]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | // |
2 | // rbbitblb.cpp | |
3 | // | |
4 | ||
5 | /* | |
6 | ********************************************************************** | |
374ca955 | 7 | * Copyright (c) 2002-2004, International Business Machines |
b75a7d8f A |
8 | * Corporation and others. All Rights Reserved. |
9 | ********************************************************************** | |
10 | */ | |
11 | ||
12 | #include "unicode/utypes.h" | |
13 | ||
14 | #if !UCONFIG_NO_BREAK_ITERATION | |
15 | ||
16 | #include "unicode/unistr.h" | |
17 | #include "rbbitblb.h" | |
18 | #include "rbbirb.h" | |
19 | #include "rbbisetb.h" | |
20 | #include "rbbidata.h" | |
21 | #include "cstring.h" | |
22 | #include "uassert.h" | |
23 | ||
24 | U_NAMESPACE_BEGIN | |
25 | ||
26 | RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) : | |
27 | fTree(*rootNode) { | |
374ca955 A |
28 | fRB = rb; |
29 | fStatus = fRB->fStatus; | |
30 | UErrorCode status = U_ZERO_ERROR; | |
31 | fDStates = new UVector(status); | |
32 | if (U_FAILURE(*fStatus)) { | |
33 | return; | |
34 | } | |
35 | if (U_FAILURE(status)) { | |
36 | *fStatus = status; | |
37 | return; | |
38 | } | |
39 | if (fDStates == NULL) { | |
40 | *fStatus = U_MEMORY_ALLOCATION_ERROR;; | |
41 | } | |
b75a7d8f A |
42 | } |
43 | ||
44 | ||
45 | ||
46 | RBBITableBuilder::~RBBITableBuilder() { | |
47 | int i; | |
48 | for (i=0; i<fDStates->size(); i++) { | |
49 | delete (RBBIStateDescriptor *)fDStates->elementAt(i); | |
50 | } | |
51 | delete fDStates; | |
52 | } | |
53 | ||
54 | ||
55 | //----------------------------------------------------------------------------- | |
56 | // | |
57 | // RBBITableBuilder::build - This is the main function for building the DFA state transtion | |
58 | // table from the RBBI rules parse tree. | |
59 | // | |
60 | //----------------------------------------------------------------------------- | |
61 | void RBBITableBuilder::build() { | |
62 | ||
63 | if (U_FAILURE(*fStatus)) { | |
64 | return; | |
65 | } | |
66 | ||
67 | // If there were no rules, just return. This situation can easily arise | |
68 | // for the reverse rules. | |
69 | if (fTree==NULL) { | |
70 | return; | |
71 | } | |
72 | ||
73 | // | |
74 | // Walk through the tree, replacing any references to $variables with a copy of the | |
75 | // parse tree for the substition expression. | |
76 | // | |
77 | fTree = fTree->flattenVariables(); | |
78 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) { | |
374ca955 | 79 | RBBIDebugPuts("Parse tree after flattening variable references."); |
b75a7d8f A |
80 | fTree->printTree(TRUE); |
81 | } | |
82 | ||
83 | // | |
84 | // Add a unique right-end marker to the expression. | |
85 | // Appears as a cat-node, left child being the original tree, | |
86 | // right child being the end marker. | |
87 | // | |
88 | RBBINode *cn = new RBBINode(RBBINode::opCat); | |
89 | cn->fLeftChild = fTree; | |
90 | fTree->fParent = cn; | |
91 | cn->fRightChild = new RBBINode(RBBINode::endMark); | |
92 | cn->fRightChild->fParent = cn; | |
93 | fTree = cn; | |
94 | ||
95 | // | |
96 | // Replace all references to UnicodeSets with the tree for the equivalent | |
97 | // expression. | |
98 | // | |
99 | fTree->flattenSets(); | |
100 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) { | |
374ca955 | 101 | RBBIDebugPuts("Parse tree after flattening Unicode Set references."); |
b75a7d8f A |
102 | fTree->printTree(TRUE); |
103 | } | |
104 | ||
105 | ||
106 | // | |
107 | // calculate the functions nullable, firstpos, lastpos and followpos on | |
108 | // nodes in the parse tree. | |
109 | // See the alogrithm description in Aho. | |
110 | // Understanding how this works by looking at the code alone will be | |
111 | // nearly impossible. | |
112 | // | |
113 | calcNullable(fTree); | |
114 | calcFirstPos(fTree); | |
115 | calcLastPos(fTree); | |
116 | calcFollowPos(fTree); | |
117 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) { | |
374ca955 | 118 | RBBIDebugPuts("\n"); |
b75a7d8f A |
119 | printPosSets(fTree); |
120 | } | |
121 | ||
374ca955 A |
122 | // |
123 | // For "chained" rules, modify the followPos sets | |
124 | // | |
125 | if (fRB->fChainRules) { | |
126 | calcChainedFollowPos(fTree); | |
127 | } | |
128 | ||
b75a7d8f A |
129 | // |
130 | // Build the DFA state transition tables. | |
131 | // | |
132 | buildStateTable(); | |
133 | flagAcceptingStates(); | |
134 | flagLookAheadStates(); | |
135 | flagTaggedStates(); | |
b75a7d8f | 136 | |
374ca955 A |
137 | // |
138 | // Update the global table of rule status {tag} values | |
139 | // The rule builder has a global vector of status values that are common | |
140 | // for all tables. Merge the ones from this table into the global set. | |
141 | // | |
142 | mergeRuleStatusVals(); | |
143 | ||
144 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "states")) {printStates();}; | |
b75a7d8f A |
145 | } |
146 | ||
147 | ||
148 | ||
149 | //----------------------------------------------------------------------------- | |
150 | // | |
151 | // calcNullable. Impossible to explain succinctly. See Aho, section 3.9 | |
152 | // | |
153 | //----------------------------------------------------------------------------- | |
154 | void RBBITableBuilder::calcNullable(RBBINode *n) { | |
155 | if (n == NULL) { | |
156 | return; | |
157 | } | |
158 | if (n->fType == RBBINode::setRef || | |
159 | n->fType == RBBINode::endMark ) { | |
160 | // These are non-empty leaf node types. | |
161 | n->fNullable = FALSE; | |
162 | return; | |
163 | } | |
164 | ||
165 | if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) { | |
166 | // Lookahead marker node. It's a leaf, so no recursion on children. | |
167 | // It's nullable because it does not match any literal text from the input stream. | |
168 | n->fNullable = TRUE; | |
169 | return; | |
170 | } | |
171 | ||
172 | ||
173 | // The node is not a leaf. | |
174 | // Calculate nullable on its children. | |
175 | calcNullable(n->fLeftChild); | |
176 | calcNullable(n->fRightChild); | |
177 | ||
178 | // Apply functions from table 3.40 in Aho | |
179 | if (n->fType == RBBINode::opOr) { | |
180 | n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable; | |
181 | } | |
182 | else if (n->fType == RBBINode::opCat) { | |
183 | n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable; | |
184 | } | |
185 | else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) { | |
186 | n->fNullable = TRUE; | |
187 | } | |
188 | else { | |
189 | n->fNullable = FALSE; | |
190 | } | |
191 | } | |
192 | ||
193 | ||
194 | ||
195 | ||
196 | //----------------------------------------------------------------------------- | |
197 | // | |
198 | // calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9 | |
199 | // | |
200 | //----------------------------------------------------------------------------- | |
201 | void RBBITableBuilder::calcFirstPos(RBBINode *n) { | |
202 | if (n == NULL) { | |
203 | return; | |
204 | } | |
205 | if (n->fType == RBBINode::leafChar || | |
206 | n->fType == RBBINode::endMark || | |
207 | n->fType == RBBINode::lookAhead || | |
208 | n->fType == RBBINode::tag) { | |
209 | // These are non-empty leaf node types. | |
210 | n->fFirstPosSet->addElement(n, *fStatus); | |
211 | return; | |
212 | } | |
213 | ||
214 | // The node is not a leaf. | |
215 | // Calculate firstPos on its children. | |
216 | calcFirstPos(n->fLeftChild); | |
217 | calcFirstPos(n->fRightChild); | |
218 | ||
219 | // Apply functions from table 3.40 in Aho | |
220 | if (n->fType == RBBINode::opOr) { | |
221 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); | |
222 | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); | |
223 | } | |
224 | else if (n->fType == RBBINode::opCat) { | |
225 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); | |
226 | if (n->fLeftChild->fNullable) { | |
227 | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); | |
228 | } | |
229 | } | |
230 | else if (n->fType == RBBINode::opStar || | |
231 | n->fType == RBBINode::opQuestion || | |
232 | n->fType == RBBINode::opPlus) { | |
233 | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); | |
234 | } | |
235 | } | |
236 | ||
237 | ||
238 | ||
239 | //----------------------------------------------------------------------------- | |
240 | // | |
241 | // calcLastPos. Impossible to explain succinctly. See Aho, section 3.9 | |
242 | // | |
243 | //----------------------------------------------------------------------------- | |
244 | void RBBITableBuilder::calcLastPos(RBBINode *n) { | |
245 | if (n == NULL) { | |
246 | return; | |
247 | } | |
248 | if (n->fType == RBBINode::leafChar || | |
249 | n->fType == RBBINode::endMark || | |
250 | n->fType == RBBINode::lookAhead || | |
251 | n->fType == RBBINode::tag) { | |
252 | // These are non-empty leaf node types. | |
253 | n->fLastPosSet->addElement(n, *fStatus); | |
254 | return; | |
255 | } | |
256 | ||
257 | // The node is not a leaf. | |
258 | // Calculate lastPos on its children. | |
259 | calcLastPos(n->fLeftChild); | |
260 | calcLastPos(n->fRightChild); | |
261 | ||
262 | // Apply functions from table 3.40 in Aho | |
263 | if (n->fType == RBBINode::opOr) { | |
264 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); | |
265 | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); | |
266 | } | |
267 | else if (n->fType == RBBINode::opCat) { | |
268 | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); | |
269 | if (n->fRightChild->fNullable) { | |
270 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); | |
271 | } | |
272 | } | |
273 | else if (n->fType == RBBINode::opStar || | |
274 | n->fType == RBBINode::opQuestion || | |
275 | n->fType == RBBINode::opPlus) { | |
276 | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); | |
277 | } | |
278 | } | |
279 | ||
280 | ||
281 | ||
282 | //----------------------------------------------------------------------------- | |
283 | // | |
284 | // calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9 | |
285 | // | |
286 | //----------------------------------------------------------------------------- | |
287 | void RBBITableBuilder::calcFollowPos(RBBINode *n) { | |
288 | if (n == NULL || | |
289 | n->fType == RBBINode::leafChar || | |
290 | n->fType == RBBINode::endMark) { | |
291 | return; | |
292 | } | |
293 | ||
294 | calcFollowPos(n->fLeftChild); | |
295 | calcFollowPos(n->fRightChild); | |
296 | ||
297 | // Aho rule #1 | |
298 | if (n->fType == RBBINode::opCat) { | |
299 | RBBINode *i; // is 'i' in Aho's description | |
300 | uint32_t ix; | |
301 | ||
302 | UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet; | |
303 | ||
304 | for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) { | |
305 | i = (RBBINode *)LastPosOfLeftChild->elementAt(ix); | |
306 | setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet); | |
307 | } | |
308 | } | |
309 | ||
310 | // Aho rule #2 | |
311 | if (n->fType == RBBINode::opStar || | |
312 | n->fType == RBBINode::opPlus) { | |
313 | RBBINode *i; // again, n and i are the names from Aho's description. | |
314 | uint32_t ix; | |
315 | ||
316 | for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) { | |
317 | i = (RBBINode *)n->fLastPosSet->elementAt(ix); | |
318 | setAdd(i->fFollowPos, n->fFirstPosSet); | |
319 | } | |
320 | } | |
321 | ||
322 | ||
323 | ||
324 | } | |
325 | ||
326 | ||
374ca955 A |
327 | //----------------------------------------------------------------------------- |
328 | // | |
329 | // calcChainedFollowPos. Modify the previously calculated followPos sets | |
330 | // to implement rule chaining. NOT described by Aho | |
331 | // | |
332 | //----------------------------------------------------------------------------- | |
333 | void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) { | |
334 | ||
335 | UVector endMarkerNodes(*fStatus); | |
336 | UVector leafNodes(*fStatus); | |
337 | int32_t i; | |
338 | ||
339 | if (U_FAILURE(*fStatus)) { | |
340 | return; | |
341 | } | |
342 | ||
343 | // get a list of all endmarker nodes. | |
344 | tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); | |
345 | ||
346 | // get a list all leaf nodes | |
347 | tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus); | |
348 | if (U_FAILURE(*fStatus)) { | |
349 | return; | |
350 | } | |
351 | ||
352 | // Get all nodes that can be the start a match, which is FirstPosition(root) | |
353 | UVector *matchStartNodes = tree->fFirstPosSet; | |
354 | ||
355 | ||
356 | // Iteratate over all leaf nodes, | |
357 | // | |
358 | int32_t endNodeIx; | |
359 | int32_t startNodeIx; | |
360 | ||
361 | for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) { | |
362 | RBBINode *tNode = (RBBINode *)leafNodes.elementAt(endNodeIx); | |
363 | RBBINode *endNode = NULL; | |
364 | ||
365 | // Identify leaf nodes that correspond to overall rule match positions. | |
366 | // These include an endMarkerNode in their followPos sets. | |
367 | for (i=0; i<endMarkerNodes.size(); i++) { | |
368 | if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) { | |
369 | endNode = tNode; | |
370 | break; | |
371 | } | |
372 | } | |
373 | if (endNode == NULL) { | |
374 | // node wasn't an end node. Try again with the next. | |
375 | continue; | |
376 | } | |
377 | ||
378 | // We've got a node that can end a match. | |
379 | ||
380 | // Line Break Specific hack: If this node's val correspond to the $CM char class, | |
381 | // don't chain from it. | |
382 | // TODO: Add rule syntax for this behavior, get specifics out of here and | |
383 | // into the rule file. | |
384 | if (fRB->fLBCMNoChain) { | |
385 | UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal); | |
386 | U_ASSERT(c != -1); | |
387 | ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK); | |
388 | if (cLBProp == U_LB_COMBINING_MARK) { | |
389 | continue; | |
390 | } | |
391 | } | |
392 | ||
393 | ||
394 | // Now iterate over the nodes that can start a match, looking for ones | |
395 | // with the same char class as our ending node. | |
396 | RBBINode *startNode; | |
397 | for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { | |
398 | startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); | |
399 | if (startNode->fType != RBBINode::leafChar) { | |
400 | continue; | |
401 | } | |
402 | ||
403 | if (endNode->fVal == startNode->fVal) { | |
404 | // The end val (character class) of one possible match is the | |
405 | // same as the start of another. | |
406 | ||
407 | // Add all nodes from the followPos of the start node to the | |
408 | // followPos set of the end node, which will have the effect of | |
409 | // letting matches transition from a match state at endNode | |
410 | // to the second char of a match starting with startNode. | |
411 | setAdd(endNode->fFollowPos, startNode->fFollowPos); | |
412 | } | |
413 | } | |
414 | } | |
415 | } | |
416 | ||
417 | ||
b75a7d8f A |
418 | //----------------------------------------------------------------------------- |
419 | // | |
420 | // buildStateTable() Determine the set of runtime DFA states and the | |
421 | // transition tables for these states, by the algorithm | |
422 | // of fig. 3.44 in Aho. | |
423 | // | |
424 | // Most of the comments are quotes of Aho's psuedo-code. | |
425 | // | |
426 | //----------------------------------------------------------------------------- | |
427 | void RBBITableBuilder::buildStateTable() { | |
374ca955 A |
428 | if (U_FAILURE(*fStatus)) { |
429 | return; | |
430 | } | |
b75a7d8f A |
431 | // |
432 | // Add a dummy state 0 - the stop state. Not from Aho. | |
433 | int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1; | |
434 | RBBIStateDescriptor *failState = new RBBIStateDescriptor(lastInputSymbol, fStatus); | |
435 | failState->fPositions = new UVector(*fStatus); | |
374ca955 A |
436 | if (U_FAILURE(*fStatus)) { |
437 | return; | |
438 | } | |
b75a7d8f | 439 | fDStates->addElement(failState, *fStatus); |
374ca955 A |
440 | if (U_FAILURE(*fStatus)) { |
441 | return; | |
442 | } | |
b75a7d8f A |
443 | |
444 | // initially, the only unmarked state in Dstates is firstpos(root), | |
445 | // where toot is the root of the syntax tree for (r)#; | |
446 | RBBIStateDescriptor *initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus); | |
374ca955 A |
447 | if (U_FAILURE(*fStatus)) { |
448 | return; | |
449 | } | |
b75a7d8f | 450 | initialState->fPositions = new UVector(*fStatus); |
374ca955 A |
451 | if (U_FAILURE(*fStatus)) { |
452 | return; | |
453 | } | |
b75a7d8f A |
454 | setAdd(initialState->fPositions, fTree->fFirstPosSet); |
455 | fDStates->addElement(initialState, *fStatus); | |
374ca955 A |
456 | if (U_FAILURE(*fStatus)) { |
457 | return; | |
458 | } | |
b75a7d8f A |
459 | |
460 | // while there is an unmarked state T in Dstates do begin | |
461 | for (;;) { | |
462 | RBBIStateDescriptor *T = NULL; | |
463 | int32_t tx; | |
464 | for (tx=1; tx<fDStates->size(); tx++) { | |
465 | RBBIStateDescriptor *temp; | |
466 | temp = (RBBIStateDescriptor *)fDStates->elementAt(tx); | |
467 | if (temp->fMarked == FALSE) { | |
468 | T = temp; | |
469 | break; | |
470 | } | |
471 | } | |
472 | if (T == NULL) { | |
473 | break; | |
474 | } | |
475 | ||
476 | // mark T; | |
477 | T->fMarked = TRUE; | |
478 | ||
479 | // for each input symbol a do begin | |
480 | int32_t a; | |
481 | for (a = 1; a<=lastInputSymbol; a++) { | |
482 | // let U be the set of positions that are in followpos(p) | |
483 | // for some position p in T | |
484 | // such that the symbol at position p is a; | |
485 | UVector *U = NULL; | |
486 | RBBINode *p; | |
487 | int32_t px; | |
488 | for (px=0; px<T->fPositions->size(); px++) { | |
489 | p = (RBBINode *)T->fPositions->elementAt(px); | |
490 | if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) { | |
491 | if (U == NULL) { | |
492 | U = new UVector(*fStatus); | |
493 | } | |
494 | setAdd(U, p->fFollowPos); | |
495 | } | |
496 | } | |
497 | ||
498 | // if U is not empty and not in DStates then | |
499 | int32_t ux = 0; | |
500 | UBool UinDstates = FALSE; | |
501 | if (U != NULL) { | |
502 | U_ASSERT(U->size() > 0); | |
503 | int ix; | |
504 | for (ix=0; ix<fDStates->size(); ix++) { | |
505 | RBBIStateDescriptor *temp2; | |
506 | temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix); | |
507 | if (setEquals(U, temp2->fPositions)) { | |
508 | delete U; | |
509 | U = temp2->fPositions; | |
510 | ux = ix; | |
511 | UinDstates = TRUE; | |
512 | break; | |
513 | } | |
514 | } | |
515 | ||
516 | // Add U as an unmarked state to Dstates | |
517 | if (!UinDstates) | |
518 | { | |
519 | RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus); | |
374ca955 A |
520 | if (U_FAILURE(*fStatus)) { |
521 | return; | |
522 | } | |
b75a7d8f A |
523 | newState->fPositions = U; |
524 | fDStates->addElement(newState, *fStatus); | |
374ca955 A |
525 | if (U_FAILURE(*fStatus)) { |
526 | return; | |
527 | } | |
b75a7d8f A |
528 | ux = fDStates->size()-1; |
529 | } | |
530 | ||
531 | // Dtran[T, a] := U; | |
532 | T->fDtran->setElementAt(ux, a); | |
533 | } | |
534 | } | |
535 | } | |
536 | } | |
537 | ||
538 | ||
539 | ||
540 | //----------------------------------------------------------------------------- | |
541 | // | |
542 | // flagAcceptingStates Identify accepting states. | |
543 | // First get a list of all of the end marker nodes. | |
544 | // Then, for each state s, | |
545 | // if s contains one of the end marker nodes in its list of tree positions then | |
546 | // s is an accepting state. | |
547 | // | |
548 | //----------------------------------------------------------------------------- | |
549 | void RBBITableBuilder::flagAcceptingStates() { | |
374ca955 A |
550 | if (U_FAILURE(*fStatus)) { |
551 | return; | |
552 | } | |
b75a7d8f A |
553 | UVector endMarkerNodes(*fStatus); |
554 | RBBINode *endMarker; | |
555 | int32_t i; | |
556 | int32_t n; | |
557 | ||
374ca955 A |
558 | if (U_FAILURE(*fStatus)) { |
559 | return; | |
560 | } | |
561 | ||
b75a7d8f | 562 | fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); |
374ca955 A |
563 | if (U_FAILURE(*fStatus)) { |
564 | return; | |
565 | } | |
b75a7d8f A |
566 | |
567 | for (i=0; i<endMarkerNodes.size(); i++) { | |
568 | endMarker = (RBBINode *)endMarkerNodes.elementAt(i); | |
569 | for (n=0; n<fDStates->size(); n++) { | |
570 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | |
571 | if (sd->fPositions->indexOf(endMarker) >= 0) { | |
572 | // Any non-zero value for fAccepting means this is an accepting node. | |
573 | // The value is what will be returned to the user as the break status. | |
574 | // If no other value was specified, force it to -1. | |
575 | sd->fAccepting = endMarker->fVal; | |
576 | if (sd->fAccepting == 0) { | |
577 | sd->fAccepting = -1; | |
578 | } | |
579 | ||
580 | // If the end marker node is from a look-ahead rule, set | |
581 | // the fLookAhead field or this state also. | |
582 | if (endMarker->fLookAheadEnd) { | |
583 | sd->fLookAhead = sd->fAccepting; | |
584 | } | |
585 | } | |
586 | } | |
587 | } | |
588 | } | |
589 | ||
590 | ||
591 | //----------------------------------------------------------------------------- | |
592 | // | |
593 | // flagLookAheadStates Very similar to flagAcceptingStates, above. | |
594 | // | |
595 | //----------------------------------------------------------------------------- | |
596 | void RBBITableBuilder::flagLookAheadStates() { | |
374ca955 A |
597 | if (U_FAILURE(*fStatus)) { |
598 | return; | |
599 | } | |
b75a7d8f A |
600 | UVector lookAheadNodes(*fStatus); |
601 | RBBINode *lookAheadNode; | |
602 | int32_t i; | |
603 | int32_t n; | |
604 | ||
605 | fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus); | |
374ca955 A |
606 | if (U_FAILURE(*fStatus)) { |
607 | return; | |
608 | } | |
b75a7d8f A |
609 | for (i=0; i<lookAheadNodes.size(); i++) { |
610 | lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i); | |
611 | ||
612 | for (n=0; n<fDStates->size(); n++) { | |
613 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | |
614 | if (sd->fPositions->indexOf(lookAheadNode) >= 0) { | |
615 | sd->fLookAhead = lookAheadNode->fVal; | |
616 | } | |
617 | } | |
618 | } | |
619 | } | |
620 | ||
621 | ||
622 | ||
623 | ||
624 | //----------------------------------------------------------------------------- | |
625 | // | |
626 | // flagTaggedStates | |
627 | // | |
628 | //----------------------------------------------------------------------------- | |
629 | void RBBITableBuilder::flagTaggedStates() { | |
374ca955 A |
630 | if (U_FAILURE(*fStatus)) { |
631 | return; | |
632 | } | |
b75a7d8f A |
633 | UVector tagNodes(*fStatus); |
634 | RBBINode *tagNode; | |
635 | int32_t i; | |
636 | int32_t n; | |
637 | ||
374ca955 A |
638 | if (U_FAILURE(*fStatus)) { |
639 | return; | |
640 | } | |
b75a7d8f | 641 | fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus); |
374ca955 A |
642 | if (U_FAILURE(*fStatus)) { |
643 | return; | |
644 | } | |
b75a7d8f A |
645 | for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em) |
646 | tagNode = (RBBINode *)tagNodes.elementAt(i); | |
374ca955 | 647 | |
b75a7d8f A |
648 | for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table) |
649 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | |
650 | if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t | |
374ca955 | 651 | sortedAdd(&sd->fTagVals, tagNode->fVal); |
b75a7d8f A |
652 | } |
653 | } | |
654 | } | |
655 | } | |
374ca955 A |
656 | |
657 | ||
658 | ||
659 | ||
660 | //----------------------------------------------------------------------------- | |
661 | // | |
662 | // mergeRuleStatusVals | |
663 | // | |
664 | // Update the global table of rule status {tag} values | |
665 | // The rule builder has a global vector of status values that are common | |
666 | // for all tables. Merge the ones from this table into the global set. | |
667 | // | |
668 | //----------------------------------------------------------------------------- | |
669 | void RBBITableBuilder::mergeRuleStatusVals() { | |
670 | // | |
671 | // The basic outline of what happens here is this... | |
672 | // | |
673 | // for each state in this state table | |
674 | // if the status tag list for this state is in the global statuses list | |
675 | // record where and | |
676 | // continue with the next state | |
677 | // else | |
678 | // add the tag list for this state to the global list. | |
679 | // | |
680 | int i; | |
681 | int n; | |
682 | ||
683 | // Pre-set a single tag of {0} into the table. | |
684 | // We will need this as a default, for rule sets with no explicit tagging. | |
685 | if (fRB->fRuleStatusVals->size() == 0) { | |
686 | fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group | |
687 | fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero | |
688 | } | |
689 | ||
690 | // For each state | |
691 | for (n=0; n<fDStates->size(); n++) { | |
692 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | |
693 | UVector *thisStatesTagValues = sd->fTagVals; | |
694 | if (thisStatesTagValues == NULL) { | |
695 | // No tag values are explicitly associated with this state. | |
696 | // Set the default tag value. | |
697 | sd->fTagsIdx = 0; | |
698 | continue; | |
699 | } | |
700 | ||
701 | // There are tag(s) associated with this state. | |
702 | // fTagsIdx will be the index into the global tag list for this state's tag values. | |
703 | // Initial value of -1 flags that we haven't got it set yet. | |
704 | sd->fTagsIdx = -1; | |
705 | int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list | |
706 | int32_t nextTagGroupStart = 0; | |
707 | ||
708 | // Loop runs once per group of tags in the global list | |
709 | while (nextTagGroupStart < fRB->fRuleStatusVals->size()) { | |
710 | thisTagGroupStart = nextTagGroupStart; | |
711 | nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1; | |
712 | if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) { | |
713 | // The number of tags for this state is different from | |
714 | // the number of tags in this group from the global list. | |
715 | // Continue with the next group from the global list. | |
716 | continue; | |
717 | } | |
718 | // The lengths match, go ahead and compare the actual tag values | |
719 | // between this state and the group from the global list. | |
720 | for (i=0; i<thisStatesTagValues->size(); i++) { | |
721 | if (thisStatesTagValues->elementAti(i) != | |
722 | fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) { | |
723 | // Mismatch. | |
724 | break; | |
725 | } | |
726 | } | |
727 | ||
728 | if (i == thisStatesTagValues->size()) { | |
729 | // We found a set of tag values in the global list that match | |
730 | // those for this state. Use them. | |
731 | sd->fTagsIdx = thisTagGroupStart; | |
732 | break; | |
733 | } | |
734 | } | |
735 | ||
736 | if (sd->fTagsIdx == -1) { | |
737 | // No suitable entry in the global tag list already. Add one | |
738 | sd->fTagsIdx = fRB->fRuleStatusVals->size(); | |
739 | fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus); | |
740 | for (i=0; i<thisStatesTagValues->size(); i++) { | |
741 | fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus); | |
742 | } | |
743 | } | |
744 | } | |
745 | } | |
746 | ||
747 | ||
748 | ||
749 | ||
750 | ||
751 | ||
752 | ||
753 | //----------------------------------------------------------------------------- | |
754 | // | |
755 | // sortedAdd Add a value to a vector of sorted values (ints). | |
756 | // Do not replicate entries; if the value is already there, do not | |
757 | // add a second one. | |
758 | // Lazily create the vector if it does not already exist. | |
759 | // | |
760 | //----------------------------------------------------------------------------- | |
761 | void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) { | |
762 | int32_t i; | |
763 | ||
764 | if (*vector == NULL) { | |
765 | *vector = new UVector(*fStatus); | |
766 | } | |
767 | if (*vector == NULL || U_FAILURE(*fStatus)) { | |
768 | return; | |
769 | } | |
770 | UVector *vec = *vector; | |
771 | int32_t vSize = vec->size(); | |
772 | for (i=0; i<vSize; i++) { | |
773 | int32_t valAtI = vec->elementAti(i); | |
774 | if (valAtI == val) { | |
775 | // The value is already in the vector. Don't add it again. | |
776 | return; | |
777 | } | |
778 | if (valAtI > val) { | |
779 | break; | |
780 | } | |
781 | } | |
782 | vec->insertElementAt(val, i, *fStatus); | |
b75a7d8f A |
783 | } |
784 | ||
785 | ||
786 | ||
787 | //----------------------------------------------------------------------------- | |
788 | // | |
789 | // setAdd Set operation on UVector | |
790 | // dest = dest union source | |
791 | // Elements may only appear once. Order is unimportant. | |
792 | // | |
793 | //----------------------------------------------------------------------------- | |
794 | void RBBITableBuilder::setAdd(UVector *dest, UVector *source) { | |
795 | int destOriginalSize = dest->size(); | |
796 | int sourceSize = source->size(); | |
797 | int32_t si, di; | |
798 | ||
374ca955 | 799 | for (si=0; si<sourceSize && U_SUCCESS(*fStatus); si++) { |
b75a7d8f A |
800 | void *elToAdd = source->elementAt(si); |
801 | for (di=0; di<destOriginalSize; di++) { | |
802 | if (dest->elementAt(di) == elToAdd) { | |
803 | goto elementAlreadyInDest; | |
804 | } | |
805 | } | |
806 | dest->addElement(elToAdd, *fStatus); | |
374ca955 | 807 | elementAlreadyInDest: ; |
b75a7d8f A |
808 | } |
809 | } | |
810 | ||
811 | ||
374ca955 | 812 | |
b75a7d8f A |
813 | //----------------------------------------------------------------------------- |
814 | // | |
815 | // setEqual Set operation on UVector. | |
816 | // Compare for equality. | |
817 | // Elements may appear only once. | |
818 | // Elements may appear in any order. | |
819 | // | |
820 | //----------------------------------------------------------------------------- | |
821 | UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) { | |
822 | int32_t aSize = a->size(); | |
823 | int32_t bSize = b->size(); | |
824 | ||
825 | if (aSize != bSize) { | |
826 | return FALSE; | |
827 | } | |
828 | ||
829 | int32_t ax; | |
830 | int32_t bx; | |
831 | int32_t firstBx = 0; | |
832 | void *aVal; | |
833 | void *bVal = NULL; | |
834 | ||
835 | for (ax=0; ax<aSize; ax++) { | |
836 | aVal = a->elementAt(ax); | |
837 | for (bx=firstBx; bx<bSize; bx++) { | |
838 | bVal = b->elementAt(bx); | |
839 | if (aVal == bVal) { | |
840 | if (bx==firstBx) { | |
841 | firstBx++; | |
842 | } | |
843 | break; | |
844 | } | |
845 | } | |
846 | if (aVal != bVal) { | |
847 | return FALSE; | |
848 | } | |
849 | } | |
850 | return TRUE; | |
851 | } | |
852 | ||
853 | ||
854 | //----------------------------------------------------------------------------- | |
855 | // | |
856 | // printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos | |
857 | // for each node in the tree. | |
858 | // | |
859 | //----------------------------------------------------------------------------- | |
b75a7d8f | 860 | #ifdef RBBI_DEBUG |
374ca955 | 861 | void RBBITableBuilder::printPosSets(RBBINode *n) { |
b75a7d8f A |
862 | if (n==NULL) { |
863 | return; | |
864 | } | |
374ca955 | 865 | n->printNode(); |
b75a7d8f A |
866 | RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE"); |
867 | ||
868 | RBBIDebugPrintf(" firstpos: "); | |
869 | printSet(n->fFirstPosSet); | |
870 | ||
871 | RBBIDebugPrintf(" lastpos: "); | |
872 | printSet(n->fLastPosSet); | |
873 | ||
874 | RBBIDebugPrintf(" followpos: "); | |
875 | printSet(n->fFollowPos); | |
876 | ||
877 | printPosSets(n->fLeftChild); | |
878 | printPosSets(n->fRightChild); | |
b75a7d8f | 879 | } |
374ca955 | 880 | #endif |
b75a7d8f A |
881 | |
882 | ||
883 | ||
884 | //----------------------------------------------------------------------------- | |
885 | // | |
886 | // getTableSize() Calculate the size of the runtime form of this | |
887 | // state transition table. | |
888 | // | |
889 | //----------------------------------------------------------------------------- | |
374ca955 | 890 | int32_t RBBITableBuilder::getTableSize() const { |
b75a7d8f A |
891 | int32_t size = 0; |
892 | int32_t numRows; | |
893 | int32_t numCols; | |
894 | int32_t rowSize; | |
895 | ||
896 | if (fTree == NULL) { | |
897 | return 0; | |
898 | } | |
899 | ||
900 | size = sizeof(RBBIStateTable) - 4; // The header, with no rows to the table. | |
901 | ||
902 | numRows = fDStates->size(); | |
903 | numCols = fRB->fSetBuilder->getNumCharCategories(); | |
904 | ||
905 | // Note The declaration of RBBIStateTableRow is for a table of two columns. | |
906 | // Therefore we subtract two from numCols when determining | |
907 | // how much storage to add to a row for the total columns. | |
908 | rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2); | |
909 | size += numRows * rowSize; | |
910 | return size; | |
911 | } | |
912 | ||
913 | ||
914 | ||
915 | //----------------------------------------------------------------------------- | |
916 | // | |
917 | // exportTable() export the state transition table in the format required | |
918 | // by the runtime engine. getTableSize() bytes of memory | |
919 | // must be available at the output address "where". | |
920 | // | |
921 | //----------------------------------------------------------------------------- | |
922 | void RBBITableBuilder::exportTable(void *where) { | |
923 | RBBIStateTable *table = (RBBIStateTable *)where; | |
924 | uint32_t state; | |
925 | int col; | |
926 | ||
927 | if (U_FAILURE(*fStatus) || fTree == NULL) { | |
928 | return; | |
929 | } | |
930 | ||
931 | if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff || | |
932 | fDStates->size() > 0x7fff) { | |
933 | *fStatus = U_BRK_INTERNAL_ERROR; | |
934 | return; | |
935 | } | |
936 | ||
937 | table->fRowLen = sizeof(RBBIStateTableRow) + | |
938 | sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2); | |
939 | table->fNumStates = fDStates->size(); | |
374ca955 A |
940 | table->fFlags = 0; |
941 | if (fRB->fLookAheadHardBreak) { | |
942 | table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK; | |
943 | } | |
944 | table->fReserved = 0; | |
b75a7d8f A |
945 | |
946 | for (state=0; state<table->fNumStates; state++) { | |
947 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); | |
948 | RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); | |
949 | U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767); | |
950 | U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767); | |
951 | row->fAccepting = (int16_t)sd->fAccepting; | |
952 | row->fLookAhead = (int16_t)sd->fLookAhead; | |
374ca955 | 953 | row->fTagIdx = (int16_t)sd->fTagsIdx; |
b75a7d8f A |
954 | for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) { |
955 | row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col); | |
956 | } | |
957 | } | |
958 | } | |
959 | ||
960 | ||
961 | ||
962 | //----------------------------------------------------------------------------- | |
963 | // | |
964 | // printSet Debug function. Print the contents of a UVector | |
965 | // | |
966 | //----------------------------------------------------------------------------- | |
b75a7d8f | 967 | #ifdef RBBI_DEBUG |
374ca955 | 968 | void RBBITableBuilder::printSet(UVector *s) { |
b75a7d8f A |
969 | int32_t i; |
970 | for (i=0; i<s->size(); i++) { | |
971 | void *v = s->elementAt(i); | |
972 | RBBIDebugPrintf("%10p", v); | |
973 | } | |
974 | RBBIDebugPrintf("\n"); | |
b75a7d8f | 975 | } |
374ca955 | 976 | #endif |
b75a7d8f A |
977 | |
978 | ||
979 | //----------------------------------------------------------------------------- | |
980 | // | |
981 | // printStates Debug Function. Dump the fully constructed state transition table. | |
982 | // | |
983 | //----------------------------------------------------------------------------- | |
b75a7d8f | 984 | #ifdef RBBI_DEBUG |
374ca955 | 985 | void RBBITableBuilder::printStates() { |
b75a7d8f A |
986 | int c; // input "character" |
987 | int n; // state number | |
988 | ||
989 | RBBIDebugPrintf("state | i n p u t s y m b o l s \n"); | |
990 | RBBIDebugPrintf(" | Acc LA Tag"); | |
374ca955 A |
991 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
992 | RBBIDebugPrintf(" %2d", c); | |
993 | } | |
b75a7d8f A |
994 | RBBIDebugPrintf("\n"); |
995 | RBBIDebugPrintf(" |---------------"); | |
374ca955 A |
996 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
997 | RBBIDebugPrintf("---"); | |
998 | } | |
b75a7d8f A |
999 | RBBIDebugPrintf("\n"); |
1000 | ||
1001 | for (n=0; n<fDStates->size(); n++) { | |
1002 | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | |
1003 | RBBIDebugPrintf(" %3d | " , n); | |
374ca955 | 1004 | RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx); |
b75a7d8f A |
1005 | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { |
1006 | RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c)); | |
1007 | } | |
1008 | RBBIDebugPrintf("\n"); | |
1009 | } | |
1010 | RBBIDebugPrintf("\n\n"); | |
b75a7d8f | 1011 | } |
374ca955 | 1012 | #endif |
b75a7d8f A |
1013 | |
1014 | ||
1015 | ||
374ca955 A |
1016 | //----------------------------------------------------------------------------- |
1017 | // | |
1018 | // printRuleStatusTable Debug Function. Dump the common rule status table | |
1019 | // | |
1020 | //----------------------------------------------------------------------------- | |
1021 | #ifdef RBBI_DEBUG | |
1022 | void RBBITableBuilder::printRuleStatusTable() { | |
1023 | int32_t thisRecord = 0; | |
1024 | int32_t nextRecord = 0; | |
1025 | int i; | |
1026 | UVector *tbl = fRB->fRuleStatusVals; | |
1027 | ||
1028 | RBBIDebugPrintf("index | tags \n"); | |
1029 | RBBIDebugPrintf("-------------------\n"); | |
1030 | ||
1031 | while (nextRecord < tbl->size()) { | |
1032 | thisRecord = nextRecord; | |
1033 | nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1; | |
1034 | RBBIDebugPrintf("%4d ", thisRecord); | |
1035 | for (i=thisRecord+1; i<nextRecord; i++) { | |
1036 | RBBIDebugPrintf(" %5d", tbl->elementAti(i)); | |
1037 | } | |
1038 | RBBIDebugPrintf("\n"); | |
1039 | } | |
1040 | RBBIDebugPrintf("\n\n"); | |
1041 | } | |
1042 | #endif | |
b75a7d8f A |
1043 | |
1044 | ||
1045 | //----------------------------------------------------------------------------- | |
1046 | // | |
1047 | // RBBIStateDescriptor Methods. This is a very struct-like class | |
1048 | // Most access is directly to the fields. | |
1049 | // | |
1050 | //----------------------------------------------------------------------------- | |
1051 | ||
1052 | RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) { | |
1053 | fMarked = FALSE; | |
1054 | fAccepting = 0; | |
1055 | fLookAhead = 0; | |
374ca955 A |
1056 | fTagsIdx = 0; |
1057 | fTagVals = NULL; | |
b75a7d8f A |
1058 | fPositions = NULL; |
1059 | fDtran = NULL; | |
374ca955 A |
1060 | |
1061 | fDtran = new UVector(lastInputSymbol+1, *fStatus); | |
b75a7d8f A |
1062 | if (U_FAILURE(*fStatus)) { |
1063 | return; | |
1064 | } | |
b75a7d8f A |
1065 | if (fDtran == NULL) { |
1066 | *fStatus = U_MEMORY_ALLOCATION_ERROR; | |
1067 | return; | |
1068 | } | |
1069 | fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized. | |
1070 | // It is indexed by input symbols, and will | |
1071 | // hold the next state number for each | |
1072 | // symbol. | |
1073 | } | |
1074 | ||
1075 | ||
1076 | RBBIStateDescriptor::~RBBIStateDescriptor() { | |
1077 | delete fPositions; | |
1078 | delete fDtran; | |
374ca955 | 1079 | delete fTagVals; |
b75a7d8f A |
1080 | fPositions = NULL; |
1081 | fDtran = NULL; | |
374ca955 | 1082 | fTagVals = NULL; |
b75a7d8f A |
1083 | } |
1084 | ||
1085 | U_NAMESPACE_END | |
1086 | ||
1087 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |