]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
374ca955 | 3 | * Copyright (C) 1997-2004, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ****************************************************************************** | |
6 | * Date Name Description | |
7 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. | |
8 | * 07/06/01 aliu Modified to support int32_t keys on | |
9 | * platforms with sizeof(void*) < 32. | |
10 | ****************************************************************************** | |
11 | */ | |
12 | ||
13 | #include "uhash.h" | |
14 | #include "unicode/ustring.h" | |
15 | #include "cstring.h" | |
16 | #include "cmemory.h" | |
17 | #include "uassert.h" | |
18 | ||
19 | /* This hashtable is implemented as a double hash. All elements are | |
20 | * stored in a single array with no secondary storage for collision | |
21 | * resolution (no linked list, etc.). When there is a hash collision | |
22 | * (when two unequal keys have the same hashcode) we resolve this by | |
23 | * using a secondary hash. The secondary hash is an increment | |
24 | * computed as a hash function (a different one) of the primary | |
25 | * hashcode. This increment is added to the initial hash value to | |
26 | * obtain further slots assigned to the same hash code. For this to | |
27 | * work, the length of the array and the increment must be relatively | |
28 | * prime. The easiest way to achieve this is to have the length of | |
29 | * the array be prime, and the increment be any value from | |
30 | * 1..length-1. | |
31 | * | |
32 | * Hashcodes are 32-bit integers. We make sure all hashcodes are | |
33 | * non-negative by masking off the top bit. This has two effects: (1) | |
34 | * modulo arithmetic is simplified. If we allowed negative hashcodes, | |
35 | * then when we computed hashcode % length, we could get a negative | |
36 | * result, which we would then have to adjust back into range. It's | |
37 | * simpler to just make hashcodes non-negative. (2) It makes it easy | |
38 | * to check for empty vs. occupied slots in the table. We just mark | |
39 | * empty or deleted slots with a negative hashcode. | |
40 | * | |
41 | * The central function is _uhash_find(). This function looks for a | |
42 | * slot matching the given key and hashcode. If one is found, it | |
43 | * returns a pointer to that slot. If the table is full, and no match | |
44 | * is found, it returns NULL -- in theory. This would make the code | |
45 | * more complicated, since all callers of _uhash_find() would then | |
46 | * have to check for a NULL result. To keep this from happening, we | |
47 | * don't allow the table to fill. When there is only one | |
48 | * empty/deleted slot left, uhash_put() will refuse to increase the | |
49 | * count, and fail. This simplifies the code. In practice, one will | |
50 | * seldom encounter this using default UHashtables. However, if a | |
51 | * hashtable is set to a U_FIXED resize policy, or if memory is | |
52 | * exhausted, then the table may fill. | |
53 | * | |
54 | * High and low water ratios control rehashing. They establish levels | |
55 | * of fullness (from 0 to 1) outside of which the data array is | |
56 | * reallocated and repopulated. Setting the low water ratio to zero | |
57 | * means the table will never shrink. Setting the high water ratio to | |
58 | * one means the table will never grow. The ratios should be | |
59 | * coordinated with the ratio between successive elements of the | |
60 | * PRIMES table, so that when the primeIndex is incremented or | |
61 | * decremented during rehashing, it brings the ratio of count / length | |
62 | * back into the desired range (between low and high water ratios). | |
63 | */ | |
64 | ||
65 | /******************************************************************** | |
66 | * PRIVATE Constants, Macros | |
67 | ********************************************************************/ | |
68 | ||
69 | /* This is a list of non-consecutive primes chosen such that | |
70 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 | |
71 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this | |
72 | * ratio is changed, the low and high water ratios should also be | |
73 | * adjusted to suit. | |
374ca955 A |
74 | * |
75 | * These prime numbers were also chosen so that they are the largest | |
76 | * prime number while being less than a power of two. | |
b75a7d8f A |
77 | */ |
78 | static const int32_t PRIMES[] = { | |
374ca955 A |
79 | 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
80 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, | |
81 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, | |
82 | 1073741789, 2147483647 /*, 4294967291 */ | |
b75a7d8f A |
83 | }; |
84 | ||
85 | #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) | |
86 | ||
87 | /* These ratios are tuned to the PRIMES array such that a resize | |
88 | * places the table back into the zone of non-resizing. That is, | |
89 | * after a call to _uhash_rehash(), a subsequent call to | |
90 | * _uhash_rehash() should do nothing (should not churn). This is only | |
91 | * a potential problem with U_GROW_AND_SHRINK. | |
92 | */ | |
93 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { | |
94 | /* low, high water ratio */ | |
95 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ | |
96 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ | |
97 | 0.0F, 1.0F /* U_FIXED: Never change size */ | |
98 | }; | |
99 | ||
100 | /* | |
101 | Invariants for hashcode values: | |
102 | ||
103 | * DELETED < 0 | |
104 | * EMPTY < 0 | |
105 | * Real hashes >= 0 | |
106 | ||
107 | Hashcodes may not start out this way, but internally they are | |
108 | adjusted so that they are always positive. We assume 32-bit | |
109 | hashcodes; adjust these constants for other hashcode sizes. | |
110 | */ | |
111 | #define HASH_DELETED ((int32_t) 0x80000000) | |
112 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) | |
113 | ||
114 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) | |
115 | ||
116 | /* This macro expects a UHashTok.pointer as its keypointer and | |
117 | valuepointer parameters */ | |
118 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ | |
119 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ | |
120 | (*hash->keyDeleter)(keypointer); \ | |
121 | } \ | |
122 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ | |
123 | (*hash->valueDeleter)(valuepointer); \ | |
124 | } | |
125 | ||
126 | /* | |
127 | * Constants for hinting whether a key or value is an integer | |
128 | * or a pointer. If a hint bit is zero, then the associated | |
129 | * token is assumed to be an integer. | |
130 | */ | |
131 | #define HINT_KEY_POINTER (1) | |
132 | #define HINT_VALUE_POINTER (2) | |
133 | ||
134 | /******************************************************************** | |
135 | * Debugging | |
136 | ********************************************************************/ | |
137 | ||
138 | ||
139 | /******************************************************************** | |
140 | * PRIVATE Prototypes | |
141 | ********************************************************************/ | |
142 | ||
143 | static UHashtable* _uhash_create(UHashFunction *keyHash, UKeyComparator *keyComp, | |
144 | int32_t primeIndex, UErrorCode *status); | |
145 | ||
146 | static void _uhash_allocate(UHashtable *hash, int32_t primeIndex, | |
147 | UErrorCode *status); | |
148 | ||
149 | static void _uhash_rehash(UHashtable *hash); | |
150 | ||
151 | static UHashElement* _uhash_find(const UHashtable *hash, UHashTok key, | |
152 | int32_t hashcode); | |
153 | ||
154 | static UHashTok _uhash_put(UHashtable *hash, | |
155 | UHashTok key, | |
156 | UHashTok value, | |
157 | int8_t hint, | |
158 | UErrorCode *status); | |
159 | ||
160 | static UHashTok _uhash_remove(UHashtable *hash, | |
161 | UHashTok key); | |
162 | ||
163 | static UHashTok _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e); | |
164 | ||
165 | static UHashTok _uhash_setElement(UHashtable* hash, UHashElement* e, | |
166 | int32_t hashcode, | |
167 | UHashTok key, UHashTok value, | |
168 | int8_t hint); | |
169 | ||
170 | static void _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy); | |
171 | ||
172 | /******************************************************************** | |
173 | * PUBLIC API | |
174 | ********************************************************************/ | |
175 | ||
176 | U_CAPI UHashtable* U_EXPORT2 | |
177 | uhash_open(UHashFunction *keyHash, UKeyComparator *keyComp, | |
178 | UErrorCode *status) { | |
179 | ||
180 | return _uhash_create(keyHash, keyComp, 3, status); | |
181 | } | |
182 | ||
183 | U_CAPI UHashtable* U_EXPORT2 | |
184 | uhash_openSize(UHashFunction *keyHash, UKeyComparator *keyComp, | |
185 | int32_t size, | |
186 | UErrorCode *status) { | |
187 | ||
188 | /* Find the smallest index i for which PRIMES[i] >= size. */ | |
189 | int32_t i = 0; | |
190 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | |
191 | ++i; | |
192 | } | |
193 | ||
194 | return _uhash_create(keyHash, keyComp, i, status); | |
195 | } | |
196 | ||
197 | U_CAPI void U_EXPORT2 | |
198 | uhash_close(UHashtable *hash) { | |
199 | U_ASSERT(hash != NULL); | |
200 | if (hash->elements != NULL) { | |
201 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { | |
202 | int32_t pos=-1; | |
203 | UHashElement *e; | |
204 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { | |
205 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); | |
206 | } | |
207 | } | |
208 | uprv_free(hash->elements); | |
209 | hash->elements = NULL; | |
210 | } | |
211 | uprv_free(hash); | |
212 | } | |
213 | ||
214 | U_CAPI UHashFunction *U_EXPORT2 | |
215 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { | |
216 | UHashFunction *result = hash->keyHasher; | |
217 | hash->keyHasher = fn; | |
218 | return result; | |
219 | } | |
220 | ||
221 | U_CAPI UKeyComparator *U_EXPORT2 | |
222 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { | |
223 | UKeyComparator *result = hash->keyComparator; | |
224 | hash->keyComparator = fn; | |
225 | return result; | |
226 | } | |
227 | ||
228 | U_CAPI UObjectDeleter *U_EXPORT2 | |
229 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
230 | UObjectDeleter *result = hash->keyDeleter; | |
231 | hash->keyDeleter = fn; | |
232 | return result; | |
233 | } | |
234 | ||
235 | U_CAPI UObjectDeleter *U_EXPORT2 | |
236 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
237 | UObjectDeleter *result = hash->valueDeleter; | |
238 | hash->valueDeleter = fn; | |
239 | return result; | |
240 | } | |
241 | ||
242 | U_CAPI void U_EXPORT2 | |
243 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | |
244 | _uhash_internalSetResizePolicy(hash, policy); | |
245 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
246 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
247 | _uhash_rehash(hash); | |
248 | } | |
249 | ||
250 | U_CAPI int32_t U_EXPORT2 | |
251 | uhash_count(const UHashtable *hash) { | |
252 | return hash->count; | |
253 | } | |
254 | ||
255 | U_CAPI void* U_EXPORT2 | |
256 | uhash_get(const UHashtable *hash, | |
257 | const void* key) { | |
258 | UHashTok keyholder; | |
259 | keyholder.pointer = (void*) key; | |
260 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
261 | } | |
262 | ||
263 | U_CAPI void* U_EXPORT2 | |
264 | uhash_iget(const UHashtable *hash, | |
265 | int32_t key) { | |
266 | UHashTok keyholder; | |
267 | keyholder.integer = key; | |
268 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
269 | } | |
270 | ||
271 | U_CAPI int32_t U_EXPORT2 | |
272 | uhash_geti(const UHashtable *hash, | |
273 | const void* key) { | |
274 | UHashTok keyholder; | |
275 | keyholder.pointer = (void*) key; | |
276 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
277 | } | |
278 | ||
374ca955 A |
279 | U_CAPI int32_t U_EXPORT2 |
280 | uhash_igeti(const UHashtable *hash, | |
281 | int32_t key) { | |
282 | UHashTok keyholder; | |
283 | keyholder.integer = key; | |
284 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
285 | } | |
286 | ||
b75a7d8f A |
287 | U_CAPI void* U_EXPORT2 |
288 | uhash_put(UHashtable *hash, | |
289 | void* key, | |
290 | void* value, | |
291 | UErrorCode *status) { | |
292 | UHashTok keyholder, valueholder; | |
293 | keyholder.pointer = key; | |
294 | valueholder.pointer = value; | |
295 | return _uhash_put(hash, keyholder, valueholder, | |
296 | HINT_KEY_POINTER | HINT_VALUE_POINTER, | |
297 | status).pointer; | |
298 | } | |
299 | ||
300 | U_CAPI void* U_EXPORT2 | |
301 | uhash_iput(UHashtable *hash, | |
302 | int32_t key, | |
303 | void* value, | |
304 | UErrorCode *status) { | |
305 | UHashTok keyholder, valueholder; | |
306 | keyholder.integer = key; | |
307 | valueholder.pointer = value; | |
308 | return _uhash_put(hash, keyholder, valueholder, | |
309 | HINT_VALUE_POINTER, | |
310 | status).pointer; | |
311 | } | |
312 | ||
313 | U_CAPI int32_t U_EXPORT2 | |
314 | uhash_puti(UHashtable *hash, | |
315 | void* key, | |
316 | int32_t value, | |
317 | UErrorCode *status) { | |
318 | UHashTok keyholder, valueholder; | |
319 | keyholder.pointer = key; | |
320 | valueholder.integer = value; | |
321 | return _uhash_put(hash, keyholder, valueholder, | |
322 | HINT_KEY_POINTER, | |
323 | status).integer; | |
324 | } | |
325 | ||
374ca955 A |
326 | |
327 | U_CAPI int32_t U_EXPORT2 | |
328 | uhash_iputi(UHashtable *hash, | |
329 | int32_t key, | |
330 | int32_t value, | |
331 | UErrorCode *status) { | |
332 | UHashTok keyholder, valueholder; | |
333 | keyholder.integer = key; | |
334 | valueholder.integer = value; | |
335 | return _uhash_put(hash, keyholder, valueholder, | |
336 | 0, /* neither is a ptr */ | |
337 | status).integer; | |
338 | } | |
339 | ||
b75a7d8f A |
340 | U_CAPI void* U_EXPORT2 |
341 | uhash_remove(UHashtable *hash, | |
342 | const void* key) { | |
343 | UHashTok keyholder; | |
344 | keyholder.pointer = (void*) key; | |
345 | return _uhash_remove(hash, keyholder).pointer; | |
346 | } | |
347 | ||
348 | U_CAPI void* U_EXPORT2 | |
349 | uhash_iremove(UHashtable *hash, | |
350 | int32_t key) { | |
351 | UHashTok keyholder; | |
352 | keyholder.integer = key; | |
353 | return _uhash_remove(hash, keyholder).pointer; | |
354 | } | |
355 | ||
356 | U_CAPI int32_t U_EXPORT2 | |
357 | uhash_removei(UHashtable *hash, | |
358 | const void* key) { | |
359 | UHashTok keyholder; | |
360 | keyholder.pointer = (void*) key; | |
361 | return _uhash_remove(hash, keyholder).integer; | |
362 | } | |
363 | ||
374ca955 A |
364 | U_CAPI int32_t U_EXPORT2 |
365 | uhash_iremovei(UHashtable *hash, | |
366 | int32_t key) { | |
367 | UHashTok keyholder; | |
368 | keyholder.integer = key; | |
369 | return _uhash_remove(hash, keyholder).integer; | |
370 | } | |
371 | ||
b75a7d8f A |
372 | U_CAPI void U_EXPORT2 |
373 | uhash_removeAll(UHashtable *hash) { | |
374 | int32_t pos = -1; | |
375 | const UHashElement *e; | |
376 | U_ASSERT(hash != NULL); | |
377 | if (hash->count != 0) { | |
378 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { | |
379 | uhash_removeElement(hash, e); | |
380 | } | |
381 | } | |
382 | U_ASSERT(hash->count == 0); | |
383 | } | |
384 | ||
385 | U_CAPI const UHashElement* U_EXPORT2 | |
386 | uhash_find(const UHashtable *hash, const void* key) { | |
387 | UHashTok keyholder; | |
388 | const UHashElement *e; | |
389 | keyholder.pointer = (void*) key; | |
390 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | |
391 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; | |
392 | } | |
393 | ||
394 | U_CAPI const UHashElement* U_EXPORT2 | |
395 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { | |
396 | /* Walk through the array until we find an element that is not | |
397 | * EMPTY and not DELETED. | |
398 | */ | |
399 | int32_t i; | |
400 | U_ASSERT(hash != NULL); | |
401 | for (i = *pos + 1; i < hash->length; ++i) { | |
402 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { | |
403 | *pos = i; | |
404 | return &(hash->elements[i]); | |
405 | } | |
406 | } | |
407 | ||
408 | /* No more elements */ | |
409 | return NULL; | |
410 | } | |
411 | ||
412 | U_CAPI void* U_EXPORT2 | |
413 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { | |
414 | U_ASSERT(hash != NULL); | |
415 | U_ASSERT(e != NULL); | |
416 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | |
417 | return _uhash_internalRemoveElement(hash, (UHashElement*) e).pointer; | |
418 | } | |
419 | return NULL; | |
420 | } | |
421 | ||
422 | /******************************************************************** | |
423 | * UHashTok convenience | |
424 | ********************************************************************/ | |
425 | ||
426 | /** | |
427 | * Return a UHashTok for an integer. | |
428 | */ | |
429 | U_CAPI UHashTok U_EXPORT2 | |
430 | uhash_toki(int32_t i) { | |
431 | UHashTok tok; | |
432 | tok.integer = i; | |
433 | return tok; | |
434 | } | |
435 | ||
436 | /** | |
437 | * Return a UHashTok for a pointer. | |
438 | */ | |
439 | U_CAPI UHashTok U_EXPORT2 | |
440 | uhash_tokp(void* p) { | |
441 | UHashTok tok; | |
442 | tok.pointer = p; | |
443 | return tok; | |
444 | } | |
445 | ||
446 | /******************************************************************** | |
447 | * PUBLIC Key Hash Functions | |
448 | ********************************************************************/ | |
449 | ||
450 | /* | |
451 | Compute the hash by iterating sparsely over about 32 (up to 63) | |
452 | characters spaced evenly through the string. For each character, | |
453 | multiply the previous hash value by a prime number and add the new | |
454 | character in, like a linear congruential random number generator, | |
455 | producing a pseudorandom deterministic value well distributed over | |
456 | the output range. [LIU] | |
457 | */ | |
458 | ||
459 | #define STRING_HASH(TYPE, STR, STRLEN, DEREF) \ | |
460 | int32_t hash = 0; \ | |
461 | const TYPE *p = (const TYPE*) STR; \ | |
462 | if (p != NULL) { \ | |
374ca955 | 463 | int32_t len = (int32_t)(STRLEN); \ |
b75a7d8f A |
464 | int32_t inc = ((len - 32) / 32) + 1; \ |
465 | const TYPE *limit = p + len; \ | |
466 | while (p<limit) { \ | |
467 | hash = (hash * 37) + DEREF; \ | |
468 | p += inc; \ | |
469 | } \ | |
470 | } \ | |
471 | return hash | |
472 | ||
473 | U_CAPI int32_t U_EXPORT2 | |
474 | uhash_hashUChars(const UHashTok key) { | |
475 | STRING_HASH(UChar, key.pointer, u_strlen(p), *p); | |
476 | } | |
477 | ||
478 | /* Used by UnicodeString to compute its hashcode - Not public API. */ | |
479 | U_CAPI int32_t U_EXPORT2 | |
480 | uhash_hashUCharsN(const UChar *str, int32_t length) { | |
481 | STRING_HASH(UChar, str, length, *p); | |
482 | } | |
483 | ||
484 | U_CAPI int32_t U_EXPORT2 | |
485 | uhash_hashChars(const UHashTok key) { | |
486 | STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p); | |
487 | } | |
488 | ||
489 | U_CAPI int32_t U_EXPORT2 | |
490 | uhash_hashIChars(const UHashTok key) { | |
491 | STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p)); | |
492 | } | |
493 | ||
494 | /******************************************************************** | |
495 | * PUBLIC Comparator Functions | |
496 | ********************************************************************/ | |
497 | ||
498 | U_CAPI UBool U_EXPORT2 | |
499 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { | |
500 | const UChar *p1 = (const UChar*) key1.pointer; | |
501 | const UChar *p2 = (const UChar*) key2.pointer; | |
502 | if (p1 == p2) { | |
503 | return TRUE; | |
504 | } | |
505 | if (p1 == NULL || p2 == NULL) { | |
506 | return FALSE; | |
507 | } | |
508 | while (*p1 != 0 && *p1 == *p2) { | |
509 | ++p1; | |
510 | ++p2; | |
511 | } | |
512 | return (UBool)(*p1 == *p2); | |
513 | } | |
514 | ||
515 | U_CAPI UBool U_EXPORT2 | |
516 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { | |
517 | const char *p1 = (const char*) key1.pointer; | |
518 | const char *p2 = (const char*) key2.pointer; | |
519 | if (p1 == p2) { | |
520 | return TRUE; | |
521 | } | |
522 | if (p1 == NULL || p2 == NULL) { | |
523 | return FALSE; | |
524 | } | |
525 | while (*p1 != 0 && *p1 == *p2) { | |
526 | ++p1; | |
527 | ++p2; | |
528 | } | |
529 | return (UBool)(*p1 == *p2); | |
530 | } | |
531 | ||
532 | U_CAPI UBool U_EXPORT2 | |
533 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { | |
534 | const char *p1 = (const char*) key1.pointer; | |
535 | const char *p2 = (const char*) key2.pointer; | |
536 | if (p1 == p2) { | |
537 | return TRUE; | |
538 | } | |
539 | if (p1 == NULL || p2 == NULL) { | |
540 | return FALSE; | |
541 | } | |
542 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { | |
543 | ++p1; | |
544 | ++p2; | |
545 | } | |
546 | return (UBool)(*p1 == *p2); | |
547 | } | |
548 | ||
549 | /******************************************************************** | |
550 | * PUBLIC int32_t Support Functions | |
551 | ********************************************************************/ | |
552 | ||
553 | U_CAPI int32_t U_EXPORT2 | |
554 | uhash_hashLong(const UHashTok key) { | |
555 | return key.integer; | |
556 | } | |
557 | ||
558 | U_CAPI UBool U_EXPORT2 | |
559 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { | |
560 | return (UBool)(key1.integer == key2.integer); | |
561 | } | |
562 | ||
563 | /******************************************************************** | |
564 | * PUBLIC Deleter Functions | |
565 | ********************************************************************/ | |
566 | ||
567 | U_CAPI void U_EXPORT2 | |
568 | uhash_freeBlock(void *obj) { | |
569 | uprv_free(obj); | |
570 | } | |
571 | ||
572 | /******************************************************************** | |
573 | * PRIVATE Implementation | |
574 | ********************************************************************/ | |
575 | ||
576 | static UHashtable* | |
577 | _uhash_create(UHashFunction *keyHash, UKeyComparator *keyComp, | |
578 | int32_t primeIndex, | |
579 | UErrorCode *status) { | |
580 | UHashtable *result; | |
581 | ||
582 | if (U_FAILURE(*status)) return NULL; | |
583 | U_ASSERT(keyHash != NULL); | |
584 | U_ASSERT(keyComp != NULL); | |
585 | ||
586 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); | |
587 | if (result == NULL) { | |
588 | *status = U_MEMORY_ALLOCATION_ERROR; | |
589 | return NULL; | |
590 | } | |
591 | ||
592 | result->keyHasher = keyHash; | |
593 | result->keyComparator = keyComp; | |
594 | result->keyDeleter = NULL; | |
595 | result->valueDeleter = NULL; | |
596 | _uhash_internalSetResizePolicy(result, U_GROW); | |
597 | ||
598 | _uhash_allocate(result, primeIndex, status); | |
599 | ||
600 | if (U_FAILURE(*status)) { | |
601 | uprv_free(result); | |
602 | return NULL; | |
603 | } | |
604 | ||
605 | return result; | |
606 | } | |
607 | ||
608 | /** | |
609 | * Allocate internal data array of a size determined by the given | |
610 | * prime index. If the index is out of range it is pinned into range. | |
611 | * If the allocation fails the status is set to | |
612 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In | |
613 | * either case the previous array pointer is overwritten. | |
614 | * | |
615 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. | |
616 | */ | |
617 | static void | |
618 | _uhash_allocate(UHashtable *hash, | |
619 | int32_t primeIndex, | |
620 | UErrorCode *status) { | |
621 | ||
622 | UHashElement *p, *limit; | |
623 | UHashTok emptytok; | |
624 | ||
625 | if (U_FAILURE(*status)) return; | |
626 | ||
627 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); | |
628 | ||
629 | hash->primeIndex = primeIndex; | |
630 | hash->length = PRIMES[primeIndex]; | |
631 | ||
632 | p = hash->elements = (UHashElement*) | |
633 | uprv_malloc(sizeof(UHashElement) * hash->length); | |
634 | ||
635 | if (hash->elements == NULL) { | |
636 | *status = U_MEMORY_ALLOCATION_ERROR; | |
637 | return; | |
638 | } | |
639 | ||
640 | emptytok.pointer = NULL; /* Only one of these two is needed */ | |
641 | emptytok.integer = 0; /* but we don't know which one. */ | |
642 | ||
643 | limit = p + hash->length; | |
644 | while (p < limit) { | |
645 | p->key = emptytok; | |
646 | p->value = emptytok; | |
647 | p->hashcode = HASH_EMPTY; | |
648 | ++p; | |
649 | } | |
650 | ||
651 | hash->count = 0; | |
652 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
653 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
654 | } | |
655 | ||
656 | /** | |
657 | * Attempt to grow or shrink the data arrays in order to make the | |
658 | * count fit between the high and low water marks. hash_put() and | |
659 | * hash_remove() call this method when the count exceeds the high or | |
660 | * low water marks. This method may do nothing, if memory allocation | |
661 | * fails, or if the count is already in range, or if the length is | |
662 | * already at the low or high limit. In any case, upon return the | |
663 | * arrays will be valid. | |
664 | */ | |
665 | static void | |
666 | _uhash_rehash(UHashtable *hash) { | |
667 | ||
668 | UHashElement *old = hash->elements; | |
669 | int32_t oldLength = hash->length; | |
670 | int32_t newPrimeIndex = hash->primeIndex; | |
671 | int32_t i; | |
672 | UErrorCode status = U_ZERO_ERROR; | |
673 | ||
674 | if (hash->count > hash->highWaterMark) { | |
675 | if (++newPrimeIndex >= PRIMES_LENGTH) { | |
676 | return; | |
677 | } | |
678 | } else if (hash->count < hash->lowWaterMark) { | |
679 | if (--newPrimeIndex < 0) { | |
680 | return; | |
681 | } | |
682 | } else { | |
683 | return; | |
684 | } | |
685 | ||
686 | _uhash_allocate(hash, newPrimeIndex, &status); | |
687 | ||
688 | if (U_FAILURE(status)) { | |
689 | hash->elements = old; | |
690 | hash->length = oldLength; | |
691 | return; | |
692 | } | |
693 | ||
694 | for (i = oldLength - 1; i >= 0; --i) { | |
695 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { | |
696 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); | |
697 | U_ASSERT(e != NULL); | |
698 | U_ASSERT(e->hashcode == HASH_EMPTY); | |
699 | e->key = old[i].key; | |
700 | e->value = old[i].value; | |
701 | e->hashcode = old[i].hashcode; | |
702 | ++hash->count; | |
703 | } | |
704 | } | |
705 | ||
706 | uprv_free(old); | |
707 | } | |
708 | ||
709 | /** | |
710 | * Look for a key in the table, or if no such key exists, the first | |
711 | * empty slot matching the given hashcode. Keys are compared using | |
712 | * the keyComparator function. | |
713 | * | |
714 | * First find the start position, which is the hashcode modulo | |
715 | * the length. Test it to see if it is: | |
716 | * | |
717 | * a. identical: First check the hash values for a quick check, | |
718 | * then compare keys for equality using keyComparator. | |
719 | * b. deleted | |
720 | * c. empty | |
721 | * | |
722 | * Stop if it is identical or empty, otherwise continue by adding a | |
723 | * "jump" value (moduloing by the length again to keep it within | |
724 | * range) and retesting. For efficiency, there need enough empty | |
725 | * values so that the searchs stop within a reasonable amount of time. | |
726 | * This can be changed by changing the high/low water marks. | |
727 | * | |
728 | * In theory, this function can return NULL, if it is full (no empty | |
729 | * or deleted slots) and if no matching key is found. In practice, we | |
730 | * prevent this elsewhere (in uhash_put) by making sure the last slot | |
731 | * in the table is never filled. | |
732 | * | |
733 | * The size of the table should be prime for this algorithm to work; | |
734 | * otherwise we are not guaranteed that the jump value (the secondary | |
735 | * hash) is relatively prime to the table length. | |
736 | */ | |
737 | static UHashElement* | |
738 | _uhash_find(const UHashtable *hash, UHashTok key, | |
739 | int32_t hashcode) { | |
740 | ||
741 | int32_t firstDeleted = -1; /* assume invalid index */ | |
742 | int32_t theIndex, startIndex; | |
743 | int32_t jump = 0; /* lazy evaluate */ | |
744 | int32_t tableHash; | |
745 | ||
746 | hashcode &= 0x7FFFFFFF; /* must be positive */ | |
747 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; | |
748 | ||
749 | do { | |
750 | tableHash = hash->elements[theIndex].hashcode; | |
751 | if (tableHash == hashcode) { /* quick check */ | |
752 | if ((*hash->keyComparator)(key, hash->elements[theIndex].key)) { | |
753 | return &(hash->elements[theIndex]); | |
754 | } | |
755 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { | |
756 | /* We have hit a slot which contains a key-value pair, | |
757 | * but for which the hash code does not match. Keep | |
758 | * looking. | |
759 | */ | |
760 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ | |
761 | break; | |
762 | } else if (firstDeleted < 0) { /* remember first deleted */ | |
763 | firstDeleted = theIndex; | |
764 | } | |
765 | if (jump == 0) { /* lazy compute jump */ | |
766 | /* The jump value must be relatively prime to the table | |
767 | * length. As long as the length is prime, then any value | |
768 | * 1..length-1 will be relatively prime to it. | |
769 | */ | |
770 | jump = (hashcode % (hash->length - 1)) + 1; | |
771 | } | |
772 | theIndex = (theIndex + jump) % hash->length; | |
773 | } while (theIndex != startIndex); | |
774 | ||
775 | if (firstDeleted >= 0) { | |
776 | theIndex = firstDeleted; /* reset if had deleted slot */ | |
777 | } else if (tableHash != HASH_EMPTY) { | |
778 | /* We get to this point if the hashtable is full (no empty or | |
779 | * deleted slots), and we've failed to find a match. THIS | |
780 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that | |
781 | * count is always < length. | |
782 | */ | |
783 | U_ASSERT(FALSE); | |
784 | return NULL; /* Never happens if uhash_put() behaves */ | |
785 | } | |
786 | return &(hash->elements[theIndex]); | |
787 | } | |
788 | ||
789 | static UHashTok | |
790 | _uhash_put(UHashtable *hash, | |
791 | UHashTok key, | |
792 | UHashTok value, | |
793 | int8_t hint, | |
794 | UErrorCode *status) { | |
795 | ||
796 | /* Put finds the position in the table for the new value. If the | |
797 | * key is already in the table, it is deleted, if there is a | |
798 | * non-NULL keyDeleter. Then the key, the hash and the value are | |
799 | * all put at the position in their respective arrays. | |
800 | */ | |
801 | int32_t hashcode; | |
802 | UHashElement* e; | |
803 | UHashTok emptytok; | |
804 | ||
805 | if (U_FAILURE(*status)) { | |
806 | goto err; | |
807 | } | |
808 | U_ASSERT(hash != NULL); | |
809 | /* Cannot always check pointer here or iSeries sees NULL every time. */ | |
810 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { | |
811 | /* Disallow storage of NULL values, since NULL is returned by | |
812 | * get() to indicate an absent key. Storing NULL == removing. | |
813 | */ | |
814 | return _uhash_remove(hash, key); | |
815 | } | |
816 | if (hash->count > hash->highWaterMark) { | |
817 | _uhash_rehash(hash); | |
818 | } | |
819 | ||
820 | hashcode = (*hash->keyHasher)(key); | |
821 | e = _uhash_find(hash, key, hashcode); | |
822 | U_ASSERT(e != NULL); | |
823 | ||
824 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { | |
825 | /* Important: We must never actually fill the table up. If we | |
826 | * do so, then _uhash_find() will return NULL, and we'll have | |
827 | * to check for NULL after every call to _uhash_find(). To | |
828 | * avoid this we make sure there is always at least one empty | |
829 | * or deleted slot in the table. This only is a problem if we | |
830 | * are out of memory and rehash isn't working. | |
831 | */ | |
832 | ++hash->count; | |
833 | if (hash->count == hash->length) { | |
834 | /* Don't allow count to reach length */ | |
835 | --hash->count; | |
836 | *status = U_MEMORY_ALLOCATION_ERROR; | |
837 | goto err; | |
838 | } | |
839 | } | |
840 | ||
841 | /* We must in all cases handle storage properly. If there was an | |
842 | * old key, then it must be deleted (if the deleter != NULL). | |
843 | * Make hashcodes stored in table positive. | |
844 | */ | |
845 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); | |
846 | ||
847 | err: | |
848 | /* If the deleters are non-NULL, this method adopts its key and/or | |
849 | * value arguments, and we must be sure to delete the key and/or | |
850 | * value in all cases, even upon failure. | |
851 | */ | |
852 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); | |
853 | emptytok.pointer = NULL; emptytok.integer = 0; | |
854 | return emptytok; | |
855 | } | |
856 | ||
857 | static UHashTok | |
858 | _uhash_remove(UHashtable *hash, | |
859 | UHashTok key) { | |
860 | /* First find the position of the key in the table. If the object | |
861 | * has not been removed already, remove it. If the user wanted | |
862 | * keys deleted, then delete it also. We have to put a special | |
863 | * hashcode in that position that means that something has been | |
864 | * deleted, since when we do a find, we have to continue PAST any | |
865 | * deleted values. | |
866 | */ | |
867 | UHashTok result; | |
868 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); | |
869 | U_ASSERT(e != NULL); | |
870 | result.pointer = NULL; result.integer = 0; | |
871 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | |
872 | result = _uhash_internalRemoveElement(hash, e); | |
873 | if (hash->count < hash->lowWaterMark) { | |
874 | _uhash_rehash(hash); | |
875 | } | |
876 | } | |
877 | return result; | |
878 | } | |
879 | ||
880 | static UHashTok | |
881 | _uhash_setElement(UHashtable *hash, UHashElement* e, | |
882 | int32_t hashcode, | |
883 | UHashTok key, UHashTok value, int8_t hint) { | |
884 | ||
885 | UHashTok oldValue = e->value; | |
886 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && | |
887 | e->key.pointer != key.pointer) { /* Avoid double deletion */ | |
888 | (*hash->keyDeleter)(e->key.pointer); | |
889 | } | |
890 | if (hash->valueDeleter != NULL) { | |
891 | if (oldValue.pointer != NULL && | |
892 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ | |
893 | (*hash->valueDeleter)(oldValue.pointer); | |
894 | } | |
895 | oldValue.pointer = NULL; | |
896 | } | |
897 | /* Compilers should copy the UHashTok union correctly, but even if | |
898 | * they do, memory heap tools (e.g. BoundsChecker) can get | |
899 | * confused when a pointer is cloaked in a union and then copied. | |
900 | * TO ALLEVIATE THIS, we use hints (based on what API the user is | |
901 | * calling) to copy pointers when we know the user thinks | |
902 | * something is a pointer. */ | |
903 | if (hint & HINT_KEY_POINTER) { | |
904 | e->key.pointer = key.pointer; | |
905 | } else { | |
906 | e->key = key; | |
907 | } | |
908 | if (hint & HINT_VALUE_POINTER) { | |
909 | e->value.pointer = value.pointer; | |
910 | } else { | |
911 | e->value = value; | |
912 | } | |
913 | e->hashcode = hashcode; | |
914 | return oldValue; | |
915 | } | |
916 | ||
917 | /** | |
918 | * Assumes that the given element is not empty or deleted. | |
919 | */ | |
920 | static UHashTok | |
921 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { | |
922 | UHashTok empty; | |
923 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); | |
924 | --hash->count; | |
925 | empty.pointer = NULL; empty.integer = 0; | |
926 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); | |
927 | } | |
928 | ||
929 | static void | |
930 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | |
931 | U_ASSERT(hash != NULL); | |
932 | U_ASSERT(((int32_t)policy) >= 0); | |
933 | U_ASSERT(((int32_t)policy) < 3); | |
934 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; | |
935 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; | |
936 | } |