | // Each time through optionally performs, depending on the state table, | |
127 | // - an advance to the the next pattern char | |
128 | // - an action to be performed. | |
129 | // - pushing or popping a state to/from the local state return stack. | |
130 | // file regexcst.txt is the source for the state table. The logic behind | |
131 | // recongizing the pattern syntax is there, not here. | |
132 | // | |
133 | for (;;) { | |
134 | // Bail out if anything has gone wrong. | |
135 | // Regex pattern parsing stops on the first error encountered. | |
136 | if (U_FAILURE(*fStatus)) { | |
137 | break; | |
138 | } | |
139 | ||
140 | U_ASSERT(state != 0); | |
141 | ||
142 | // Find the state table element that matches the input char from the pattern, or the | |
143 | // class of the input character. Start with the first table row for this | |
144 | // state, then linearly scan forward until we find a row that matches the | |
145 | // character. The last row for each state always matches all characters, so | |
146 | // the search will stop there, if not before. | |
147 | // | |
148 | tableEl = &gRuleParseStateTable[state]; | |
374ca955 A |
149 | REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ", |
150 | fC.fChar, fLineNum, fCharNum, RegexStateNames[state])); | |
b75a7d8f A |
151 | |
152 | for (;;) { // loop through table rows belonging to this state, looking for one | |
153 | // that matches the current input char. | |
374ca955 | 154 | REGEX_SCAN_DEBUG_PRINTF((".")); |
b75a7d8f A |
155 | if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) { |
156 | // Table row specified an individual character, not a set, and | |
157 | // the input character is not quoted, and | |
158 | // the input character matched it. | |
159 | break; | |
160 | } | |
161 | if (tableEl->fCharClass == 255) { | |
162 | // Table row specified default, match anything character class. | |
163 | break; | |
164 | } | |
165 | if (tableEl->fCharClass == 254 && fC.fQuoted) { | |
166 | // Table row specified "quoted" and the char was quoted. | |
167 | break; | |
168 | } | |
169 | if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) { | |
170 | // Table row specified eof and we hit eof on the input. | |
171 | break; | |
172 | } | |
173 | ||
174 | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && | |
175 | fC.fQuoted == FALSE && // char is not escaped && | |
176 | fC.fChar != (UChar32)-1) { // char is not EOF | |
177 | UnicodeSet *uniset = RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128]; | |
178 | if (uniset->contains(fC.fChar)) { | |
179 | // Table row specified a character class, or set of characters, | |
180 | // and the current char matches it. | |
181 | break; | |
182 | } | |
183 | } | |
184 | ||
185 | // No match on this row, advance to the next row for this state, | |
186 | tableEl++; | |
187 | } | |
374ca955 | 188 | REGEX_SCAN_DEBUG_PRINTF(("\n")); |
b75a7d8f A |
189 | |
190 | // | |
191 | // We've found the row of the state table that matches the current input | |
192 | // character from the rules string. | |
193 | // Perform any action specified by this row in the state table. | |
194 | if (doParseActions((EParseAction)tableEl->fAction) == FALSE) { | |
195 | // Break out of the state machine loop if the | |
196 | // the action signalled some kind of error, or | |
197 | // the action was to exit, occurs on normal end-of-rules-input. | |
198 | break; | |
199 | } | |
200 | ||
201 | if (tableEl->fPushState != 0) { | |
202 | fStackPtr++; | |
203 | if (fStackPtr >= kStackSize) { | |
204 | error(U_REGEX_INTERNAL_ERROR); | |
374ca955 | 205 | REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n")); |
b75a7d8f A |
206 | fStackPtr--; |
207 | } | |
208 | fStack[fStackPtr] = tableEl->fPushState; | |
209 | } | |
210 | ||
211 | // | |
212 | // NextChar. This is where characters are actually fetched from the pattern. | |
213 | // Happens under control of the 'n' tag in the state table. | |
214 | // | |
215 | if (tableEl->fNextChar) { | |
216 | nextChar(fC); | |
217 | } | |
218 | ||
219 | // Get the next state from the table entry, or from the | |
220 | // state stack if the next state was specified as "pop". | |
221 | if (tableEl->fNextState != 255) { | |
222 | state = tableEl->fNextState; | |
223 | } else { | |
224 | state = fStack[fStackPtr]; | |
225 | fStackPtr--; | |
226 | if (fStackPtr < 0) { | |
227 | // state stack underflow | |
228 | // This will occur if the user pattern has mis-matched parentheses, | |
229 | // with extra close parens. | |
230 | // | |
231 | fStackPtr++; | |
232 | error(U_REGEX_MISMATCHED_PAREN); | |
233 | } | |
234 | } | |
235 | ||
236 | } | |
237 | ||
238 | // | |
239 | // The pattern has now been read and processed, and the compiled code generated. | |
240 | // | |
241 | ||
242 | // Back-reference fixup | |
243 | // | |
244 | int32_t loc; | |
245 | for (loc=0; loc<fRXPat->fCompiledPat->size(); loc++) { | |
246 | int32_t op = fRXPat->fCompiledPat->elementAti(loc); | |
247 | int32_t opType = URX_TYPE(op); | |
248 | if (opType == URX_BACKREF || opType == URX_BACKREF_I) { | |
249 | int32_t where = URX_VAL(op); | |
250 | if (where > fRXPat->fGroupMap->size()) { | |
251 | error(U_REGEX_INVALID_BACK_REF); | |
252 | break; | |
253 | } | |
254 | where = fRXPat->fGroupMap->elementAti(where-1); | |
255 | op = URX_BUILD(opType, where); | |
256 | fRXPat->fCompiledPat->setElementAt(op, loc); | |
257 | } | |
258 | } | |
259 | ||
260 | ||
261 | // | |
262 | // Compute the number of digits requried for the largest capture group number. | |
263 | // | |
264 | fRXPat->fMaxCaptureDigits = 1; | |
265 | int32_t n = 10; | |
266 | for (;;) { | |
267 | if (n > fRXPat->fGroupMap->size()) { | |
268 | break; | |
269 | } | |
270 | fRXPat->fMaxCaptureDigits++; | |
271 | n *= 10; | |
272 | } | |
273 | ||
274 | // | |
275 | // The pattern's fFrameSize so far has accumulated the requirements for | |
276 | // storage for capture parentheses, counters, etc. that are encountered | |
277 | // in the pattern. Add space for the two variables that are always | |
278 | // present in the saved state: the input string position and the | |
279 | // position in the compiled pattern. | |
280 | // | |
281 | fRXPat->fFrameSize+=2; | |
282 | ||
283 | // | |
284 | // Get bounds for the minimum and maximum length of a string that this | |
285 | // pattern can match. Used to avoid looking for matches in strings that | |
286 | // are too short. | |
287 | // | |
288 | fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1); | |
289 | ||
290 | // | |
291 | // Optimization passes | |
292 | // | |
293 | matchStartType(); | |
294 | OptDotStar(); | |
295 | stripNOPs(); | |
296 | ||
297 | // | |
298 | // Set up fast latin-1 range sets | |
299 | // | |
300 | int32_t numSets = fRXPat->fSets->size(); | |
301 | fRXPat->fSets8 = new Regex8BitSet[numSets]; | |
302 | int32_t i; | |
303 | for (i=0; i<numSets; i++) { | |
304 | UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i); | |
305 | fRXPat->fSets8[i].init(s); | |
306 | } | |
307 | ||
b75a7d8f A |
308 | } |
309 | ||
310 | ||
311 | ||
312 | ||
313 | ||
314 | //---------------------------------------------------------------------------------------- | |
315 | // | |
316 | // doParseAction Do some action during regex pattern parsing. | |
317 | // Called by the parse state machine. | |
318 | // | |
319 | // Generation of the match engine PCode happens here, or | |
320 | // in functions called from the parse actions defined here. | |
321 | // | |
322 | // | |
323 | //---------------------------------------------------------------------------------------- | |
324 | UBool RegexCompile::doParseActions(EParseAction action) | |
325 | { | |
326 | UBool returnVal = TRUE; | |
327 | ||
328 | switch ((Regex_PatternParseAction)action) { | |
329 | ||
330 | case doPatStart: | |
331 | // Start of pattern compiles to: | |
332 | //0 SAVE 2 Fall back to position of FAIL | |
333 | //1 jmp 3 | |
334 | //2 FAIL Stop if we ever reach here. | |
335 | //3 NOP Dummy, so start of pattern looks the same as | |
336 | // the start of an ( grouping. | |
337 | //4 NOP Resreved, will be replaced by a save if there are | |
338 | // OR | operators at the top level | |
339 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus); | |
340 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus); | |
341 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus); | |
342 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
343 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
344 | ||
345 | fParenStack.push(-1, *fStatus); // Begin a Paren Stack Frame | |
346 | fParenStack.push( 3, *fStatus); // Push location of first NOP | |
347 | break; | |
348 | ||
349 | case doPatFinish: | |
350 | // We've scanned to the end of the pattern | |
351 | // The end of pattern compiles to: | |
352 | // URX_END | |
353 | // which will stop the runtime match engine. | |
354 | // Encountering end of pattern also behaves like a close paren, | |
355 | // and forces fixups of the State Save at the beginning of the compiled pattern | |
356 | // and of any OR operations at the top level. | |
357 | // | |
358 | handleCloseParen(); | |
359 | if (fParenStack.size() > 0) { | |
360 | // Missing close paren in pattern. | |
361 | error(U_REGEX_MISMATCHED_PAREN); | |
362 | } | |
363 | ||
364 | // add the END operation to the compiled pattern. | |
365 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus); | |
366 | ||
367 | // Terminate the pattern compilation state machine. | |
368 | returnVal = FALSE; | |
369 | break; | |
370 | ||
371 | ||
372 | ||
373 | case doOrOperator: | |
374 | // Scanning a '|', as in (A|B) | |
375 | { | |
376 | // Insert a SAVE operation at the start of the pattern section preceding | |
377 | // this OR at this level. This SAVE will branch the match forward | |
378 | // to the right hand side of the OR in the event that the left hand | |
379 | // side fails to match and backtracks. Locate the position for the | |
380 | // save from the location on the top of the parentheses stack. | |
381 | int32_t savePosition = fParenStack.popi(); | |
382 | int32_t op = fRXPat->fCompiledPat->elementAti(savePosition); | |
383 | U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location | |
384 | op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1); | |
385 | fRXPat->fCompiledPat->setElementAt(op, savePosition); | |
386 | ||
387 | // Append an JMP operation into the compiled pattern. The operand for | |
388 | // the JMP will eventually be the location following the ')' for the | |
389 | // group. This will be patched in later, when the ')' is encountered. | |
390 | op = URX_BUILD(URX_JMP, 0); | |
391 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
392 | ||
393 | // Push the position of the newly added JMP op onto the parentheses stack. | |
394 | // This registers if for fixup when this block's close paren is encountered. | |
395 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); | |
396 | ||
397 | // Append a NOP to the compiled pattern. This is the slot reserved | |
398 | // for a SAVE in the event that there is yet another '|' following | |
399 | // this one. | |
400 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
401 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); | |
402 | } | |
403 | break; | |
404 | ||
405 | ||
406 | case doOpenCaptureParen: | |
407 | // Open Paren. | |
408 | // Compile to a | |
409 | // - NOP, which later may be replaced by a save-state if the | |
410 | // parenthesized group gets a * quantifier, followed by | |
411 | // - START_CAPTURE n where n is stack frame offset to the capture group variables. | |
412 | // - NOP, which may later be replaced by a save-state if there | |
413 | // is an '|' alternation within the parens. | |
414 | // | |
415 | // Each capture group gets three slots in the save stack frame: | |
416 | // 0: Capture Group start position (in input string being matched.) | |
417 | // 1: Capture Group end positino. | |
418 | // 2: Start of Match-in-progress. | |
419 | // The first two locations are for a completed capture group, and are | |
420 | // referred to by back references and the like. | |
421 | // The third location stores the capture start position when an START_CAPTURE is | |
422 | // encountered. This will be promoted to a completed capture when (and if) the corresponding | |
423 | // END_CAPure is encountered. | |
424 | { | |
425 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
426 | int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame. | |
427 | fRXPat->fFrameSize += 3; | |
428 | int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc); | |
429 | fRXPat->fCompiledPat->addElement(cop, *fStatus); | |
430 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
431 | ||
432 | // On the Parentheses stack, start a new frame and add the postions | |
433 | // of the two NOPs. Depending on what follows in the pattern, the | |
434 | // NOPs may be changed to SAVE_STATE or JMP ops, with a target | |
435 | // address of the end of the parenthesized group. | |
436 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
437 | fParenStack.push(capturing, *fStatus); // Frame type. | |
438 | fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location | |
439 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc | |
440 | ||
441 | // Save the mapping from group number to stack frame variable position. | |
442 | fRXPat->fGroupMap->addElement(varsLoc, *fStatus); | |
443 | } | |
444 | break; | |
445 | ||
446 | case doOpenNonCaptureParen: | |
447 | // Open non-caputuring (grouping only) Paren. | |
448 | // Compile to a | |
449 | // - NOP, which later may be replaced by a save-state if the | |
450 | // parenthesized group gets a * quantifier, followed by | |
451 | // - NOP, which may later be replaced by a save-state if there | |
452 | // is an '|' alternation within the parens. | |
453 | { | |
454 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
455 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
456 | ||
457 | // On the Parentheses stack, start a new frame and add the postions | |
458 | // of the two NOPs. | |
459 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
460 | fParenStack.push(plain, *fStatus); // Begin a new frame. | |
461 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
462 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc | |
463 | } | |
464 | break; | |
465 | ||
466 | ||
467 | case doOpenAtomicParen: | |
468 | // Open Atomic Paren. (?> | |
469 | // Compile to a | |
470 | // - NOP, which later may be replaced if the parenthesized group | |
471 | // has a quantifier, followed by | |
472 | // - STO_SP save state stack position, so it can be restored at the ")" | |
473 | // - NOP, which may later be replaced by a save-state if there | |
474 | // is an '|' alternation within the parens. | |
475 | { | |
476 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
477 | int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the | |
478 | fRXPat->fDataSize += 1; // state stack ptr. | |
479 | int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc); | |
480 | fRXPat->fCompiledPat->addElement(stoOp, *fStatus); | |
481 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
482 | ||
483 | // On the Parentheses stack, start a new frame and add the postions | |
484 | // of the two NOPs. Depending on what follows in the pattern, the | |
485 | // NOPs may be changed to SAVE_STATE or JMP ops, with a target | |
486 | // address of the end of the parenthesized group. | |
487 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
488 | fParenStack.push(atomic, *fStatus); // Frame type. | |
489 | fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP | |
490 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP | |
491 | } | |
492 | break; | |
493 | ||
494 | ||
495 | case doOpenLookAhead: | |
496 | // Positive Look-ahead (?= stuff ) | |
497 | // Compiles to | |
498 | // 1 START_LA dataLoc | |
499 | // 2. NOP reserved for use by quantifiers on the block. | |
500 | // Look-ahead can't have quantifiers, but paren stack | |
501 | // compile time conventions require the slot anyhow. | |
502 | // 3. NOP may be replaced if there is are '|' ops in the block. | |
503 | // 4. code for parenthesized stuff. | |
504 | // 5. ENDLA | |
505 | // | |
506 | // Two data slots are reserved, for saving the stack ptr and the input position. | |
507 | { | |
508 | int32_t dataLoc = fRXPat->fDataSize; | |
509 | fRXPat->fDataSize += 2; | |
510 | int32_t op = URX_BUILD(URX_LA_START, dataLoc); | |
511 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
512 | ||
513 | op = URX_BUILD(URX_NOP, 0); | |
514 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
515 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
516 | ||
517 | // On the Parentheses stack, start a new frame and add the postions | |
518 | // of the NOPs. | |
519 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
520 | fParenStack.push(lookAhead, *fStatus); // Frame type. | |
521 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
522 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location | |
523 | } | |
524 | break; | |
525 | ||
526 | case doOpenLookAheadNeg: | |
527 | // Negated Lookahead. (?! stuff ) | |
528 | // Compiles to | |
529 | // 1. START_LA dataloc | |
530 | // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state, | |
531 | // // which continues with the match. | |
532 | // 3. NOP // Std. Open Paren sequence, for possible '|' | |
533 | // 4. code for parenthesized stuff. | |
534 | // 5. END_LA // Cut back stack, remove saved state from step 2. | |
535 | // 6. FAIL // code in block succeeded, so neg. lookahead fails. | |
536 | // 7. ... | |
537 | { | |
538 | int32_t dataLoc = fRXPat->fDataSize; | |
539 | fRXPat->fDataSize += 2; | |
540 | int32_t op = URX_BUILD(URX_LA_START, dataLoc); | |
541 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
542 | ||
543 | op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later. | |
544 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
545 | ||
546 | op = URX_BUILD(URX_NOP, 0); | |
547 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
548 | ||
549 | // On the Parentheses stack, start a new frame and add the postions | |
550 | // of the StateSave and NOP. | |
551 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
552 | fParenStack.push( negLookAhead, *fStatus); // Frame type | |
553 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location | |
554 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location | |
555 | ||
556 | // Instructions #5 and #6 will be added when the ')' is encountered. | |
557 | } | |
558 | break; | |
559 | ||
560 | case doOpenLookBehind: | |
561 | { | |
562 | // Compile a (?<= look-behind open paren. | |
563 | // | |
564 | // Compiles to | |
565 | // 0 URX_LB_START dataLoc | |
566 | // 1 URX_LB_CONT dataLoc | |
567 | // 2 MinMatchLen | |
568 | // 3 MaxMatchLen | |
569 | // 4 URX_NOP Standard '(' boilerplate. | |
570 | // 5 URX_NOP Reserved slot for use with '|' ops within (block). | |
571 | // 6 <code for LookBehind expression> | |
572 | // 7 URX_LB_END dataLoc # Check match len, restore input len | |
573 | // 8 URX_LA_END dataLoc # Restore stack, input pos | |
574 | // | |
575 | // Allocate a block of matcher data, to contain (when running a match) | |
576 | // 0: Stack ptr on entry | |
577 | // 1: Input Index on entry | |
578 | // 2: Start index of match current match attempt. | |
579 | // 3: Original Input String len. | |
580 | ||
581 | // Allocate data space | |
582 | int32_t dataLoc = fRXPat->fDataSize; | |
583 | fRXPat->fDataSize += 4; | |
584 | ||
585 | // Emit URX_LB_START | |
586 | int32_t op = URX_BUILD(URX_LB_START, dataLoc); | |
587 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
588 | ||
589 | // Emit URX_LB_CONT | |
590 | op = URX_BUILD(URX_LB_CONT, dataLoc); | |
591 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
592 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. | |
593 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. | |
594 | ||
595 | // Emit the NOP | |
596 | op = URX_BUILD(URX_NOP, 0); | |
597 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
598 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
599 | ||
600 | // On the Parentheses stack, start a new frame and add the postions | |
601 | // of the URX_LB_CONT and the NOP. | |
602 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
603 | fParenStack.push(lookBehind, *fStatus); // Frame type | |
604 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
605 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location | |
606 | ||
607 | // The final two instructions will be added when the ')' is encountered. | |
608 | } | |
609 | ||
610 | break; | |
611 | ||
612 | case doOpenLookBehindNeg: | |
613 | { | |
614 | // Compile a (?<! negated look-behind open paren. | |
615 | // | |
616 | // Compiles to | |
617 | // 0 URX_LB_START dataLoc # Save entry stack, input len | |
618 | // 1 URX_LBN_CONT dataLoc # Iterate possible match positions | |
619 | // 2 MinMatchLen | |
620 | // 3 MaxMatchLen | |
621 | // 4 continueLoc (9) | |
622 | // 5 URX_NOP Standard '(' boilerplate. | |
623 | // 6 URX_NOP Reserved slot for use with '|' ops within (block). | |
624 | // 7 <code for LookBehind expression> | |
625 | // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL | |
626 | // 9 ... | |
627 | // | |
628 | // Allocate a block of matcher data, to contain (when running a match) | |
629 | // 0: Stack ptr on entry | |
630 | // 1: Input Index on entry | |
631 | // 2: Start index of match current match attempt. | |
632 | // 3: Original Input String len. | |
633 | ||
634 | // Allocate data space | |
635 | int32_t dataLoc = fRXPat->fDataSize; | |
636 | fRXPat->fDataSize += 4; | |
637 | ||
638 | // Emit URX_LB_START | |
639 | int32_t op = URX_BUILD(URX_LB_START, dataLoc); | |
640 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
641 | ||
642 | // Emit URX_LBN_CONT | |
643 | op = URX_BUILD(URX_LBN_CONT, dataLoc); | |
644 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
645 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. | |
646 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. | |
647 | fRXPat->fCompiledPat->addElement(0, *fStatus); // Continue Loc. To be filled later. | |
648 | ||
649 | // Emit the NOP | |
650 | op = URX_BUILD(URX_NOP, 0); | |
651 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
652 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
653 | ||
654 | // On the Parentheses stack, start a new frame and add the postions | |
655 | // of the URX_LB_CONT and the NOP. | |
656 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
657 | fParenStack.push(lookBehindN, *fStatus); // Frame type | |
658 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
659 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location | |
660 | ||
661 | // The final two instructions will be added when the ')' is encountered. | |
662 | } | |
663 | break; | |
664 | ||
665 | case doConditionalExpr: | |
666 | // Conditionals such as (?(1)a:b) | |
667 | case doPerlInline: | |
668 | // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them. | |
669 | error(U_REGEX_UNIMPLEMENTED); | |
670 | break; | |
671 | ||
672 | ||
673 | case doCloseParen: | |
674 | handleCloseParen(); | |
675 | if (fParenStack.size() <= 0) { | |
676 | // Extra close paren, or missing open paren. | |
677 | error(U_REGEX_MISMATCHED_PAREN); | |
678 | } | |
679 | break; | |
680 | ||
681 | case doNOP: | |
682 | break; | |
683 | ||
684 | ||
685 | case doBadOpenParenType: | |
686 | case doRuleError: | |
687 | error(U_REGEX_RULE_SYNTAX); | |
688 | break; | |
689 | ||
690 | ||
691 | case doMismatchedParenErr: | |
692 | error(U_REGEX_MISMATCHED_PAREN); | |
693 | break; | |
694 | ||
695 | case doPlus: | |
696 | // Normal '+' compiles to | |
697 | // 1. stuff to be repeated (already built) | |
698 | // 2. jmp-sav 1 | |
699 | // 3. ... | |
700 | // | |
701 | // Or, if the item to be repeated can match a zero length string, | |
702 | // 1. STO_INP_LOC data-loc | |
703 | // 2. body of stuff to be repeated | |
704 | // 3. JMP_SAV_X 2 | |
705 | // 4. ... | |
706 | ||
707 | // | |
708 | // Or, if the item to be repeated is simple | |
709 | // 1. Item to be repeated. | |
710 | // 2. LOOP_SR_I set number (assuming repeated item is a set ref) | |
711 | // 3. LOOP_C stack location | |
712 | { | |
713 | int32_t topLoc = blockTopLoc(FALSE); // location of item #1 | |
714 | int32_t frameLoc; | |
715 | ||
716 | // Check for simple constructs, which may get special optimized code. | |
717 | if (topLoc == fRXPat->fCompiledPat->size() - 1) { | |
718 | int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc); | |
719 | ||
720 | if (URX_TYPE(repeatedOp) == URX_SETREF) { | |
721 | // Emit optimized code for [char set]+ | |
722 | int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); | |
723 | fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); | |
724 | frameLoc = fRXPat->fFrameSize; | |
725 | fRXPat->fFrameSize++; | |
726 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); | |
727 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
728 | break; | |
729 | } | |
730 | ||
731 | if (URX_TYPE(repeatedOp) == URX_DOTANY || | |
732 | URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { | |
733 | // Emit Optimized code for .+ operations. | |
734 | int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); | |
735 | if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { | |
736 | // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. | |
737 | loopOpI |= 1; | |
738 | } | |
739 | fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); | |
740 | frameLoc = fRXPat->fFrameSize; | |
741 | fRXPat->fFrameSize++; | |
742 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); | |
743 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
744 | break; | |
745 | } | |
746 | ||
747 | } | |
748 | ||
749 | // General case. | |
750 | ||
751 | // Check for minimum match length of zero, which requires | |
752 | // extra loop-breaking code. | |
753 | if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) { | |
754 | // Zero length match is possible. | |
755 | // Emit the code sequence that can handle it. | |
756 | insertOp(topLoc); | |
757 | frameLoc = fRXPat->fFrameSize; | |
758 | fRXPat->fFrameSize++; | |
759 | ||
760 | int32_t op = URX_BUILD(URX_STO_INP_LOC, frameLoc); | |
761 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
762 | ||
763 | op = URX_BUILD(URX_JMP_SAV_X, topLoc+1); | |
764 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
765 | } else { | |
766 | // Simpler code when the repeated body must match something non-empty | |
767 | int32_t jmpOp = URX_BUILD(URX_JMP_SAV, topLoc); | |
768 | fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); | |
769 | } | |
770 | } | |
771 | break; | |
772 | ||
773 | case doNGPlus: | |
774 | // Non-greedy '+?' compiles to | |
775 | // 1. stuff to be repeated (already built) | |
776 | // 2. state-save 1 | |
777 | // 3. ... | |
778 | { | |
779 | int32_t topLoc = blockTopLoc(FALSE); | |
780 | int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc); | |
781 | fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus); | |
782 | } | |
783 | break; | |
784 | ||
785 | ||
786 | case doOpt: | |
787 | // Normal (greedy) ? quantifier. | |
788 | // Compiles to | |
789 | // 1. state save 3 | |
790 | // 2. body of optional block | |
791 | // 3. ... | |
792 | // Insert the state save into the compiled pattern, and we're done. | |
793 | { | |
794 | int32_t saveStateLoc = blockTopLoc(TRUE); | |
795 | int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()); | |
796 | fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); | |
797 | } | |
798 | break; | |
799 | ||
800 | case doNGOpt: | |
801 | // Non-greedy ?? quantifier | |
802 | // compiles to | |
803 | // 1. jmp 4 | |
804 | // 2. body of optional block | |
805 | // 3 jmp 5 | |
806 | // 4. state save 2 | |
807 | // 5 ... | |
808 | // This code is less than ideal, with two jmps instead of one, because we can only | |
809 | // insert one instruction at the top of the block being iterated. | |
810 | { | |
811 | int32_t jmp1_loc = blockTopLoc(TRUE); | |
812 | int32_t jmp2_loc = fRXPat->fCompiledPat->size(); | |
813 | ||
814 | int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1); | |
815 | fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc); | |
816 | ||
817 | int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2); | |
818 | fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus); | |
819 | ||
820 | int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1); | |
821 | fRXPat->fCompiledPat->addElement(save_op, *fStatus); | |
822 | } | |
823 | break; | |
824 | ||
825 | ||
826 | case doStar: | |
827 | // Normal (greedy) * quantifier. | |
828 | // Compiles to | |
829 | // 1. STATE_SAVE 4 | |
830 | // 2. body of stuff being iterated over | |
831 | // 3. JMP_SAV 2 | |
832 | // 4. ... | |
833 | // | |
834 | // Or, if the body is a simple [Set], | |
835 | // 1. LOOP_SR_I set number | |
836 | // 2. LOOP_C stack location | |
837 | // ... | |
838 | // | |
839 | // Or if this is a .* | |
840 | // 1. LOOP_DOT_I (. matches all mode flag) | |
841 | // 2. LOOP_C stack location | |
842 | // | |
843 | // Or, if the body can match a zero-length string, to inhibit infinite loops, | |
844 | // 1. STATE_SAVE 5 | |
845 | // 2. STO_INP_LOC data-loc | |
846 | // 3. body of stuff | |
847 | // 4. JMP_SAV_X 2 | |
848 | // 5. ... | |
849 | { | |
850 | // location of item #1, the STATE_SAVE | |
851 | int32_t topLoc = blockTopLoc(FALSE); | |
852 | int32_t dataLoc = -1; | |
853 | ||
854 | // Check for simple *, where the construct being repeated | |
855 | // compiled to single opcode, and might be optimizable. | |
856 | if (topLoc == fRXPat->fCompiledPat->size() - 1) { | |
857 | int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc); | |
858 | ||
859 | if (URX_TYPE(repeatedOp) == URX_SETREF) { | |
860 | // Emit optimized code for a [char set]* | |
861 | int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); | |
862 | fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); | |
863 | dataLoc = fRXPat->fFrameSize; | |
864 | fRXPat->fFrameSize++; | |
865 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); | |
866 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
867 | break; | |
868 | } | |
869 | ||
870 | if (URX_TYPE(repeatedOp) == URX_DOTANY || | |
871 | URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { | |
872 | // Emit Optimized code for .* operations. | |
873 | int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); | |
874 | if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { | |
875 | // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. | |
876 | loopOpI |= 1; | |
877 | } | |
878 | fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); | |
879 | dataLoc = fRXPat->fFrameSize; | |
880 | fRXPat->fFrameSize++; | |
881 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); | |
882 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
883 | break; | |
884 | } | |
885 | } | |
886 | ||
887 | // Emit general case code for this * | |
888 | // The optimizations did not apply. | |
889 | ||
890 | int32_t saveStateLoc = blockTopLoc(TRUE); | |
891 | int32_t jmpOp = URX_BUILD(URX_JMP_SAV, saveStateLoc+1); | |
892 | ||
893 | // Check for minimum match length of zero, which requires | |
894 | // extra loop-breaking code. | |
895 | if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) { | |
896 | insertOp(saveStateLoc); | |
897 | dataLoc = fRXPat->fFrameSize; | |
898 | fRXPat->fFrameSize++; | |
899 | ||
900 | int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc); | |
901 | fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1); | |
902 | jmpOp = URX_BUILD(URX_JMP_SAV_X, saveStateLoc+2); | |
903 | } | |
904 | ||
905 | // Locate the position in the compiled pattern where the match will continue | |
906 | // after completing the *. (4 or 5 in the comment above) | |
907 | int32_t continueLoc = fRXPat->fCompiledPat->size()+1; | |
908 | ||
909 | // Put together the save state op store it into the compiled code. | |
910 | int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc); | |
911 | fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); | |
912 | ||
913 | // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern. | |
914 | fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); | |
915 | } | |
916 | break; | |
917 | ||
918 | case doNGStar: | |
919 | // Non-greedy *? quantifier | |
920 | // compiles to | |
921 | // 1. JMP 3 | |
922 | // 2. body of stuff being iterated over | |
923 | // 3. STATE_SAVE 2 | |
924 | // 4 ... | |
925 | { | |
926 | int32_t jmpLoc = blockTopLoc(TRUE); // loc 1. | |
927 | int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3. | |
928 | int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc); | |
929 | int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1); | |
930 | fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc); | |
931 | fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus); | |
932 | } | |
933 | break; | |
934 | ||
935 | ||
936 | case doIntervalInit: | |
937 | // The '{' opening an interval quantifier was just scanned. | |
938 | // Init the counter varaiables that will accumulate the values as the digits | |
939 | // are scanned. | |
940 | fIntervalLow = 0; | |
941 | fIntervalUpper = -1; | |
942 | break; | |
943 | ||
944 | case doIntevalLowerDigit: | |
945 | // Scanned a digit from the lower value of an {lower,upper} interval | |
946 | { | |
947 | int32_t digitValue = u_charDigitValue(fC.fChar); | |
948 | U_ASSERT(digitValue >= 0); | |
949 | fIntervalLow = fIntervalLow*10 + digitValue; | |
950 | if (fIntervalLow < 0) { | |
951 | error(U_REGEX_NUMBER_TOO_BIG); | |
952 | } | |
953 | } | |
954 | break; | |
955 | ||
956 | case doIntervalUpperDigit: | |
957 | // Scanned a digit from the upper value of an {lower,upper} interval | |
958 | { | |
959 | if (fIntervalUpper < 0) { | |
960 | fIntervalUpper = 0; | |
961 | } | |
962 | int32_t digitValue = u_charDigitValue(fC.fChar); | |
963 | U_ASSERT(digitValue >= 0); | |
964 | fIntervalUpper = fIntervalUpper*10 + digitValue; | |
374ca955 | 965 | if (fIntervalUpper < 0) { |
b75a7d8f A |
966 | error(U_REGEX_NUMBER_TOO_BIG); |
967 | } | |
968 | } | |
969 | break; | |
970 | ||
971 | case doIntervalSame: | |
972 | // Scanned a single value interval like {27}. Upper = Lower. | |
973 | fIntervalUpper = fIntervalLow; | |
974 | break; | |
975 | ||
976 | case doInterval: | |
977 | // Finished scanning a normal {lower,upper} interval. Generate the code for it. | |
978 | if (compileInlineInterval() == FALSE) { | |
979 | compileInterval(URX_CTR_INIT, URX_CTR_LOOP); | |
980 | } | |
981 | break; | |
982 | ||
983 | case doPossessiveInterval: | |
984 | // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it. | |
985 | { | |
986 | // Remember the loc for the top of the block being looped over. | |
987 | // (Can not reserve a slot in the compiled pattern at this time, becuase | |
988 | // compileInterval needs to reserve also, and blockTopLoc can only reserve | |
989 | // once per block.) | |
990 | int32_t topLoc = blockTopLoc(FALSE); | |
991 | ||
992 | // Produce normal looping code. | |
993 | compileInterval(URX_CTR_INIT, URX_CTR_LOOP); | |
994 | ||
995 | // Surround the just-emitted normal looping code with a STO_SP ... LD_SP | |
996 | // just as if the loop was inclosed in atomic parentheses. | |
997 | ||
998 | // First the STO_SP before the start of the loop | |
999 | insertOp(topLoc); | |
1000 | int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the | |
1001 | fRXPat->fDataSize += 1; // state stack ptr. | |
1002 | int32_t op = URX_BUILD(URX_STO_SP, varLoc); | |
1003 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1004 | ||
1005 | int32_t loopOp = fRXPat->fCompiledPat->popi(); | |
1006 | U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc); | |
1007 | loopOp++; // point LoopOp after the just-inserted STO_SP | |
1008 | fRXPat->fCompiledPat->push(loopOp, *fStatus); | |
1009 | ||
1010 | // Then the LD_SP after the end of the loop | |
1011 | op = URX_BUILD(URX_LD_SP, varLoc); | |
1012 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1013 | } | |
1014 | ||
1015 | break; | |
1016 | ||
1017 | case doNGInterval: | |
1018 | // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it. | |
1019 | compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG); | |
1020 | break; | |
1021 | ||
1022 | case doIntervalError: | |
1023 | error(U_REGEX_BAD_INTERVAL); | |
1024 | break; | |
1025 | ||
1026 | case doLiteralChar: | |
1027 | // We've just scanned a "normal" character from the pattern, | |
1028 | literalChar(fC.fChar); | |
1029 | break; | |
1030 | ||
1031 | ||
1032 | ||
1033 | case doDotAny: | |
1034 | // scanned a ".", match any single character. | |
1035 | { | |
1036 | int32_t op; | |
1037 | if (fModeFlags & UREGEX_DOTALL) { | |
1038 | op = URX_BUILD(URX_DOTANY_ALL, 0); | |
1039 | } else { | |
1040 | op = URX_BUILD(URX_DOTANY, 0); | |
1041 | } | |
1042 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1043 | } | |
1044 | break; | |
1045 | ||
1046 | case doCaret: | |
1047 | { | |
1048 | int32_t op = (fModeFlags & UREGEX_MULTILINE)? URX_CARET_M : URX_CARET; | |
1049 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); | |
1050 | } | |
1051 | break; | |
1052 | ||
1053 | ||
1054 | case doDollar: | |
1055 | { | |
1056 | int32_t op = (fModeFlags & UREGEX_MULTILINE)? URX_DOLLAR_M : URX_DOLLAR; | |
1057 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); | |
1058 | } | |
1059 | break; | |
1060 | ||
1061 | case doBackslashA: | |
1062 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus); | |
1063 | break; | |
1064 | ||
1065 | case doBackslashB: | |
374ca955 A |
1066 | { |
1067 | #if UCONFIG_NO_BREAK_ITERATION==1 | |
1068 | if (fModeFlags & UREGEX_UWORD) { | |
1069 | error(U_UNSUPPORTED_ERROR); | |
1070 | } | |
1071 | #endif | |
1072 | int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; | |
1073 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 1), *fStatus); | |
1074 | } | |
b75a7d8f A |
1075 | break; |
1076 | ||
1077 | case doBackslashb: | |
374ca955 A |
1078 | { |
1079 | #if UCONFIG_NO_BREAK_ITERATION==1 | |
1080 | if (fModeFlags & UREGEX_UWORD) { | |
1081 | error(U_UNSUPPORTED_ERROR); | |
1082 | } | |
1083 | #endif | |
1084 | int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; | |
1085 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); | |
1086 | } | |
b75a7d8f A |
1087 | break; |
1088 | ||
1089 | case doBackslashD: | |
1090 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus); | |
1091 | break; | |
1092 | ||
1093 | case doBackslashd: | |
1094 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus); | |
1095 | break; | |
1096 | ||
1097 | case doBackslashG: | |
1098 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus); | |
1099 | break; | |
1100 | ||
1101 | case doBackslashS: | |
1102 | fRXPat->fCompiledPat->addElement( | |
1103 | URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus); | |
1104 | break; | |
1105 | ||
1106 | case doBackslashs: | |
1107 | fRXPat->fCompiledPat->addElement( | |
1108 | URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus); | |
1109 | break; | |
1110 | ||
1111 | case doBackslashW: | |
1112 | fRXPat->fCompiledPat->addElement( | |
1113 | URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus); | |
1114 | break; | |
1115 | ||
1116 | case doBackslashw: | |
1117 | fRXPat->fCompiledPat->addElement( | |
1118 | URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus); | |
1119 | break; | |
1120 | ||
1121 | case doBackslashX: | |
1122 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus); | |
1123 | break; | |
1124 | ||
1125 | ||
1126 | case doBackslashZ: | |
1127 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus); | |
1128 | break; | |
1129 | ||
1130 | case doBackslashz: | |
1131 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus); | |
1132 | break; | |
1133 | ||
1134 | case doEscapeError: | |
1135 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
1136 | break; | |
1137 | ||
1138 | case doExit: | |
1139 | returnVal = FALSE; | |
1140 | break; | |
1141 | ||
1142 | case doProperty: | |
1143 | { | |
1144 | UnicodeSet *theSet = scanProp(); | |
1145 | compileSet(theSet); | |
1146 | } | |
1147 | break; | |
1148 | ||
1149 | ||
1150 | case doScanUnicodeSet: | |
1151 | { | |
1152 | UnicodeSet *theSet = scanSet(); | |
1153 | compileSet(theSet); | |
1154 | } | |
1155 | break; | |
1156 | ||
1157 | case doEnterQuoteMode: | |
1158 | // Just scanned a \Q. Put character scanner into quote mode. | |
1159 | fQuoteMode = TRUE; | |
1160 | break; | |
1161 | ||
1162 | case doBackRef: | |
1163 | // BackReference. Somewhat unusual in that the front-end can not completely parse | |
1164 | // the regular expression, because the number of digits to be consumed | |
1165 | // depends on the number of capture groups that have been defined. So | |
1166 | // we have to do it here instead. | |
1167 | { | |
1168 | int32_t numCaptureGroups = fRXPat->fGroupMap->size(); | |
1169 | int32_t groupNum = 0; | |
1170 | UChar32 c = fC.fChar; | |
1171 | ||
1172 | for (;;) { | |
1173 | // Loop once per digit, for max allowed number of digits in a back reference. | |
1174 | int32_t digit = u_charDigitValue(c); | |
1175 | groupNum = groupNum * 10 + digit; | |
1176 | if (groupNum >= numCaptureGroups) { | |
1177 | break; | |
1178 | } | |
1179 | c = peekCharLL(); | |
1180 | if (RegexStaticSets::gStaticSets->fRuleDigits->contains(c) == FALSE) { | |
1181 | break; | |
1182 | } | |
1183 | nextCharLL(); | |
1184 | } | |
1185 | ||
1186 | // Scan of the back reference in the source regexp is complete. Now generate | |
1187 | // the compiled code for it. | |
1188 | // Because capture groups can be forward-referenced by back-references, | |
1189 | // we fill the operand with the capture group number. At the end | |
374ca955 | 1190 | // of compilation, it will be changed to the variable's location. |
b75a7d8f A |
1191 | U_ASSERT(groupNum > 0); |
1192 | int32_t op; | |
1193 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { | |
1194 | op = URX_BUILD(URX_BACKREF_I, groupNum); | |
1195 | } else { | |
1196 | op = URX_BUILD(URX_BACKREF, groupNum); | |
1197 | } | |
1198 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1199 | } | |
1200 | break; | |
1201 | ||
1202 | ||
b75a7d8f A |
1203 | case doPossessivePlus: |
1204 | // Possessive ++ quantifier. | |
1205 | // Compiles to | |
1206 | // 1. STO_SP | |
1207 | // 2. body of stuff being iterated over | |
1208 | // 3. STATE_SAVE 5 | |
1209 | // 4. JMP 2 | |
1210 | // 5. LD_SP | |
1211 | // 6. ... | |
1212 | // | |
1213 | // Note: TODO: This is pretty inefficient. A mass of saved state is built up | |
1214 | // then unconditionally discarded. Perhaps introduce a new opcode | |
1215 | // | |
1216 | { | |
1217 | // Emit the STO_SP | |
1218 | int32_t topLoc = blockTopLoc(TRUE); | |
1219 | int32_t stoLoc = fRXPat->fDataSize; | |
1220 | fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. | |
1221 | int32_t op = URX_BUILD(URX_STO_SP, stoLoc); | |
1222 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1223 | ||
1224 | // Emit the STATE_SAVE | |
1225 | op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2); | |
1226 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1227 | ||
1228 | // Emit the JMP | |
1229 | op = URX_BUILD(URX_JMP, topLoc+1); | |
1230 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1231 | ||
1232 | // Emit the LD_SP | |
1233 | op = URX_BUILD(URX_LD_SP, stoLoc); | |
1234 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1235 | } | |
1236 | break; | |
1237 | ||
1238 | case doPossessiveStar: | |
1239 | // Possessive *+ quantifier. | |
1240 | // Compiles to | |
1241 | // 1. STO_SP loc | |
1242 | // 2. STATE_SAVE 5 | |
1243 | // 3. body of stuff being iterated over | |
1244 | // 4. JMP 2 | |
1245 | // 5. LD_SP loc | |
1246 | // 6 ... | |
1247 | // TODO: do something to cut back the state stack each time through the loop. | |
1248 | { | |
1249 | // Reserve two slots at the top of the block. | |
1250 | int32_t topLoc = blockTopLoc(TRUE); | |
1251 | insertOp(topLoc); | |
1252 | ||
1253 | // emit STO_SP loc | |
1254 | int32_t stoLoc = fRXPat->fDataSize; | |
1255 | fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. | |
1256 | int32_t op = URX_BUILD(URX_STO_SP, stoLoc); | |
1257 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1258 | ||
1259 | // Emit the SAVE_STATE 5 | |
1260 | int32_t L7 = fRXPat->fCompiledPat->size()+1; | |
1261 | op = URX_BUILD(URX_STATE_SAVE, L7); | |
1262 | fRXPat->fCompiledPat->setElementAt(op, topLoc+1); | |
1263 | ||
1264 | // Append the JMP operation. | |
1265 | op = URX_BUILD(URX_JMP, topLoc+1); | |
1266 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1267 | ||
1268 | // Emit the LD_SP loc | |
1269 | op = URX_BUILD(URX_LD_SP, stoLoc); | |
1270 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1271 | } | |
1272 | break; | |
1273 | ||
1274 | case doPossessiveOpt: | |
1275 | // Possessive ?+ quantifier. | |
1276 | // Compiles to | |
1277 | // 1. STO_SP loc | |
1278 | // 2. SAVE_STATE 5 | |
1279 | // 3. body of optional block | |
1280 | // 4. LD_SP loc | |
1281 | // 5. ... | |
1282 | // | |
1283 | { | |
1284 | // Reserve two slots at the top of the block. | |
1285 | int32_t topLoc = blockTopLoc(TRUE); | |
1286 | insertOp(topLoc); | |
1287 | ||
1288 | // Emit the STO_SP | |
1289 | int32_t stoLoc = fRXPat->fDataSize; | |
1290 | fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. | |
1291 | int32_t op = URX_BUILD(URX_STO_SP, stoLoc); | |
1292 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1293 | ||
1294 | // Emit the SAVE_STATE | |
1295 | int32_t continueLoc = fRXPat->fCompiledPat->size()+1; | |
1296 | op = URX_BUILD(URX_STATE_SAVE, continueLoc); | |
1297 | fRXPat->fCompiledPat->setElementAt(op, topLoc+1); | |
1298 | ||
1299 | // Emit the LD_SP | |
1300 | op = URX_BUILD(URX_LD_SP, stoLoc); | |
1301 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1302 | } | |
1303 | break; | |
1304 | ||
1305 | ||
1306 | case doBeginMatchMode: | |
1307 | fNewModeFlags = fModeFlags; | |
1308 | fSetModeFlag = TRUE; | |
1309 | break; | |
1310 | ||
1311 | case doMatchMode: // (?i) and similar | |
1312 | { | |
1313 | int32_t bit = 0; | |
1314 | switch (fC.fChar) { | |
1315 | case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break; | |
1316 | case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break; | |
1317 | case 0x73: /* 's' */ bit = UREGEX_DOTALL; break; | |
374ca955 | 1318 | case 0x77: /* 'w' */ bit = UREGEX_UWORD; break; |
b75a7d8f A |
1319 | case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break; |
1320 | case 0x2d: /* '-' */ fSetModeFlag = FALSE; break; | |
1321 | default: | |
1322 | U_ASSERT(FALSE); // Should never happen. Other chars are filtered out | |
1323 | // by the scanner. | |
1324 | } | |
1325 | if (fSetModeFlag) { | |
1326 | fNewModeFlags |= bit; | |
1327 | } else { | |
1328 | fNewModeFlags &= ~bit; | |
1329 | } | |
1330 | } | |
1331 | break; | |
1332 | ||
1333 | case doSetMatchMode: | |
1334 | // We've got a (?i) or similar. The match mode is being changed, but | |
1335 | // the change is not scoped to a parenthesized block. | |
1336 | fModeFlags = fNewModeFlags; | |
1337 | ||
1338 | // Prevent any string from spanning across the change of match mode. | |
1339 | // Otherwise the pattern "abc(?i)def" would make a single string of "abcdef" | |
1340 | fixLiterals(); | |
1341 | break; | |
1342 | ||
1343 | ||
1344 | case doMatchModeParen: | |
1345 | // We've got a (?i: or similar. Begin a parenthesized block, save old | |
1346 | // mode flags so they can be restored at the close of the block. | |
1347 | // | |
1348 | // Compile to a | |
1349 | // - NOP, which later may be replaced by a save-state if the | |
1350 | // parenthesized group gets a * quantifier, followed by | |
1351 | // - NOP, which may later be replaced by a save-state if there | |
1352 | // is an '|' alternation within the parens. | |
1353 | { | |
1354 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
1355 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
1356 | ||
1357 | // On the Parentheses stack, start a new frame and add the postions | |
1358 | // of the two NOPs (a normal non-capturing () frame, except for the | |
1359 | // saving of the orignal mode flags.) | |
1360 | fParenStack.push(fModeFlags, *fStatus); | |
1361 | fParenStack.push(flags, *fStatus); // Frame Marker | |
1362 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP | |
1363 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP | |
1364 | ||
1365 | // Set the current mode flags to the new values. | |
1366 | fModeFlags = fNewModeFlags; | |
1367 | } | |
1368 | break; | |
1369 | ||
374ca955 A |
1370 | case doBadModeFlag: |
1371 | error(U_REGEX_INVALID_FLAG); | |
1372 | break; | |
1373 | ||
b75a7d8f A |
1374 | case doSuppressComments: |
1375 | // We have just scanned a '(?'. We now need to prevent the character scanner from | |
1376 | // treating a '#' as a to-the-end-of-line comment. | |
1377 | // (This Perl compatibility just gets uglier and uglier to do...) | |
1378 | fEOLComments = FALSE; | |
1379 | break; | |
1380 | ||
1381 | ||
1382 | ||
1383 | default: | |
1384 | U_ASSERT(FALSE); | |
1385 | error(U_REGEX_INTERNAL_ERROR); | |
1386 | break; | |
1387 | } | |
1388 | ||
1389 | if (U_FAILURE(*fStatus)) { | |
1390 | returnVal = FALSE; | |
1391 | } | |
1392 | ||
1393 | return returnVal; | |
1394 | }; | |
1395 | ||
1396 | ||
1397 | ||
1398 | //------------------------------------------------------------------------------ | |
1399 | // | |
1400 | // literalChar We've encountered a literal character from the pattern, | |
1401 | // or an escape sequence that reduces to a character. | |
1402 | // Add it to the string containing all literal chars/strings from | |
1403 | // the pattern. | |
1404 | // If we are in a pattern string already, add the new char to it. | |
1405 | // If we aren't in a pattern string, begin one now. | |
1406 | // | |
1407 | //------------------------------------------------------------------------------ | |
1408 | void RegexCompile::literalChar(UChar32 c) { | |
1409 | int32_t op; // An operation in the compiled pattern. | |
1410 | int32_t opType; | |
1411 | int32_t patternLoc; // A position in the compiled pattern. | |
1412 | int32_t stringLen; | |
1413 | ||
1414 | ||
1415 | // If the last thing compiled into the pattern was not a literal char, | |
1416 | // force this new literal char to begin a new string, and not append to the previous. | |
1417 | op = fRXPat->fCompiledPat->lastElementi(); | |
1418 | opType = URX_TYPE(op); | |
1419 | if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR || opType == URX_ONECHAR_I)) { | |
1420 | fixLiterals(); | |
1421 | } | |
1422 | ||
1423 | if (fStringOpStart == -1) { | |
1424 | // First char of a string in the pattern. | |
1425 | // Emit a OneChar op into the compiled pattern. | |
1426 | emitONE_CHAR(c); | |
1427 | ||
1428 | // Also add it to the string pool, in case we get a second adjacent literal | |
1429 | // and want to change form ONE_CHAR to STRING | |
1430 | fStringOpStart = fRXPat->fLiteralText.length(); | |
1431 | fRXPat->fLiteralText.append(c); | |
1432 | return; | |
1433 | } | |
1434 | ||
1435 | // We are adding onto an existing string | |
1436 | fRXPat->fLiteralText.append(c); | |
1437 | ||
1438 | op = fRXPat->fCompiledPat->lastElementi(); | |
1439 | opType = URX_TYPE(op); | |
1440 | U_ASSERT(opType == URX_ONECHAR || opType == URX_ONECHAR_I || opType == URX_STRING_LEN); | |
1441 | ||
1442 | // If the most recently emitted op is a URX_ONECHAR, | |
1443 | if (opType == URX_ONECHAR || opType == URX_ONECHAR_I) { | |
1444 | if (U16_IS_TRAIL(c) && U16_IS_LEAD(URX_VAL(op))) { | |
1445 | // The most recently emitted op is a ONECHAR that was the first half | |
1446 | // of a surrogate pair. Update the ONECHAR's operand to be the | |
1447 | // supplementary code point resulting from both halves of the pair. | |
1448 | c = U16_GET_SUPPLEMENTARY(URX_VAL(op), c); | |
1449 | op = URX_BUILD(opType, c); | |
1450 | patternLoc = fRXPat->fCompiledPat->size() - 1; | |
1451 | fRXPat->fCompiledPat->setElementAt(op, patternLoc); | |
1452 | return; | |
1453 | } | |
1454 | ||
1455 | // The most recently emitted op is a ONECHAR. | |
1456 | // We've now received another adjacent char. Change the ONECHAR op | |
1457 | // to a string op. | |
1458 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { | |
1459 | op = URX_BUILD(URX_STRING_I, fStringOpStart); | |
1460 | } else { | |
1461 | op = URX_BUILD(URX_STRING, fStringOpStart); | |
1462 | } | |
1463 | patternLoc = fRXPat->fCompiledPat->size() - 1; | |
1464 | fRXPat->fCompiledPat->setElementAt(op, patternLoc); | |
1465 | op = URX_BUILD(URX_STRING_LEN, 0); | |
1466 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1467 | } | |
1468 | ||
1469 | // The pattern contains a URX_SRING / URX_STRING_LEN. Update the | |
1470 | // string length to reflect the new char we just added to the string. | |
1471 | stringLen = fRXPat->fLiteralText.length() - fStringOpStart; | |
1472 | op = URX_BUILD(URX_STRING_LEN, stringLen); | |
1473 | patternLoc = fRXPat->fCompiledPat->size() - 1; | |
1474 | fRXPat->fCompiledPat->setElementAt(op, patternLoc); | |
1475 | } | |
1476 | ||
1477 | ||
1478 | ||
1479 | //------------------------------------------------------------------------------ | |
1480 | // | |
1481 | // emitONE_CHAR emit a ONE_CHAR op into the generated code. | |
1482 | // Choose cased or uncased version, depending on the | |
1483 | // match mode and whether the character itself is cased. | |
1484 | // | |
1485 | //------------------------------------------------------------------------------ | |
1486 | void RegexCompile::emitONE_CHAR(UChar32 c) { | |
1487 | int32_t op; | |
1488 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) && | |
1489 | u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { | |
1490 | // We have a cased character, and are in case insensitive matching mode. | |
1491 | c = u_foldCase(c, U_FOLD_CASE_DEFAULT); | |
1492 | op = URX_BUILD(URX_ONECHAR_I, c); | |
1493 | } else { | |
1494 | // Uncased char, or case sensitive match mode. | |
1495 | // Either way, just generate a literal compare of the char. | |
1496 | op = URX_BUILD(URX_ONECHAR, c); | |
1497 | } | |
1498 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1499 | } | |
1500 | ||
1501 | ||
1502 | //------------------------------------------------------------------------------ | |
1503 | // | |
1504 | // fixLiterals When compiling something that can follow a literal | |
1505 | // string in a pattern, we need to "fix" any preceding | |
1506 | // string, which will cause any subsequent literals to | |
1507 | // begin a new string, rather than appending to the | |
1508 | // old one. | |
1509 | // | |
1510 | // Optionally, split the last char of the string off into | |
1511 | // a single "ONE_CHAR" operation, so that quantifiers can | |
1512 | // apply to that char alone. Example: abc* | |
1513 | // The * must apply to the 'c' only. | |
1514 | // | |
1515 | //------------------------------------------------------------------------------ | |
1516 | void RegexCompile::fixLiterals(UBool split) { | |
1517 | int32_t stringStart = fStringOpStart; // start index of the current literal string | |
1518 | int32_t op; // An op from/for the compiled pattern. | |
1519 | int32_t opType; // An opcode type from the compiled pattern. | |
1520 | int32_t stringLastCharIdx; | |
1521 | UChar32 lastChar; | |
1522 | int32_t stringNextToLastCharIdx; | |
1523 | UChar32 nextToLastChar; | |
1524 | int32_t stringLen; | |
1525 | ||
1526 | fStringOpStart = -1; | |
1527 | if (!split) { | |
1528 | return; | |
1529 | } | |
1530 | ||
1531 | // Split: We need to ensure that the last item in the compiled pattern does | |
1532 | // not refer to a literal string of more than one char. If it does, | |
1533 | // separate the last char from the rest of the string. | |
1534 | ||
1535 | // If the last operation from the compiled pattern is not a string, | |
1536 | // nothing needs to be done | |
1537 | op = fRXPat->fCompiledPat->lastElementi(); | |
1538 | opType = URX_TYPE(op); | |
1539 | if (opType != URX_STRING_LEN) { | |
1540 | return; | |
1541 | } | |
1542 | stringLen = URX_VAL(op); | |
1543 | ||
1544 | // | |
1545 | // Find the position of the last code point in the string (might be a surrogate pair) | |
1546 | // | |
1547 | stringLastCharIdx = fRXPat->fLiteralText.length(); | |
1548 | stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1); | |
1549 | lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx); | |
1550 | ||
1551 | // The string should always be at least two code points long, meaning that there | |
1552 | // should be something before the last char position that we just found. | |
1553 | U_ASSERT(stringLastCharIdx > stringStart); | |
1554 | stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1); | |
1555 | U_ASSERT(stringNextToLastCharIdx >= stringStart); | |
1556 | nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx); | |
1557 | ||
1558 | if (stringNextToLastCharIdx > stringStart) { | |
1559 | // The length of string remaining after removing one char is two or more. | |
1560 | // Leave the string in the compiled pattern, shorten it by one char, | |
1561 | // and append a URX_ONECHAR op for the last char. | |
1562 | stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx); | |
1563 | op = URX_BUILD(URX_STRING_LEN, stringLen); | |
1564 | fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1); | |
1565 | emitONE_CHAR(lastChar); | |
1566 | } else { | |
1567 | // The original string consisted of exactly two characters. Replace | |
1568 | // the existing compiled URX_STRING/URX_STRING_LEN ops with a pair | |
1569 | // of URX_ONECHARs. | |
1570 | fRXPat->fCompiledPat->setSize(fRXPat->fCompiledPat->size() -2); | |
1571 | emitONE_CHAR(nextToLastChar); | |
1572 | emitONE_CHAR(lastChar); | |
1573 | } | |
1574 | } | |
1575 | ||
1576 | ||
1577 | ||
1578 | ||
1579 | ||
1580 | ||
1581 | //------------------------------------------------------------------------------ | |
1582 | // | |
1583 | // insertOp() Insert a slot for a new opcode into the already | |
1584 | // compiled pattern code. | |
1585 | // | |
1586 | // Fill the slot with a NOP. Our caller will replace it | |
1587 | // with what they really wanted. | |
1588 | // | |
1589 | //------------------------------------------------------------------------------ | |
1590 | void RegexCompile::insertOp(int32_t where) { | |
1591 | UVector32 *code = fRXPat->fCompiledPat; | |
1592 | U_ASSERT(where>0 && where < code->size()); | |
1593 | ||
1594 | int32_t nop = URX_BUILD(URX_NOP, 0); | |
1595 | code->insertElementAt(nop, where, *fStatus); | |
1596 | ||
1597 | // Walk through the pattern, looking for any ops with targets that | |
1598 | // were moved down by the insert. Fix them. | |
1599 | int32_t loc; | |
1600 | for (loc=0; loc<code->size(); loc++) { | |
1601 | int32_t op = code->elementAti(loc); | |
1602 | int32_t opType = URX_TYPE(op); | |
1603 | int32_t opValue = URX_VAL(op); | |
1604 | if ((opType == URX_JMP || | |
1605 | opType == URX_JMPX || | |
1606 | opType == URX_STATE_SAVE || | |
1607 | opType == URX_CTR_LOOP || | |
1608 | opType == URX_CTR_LOOP_NG || | |
1609 | opType == URX_JMP_SAV || | |
1610 | opType == URX_RELOC_OPRND) && opValue > where) { | |
1611 | // Target location for this opcode is after the insertion point and | |
1612 | // needs to be incremented to adjust for the insertion. | |
1613 | opValue++; | |
1614 | op = URX_BUILD(opType, opValue); | |
1615 | code->setElementAt(op, loc); | |
1616 | } | |
1617 | } | |
1618 | ||
1619 | // Now fix up the parentheses stack. All positive values in it are locations in | |
1620 | // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.) | |
1621 | for (loc=0; loc<fParenStack.size(); loc++) { | |
1622 | int32_t x = fParenStack.elementAti(loc); | |
1623 | if (x>where) { | |
1624 | x++; | |
1625 | fParenStack.setElementAt(x, loc); | |
1626 | } | |
1627 | } | |
1628 | ||
1629 | if (fMatchCloseParen > where) { | |
1630 | fMatchCloseParen++; | |
1631 | } | |
1632 | if (fMatchOpenParen > where) { | |
1633 | fMatchOpenParen++; | |
1634 | } | |
1635 | } | |
1636 | ||
1637 | ||
1638 | ||
1639 | //------------------------------------------------------------------------------ | |
1640 | // | |
1641 | // blockTopLoc() Find or create a location in the compiled pattern | |
1642 | // at the start of the operation or block that has | |
1643 | // just been compiled. Needed when a quantifier (* or | |
1644 | // whatever) appears, and we need to add an operation | |
1645 | // at the start of the thing being quantified. | |
1646 | // | |
1647 | // (Parenthesized Blocks) have a slot with a NOP that | |
1648 | // is reserved for this purpose. .* or similar don't | |
1649 | // and a slot needs to be added. | |
1650 | // | |
1651 | // parameter reserveLoc : TRUE - ensure that there is space to add an opcode | |
1652 | // at the returned location. | |
1653 | // FALSE - just return the address, | |
1654 | // do not reserve a location there. | |
1655 | // | |
1656 | //------------------------------------------------------------------------------ | |
1657 | int32_t RegexCompile::blockTopLoc(UBool reserveLoc) { | |
1658 | int32_t theLoc; | |
1659 | if (fRXPat->fCompiledPat->size() == fMatchCloseParen) | |
1660 | { | |
1661 | // The item just processed is a parenthesized block. | |
1662 | theLoc = fMatchOpenParen; // A slot is already reserved for us. | |
1663 | U_ASSERT(theLoc > 0); | |
374ca955 | 1664 | U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP); |
b75a7d8f A |
1665 | } |
1666 | else { | |
1667 | // Item just compiled is a single thing, a ".", or a single char, or a set reference. | |
1668 | // No slot for STATE_SAVE was pre-reserved in the compiled code. | |
1669 | // We need to make space now. | |
1670 | fixLiterals(TRUE); // If last item was a string, separate the last char. | |
1671 | theLoc = fRXPat->fCompiledPat->size()-1; | |
1672 | if (reserveLoc) { | |
374ca955 | 1673 | /*int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);*/ |
b75a7d8f A |
1674 | int32_t nop = URX_BUILD(URX_NOP, 0); |
1675 | fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus); | |
1676 | } | |
1677 | } | |
1678 | return theLoc; | |
1679 | } | |
1680 | ||
1681 | ||
1682 | ||
1683 | //------------------------------------------------------------------------------ | |
1684 | // | |
1685 | // handleCloseParen When compiling a close paren, we need to go back | |
1686 | // and fix up any JMP or SAVE operations within the | |
1687 | // parenthesized block that need to target the end | |
1688 | // of the block. The locations of these are kept on | |
1689 | // the paretheses stack. | |
1690 | // | |
1691 | // This function is called both when encountering a | |
1692 | // real ) and at the end of the pattern. | |
1693 | // | |
1694 | //------------------------------------------------------------------------------- | |
1695 | void RegexCompile::handleCloseParen() { | |
1696 | int32_t patIdx; | |
1697 | int32_t patOp; | |
1698 | if (fParenStack.size() <= 0) { | |
1699 | error(U_REGEX_MISMATCHED_PAREN); | |
1700 | return; | |
1701 | } | |
1702 | ||
1703 | // Force any literal chars that may follow the close paren to start a new string, | |
1704 | // and not attach to any preceding it. | |
1705 | fixLiterals(FALSE); | |
1706 | ||
1707 | // Fixup any operations within the just-closed parenthesized group | |
1708 | // that need to reference the end of the (block). | |
1709 | // (The first one popped from the stack is an unused slot for | |
1710 | // alternation (OR) state save, but applying the fixup to it does no harm.) | |
1711 | for (;;) { | |
1712 | patIdx = fParenStack.popi(); | |
1713 | if (patIdx < 0) { | |
1714 | // value < 0 flags the start of the frame on the paren stack. | |
1715 | break; | |
1716 | } | |
1717 | U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size()); | |
1718 | patOp = fRXPat->fCompiledPat->elementAti(patIdx); | |
1719 | U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set. | |
1720 | patOp |= fRXPat->fCompiledPat->size(); // Set it now. | |
1721 | fRXPat->fCompiledPat->setElementAt(patOp, patIdx); | |
1722 | fMatchOpenParen = patIdx; | |
1723 | } | |
1724 | ||
1725 | // At the close of any parenthesized block, restore the match mode flags to | |
1726 | // the value they had at the open paren. Saved value is | |
1727 | // at the top of the paren stack. | |
1728 | fModeFlags = fParenStack.popi(); | |
1729 | ||
1730 | // DO any additional fixups, depending on the specific kind of | |
1731 | // parentesized grouping this is | |
1732 | ||
1733 | switch (patIdx) { | |
1734 | case plain: | |
1735 | case flags: | |
1736 | // No additional fixups required. | |
1737 | // (Grouping-only parentheses) | |
1738 | break; | |
1739 | case capturing: | |
1740 | // Capturing Parentheses. | |
1741 | // Insert a End Capture op into the pattern. | |
1742 | // The frame offset of the variables for this cg is obtained from the | |
1743 | // start capture op and put it into the end-capture op. | |
1744 | { | |
1745 | int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); | |
1746 | U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE); | |
1747 | ||
1748 | int32_t frameVarLocation = URX_VAL(captureOp); | |
1749 | int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation); | |
1750 | fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus); | |
1751 | } | |
1752 | break; | |
1753 | case atomic: | |
1754 | // Atomic Parenthesis. | |
1755 | // Insert a LD_SP operation to restore the state stack to the position | |
1756 | // it was when the atomic parens were entered. | |
1757 | { | |
1758 | int32_t stoOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); | |
1759 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP); | |
1760 | int32_t stoLoc = URX_VAL(stoOp); | |
1761 | int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc); | |
1762 | fRXPat->fCompiledPat->addElement(ldOp, *fStatus); | |
1763 | } | |
1764 | break; | |
1765 | ||
1766 | case lookAhead: | |
1767 | { | |
1768 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); | |
1769 | U_ASSERT(URX_TYPE(startOp) == URX_LA_START); | |
1770 | int32_t dataLoc = URX_VAL(startOp); | |
1771 | int32_t op = URX_BUILD(URX_LA_END, dataLoc); | |
1772 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1773 | } | |
1774 | break; | |
1775 | ||
1776 | case negLookAhead: | |
1777 | { | |
1778 | // See comment at doOpenLookAheadNeg | |
1779 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); | |
1780 | U_ASSERT(URX_TYPE(startOp) == URX_LA_START); | |
1781 | int32_t dataLoc = URX_VAL(startOp); | |
1782 | int32_t op = URX_BUILD(URX_LA_END, dataLoc); | |
1783 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1784 | op = URX_BUILD(URX_FAIL, 0); | |
1785 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1786 | ||
1787 | // Patch the URX_SAVE near the top of the block. | |
1788 | int32_t saveOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen); | |
1789 | U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE); | |
1790 | int32_t dest = fRXPat->fCompiledPat->size(); | |
1791 | saveOp = URX_BUILD(URX_STATE_SAVE, dest); | |
1792 | fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen); | |
1793 | } | |
1794 | break; | |
1795 | ||
1796 | case lookBehind: | |
1797 | { | |
1798 | // See comment at doOpenLookBehind. | |
1799 | ||
1800 | // Append the URX_LB_END and URX_LA_END to the compiled pattern. | |
1801 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4); | |
1802 | U_ASSERT(URX_TYPE(startOp) == URX_LB_START); | |
1803 | int32_t dataLoc = URX_VAL(startOp); | |
1804 | int32_t op = URX_BUILD(URX_LB_END, dataLoc); | |
1805 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1806 | op = URX_BUILD(URX_LA_END, dataLoc); | |
1807 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1808 | ||
1809 | // Determine the min and max bounds for the length of the | |
1810 | // string that the pattern can match. | |
1811 | // An unbounded upper limit is an error. | |
1812 | int32_t patEnd = fRXPat->fCompiledPat->size() - 1; | |
1813 | int32_t minML = minMatchLength(fMatchOpenParen, patEnd); | |
1814 | int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); | |
1815 | if (maxML == INT32_MAX) { | |
1816 | error(U_REGEX_LOOK_BEHIND_LIMIT); | |
1817 | break; | |
1818 | } | |
1819 | U_ASSERT(minML <= maxML); | |
1820 | ||
1821 | // Insert the min and max match len bounds into the URX_LB_CONT op that | |
1822 | // appears at the top of the look-behind block, at location fMatchOpenParen+1 | |
1823 | fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2); | |
1824 | fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1); | |
1825 | ||
1826 | } | |
1827 | break; | |
1828 | ||
1829 | ||
1830 | ||
1831 | case lookBehindN: | |
1832 | { | |
1833 | // See comment at doOpenLookBehindNeg. | |
1834 | ||
1835 | // Append the URX_LBN_END to the compiled pattern. | |
1836 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); | |
1837 | U_ASSERT(URX_TYPE(startOp) == URX_LB_START); | |
1838 | int32_t dataLoc = URX_VAL(startOp); | |
1839 | int32_t op = URX_BUILD(URX_LBN_END, dataLoc); | |
1840 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1841 | ||
1842 | // Determine the min and max bounds for the length of the | |
1843 | // string that the pattern can match. | |
1844 | // An unbounded upper limit is an error. | |
1845 | int32_t patEnd = fRXPat->fCompiledPat->size() - 1; | |
1846 | int32_t minML = minMatchLength(fMatchOpenParen, patEnd); | |
1847 | int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); | |
1848 | if (maxML == INT32_MAX) { | |
1849 | error(U_REGEX_LOOK_BEHIND_LIMIT); | |
1850 | break; | |
1851 | } | |
1852 | U_ASSERT(minML <= maxML); | |
1853 | ||
1854 | // Insert the min and max match len bounds into the URX_LB_CONT op that | |
1855 | // appears at the top of the look-behind block, at location fMatchOpenParen+1 | |
1856 | fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3); | |
1857 | fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2); | |
1858 | ||
1859 | // Insert the pattern location to continue at after a successful match | |
1860 | // as the last operand of the URX_LBN_CONT | |
1861 | op = URX_BUILD(URX_RELOC_OPRND, fRXPat->fCompiledPat->size()); | |
1862 | fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1); | |
1863 | } | |
1864 | break; | |
1865 | ||
1866 | ||
1867 | ||
1868 | default: | |
1869 | U_ASSERT(FALSE); | |
1870 | } | |
1871 | ||
1872 | // remember the next location in the compiled pattern. | |
1873 | // The compilation of Quantifiers will look at this to see whether its looping | |
1874 | // over a parenthesized block or a single item | |
1875 | fMatchCloseParen = fRXPat->fCompiledPat->size(); | |
1876 | } | |
1877 | ||
1878 | ||
1879 | ||
1880 | //---------------------------------------------------------------------------------------- | |
1881 | // | |
1882 | // compileSet Compile the pattern operations for a reference to a | |
1883 | // UnicodeSet. | |
1884 | // | |
1885 | //---------------------------------------------------------------------------------------- | |
1886 | void RegexCompile::compileSet(UnicodeSet *theSet) | |
1887 | { | |
1888 | if (theSet == NULL) { | |
1889 | return; | |
1890 | } | |
1891 | int32_t setSize = theSet->size(); | |
1892 | UChar32 firstSetChar = theSet->charAt(0); | |
1893 | if (firstSetChar == -1) { | |
1894 | // Sets that contain only strings, but no individual chars, | |
1895 | // will end up here. | |
1896 | error(U_REGEX_SET_CONTAINS_STRING); | |
1897 | setSize = 0; | |
1898 | } | |
1899 | ||
1900 | switch (setSize) { | |
1901 | case 0: | |
1902 | { | |
1903 | // Set of no elements. Always fails to match. | |
1904 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus); | |
1905 | delete theSet; | |
1906 | } | |
1907 | break; | |
1908 | ||
1909 | case 1: | |
1910 | { | |
1911 | // The set contains only a single code point. Put it into | |
1912 | // the compiled pattern as a single char operation rather | |
1913 | // than a set, and discard the set itself. | |
1914 | literalChar(firstSetChar); | |
1915 | delete theSet; | |
1916 | } | |
1917 | break; | |
1918 | ||
1919 | default: | |
1920 | { | |
1921 | // The set contains two or more chars. (the normal case) | |
1922 | // Put it into the compiled pattern as a set. | |
1923 | int32_t setNumber = fRXPat->fSets->size(); | |
1924 | fRXPat->fSets->addElement(theSet, *fStatus); | |
1925 | int32_t setOp = URX_BUILD(URX_SETREF, setNumber); | |
1926 | fRXPat->fCompiledPat->addElement(setOp, *fStatus); | |
1927 | } | |
1928 | } | |
1929 | } | |
1930 | ||
1931 | ||
1932 | //---------------------------------------------------------------------------------------- | |
1933 | // | |
1934 | // compileInterval Generate the code for a {min, max} style interval quantifier. | |
1935 | // Except for the specific opcodes used, the code is the same | |
1936 | // for all three types (greedy, non-greedy, possessive) of | |
1937 | // intervals. The opcodes are supplied as parameters. | |
1938 | // | |
1939 | // The code for interval loops has this form: | |
1940 | // 0 CTR_INIT counter loc (in stack frame) | |
1941 | // 1 5 patt address of CTR_LOOP at bottom of block | |
1942 | // 2 min count | |
1943 | // 3 max count (-1 for unbounded) | |
1944 | // 4 ... block to be iterated over | |
1945 | // 5 CTR_LOOP | |
1946 | // | |
1947 | // In | |
1948 | //---------------------------------------------------------------------------------------- | |
1949 | void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp) | |
1950 | { | |
1951 | // The CTR_INIT op at the top of the block with the {n,m} quantifier takes | |
1952 | // four slots in the compiled code. Reserve them. | |
1953 | int32_t topOfBlock = blockTopLoc(TRUE); | |
1954 | insertOp(topOfBlock); | |
1955 | insertOp(topOfBlock); | |
1956 | insertOp(topOfBlock); | |
1957 | ||
1958 | // The operands for the CTR_INIT opcode include the index in the matcher data | |
1959 | // of the counter. Allocate it now. | |
1960 | int32_t counterLoc = fRXPat->fFrameSize; | |
1961 | fRXPat->fFrameSize++; | |
1962 | ||
1963 | int32_t op = URX_BUILD(InitOp, counterLoc); | |
1964 | fRXPat->fCompiledPat->setElementAt(op, topOfBlock); | |
1965 | ||
1966 | // The second operand of CTR_INIT is the location following the end of the loop. | |
1967 | // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the | |
1968 | // compilation of something later on causes the code to grow and the target | |
1969 | // position to move. | |
1970 | int32_t loopEnd = fRXPat->fCompiledPat->size(); | |
1971 | op = URX_BUILD(URX_RELOC_OPRND, loopEnd); | |
1972 | fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1); | |
1973 | ||
1974 | // Followed by the min and max counts. | |
1975 | fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2); | |
1976 | fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3); | |
1977 | ||
1978 | // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op. | |
1979 | // Goes at end of the block being looped over, so just append to the code so far. | |
1980 | op = URX_BUILD(LoopOp, topOfBlock); | |
1981 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1982 | ||
374ca955 A |
1983 | if ((fIntervalLow & 0xff000000) != 0 || |
1984 | fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0) { | |
1985 | error(U_REGEX_NUMBER_TOO_BIG); | |
1986 | } | |
1987 | ||
b75a7d8f A |
1988 | if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) { |
1989 | error(U_REGEX_MAX_LT_MIN); | |
1990 | } | |
b75a7d8f A |
1991 | } |
1992 | ||
1993 | ||
1994 | ||
1995 | UBool RegexCompile::compileInlineInterval() { | |
1996 | if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) { | |
1997 | // Too big to inline. Fail, which will cause looping code to be generated. | |
1998 | // (Upper < Lower picks up unbounded upper and errors, both.) | |
1999 | return FALSE; | |
2000 | } | |
2001 | ||
2002 | int32_t topOfBlock = blockTopLoc(FALSE); | |
2003 | if (fIntervalUpper == 0) { | |
2004 | // Pathological case. Attempt no matches, as if the block doesn't exist. | |
2005 | fRXPat->fCompiledPat->setSize(topOfBlock); | |
2006 | return TRUE; | |
2007 | } | |
2008 | ||
2009 | if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) { | |
2010 | // The thing being repeated is not a single op, but some | |
2011 | // more complex block. Do it as a loop, not inlines. | |
2012 | // Note that things "repeated" a max of once are handled as inline, because | |
2013 | // the one copy of the code already generated is just fine. | |
2014 | return FALSE; | |
2015 | } | |
2016 | ||
2017 | // Pick up the opcode that is to be repeated | |
2018 | // | |
2019 | int32_t op = fRXPat->fCompiledPat->elementAti(topOfBlock); | |
2020 | ||
2021 | // Compute the pattern location where the inline sequence | |
2022 | // will end, and set up the state save op that will be needed. | |
2023 | // | |
2024 | int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1 | |
2025 | + fIntervalUpper + (fIntervalUpper-fIntervalLow); | |
2026 | int32_t saveOp = URX_BUILD(URX_STATE_SAVE, endOfSequenceLoc); | |
2027 | if (fIntervalLow == 0) { | |
2028 | insertOp(topOfBlock); | |
2029 | fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock); | |
2030 | } | |
2031 | ||
2032 | ||
2033 | ||
2034 | // Loop, emitting the op for the thing being repeated each time. | |
2035 | // Loop starts at 1 because one instance of the op already exists in the pattern, | |
2036 | // it was put there when it was originally encountered. | |
2037 | int32_t i; | |
2038 | for (i=1; i<fIntervalUpper; i++ ) { | |
2039 | if (i == fIntervalLow) { | |
2040 | fRXPat->fCompiledPat->addElement(saveOp, *fStatus); | |
2041 | } | |
2042 | if (i > fIntervalLow) { | |
2043 | fRXPat->fCompiledPat->addElement(saveOp, *fStatus); | |
2044 | } | |
2045 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2046 | } | |
2047 | return TRUE; | |
2048 | } | |
2049 | ||
2050 | ||
2051 | ||
2052 | //---------------------------------------------------------------------------------------- | |
2053 | // | |
2054 | // matchStartType Determine how a match can start. | |
2055 | // Used to optimize find() operations. | |
2056 | // | |
2057 | // Operation is very similar to minMatchLength(). Walk the compiled | |
2058 | // pattern, keeping an on-going minimum-match-length. For any | |
2059 | // op where the min match coming in is zero, add that ops possible | |
2060 | // starting matches to the possible starts for the overall pattern. | |
2061 | // | |
2062 | //---------------------------------------------------------------------------------------- | |
2063 | void RegexCompile::matchStartType() { | |
2064 | if (U_FAILURE(*fStatus)) { | |
2065 | return; | |
2066 | } | |
2067 | ||
2068 | ||
2069 | int32_t loc; // Location in the pattern of the current op being processed. | |
2070 | int32_t op; // The op being processed | |
2071 | int32_t opType; // The opcode type of the op | |
2072 | int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern | |
2073 | int32_t numInitialStrings = 0; // Number of strings encountered that could match at start. | |
2074 | ||
2075 | UBool atStart = TRUE; // True if no part of the pattern yet encountered | |
2076 | // could have advanced the position in a match. | |
2077 | // (Maximum match length so far == 0) | |
2078 | ||
2079 | // forwardedLength is a vector holding minimum-match-length values that | |
2080 | // are propagated forward in the pattern by JMP or STATE_SAVE operations. | |
2081 | // It must be one longer than the pattern being checked because some ops | |
2082 | // will jmp to a end-of-block+1 location from within a block, and we must | |
2083 | // count those when checking the block. | |
2084 | int32_t end = fRXPat->fCompiledPat->size(); | |
2085 | UVector32 forwardedLength(end+1, *fStatus); | |
2086 | forwardedLength.setSize(end+1); | |
2087 | for (loc=3; loc<end; loc++) { | |
2088 | forwardedLength.setElementAt(INT32_MAX, loc); | |
2089 | } | |
2090 | ||
2091 | for (loc = 3; loc<end; loc++) { | |
2092 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2093 | opType = URX_TYPE(op); | |
2094 | ||
2095 | // The loop is advancing linearly through the pattern. | |
2096 | // If the op we are now at was the destination of a branch in the pattern, | |
2097 | // and that path has a shorter minimum length than the current accumulated value, | |
2098 | // replace the current accumulated value. | |
2099 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2100 | if (forwardedLength.elementAti(loc) < currentLen) { | |
2101 | currentLen = forwardedLength.elementAti(loc); | |
2102 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2103 | } | |
2104 | ||
2105 | switch (opType) { | |
2106 | // Ops that don't change the total length matched | |
2107 | case URX_RESERVED_OP: | |
2108 | case URX_END: | |
2109 | case URX_STRING_LEN: | |
2110 | case URX_NOP: | |
2111 | case URX_START_CAPTURE: | |
2112 | case URX_END_CAPTURE: | |
2113 | case URX_BACKSLASH_B: | |
374ca955 | 2114 | case URX_BACKSLASH_BU: |
b75a7d8f A |
2115 | case URX_BACKSLASH_G: |
2116 | case URX_BACKSLASH_Z: | |
2117 | case URX_DOLLAR: | |
2118 | case URX_RELOC_OPRND: | |
2119 | case URX_STO_INP_LOC: | |
2120 | case URX_DOLLAR_M: | |
2121 | case URX_BACKTRACK: | |
2122 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match | |
2123 | case URX_BACKREF_I: | |
2124 | ||
2125 | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. | |
2126 | case URX_LD_SP: | |
2127 | break; | |
2128 | ||
2129 | case URX_CARET: | |
2130 | if (atStart) { | |
2131 | fRXPat->fStartType = START_START; | |
2132 | } | |
2133 | break; | |
2134 | ||
2135 | case URX_CARET_M: | |
2136 | if (atStart) { | |
2137 | fRXPat->fStartType = START_LINE; | |
2138 | } | |
2139 | break; | |
2140 | ||
2141 | case URX_ONECHAR: | |
2142 | if (currentLen == 0) { | |
2143 | // This character could appear at the start of a match. | |
2144 | // Add it to the set of possible starting characters. | |
2145 | fRXPat->fInitialChars->add(URX_VAL(op)); | |
2146 | numInitialStrings += 2; | |
2147 | } | |
2148 | currentLen++; | |
2149 | atStart = FALSE; | |
2150 | break; | |
2151 | ||
2152 | ||
2153 | case URX_SETREF: | |
2154 | if (currentLen == 0) { | |
2155 | int32_t sn = URX_VAL(op); | |
2156 | U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); | |
2157 | const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); | |
2158 | fRXPat->fInitialChars->addAll(*s); | |
2159 | numInitialStrings += 2; | |
2160 | } | |
2161 | currentLen++; | |
2162 | atStart = FALSE; | |
2163 | break; | |
2164 | ||
2165 | case URX_LOOP_SR_I: | |
2166 | // [Set]*, like a SETREF, above, in what it can match, | |
2167 | // but may not match at all, so currentLen is not incremented. | |
2168 | if (currentLen == 0) { | |
2169 | int32_t sn = URX_VAL(op); | |
2170 | U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); | |
2171 | const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); | |
2172 | fRXPat->fInitialChars->addAll(*s); | |
2173 | numInitialStrings += 2; | |
2174 | } | |
2175 | atStart = FALSE; | |
2176 | break; | |
2177 | ||
2178 | case URX_LOOP_DOT_I: | |
2179 | if (currentLen == 0) { | |
2180 | // .* at the start of a pattern. | |
2181 | // Any character can begin the match. | |
2182 | fRXPat->fInitialChars->clear(); | |
2183 | fRXPat->fInitialChars->complement(); | |
2184 | numInitialStrings += 2; | |
2185 | } | |
2186 | atStart = FALSE; | |
2187 | break; | |
2188 | ||
2189 | ||
2190 | case URX_STATIC_SETREF: | |
2191 | if (currentLen == 0) { | |
2192 | int32_t sn = URX_VAL(op); | |
2193 | U_ASSERT(sn>0 && sn<URX_LAST_SET); | |
2194 | const UnicodeSet *s = fRXPat->fStaticSets[sn]; | |
2195 | fRXPat->fInitialChars->addAll(*s); | |
2196 | numInitialStrings += 2; | |
2197 | } | |
2198 | currentLen++; | |
2199 | atStart = FALSE; | |
2200 | break; | |
2201 | ||
2202 | ||
2203 | ||
2204 | case URX_STAT_SETREF_N: | |
2205 | if (currentLen == 0) { | |
2206 | int32_t sn = URX_VAL(op); | |
2207 | const UnicodeSet *s = fRXPat->fStaticSets[sn]; | |
2208 | UnicodeSet sc(*s); | |
2209 | sc.complement(); | |
2210 | fRXPat->fInitialChars->addAll(sc); | |
2211 | numInitialStrings += 2; | |
2212 | } | |
2213 | currentLen++; | |
2214 | atStart = FALSE; | |
2215 | break; | |
2216 | ||
2217 | ||
2218 | ||
2219 | case URX_BACKSLASH_D: | |
2220 | // Digit Char | |
2221 | if (currentLen == 0) { | |
2222 | UnicodeSet s; | |
2223 | s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); | |
2224 | if (URX_VAL(op) != 0) { | |
2225 | s.complement(); | |
2226 | } | |
2227 | fRXPat->fInitialChars->addAll(s); | |
2228 | numInitialStrings += 2; | |
2229 | } | |
2230 | currentLen++; | |
2231 | atStart = FALSE; | |
2232 | break; | |
2233 | ||
2234 | ||
2235 | case URX_ONECHAR_I: | |
2236 | // Case Insensitive Single Character. | |
2237 | if (currentLen == 0) { | |
2238 | UChar32 c = URX_VAL(op); | |
2239 | if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { | |
2240 | // character may have distinct cased forms. Add all of them | |
2241 | // to the set of possible starting match chars. | |
2242 | UnicodeSet s(c, c); | |
2243 | s.closeOver(USET_CASE); | |
2244 | fRXPat->fInitialChars->addAll(s); | |
2245 | } else { | |
2246 | // Char has no case variants. Just add it as-is to the | |
2247 | // set of possible starting chars. | |
2248 | fRXPat->fInitialChars->add(c); | |
2249 | } | |
2250 | numInitialStrings += 2; | |
2251 | } | |
2252 | currentLen++; | |
2253 | atStart = FALSE; | |
2254 | break; | |
2255 | ||
2256 | ||
2257 | case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. | |
2258 | case URX_DOTANY_ALL: // . matches one or two. | |
2259 | case URX_DOTANY: | |
2260 | case URX_DOTANY_ALL_PL: | |
2261 | case URX_DOTANY_PL: | |
2262 | if (currentLen == 0) { | |
2263 | // These constructs are all bad news when they appear at the start | |
2264 | // of a match. Any character can begin the match. | |
2265 | fRXPat->fInitialChars->clear(); | |
2266 | fRXPat->fInitialChars->complement(); | |
2267 | numInitialStrings += 2; | |
2268 | } | |
2269 | currentLen++; | |
2270 | atStart = FALSE; | |
2271 | break; | |
2272 | ||
2273 | ||
2274 | case URX_JMPX: | |
2275 | loc++; // Except for extra operand on URX_JMPX, same as URX_JMP. | |
2276 | case URX_JMP: | |
2277 | { | |
2278 | int32_t jmpDest = URX_VAL(op); | |
2279 | if (jmpDest < loc) { | |
2280 | // Loop of some kind. Can safely ignore, the worst that will happen | |
2281 | // is that we understate the true minimum length | |
2282 | currentLen = forwardedLength.elementAti(loc+1); | |
2283 | ||
2284 | } else { | |
2285 | // Forward jump. Propagate the current min length to the target loc of the jump. | |
2286 | U_ASSERT(jmpDest <= end+1); | |
2287 | if (forwardedLength.elementAti(jmpDest) > currentLen) { | |
2288 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2289 | } | |
2290 | } | |
2291 | } | |
2292 | atStart = FALSE; | |
2293 | break; | |
2294 | ||
2295 | case URX_JMP_SAV: | |
2296 | case URX_JMP_SAV_X: | |
2297 | // Combo of state save to the next loc, + jmp backwards. | |
2298 | // Net effect on min. length computation is nothing. | |
2299 | atStart = FALSE; | |
2300 | break; | |
2301 | ||
2302 | case URX_FAIL: | |
2303 | // Fails are kind of like a branch, except that the min length was | |
2304 | // propagated already, by the state save. | |
2305 | currentLen = forwardedLength.elementAti(loc+1); | |
2306 | atStart = FALSE; | |
2307 | break; | |
2308 | ||
2309 | ||
2310 | case URX_STATE_SAVE: | |
2311 | { | |
2312 | // State Save, for forward jumps, propagate the current minimum. | |
2313 | // of the state save. | |
2314 | int32_t jmpDest = URX_VAL(op); | |
2315 | if (jmpDest > loc) { | |
2316 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
2317 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2318 | } | |
2319 | } | |
2320 | } | |
2321 | atStart = FALSE; | |
2322 | break; | |
2323 | ||
2324 | ||
2325 | ||
2326 | ||
2327 | case URX_STRING: | |
2328 | { | |
2329 | loc++; | |
2330 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
2331 | int32_t stringLen = URX_VAL(stringLenOp); | |
2332 | U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); | |
2333 | U_ASSERT(stringLenOp >= 2); | |
2334 | if (currentLen == 0) { | |
2335 | // Add the starting character of this string to the set of possible starting | |
2336 | // characters for this pattern. | |
2337 | int32_t stringStartIdx = URX_VAL(op); | |
2338 | UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); | |
2339 | fRXPat->fInitialChars->add(c); | |
2340 | ||
2341 | // Remember this string. After the entire pattern has been checked, | |
2342 | // if nothing else is identified that can start a match, we'll use it. | |
2343 | numInitialStrings++; | |
2344 | fRXPat->fInitialStringIdx = stringStartIdx; | |
2345 | fRXPat->fInitialStringLen = stringLen; | |
2346 | } | |
2347 | ||
2348 | currentLen += stringLen; | |
2349 | atStart = FALSE; | |
2350 | } | |
2351 | break; | |
2352 | ||
2353 | case URX_STRING_I: | |
2354 | { | |
2355 | // Case-insensitive string. Unlike exact-match strings, we won't | |
2356 | // attempt a string search for possible match positions. But we | |
2357 | // do update the set of possible starting characters. | |
2358 | loc++; | |
2359 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
2360 | int32_t stringLen = URX_VAL(stringLenOp); | |
2361 | U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); | |
2362 | U_ASSERT(stringLenOp >= 2); | |
2363 | if (currentLen == 0) { | |
2364 | // Add the starting character of this string to the set of possible starting | |
2365 | // characters for this pattern. | |
2366 | int32_t stringStartIdx = URX_VAL(op); | |
2367 | UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); | |
2368 | UnicodeSet s(c, c); | |
2369 | s.closeOver(USET_CASE); | |
2370 | fRXPat->fInitialChars->addAll(s); | |
2371 | numInitialStrings += 2; // Matching on an initial string not possible. | |
2372 | } | |
2373 | currentLen += stringLen; | |
2374 | atStart = FALSE; | |
2375 | } | |
2376 | break; | |
2377 | ||
2378 | case URX_CTR_INIT: | |
2379 | case URX_CTR_INIT_NG: | |
2380 | { | |
2381 | // Loop Init Ops. These don't change the min length, but they are 4 word ops | |
2382 | // so location must be updated accordingly. | |
2383 | // Loop Init Ops. | |
2384 | // If the min loop count == 0 | |
2385 | // move loc forwards to the end of the loop, skipping over the body. | |
2386 | // If the min count is > 0, | |
2387 | // continue normal processing of the body of the loop. | |
2388 | int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1); | |
2389 | loopEndLoc = URX_VAL(loopEndLoc); | |
2390 | int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2); | |
2391 | if (minLoopCount == 0) { | |
374ca955 A |
2392 | // Min Loop Count of 0, treat like a forward branch and |
2393 | // move the current minimum length up to the target | |
2394 | // (end of loop) location. | |
2395 | U_ASSERT(loopEndLoc <= end+1); | |
2396 | if (forwardedLength.elementAti(loopEndLoc) > currentLen) { | |
2397 | forwardedLength.setElementAt(currentLen, loopEndLoc); | |
2398 | } | |
2399 | } | |
2400 | loc+=3; // Skips over operands of CTR_INIT | |
b75a7d8f A |
2401 | } |
2402 | atStart = FALSE; | |
2403 | break; | |
2404 | ||
2405 | ||
2406 | case URX_CTR_LOOP: | |
2407 | case URX_CTR_LOOP_NG: | |
2408 | // Loop ops. | |
2409 | // The jump is conditional, backwards only. | |
2410 | atStart = FALSE; | |
2411 | break; | |
2412 | ||
2413 | case URX_LOOP_C: | |
2414 | // More loop ops. These state-save to themselves. | |
2415 | // don't change the minimum match | |
2416 | atStart = FALSE; | |
2417 | break; | |
2418 | ||
2419 | ||
2420 | case URX_LA_START: | |
2421 | case URX_LB_START: | |
2422 | { | |
2423 | // Look-around. Scan forward until the matching look-ahead end, | |
2424 | // without processing the look-around block. This is overly pessimistic. | |
2425 | int32_t depth = 0; | |
2426 | for (;;) { | |
2427 | loc++; | |
2428 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2429 | if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { | |
2430 | depth++; | |
2431 | } | |
2432 | if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { | |
2433 | if (depth == 0) { | |
2434 | break; | |
2435 | } | |
2436 | depth--; | |
2437 | } | |
2438 | if (URX_TYPE(op) == URX_STATE_SAVE) { | |
2439 | // Need this because neg lookahead blocks will FAIL to outside | |
2440 | // of the block. | |
2441 | int32_t jmpDest = URX_VAL(op); | |
2442 | if (jmpDest > loc) { | |
2443 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
2444 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2445 | } | |
2446 | } | |
2447 | } | |
2448 | U_ASSERT(loc <= end); | |
2449 | } | |
2450 | } | |
2451 | break; | |
2452 | ||
2453 | case URX_LA_END: | |
2454 | case URX_LB_CONT: | |
2455 | case URX_LB_END: | |
2456 | case URX_LBN_CONT: | |
2457 | case URX_LBN_END: | |
2458 | U_ASSERT(FALSE); // Shouldn't get here. These ops should be | |
2459 | // consumed by the scan in URX_LA_START and LB_START | |
2460 | ||
2461 | break; | |
2462 | ||
2463 | default: | |
2464 | U_ASSERT(FALSE); | |
2465 | } | |
2466 | ||
2467 | } | |
2468 | ||
2469 | ||
2470 | // We have finished walking through the ops. Check whether some forward jump | |
2471 | // propagated a shorter length to location end+1. | |
2472 | if (forwardedLength.elementAti(end+1) < currentLen) { | |
2473 | currentLen = forwardedLength.elementAti(end+1); | |
2474 | } | |
2475 | ||
2476 | ||
2477 | fRXPat->fInitialChars8->init(fRXPat->fInitialChars); | |
2478 | ||
2479 | ||
2480 | // Sort out what we should check for when looking for candidate match start positions. | |
2481 | // In order of preference, | |
2482 | // 1. Start of input text buffer. | |
2483 | // 2. A literal string. | |
2484 | // 3. Start of line in multi-line mode. | |
2485 | // 4. A single literal character. | |
2486 | // 5. A character from a set of characters. | |
2487 | // | |
2488 | if (fRXPat->fStartType == START_START) { | |
2489 | // Match only at the start of an input text string. | |
2490 | // start type is already set. We're done. | |
2491 | } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) { | |
2492 | // Match beginning only with a literal string. | |
2493 | UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx); | |
2494 | U_ASSERT(fRXPat->fInitialChars->contains(c)); | |
2495 | fRXPat->fStartType = START_STRING; | |
2496 | fRXPat->fInitialChar = c; | |
2497 | } else if (fRXPat->fStartType == START_LINE) { | |
374ca955 | 2498 | // Match at start of line in Multi-Line mode. |
b75a7d8f A |
2499 | // Nothing to do here; everything is already set. |
2500 | } else if (fRXPat->fMinMatchLen == 0) { | |
2501 | // Zero length match possible. We could start anywhere. | |
2502 | fRXPat->fStartType = START_NO_INFO; | |
2503 | } else if (fRXPat->fInitialChars->size() == 1) { | |
2504 | // All matches begin with the same char. | |
2505 | fRXPat->fStartType = START_CHAR; | |
2506 | fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0); | |
2507 | U_ASSERT(fRXPat->fInitialChar != (UChar32)-1); | |
2508 | } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE && | |
2509 | fRXPat->fMinMatchLen > 0) { | |
2510 | // Matches start with a set of character smaller than the set of all chars. | |
2511 | fRXPat->fStartType = START_SET; | |
2512 | } else { | |
2513 | // Matches can start with anything | |
2514 | fRXPat->fStartType = START_NO_INFO; | |
2515 | } | |
2516 | ||
2517 | return; | |
2518 | } | |
2519 | ||
2520 | ||
2521 | ||
2522 | //---------------------------------------------------------------------------------------- | |
2523 | // | |
2524 | // minMatchLength Calculate the length of the shortest string that could | |
2525 | // match the specified pattern. | |
2526 | // Length is in 16 bit code units, not code points. | |
2527 | // | |
2528 | // The calculated length may not be exact. The returned | |
2529 | // value may be shorter than the actual minimum; it must | |
2530 | // never be longer. | |
2531 | // | |
2532 | // start and end are the range of p-code operations to be | |
2533 | // examined. The endpoints are included in the range. | |
2534 | // | |
2535 | //---------------------------------------------------------------------------------------- | |
2536 | int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) { | |
2537 | if (U_FAILURE(*fStatus)) { | |
2538 | return 0; | |
2539 | } | |
2540 | ||
2541 | U_ASSERT(start <= end); | |
2542 | U_ASSERT(end < fRXPat->fCompiledPat->size()); | |
2543 | ||
2544 | ||
2545 | int32_t loc; | |
2546 | int32_t op; | |
2547 | int32_t opType; | |
2548 | int32_t currentLen = 0; | |
2549 | ||
2550 | ||
2551 | // forwardedLength is a vector holding minimum-match-length values that | |
2552 | // are propagated forward in the pattern by JMP or STATE_SAVE operations. | |
2553 | // It must be one longer than the pattern being checked because some ops | |
2554 | // will jmp to a end-of-block+1 location from within a block, and we must | |
2555 | // count those when checking the block. | |
2556 | UVector32 forwardedLength(end+2, *fStatus); | |
2557 | forwardedLength.setSize(end+2); | |
2558 | for (loc=start; loc<=end+1; loc++) { | |
2559 | forwardedLength.setElementAt(INT32_MAX, loc); | |
2560 | } | |
2561 | ||
2562 | for (loc = start; loc<=end; loc++) { | |
2563 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2564 | opType = URX_TYPE(op); | |
2565 | ||
2566 | // The loop is advancing linearly through the pattern. | |
2567 | // If the op we are now at was the destination of a branch in the pattern, | |
2568 | // and that path has a shorter minimum length than the current accumulated value, | |
2569 | // replace the current accumulated value. | |
2570 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2571 | if (forwardedLength.elementAti(loc) < currentLen) { | |
2572 | currentLen = forwardedLength.elementAti(loc); | |
2573 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2574 | } | |
2575 | ||
2576 | switch (opType) { | |
2577 | // Ops that don't change the total length matched | |
2578 | case URX_RESERVED_OP: | |
2579 | case URX_END: | |
2580 | case URX_STRING_LEN: | |
2581 | case URX_NOP: | |
2582 | case URX_START_CAPTURE: | |
2583 | case URX_END_CAPTURE: | |
2584 | case URX_BACKSLASH_B: | |
374ca955 | 2585 | case URX_BACKSLASH_BU: |
b75a7d8f A |
2586 | case URX_BACKSLASH_G: |
2587 | case URX_BACKSLASH_Z: | |
2588 | case URX_CARET: | |
2589 | case URX_DOLLAR: | |
2590 | case URX_RELOC_OPRND: | |
2591 | case URX_STO_INP_LOC: | |
2592 | case URX_DOLLAR_M: | |
2593 | case URX_CARET_M: | |
2594 | case URX_BACKTRACK: | |
2595 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match | |
2596 | case URX_BACKREF_I: | |
2597 | ||
2598 | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. | |
2599 | case URX_LD_SP: | |
2600 | ||
2601 | case URX_JMP_SAV: | |
2602 | case URX_JMP_SAV_X: | |
2603 | break; | |
2604 | ||
2605 | ||
2606 | // Ops that match a minimum of one character (one or two 16 bit code units.) | |
2607 | // | |
2608 | case URX_ONECHAR: | |
2609 | case URX_STATIC_SETREF: | |
2610 | case URX_STAT_SETREF_N: | |
2611 | case URX_SETREF: | |
2612 | case URX_BACKSLASH_D: | |
2613 | case URX_ONECHAR_I: | |
2614 | case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. | |
2615 | case URX_DOTANY_ALL: // . matches one or two. | |
2616 | case URX_DOTANY: | |
2617 | case URX_DOTANY_PL: | |
2618 | case URX_DOTANY_ALL_PL: | |
2619 | currentLen++; | |
2620 | break; | |
2621 | ||
2622 | ||
2623 | case URX_JMPX: | |
2624 | loc++; // URX_JMPX has an extra operand, ignored here, | |
2625 | // otherwise processed identically to URX_JMP. | |
2626 | case URX_JMP: | |
2627 | { | |
2628 | int32_t jmpDest = URX_VAL(op); | |
2629 | if (jmpDest < loc) { | |
2630 | // Loop of some kind. Can safely ignore, the worst that will happen | |
2631 | // is that we understate the true minimum length | |
2632 | currentLen = forwardedLength.elementAti(loc+1); | |
2633 | } else { | |
2634 | // Forward jump. Propagate the current min length to the target loc of the jump. | |
2635 | U_ASSERT(jmpDest <= end+1); | |
2636 | if (forwardedLength.elementAti(jmpDest) > currentLen) { | |
2637 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2638 | } | |
2639 | } | |
2640 | } | |
2641 | break; | |
2642 | ||
2643 | case URX_FAIL: | |
2644 | { | |
2645 | // Fails are kind of like a branch, except that the min length was | |
2646 | // propagated already, by the state save. | |
2647 | currentLen = forwardedLength.elementAti(loc+1); | |
2648 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2649 | } | |
2650 | break; | |
2651 | ||
2652 | ||
2653 | case URX_STATE_SAVE: | |
2654 | { | |
2655 | // State Save, for forward jumps, propagate the current minimum. | |
2656 | // of the state save. | |
2657 | int32_t jmpDest = URX_VAL(op); | |
2658 | if (jmpDest > loc) { | |
2659 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
2660 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2661 | } | |
2662 | } | |
2663 | } | |
2664 | break; | |
2665 | ||
2666 | ||
2667 | case URX_STRING: | |
2668 | case URX_STRING_I: | |
2669 | { | |
2670 | loc++; | |
2671 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
2672 | currentLen += URX_VAL(stringLenOp); | |
2673 | } | |
2674 | break; | |
2675 | ||
2676 | ||
2677 | case URX_CTR_INIT: | |
2678 | case URX_CTR_INIT_NG: | |
2679 | { | |
2680 | // Loop Init Ops. | |
2681 | // If the min loop count == 0 | |
2682 | // move loc forwards to the end of the loop, skipping over the body. | |
2683 | // If the min count is > 0, | |
2684 | // continue normal processing of the body of the loop. | |
2685 | int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1); | |
2686 | loopEndLoc = URX_VAL(loopEndLoc); | |
2687 | int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2); | |
2688 | if (minLoopCount == 0) { | |
2689 | loc = loopEndLoc; | |
2690 | } else { | |
2691 | loc+=3; // Skips over operands of CTR_INIT | |
2692 | } | |
2693 | } | |
2694 | break; | |
2695 | ||
2696 | ||
2697 | case URX_CTR_LOOP: | |
2698 | case URX_CTR_LOOP_NG: | |
2699 | // Loop ops. | |
2700 | // The jump is conditional, backwards only. | |
2701 | break; | |
2702 | ||
2703 | case URX_LOOP_SR_I: | |
2704 | case URX_LOOP_DOT_I: | |
2705 | case URX_LOOP_C: | |
2706 | // More loop ops. These state-save to themselves. | |
2707 | // don't change the minimum match - could match nothing at all. | |
2708 | break; | |
2709 | ||
2710 | ||
2711 | case URX_LA_START: | |
2712 | case URX_LB_START: | |
2713 | { | |
2714 | // Look-around. Scan forward until the matching look-ahead end, | |
2715 | // without processing the look-around block. This is overly pessimistic. | |
2716 | // TODO: Positive lookahead could recursively do the block, then continue | |
2717 | // with the longer of the block or the value coming in. | |
2718 | int32_t depth = 0; | |
2719 | for (;;) { | |
2720 | loc++; | |
2721 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2722 | if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { | |
2723 | depth++; | |
2724 | } | |
2725 | if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { | |
2726 | if (depth == 0) { | |
2727 | break; | |
2728 | } | |
2729 | depth--; | |
2730 | } | |
2731 | if (URX_TYPE(op) == URX_STATE_SAVE) { | |
2732 | // Need this because neg lookahead blocks will FAIL to outside | |
2733 | // of the block. | |
2734 | int32_t jmpDest = URX_VAL(op); | |
2735 | if (jmpDest > loc) { | |
2736 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
2737 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2738 | } | |
2739 | } | |
2740 | } | |
2741 | ||
2742 | U_ASSERT(loc <= end); | |
2743 | } | |
2744 | } | |
2745 | break; | |
2746 | ||
2747 | case URX_LA_END: | |
2748 | case URX_LB_CONT: | |
2749 | case URX_LB_END: | |
2750 | case URX_LBN_CONT: | |
2751 | case URX_LBN_END: | |
2752 | // Only come here if the matching URX_LA_START or URX_LB_START was not in the | |
2753 | // range being sized, which happens when measuring size of look-behind blocks. | |
2754 | break; | |
2755 | ||
2756 | default: | |
2757 | U_ASSERT(FALSE); | |
2758 | } | |
2759 | ||
2760 | } | |
2761 | ||
2762 | // We have finished walking through the ops. Check whether some forward jump | |
2763 | // propagated a shorter length to location end+1. | |
2764 | if (forwardedLength.elementAti(end+1) < currentLen) { | |
2765 | currentLen = forwardedLength.elementAti(end+1); | |
2766 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2767 | } | |
2768 | ||
2769 | return currentLen; | |
2770 | } | |
2771 | ||
2772 | ||
2773 | ||
2774 | //---------------------------------------------------------------------------------------- | |
2775 | // | |
2776 | // maxMatchLength Calculate the length of the longest string that could | |
2777 | // match the specified pattern. | |
2778 | // Length is in 16 bit code units, not code points. | |
2779 | // | |
2780 | // The calculated length may not be exact. The returned | |
2781 | // value may be longer than the actual maximum; it must | |
2782 | // never be shorter. | |
2783 | // | |
2784 | //---------------------------------------------------------------------------------------- | |
2785 | int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) { | |
2786 | if (U_FAILURE(*fStatus)) { | |
2787 | return 0; | |
2788 | } | |
2789 | U_ASSERT(start <= end); | |
2790 | U_ASSERT(end < fRXPat->fCompiledPat->size()); | |
2791 | ||
2792 | ||
2793 | int32_t loc; | |
2794 | int32_t op; | |
2795 | int32_t opType; | |
2796 | int32_t currentLen = 0; | |
2797 | UVector32 forwardedLength(end+1, *fStatus); | |
2798 | forwardedLength.setSize(end+1); | |
2799 | ||
2800 | for (loc=start; loc<=end; loc++) { | |
2801 | forwardedLength.setElementAt(0, loc); | |
2802 | } | |
2803 | ||
2804 | for (loc = start; loc<=end; loc++) { | |
2805 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2806 | opType = URX_TYPE(op); | |
2807 | ||
2808 | // The loop is advancing linearly through the pattern. | |
2809 | // If the op we are now at was the destination of a branch in the pattern, | |
2810 | // and that path has a longer maximum length than the current accumulated value, | |
2811 | // replace the current accumulated value. | |
2812 | if (forwardedLength.elementAti(loc) > currentLen) { | |
2813 | currentLen = forwardedLength.elementAti(loc); | |
2814 | } | |
2815 | ||
2816 | switch (opType) { | |
2817 | // Ops that don't change the total length matched | |
2818 | case URX_RESERVED_OP: | |
2819 | case URX_END: | |
2820 | case URX_STRING_LEN: | |
2821 | case URX_NOP: | |
2822 | case URX_START_CAPTURE: | |
2823 | case URX_END_CAPTURE: | |
2824 | case URX_BACKSLASH_B: | |
374ca955 | 2825 | case URX_BACKSLASH_BU: |
b75a7d8f A |
2826 | case URX_BACKSLASH_G: |
2827 | case URX_BACKSLASH_Z: | |
2828 | case URX_CARET: | |
2829 | case URX_DOLLAR: | |
2830 | case URX_RELOC_OPRND: | |
2831 | case URX_STO_INP_LOC: | |
2832 | case URX_DOLLAR_M: | |
2833 | case URX_CARET_M: | |
2834 | case URX_BACKTRACK: | |
2835 | ||
2836 | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. | |
2837 | case URX_LD_SP: | |
2838 | ||
2839 | case URX_LB_END: | |
2840 | case URX_LB_CONT: | |
2841 | case URX_LBN_CONT: | |
2842 | case URX_LBN_END: | |
2843 | break; | |
2844 | ||
2845 | ||
2846 | // Ops that increase that cause an unbounded increase in the length | |
2847 | // of a matched string, or that increase it a hard to characterize way. | |
2848 | // Call the max length unbounded, and stop further checking. | |
2849 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match | |
2850 | case URX_BACKREF_I: | |
2851 | case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. | |
2852 | case URX_DOTANY_PL: | |
2853 | case URX_DOTANY_ALL_PL: | |
2854 | currentLen = INT32_MAX; | |
2855 | break; | |
2856 | ||
2857 | ||
2858 | // Ops that match a max of one character (possibly two 16 bit code units.) | |
2859 | // | |
2860 | case URX_STATIC_SETREF: | |
2861 | case URX_STAT_SETREF_N: | |
2862 | case URX_SETREF: | |
2863 | case URX_BACKSLASH_D: | |
2864 | case URX_ONECHAR_I: | |
2865 | case URX_DOTANY_ALL: | |
2866 | case URX_DOTANY: | |
2867 | currentLen+=2; | |
2868 | break; | |
2869 | ||
2870 | // Single literal character. Increase current max length by one or two, | |
2871 | // depending on whether the char is in the supplementary range. | |
2872 | case URX_ONECHAR: | |
2873 | currentLen++; | |
2874 | if (URX_VAL(op) > 0x10000) { | |
2875 | currentLen++; | |
2876 | } | |
2877 | break; | |
2878 | ||
2879 | // Jumps. | |
2880 | // | |
2881 | case URX_JMP: | |
2882 | case URX_JMPX: | |
2883 | case URX_JMP_SAV: | |
2884 | case URX_JMP_SAV_X: | |
2885 | { | |
2886 | int32_t jmpDest = URX_VAL(op); | |
2887 | if (jmpDest < loc) { | |
2888 | // Loop of some kind. Max match length is unbounded. | |
2889 | currentLen = INT32_MAX; | |
2890 | } else { | |
2891 | // Forward jump. Propagate the current min length to the target loc of the jump. | |
2892 | if (forwardedLength.elementAti(jmpDest) < currentLen) { | |
2893 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2894 | } | |
2895 | currentLen = 0; | |
2896 | } | |
2897 | } | |
2898 | break; | |
2899 | ||
2900 | case URX_FAIL: | |
2901 | // Fails are kind of like a branch, except that the max length was | |
2902 | // propagated already, by the state save. | |
2903 | currentLen = forwardedLength.elementAti(loc+1); | |
2904 | break; | |
2905 | ||
2906 | ||
2907 | case URX_STATE_SAVE: | |
2908 | { | |
2909 | // State Save, for forward jumps, propagate the current minimum. | |
2910 | // of the state save. | |
2911 | // For backwards jumps, they create a loop, maximum | |
2912 | // match length is unbounded. | |
2913 | int32_t jmpDest = URX_VAL(op); | |
2914 | if (jmpDest > loc) { | |
2915 | if (currentLen > forwardedLength.elementAti(jmpDest)) { | |
2916 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2917 | } | |
2918 | } else { | |
2919 | currentLen = INT32_MAX; | |
2920 | } | |
2921 | } | |
2922 | break; | |
2923 | ||
2924 | ||
2925 | ||
2926 | ||
2927 | case URX_STRING: | |
2928 | case URX_STRING_I: | |
2929 | { | |
2930 | loc++; | |
2931 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
2932 | currentLen += URX_VAL(stringLenOp); | |
2933 | } | |
2934 | break; | |
2935 | ||
2936 | ||
2937 | case URX_CTR_INIT: | |
2938 | case URX_CTR_INIT_NG: | |
2939 | case URX_CTR_LOOP: | |
2940 | case URX_CTR_LOOP_NG: | |
2941 | case URX_LOOP_SR_I: | |
2942 | case URX_LOOP_DOT_I: | |
2943 | case URX_LOOP_C: | |
2944 | // For anything to do with loops, make the match length unbounded. | |
2945 | // Note: INIT instructions are multi-word. Can ignore because | |
2946 | // INT32_MAX length will stop the per-instruction loop. | |
2947 | currentLen = INT32_MAX; | |
2948 | break; | |
2949 | ||
2950 | ||
2951 | ||
2952 | case URX_LA_START: | |
2953 | case URX_LA_END: | |
2954 | // Look-ahead. Just ignore, treat the look-ahead block as if | |
2955 | // it were normal pattern. Gives a too-long match length, | |
2956 | // but good enough for now. | |
2957 | break; | |
2958 | ||
2959 | // End of look-ahead ops should always be consumed by the processing at | |
2960 | // the URX_LA_START op. | |
2961 | U_ASSERT(FALSE); | |
2962 | break; | |
2963 | ||
2964 | case URX_LB_START: | |
2965 | { | |
2966 | // Look-behind. Scan forward until the matching look-around end, | |
2967 | // without processing the look-behind block. | |
2968 | int32_t depth = 0; | |
2969 | for (;;) { | |
2970 | loc++; | |
2971 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2972 | if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { | |
2973 | depth++; | |
2974 | } | |
2975 | if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { | |
2976 | if (depth == 0) { | |
2977 | break; | |
2978 | } | |
2979 | depth--; | |
2980 | } | |
2981 | U_ASSERT(loc < end); | |
2982 | } | |
2983 | } | |
2984 | break; | |
2985 | ||
2986 | default: | |
2987 | U_ASSERT(FALSE); | |
2988 | } | |
2989 | ||
2990 | ||
2991 | if (currentLen == INT32_MAX) { | |
2992 | // The maximum length is unbounded. | |
2993 | // Stop further processing of the pattern. | |
2994 | break; | |
2995 | } | |
2996 | ||
2997 | } | |
2998 | return currentLen; | |
2999 | ||
3000 | } | |
3001 | ||
3002 | ||
3003 | //---------------------------------------------------------------------------------------- | |
3004 | // | |
3005 | // stripNOPs Remove any NOP operations from the compiled pattern code. | |
3006 | // Extra NOPs are inserted for some constructs during the initial | |
3007 | // code generation to provide locations that may be patched later. | |
3008 | // Many end up unneeded, and are removed by this function. | |
3009 | // | |
3010 | //---------------------------------------------------------------------------------------- | |
3011 | void RegexCompile::stripNOPs() { | |
3012 | ||
3013 | if (U_FAILURE(*fStatus)) { | |
3014 | return; | |
3015 | } | |
3016 | ||
3017 | int32_t end = fRXPat->fCompiledPat->size(); | |
3018 | UVector32 deltas(end, *fStatus); | |
3019 | ||
3020 | // Make a first pass over the code, computing the amount that things | |
3021 | // will be offset at each location in the original code. | |
3022 | int32_t loc; | |
3023 | int32_t d = 0; | |
3024 | for (loc=0; loc<end; loc++) { | |
3025 | deltas.addElement(d, *fStatus); | |
3026 | int32_t op = fRXPat->fCompiledPat->elementAti(loc); | |
3027 | if (URX_TYPE(op) == URX_NOP) { | |
3028 | d++; | |
3029 | } | |
3030 | } | |
3031 | ||
3032 | // Make a second pass over the code, removing the NOPs by moving following | |
3033 | // code up, and patching operands that refer to code locations that | |
3034 | // are being moved. The array of offsets from the first step is used | |
3035 | // to compute the new operand values. | |
3036 | int32_t src; | |
3037 | int32_t dst = 0; | |
3038 | for (src=0; src<end; src++) { | |
3039 | int32_t op = fRXPat->fCompiledPat->elementAti(src); | |
3040 | int32_t opType = URX_TYPE(op); | |
3041 | switch (opType) { | |
3042 | case URX_NOP: | |
3043 | break; | |
3044 | ||
3045 | case URX_STATE_SAVE: | |
3046 | case URX_JMP: | |
3047 | case URX_CTR_LOOP: | |
3048 | case URX_CTR_LOOP_NG: | |
3049 | case URX_RELOC_OPRND: | |
3050 | case URX_JMPX: | |
3051 | case URX_JMP_SAV: | |
3052 | case URX_JMP_SAV_X: | |
3053 | // These are instructions with operands that refer to code locations. | |
3054 | { | |
3055 | int32_t operandAddress = URX_VAL(op); | |
3056 | U_ASSERT(operandAddress>=0 && operandAddress<deltas.size()); | |
3057 | int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress); | |
3058 | op = URX_BUILD(opType, fixedOperandAddress); | |
3059 | fRXPat->fCompiledPat->setElementAt(op, dst); | |
3060 | dst++; | |
3061 | break; | |
3062 | } | |
3063 | ||
3064 | case URX_RESERVED_OP: | |
3065 | case URX_RESERVED_OP_N: | |
3066 | case URX_BACKTRACK: | |
3067 | case URX_END: | |
3068 | case URX_ONECHAR: | |
3069 | case URX_STRING: | |
3070 | case URX_STRING_LEN: | |
3071 | case URX_START_CAPTURE: | |
3072 | case URX_END_CAPTURE: | |
3073 | case URX_STATIC_SETREF: | |
3074 | case URX_STAT_SETREF_N: | |
3075 | case URX_SETREF: | |
3076 | case URX_DOTANY: | |
3077 | case URX_FAIL: | |
3078 | case URX_BACKSLASH_B: | |
374ca955 | 3079 | case URX_BACKSLASH_BU: |
b75a7d8f A |
3080 | case URX_BACKSLASH_G: |
3081 | case URX_BACKSLASH_X: | |
3082 | case URX_BACKSLASH_Z: | |
3083 | case URX_DOTANY_ALL: | |
3084 | case URX_DOTANY_ALL_PL: | |
3085 | case URX_DOTANY_PL: | |
3086 | case URX_BACKSLASH_D: | |
3087 | case URX_CARET: | |
3088 | case URX_DOLLAR: | |
3089 | case URX_CTR_INIT: | |
3090 | case URX_CTR_INIT_NG: | |
3091 | case URX_STO_SP: | |
3092 | case URX_LD_SP: | |
3093 | case URX_BACKREF: | |
3094 | case URX_STO_INP_LOC: | |
3095 | case URX_LA_START: | |
3096 | case URX_LA_END: | |
3097 | case URX_ONECHAR_I: | |
3098 | case URX_STRING_I: | |
3099 | case URX_BACKREF_I: | |
3100 | case URX_DOLLAR_M: | |
3101 | case URX_CARET_M: | |
3102 | case URX_LB_START: | |
3103 | case URX_LB_CONT: | |
3104 | case URX_LB_END: | |
3105 | case URX_LBN_CONT: | |
3106 | case URX_LBN_END: | |
3107 | case URX_LOOP_SR_I: | |
3108 | case URX_LOOP_DOT_I: | |
3109 | case URX_LOOP_C: | |
3110 | // These instructions are unaltered by the relocation. | |
3111 | fRXPat->fCompiledPat->setElementAt(op, dst); | |
3112 | dst++; | |
3113 | break; | |
3114 | ||
3115 | default: | |
3116 | // Some op is unaccounted for. | |
3117 | U_ASSERT(FALSE); | |
3118 | error(U_REGEX_INTERNAL_ERROR); | |
3119 | } | |
3120 | } | |
3121 | ||
3122 | fRXPat->fCompiledPat->setSize(dst); | |
3123 | } | |
3124 | ||
3125 | ||
3126 | ||
3127 | ||
3128 | //---------------------------------------------------------------------------------------- | |
3129 | // | |
3130 | // OptDotStar Optimize patterns that end with a '.*' or '.+' to | |
3131 | // just advance the input to the end. | |
3132 | // | |
3133 | // Transform this compiled sequence | |
3134 | // [DOT_ANY | DOT_ANY_ALL] | |
3135 | // JMP_SAV to previous instruction | |
3136 | // [NOP | END_CAPTURE | DOLLAR | BACKSLASH_Z]* | |
3137 | // END | |
3138 | // | |
3139 | // To | |
3140 | // NOP | |
3141 | // [DOT_ANY_PL | DOT_ANY_ALL_PL] | |
3142 | // [NOP | END_CAPTURE | DOLLAR | BACKSLASH_Z]* | |
3143 | // END | |
3144 | // | |
3145 | //---------------------------------------------------------------------------------------- | |
3146 | void RegexCompile::OptDotStar() { | |
3147 | // Scan backwards in the pattern, looking for a JMP_SAV near the end. | |
3148 | int32_t jmpLoc; | |
3149 | int32_t op = 0; | |
3150 | int32_t opType; | |
3151 | for (jmpLoc=fRXPat->fCompiledPat->size(); jmpLoc--;) { | |
3152 | U_ASSERT(jmpLoc>0); | |
3153 | op = fRXPat->fCompiledPat->elementAti(jmpLoc); | |
3154 | opType = URX_TYPE(op); | |
3155 | switch(opType) { | |
3156 | ||
3157 | ||
3158 | case URX_END: | |
3159 | case URX_NOP: | |
3160 | case URX_END_CAPTURE: | |
3161 | case URX_DOLLAR_M: | |
3162 | case URX_DOLLAR: | |
3163 | case URX_BACKSLASH_Z: | |
3164 | // These ops may follow the JMP_SAV without preventing us from | |
3165 | // doing this optimization. | |
3166 | continue; | |
3167 | ||
3168 | case URX_JMP_SAV: | |
3169 | // Got a trailing JMP_SAV that's a candidate for optimization. | |
3170 | break; | |
3171 | ||
3172 | default: | |
3173 | // This optimization not possible. | |
3174 | return; | |
3175 | } | |
3176 | break; // from the for loop. | |
3177 | } | |
3178 | ||
3179 | // We found in URX_JMP_SAV near the end that is a candidate for optimizing. | |
3180 | // Is the target address the previous instruction? | |
3181 | // Is the previous instruction a flavor of URX_DOTANY | |
3182 | int32_t loopTopLoc = URX_VAL(op); | |
3183 | if (loopTopLoc != jmpLoc-1) { | |
3184 | return; | |
3185 | } | |
3186 | int32_t newOp; | |
3187 | int32_t oldOp = fRXPat->fCompiledPat->elementAti(loopTopLoc); | |
3188 | int32_t oldOpType = opType = URX_TYPE(oldOp); | |
3189 | if (oldOpType == URX_DOTANY) { | |
3190 | newOp = URX_BUILD(URX_DOTANY_PL, 0); | |
3191 | } | |
3192 | else if (oldOpType == URX_DOTANY_ALL) { | |
3193 | newOp = URX_BUILD(URX_DOTANY_ALL_PL, 0); | |
3194 | } else { | |
3195 | return; // Sequence we were looking for isn't there. | |
3196 | } | |
3197 | ||
3198 | // Substitute the new instructions into the pattern. | |
3199 | // The NOP will be removed in a later optimization step. | |
3200 | fRXPat->fCompiledPat->setElementAt(URX_BUILD(URX_NOP, 0), loopTopLoc); | |
3201 | fRXPat->fCompiledPat->setElementAt(newOp, jmpLoc); | |
3202 | } | |
3203 | ||
3204 | ||
3205 | //---------------------------------------------------------------------------------------- | |
3206 | // | |
3207 | // Error Report a rule parse error. | |
3208 | // Only report it if no previous error has been recorded. | |
3209 | // | |
3210 | //---------------------------------------------------------------------------------------- | |
3211 | void RegexCompile::error(UErrorCode e) { | |
3212 | if (U_SUCCESS(*fStatus)) { | |
3213 | *fStatus = e; | |
3214 | fParseErr->line = fLineNum; | |
3215 | fParseErr->offset = fCharNum; | |
3216 | ||
3217 | // Fill in the context. | |
3218 | // Note: extractBetween() pins supplied indicies to the string bounds. | |
3219 | uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext)); | |
3220 | uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext)); | |
3221 | fRXPat->fPattern.extractBetween(fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, | |
3222 | fParseErr->preContext, 0); | |
3223 | fRXPat->fPattern.extractBetween(fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, | |
3224 | fParseErr->postContext, 0); | |
3225 | } | |
3226 | } | |
3227 | ||
3228 | ||
3229 | // | |
3230 | // Assorted Unicode character constants. | |
3231 | // Numeric because there is no portable way to enter them as literals. | |
3232 | // (Think EBCDIC). | |
3233 | // | |
3234 | static const UChar chCR = 0x0d; // New lines, for terminating comments. | |
3235 | static const UChar chLF = 0x0a; | |
3236 | static const UChar chNEL = 0x85; // NEL newline variant | |
3237 | static const UChar chLS = 0x2028; // Unicode Line Separator | |
3238 | static const UChar chApos = 0x27; // single quote, for quoted chars. | |
3239 | static const UChar chPound = 0x23; // '#', introduces a comment. | |
3240 | static const UChar chE = 0x45; // 'E' | |
3241 | static const UChar chBackSlash = 0x5c; // '\' introduces a char escape | |
3242 | static const UChar chLParen = 0x28; | |
3243 | static const UChar chRParen = 0x29; | |
3244 | static const UChar chLBracket = 0x5b; | |
3245 | static const UChar chRBracket = 0x5d; | |
3246 | static const UChar chRBrace = 0x7d; | |
3247 | static const UChar chUpperN = 0x4E; | |
3248 | static const UChar chLowerP = 0x70; | |
3249 | static const UChar chUpperP = 0x50; | |
3250 | ||
3251 | ||
3252 | //---------------------------------------------------------------------------------------- | |
3253 | // | |
3254 | // nextCharLL Low Level Next Char from the regex pattern. | |
3255 | // Get a char from the string, keep track of input position | |
3256 | // for error reporting. | |
3257 | // | |
3258 | //---------------------------------------------------------------------------------------- | |
3259 | UChar32 RegexCompile::nextCharLL() { | |
3260 | UChar32 ch; | |
3261 | UnicodeString &pattern = fRXPat->fPattern; | |
3262 | ||
3263 | if (fPeekChar != -1) { | |
3264 | ch = fPeekChar; | |
3265 | fPeekChar = -1; | |
3266 | return ch; | |
3267 | } | |
3268 | if (fPatternLength==0 || fNextIndex >= fPatternLength) { | |
3269 | return (UChar32)-1; | |
3270 | } | |
3271 | ch = pattern.char32At(fNextIndex); | |
3272 | fNextIndex = pattern.moveIndex32(fNextIndex, 1); | |
3273 | ||
3274 | if (ch == chCR || | |
3275 | ch == chNEL || | |
3276 | ch == chLS || | |
3277 | ch == chLF && fLastChar != chCR) { | |
3278 | // Character is starting a new line. Bump up the line number, and | |
3279 | // reset the column to 0. | |
3280 | fLineNum++; | |
3281 | fCharNum=0; | |
3282 | if (fQuoteMode) { | |
3283 | error(U_REGEX_RULE_SYNTAX); | |
3284 | fQuoteMode = FALSE; | |
3285 | } | |
3286 | } | |
3287 | else { | |
3288 | // Character is not starting a new line. Except in the case of a | |
3289 | // LF following a CR, increment the column position. | |
3290 | if (ch != chLF) { | |
3291 | fCharNum++; | |
3292 | } | |
3293 | } | |
3294 | fLastChar = ch; | |
3295 | return ch; | |
3296 | } | |
3297 | ||
3298 | //--------------------------------------------------------------------------------- | |
3299 | // | |
3300 | // peekCharLL Low Level Character Scanning, sneak a peek at the next | |
3301 | // character without actually getting it. | |
3302 | // | |
3303 | //--------------------------------------------------------------------------------- | |
3304 | UChar32 RegexCompile::peekCharLL() { | |
3305 | if (fPeekChar == -1) { | |
3306 | fPeekChar = nextCharLL(); | |
3307 | } | |
3308 | return fPeekChar; | |
3309 | } | |
3310 | ||
3311 | ||
3312 | //--------------------------------------------------------------------------------- | |
3313 | // | |
3314 | // nextChar for pattern scanning. At this level, we handle stripping | |
3315 | // out comments and processing some backslash character escapes. | |
3316 | // The rest of the pattern grammar is handled at the next level up. | |
3317 | // | |
3318 | //--------------------------------------------------------------------------------- | |
3319 | void RegexCompile::nextChar(RegexPatternChar &c) { | |
3320 | ||
3321 | fScanIndex = fNextIndex; | |
3322 | c.fChar = nextCharLL(); | |
3323 | c.fQuoted = FALSE; | |
3324 | ||
3325 | if (fQuoteMode) { | |
3326 | c.fQuoted = TRUE; | |
3327 | if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) { | |
3328 | fQuoteMode = FALSE; // Exit quote mode, | |
3329 | nextCharLL(); // discard the E | |
3330 | nextChar(c); // recurse to get the real next char | |
3331 | } | |
3332 | } | |
3333 | else if (fInBackslashQuote) { | |
3334 | // The current character immediately follows a '\' | |
3335 | // Don't check for any further escapes, just return it as-is. | |
3336 | // Don't set c.fQuoted, because that would prevent the state machine from | |
3337 | // dispatching on the character. | |
3338 | fInBackslashQuote = FALSE; | |
3339 | } | |
3340 | else | |
3341 | { | |
3342 | // We are not in a \Q quoted region \E of the source. | |
3343 | // | |
3344 | if (fModeFlags & UREGEX_COMMENTS) { | |
3345 | // | |
3346 | // We are in free-spacing and comments mode. | |
3347 | // Scan through any white space and comments, until we | |
3348 | // reach a significant character or the end of inut. | |
3349 | for (;;) { | |
3350 | if (c.fChar == (UChar32)-1) { | |
3351 | break; // End of Input | |
3352 | } | |
3353 | if (c.fChar == chPound && fEOLComments == TRUE) { | |
3354 | // Start of a comment. Consume the rest of it, until EOF or a new line | |
3355 | for (;;) { | |
3356 | c.fChar = nextCharLL(); | |
3357 | if (c.fChar == (UChar32)-1 || // EOF | |
3358 | c.fChar == chCR || | |
3359 | c.fChar == chLF || | |
3360 | c.fChar == chNEL || | |
3361 | c.fChar == chLS) { | |
3362 | break; | |
3363 | } | |
3364 | } | |
3365 | } | |
3366 | if (uprv_isRuleWhiteSpace(c.fChar) == FALSE) { | |
3367 | break; | |
3368 | } | |
3369 | c.fChar = nextCharLL(); | |
3370 | } | |
3371 | } | |
3372 | ||
3373 | // | |
3374 | // check for backslash escaped characters. | |
3375 | // | |
3376 | int32_t startX = fNextIndex; // start and end positions of the | |
3377 | int32_t endX = fNextIndex; // sequence following the '\' | |
3378 | if (c.fChar == chBackSlash) { | |
3379 | if (RegexStaticSets::gStaticSets->fUnescapeCharSet->contains(peekCharLL())) { | |
3380 | // | |
3381 | // A '\' sequence that is handled by ICU's standard unescapeAt function. | |
3382 | // Includes \uxxxx, \n, \r, many others. | |
3383 | // Return the single equivalent character. | |
3384 | // | |
3385 | nextCharLL(); // get & discard the peeked char. | |
3386 | c.fQuoted = TRUE; | |
3387 | c.fChar = fRXPat->fPattern.unescapeAt(endX); | |
3388 | if (startX == endX) { | |
3389 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
3390 | } | |
3391 | fCharNum += endX - startX; | |
3392 | fNextIndex = endX; | |
3393 | } | |
3394 | else | |
3395 | { | |
3396 | // We are in a '\' escape that will be handled by the state table scanner. | |
3397 | // Just return the backslash, but remember that the following char is to | |
3398 | // be taken literally. TODO: this is awkward, think about alternatives. | |
3399 | fInBackslashQuote = TRUE; | |
3400 | } | |
3401 | } | |
3402 | } | |
3403 | ||
3404 | // re-enable # to end-of-line comments, in case they were disabled. | |
3405 | // They are disabled by the parser upon seeing '(?', but this lasts for | |
3406 | // the fetching of the next character only. | |
3407 | fEOLComments = TRUE; | |
3408 | ||
3409 | // putc(c.fChar, stdout); | |
3410 | } | |
3411 | ||
3412 | ||
3413 | ||
3414 | //--------------------------------------------------------------------------------- | |
3415 | // | |
3416 | // scanSet Construct a UnicodeSet from the text at the current scan | |
3417 | // position. Advance the scan position to the first character | |
3418 | // after the set. | |
3419 | // | |
3420 | // The scan position is normally under the control of the state machine | |
3421 | // that controls pattern parsing. UnicodeSets, however, are parsed by | |
3422 | // the UnicodeSet constructor, not by the Regex pattern parser. | |
3423 | // | |
3424 | //--------------------------------------------------------------------------------- | |
3425 | UnicodeSet *RegexCompile::scanSet() { | |
3426 | UnicodeSet *uset = NULL; | |
3427 | ParsePosition pos; | |
3428 | int startPos; | |
3429 | int i; | |
3430 | ||
3431 | if (U_FAILURE(*fStatus)) { | |
3432 | return NULL; | |
3433 | } | |
3434 | ||
3435 | pos.setIndex(fScanIndex); | |
3436 | startPos = fScanIndex; | |
3437 | UErrorCode localStatus = U_ZERO_ERROR; | |
3438 | uint32_t usetFlags = 0; | |
3439 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { | |
3440 | usetFlags |= USET_CASE_INSENSITIVE; | |
3441 | } | |
3442 | if (fModeFlags & UREGEX_COMMENTS) { | |
3443 | usetFlags |= USET_IGNORE_SPACE; | |
3444 | } | |
3445 | ||
3446 | uset = new UnicodeSet(fRXPat->fPattern, pos, | |
374ca955 | 3447 | usetFlags, NULL, localStatus); |
b75a7d8f A |
3448 | if (U_FAILURE(localStatus)) { |
3449 | // TODO: Get more accurate position of the error from UnicodeSet's return info. | |
3450 | // UnicodeSet appears to not be reporting correctly at this time. | |
374ca955 | 3451 | REGEX_SCAN_DEBUG_PRINTF(("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex())); |
b75a7d8f A |
3452 | error(localStatus); |
3453 | delete uset; | |
3454 | return NULL; | |
3455 | } | |
3456 | ||
3457 | // Advance the current scan postion over the UnicodeSet. | |
3458 | // Don't just set fScanIndex because the line/char positions maintained | |
3459 | // for error reporting would be thrown off. | |
3460 | i = pos.getIndex(); | |
3461 | for (;;) { | |
3462 | if (fNextIndex >= i) { | |
3463 | break; | |
3464 | } | |
3465 | nextCharLL(); | |
3466 | } | |
3467 | ||
3468 | return uset; | |
3469 | }; | |
3470 | ||
3471 | ||
3472 | //--------------------------------------------------------------------------------- | |
3473 | // | |
3474 | // scanProp Construct a UnicodeSet from the text at the current scan | |
3475 | // position, which will be of the form \p{whaterver} | |
3476 | // | |
3477 | // The scan position will be at the 'p' or 'P'. On return | |
3478 | // the scan position should be just after the '}' | |
3479 | // | |
3480 | // Return a UnicodeSet, constructed from the \P pattern, | |
3481 | // or NULL if the pattern is invalid. | |
3482 | // | |
3483 | //--------------------------------------------------------------------------------- | |
3484 | UnicodeSet *RegexCompile::scanProp() { | |
3485 | UnicodeSet *uset = NULL; | |
3486 | ||
3487 | if (U_FAILURE(*fStatus)) { | |
3488 | return NULL; | |
3489 | } | |
3490 | ||
3491 | U_ASSERT(fC.fChar == chLowerP || fC.fChar == chUpperP || fC.fChar == chUpperN); | |
3492 | ||
3493 | // enclose the \p{property} from the regex pattern source in [brackets] | |
3494 | UnicodeString setPattern; | |
3495 | setPattern.append(chLBracket); | |
3496 | setPattern.append(chBackSlash); | |
3497 | for (;;) { | |
3498 | setPattern.append(fC.fChar); | |
3499 | if (fC.fChar == chRBrace) { | |
3500 | break; | |
3501 | } | |
3502 | nextChar(fC); | |
3503 | if (fC.fChar == -1) { | |
3504 | // Hit the end of the input string without finding the closing '}' | |
3505 | error(U_REGEX_PROPERTY_SYNTAX); | |
3506 | return NULL; | |
3507 | } | |
3508 | } | |
3509 | setPattern.append(chRBracket); | |
3510 | ||
3511 | uint32_t usetFlags = 0; | |
3512 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { | |
3513 | usetFlags |= USET_CASE_INSENSITIVE; | |
3514 | } | |
3515 | if (fModeFlags & UREGEX_COMMENTS) { | |
3516 | usetFlags |= USET_IGNORE_SPACE; | |
3517 | } | |
3518 | ||
3519 | // Build the UnicodeSet from the set pattern we just built up in a string. | |
374ca955 | 3520 | uset = new UnicodeSet(setPattern, usetFlags, NULL, *fStatus); |
b75a7d8f A |
3521 | if (U_FAILURE(*fStatus)) { |
3522 | delete uset; | |
3523 | uset = NULL; | |
3524 | } | |
3525 | ||
3526 | nextChar(fC); // Continue overall regex pattern processing with char after the '}' | |
3527 | return uset; | |
3528 | }; | |
3529 | ||
3530 | U_NAMESPACE_END | |
3531 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |