]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
729e4ab9 A |
3 | /* |
4 | ****************************************************************************** | |
5 | * | |
57a6839d | 6 | * Copyright (C) 2001-2014, International Business Machines |
729e4ab9 A |
7 | * Corporation and others. All Rights Reserved. |
8 | * | |
9 | ****************************************************************************** | |
4388f060 | 10 | * file name: utrie2_builder.cpp |
f3c0d7a5 | 11 | * encoding: UTF-8 |
729e4ab9 A |
12 | * tab size: 8 (not used) |
13 | * indentation:4 | |
14 | * | |
15 | * created on: 2008sep26 (split off from utrie2.c) | |
16 | * created by: Markus W. Scherer | |
17 | * | |
18 | * This is a common implementation of a Unicode trie. | |
19 | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with | |
20 | * Unicode code points (0..0x10ffff). | |
21 | * This is the second common version of a Unicode trie (hence the name UTrie2). | |
22 | * See utrie2.h for a comparison. | |
23 | * | |
24 | * This file contains only the builder code. | |
25 | * See utrie2.c for the runtime and enumeration code. | |
26 | */ | |
3d1f044b | 27 | // #define UTRIE2_DEBUG |
729e4ab9 A |
28 | #ifdef UTRIE2_DEBUG |
29 | # include <stdio.h> | |
30 | #endif | |
3d1f044b | 31 | // #define UCPTRIE_DEBUG |
729e4ab9 A |
32 | |
33 | #include "unicode/utypes.h" | |
3d1f044b A |
34 | #ifdef UCPTRIE_DEBUG |
35 | #include "unicode/ucptrie.h" | |
36 | #include "unicode/umutablecptrie.h" | |
37 | #include "ucptrie_impl.h" | |
38 | #endif | |
729e4ab9 A |
39 | #include "cmemory.h" |
40 | #include "utrie2.h" | |
41 | #include "utrie2_impl.h" | |
42 | ||
3d1f044b | 43 | #include "utrie.h" // for utrie2_fromUTrie() |
729e4ab9 | 44 | |
729e4ab9 A |
45 | /* Implementation notes ----------------------------------------------------- */ |
46 | ||
47 | /* | |
48 | * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values | |
49 | * have been chosen to minimize trie sizes overall. | |
50 | * Most of the code is flexible enough to work with a range of values, | |
51 | * within certain limits. | |
52 | * | |
53 | * Exception: Support for separate values for lead surrogate code _units_ | |
54 | * vs. code _points_ was added after the constants were fixed, | |
55 | * and has not been tested nor particularly designed for different constant values. | |
56 | * (Especially the utrie2_enum() code that jumps to the special LSCP index-2 | |
57 | * part and back.) | |
58 | * | |
59 | * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data | |
60 | * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH | |
61 | * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction | |
62 | * remapping) stops working. | |
63 | * | |
64 | * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate() | |
65 | * assumes that a single index-2 block is used for 0x400 code points | |
66 | * corresponding to one lead surrogate. | |
67 | * | |
68 | * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains | |
69 | * more than one Unicode plane, and the split of the index-2 table into a BMP | |
70 | * part and a supplementary part, with a gap in between, would not work. | |
71 | * | |
72 | * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because | |
73 | * there is data with more than 64k distinct values, | |
74 | * for example for Unihan collation with a separate collation weight per | |
75 | * Han character. | |
76 | */ | |
77 | ||
78 | /* Building a trie ----------------------------------------------------------*/ | |
79 | ||
80 | enum { | |
81 | /** The null index-2 block, following the gap in the index-2 table. */ | |
82 | UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH, | |
83 | ||
84 | /** The start of allocated index-2 blocks. */ | |
85 | UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH, | |
86 | ||
87 | /** | |
88 | * The null data block. | |
89 | * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller, | |
90 | * to work with 6-bit trail bytes from 2-byte UTF-8. | |
91 | */ | |
92 | UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET, | |
93 | ||
94 | /** The start of allocated data blocks. */ | |
95 | UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40, | |
96 | ||
97 | /** | |
98 | * The start of data blocks for U+0800 and above. | |
99 | * Below, compaction uses a block length of 64 for 2-byte UTF-8. | |
100 | * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH. | |
101 | * Data values for 0x780 code points beyond ASCII. | |
102 | */ | |
103 | UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780 | |
104 | }; | |
105 | ||
106 | /* Start with allocation of 16k data entries. */ | |
107 | #define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14) | |
108 | ||
109 | /* Grow about 8x each time. */ | |
110 | #define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17) | |
111 | ||
112 | static int32_t | |
113 | allocIndex2Block(UNewTrie2 *trie); | |
114 | ||
115 | U_CAPI UTrie2 * U_EXPORT2 | |
116 | utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) { | |
117 | UTrie2 *trie; | |
118 | UNewTrie2 *newTrie; | |
119 | uint32_t *data; | |
120 | int32_t i, j; | |
121 | ||
122 | if(U_FAILURE(*pErrorCode)) { | |
123 | return NULL; | |
124 | } | |
125 | ||
126 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); | |
127 | newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); | |
128 | data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4); | |
129 | if(trie==NULL || newTrie==NULL || data==NULL) { | |
130 | uprv_free(trie); | |
131 | uprv_free(newTrie); | |
132 | uprv_free(data); | |
133 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
134 | return 0; | |
135 | } | |
136 | ||
137 | uprv_memset(trie, 0, sizeof(UTrie2)); | |
138 | trie->initialValue=initialValue; | |
139 | trie->errorValue=errorValue; | |
140 | trie->highStart=0x110000; | |
141 | trie->newTrie=newTrie; | |
3d1f044b A |
142 | #ifdef UTRIE2_DEBUG |
143 | trie->name="open"; | |
144 | #endif | |
729e4ab9 A |
145 | |
146 | newTrie->data=data; | |
3d1f044b A |
147 | #ifdef UCPTRIE_DEBUG |
148 | newTrie->t3=umutablecptrie_open(initialValue, errorValue, pErrorCode); | |
149 | #endif | |
729e4ab9 A |
150 | newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH; |
151 | newTrie->initialValue=initialValue; | |
152 | newTrie->errorValue=errorValue; | |
153 | newTrie->highStart=0x110000; | |
154 | newTrie->firstFreeBlock=0; /* no free block in the list */ | |
155 | newTrie->isCompacted=FALSE; | |
156 | ||
157 | /* | |
158 | * preallocate and reset | |
159 | * - ASCII | |
160 | * - the bad-UTF-8-data block | |
161 | * - the null data block | |
162 | */ | |
163 | for(i=0; i<0x80; ++i) { | |
164 | newTrie->data[i]=initialValue; | |
165 | } | |
166 | for(; i<0xc0; ++i) { | |
167 | newTrie->data[i]=errorValue; | |
168 | } | |
169 | for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) { | |
170 | newTrie->data[i]=initialValue; | |
171 | } | |
172 | newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET; | |
173 | newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET; | |
174 | ||
175 | /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */ | |
176 | for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { | |
177 | newTrie->index2[i]=j; | |
178 | newTrie->map[i]=1; | |
179 | } | |
180 | /* reference counts for the bad-UTF-8-data block */ | |
181 | for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { | |
182 | newTrie->map[i]=0; | |
183 | } | |
184 | /* | |
185 | * Reference counts for the null data block: all blocks except for the ASCII blocks. | |
186 | * Plus 1 so that we don't drop this block during compaction. | |
187 | * Plus as many as needed for lead surrogate code points. | |
188 | */ | |
189 | /* i==newTrie->dataNullOffset */ | |
190 | newTrie->map[i++]= | |
191 | (0x110000>>UTRIE2_SHIFT_2)- | |
192 | (0x80>>UTRIE2_SHIFT_2)+ | |
193 | 1+ | |
194 | UTRIE2_LSCP_INDEX_2_LENGTH; | |
195 | j+=UTRIE2_DATA_BLOCK_LENGTH; | |
196 | for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { | |
197 | newTrie->map[i]=0; | |
198 | } | |
199 | ||
200 | /* | |
201 | * set the remaining indexes in the BMP index-2 block | |
202 | * to the null data block | |
203 | */ | |
204 | for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) { | |
205 | newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET; | |
206 | } | |
207 | ||
208 | /* | |
209 | * Fill the index gap with impossible values so that compaction | |
210 | * does not overlap other index-2 blocks with the gap. | |
211 | */ | |
212 | for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) { | |
213 | newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1; | |
214 | } | |
215 | ||
216 | /* set the indexes in the null index-2 block */ | |
217 | for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) { | |
218 | newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET; | |
219 | } | |
220 | newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET; | |
221 | newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET; | |
222 | ||
223 | /* set the index-1 indexes for the linear index-2 block */ | |
224 | for(i=0, j=0; | |
225 | i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; | |
226 | ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH | |
227 | ) { | |
228 | newTrie->index1[i]=j; | |
229 | } | |
230 | ||
231 | /* set the remaining index-1 indexes to the null index-2 block */ | |
232 | for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { | |
233 | newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET; | |
234 | } | |
235 | ||
236 | /* | |
237 | * Preallocate and reset data for U+0080..U+07ff, | |
238 | * for 2-byte UTF-8 which will be compacted in 64-blocks | |
239 | * even if UTRIE2_DATA_BLOCK_LENGTH is smaller. | |
240 | */ | |
241 | for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) { | |
242 | utrie2_set32(trie, i, initialValue, pErrorCode); | |
243 | } | |
244 | ||
245 | return trie; | |
246 | } | |
247 | ||
248 | static UNewTrie2 * | |
249 | cloneBuilder(const UNewTrie2 *other) { | |
250 | UNewTrie2 *trie; | |
251 | ||
252 | trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); | |
253 | if(trie==NULL) { | |
254 | return NULL; | |
255 | } | |
256 | ||
257 | trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4); | |
258 | if(trie->data==NULL) { | |
259 | uprv_free(trie); | |
260 | return NULL; | |
261 | } | |
3d1f044b A |
262 | #ifdef UCPTRIE_DEBUG |
263 | if(other->t3==nullptr) { | |
264 | trie->t3=nullptr; | |
265 | } else { | |
266 | UErrorCode errorCode=U_ZERO_ERROR; | |
267 | trie->t3=umutablecptrie_clone(other->t3, &errorCode); | |
268 | } | |
269 | #endif | |
729e4ab9 A |
270 | trie->dataCapacity=other->dataCapacity; |
271 | ||
272 | /* clone data */ | |
273 | uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1)); | |
a62d09fc | 274 | uprv_memcpy(trie->index2, other->index2, (size_t)other->index2Length*4); |
729e4ab9 A |
275 | trie->index2NullOffset=other->index2NullOffset; |
276 | trie->index2Length=other->index2Length; | |
277 | ||
a62d09fc | 278 | uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4); |
729e4ab9 A |
279 | trie->dataNullOffset=other->dataNullOffset; |
280 | trie->dataLength=other->dataLength; | |
281 | ||
282 | /* reference counters */ | |
283 | if(other->isCompacted) { | |
284 | trie->firstFreeBlock=0; | |
285 | } else { | |
a62d09fc | 286 | uprv_memcpy(trie->map, other->map, ((size_t)other->dataLength>>UTRIE2_SHIFT_2)*4); |
729e4ab9 A |
287 | trie->firstFreeBlock=other->firstFreeBlock; |
288 | } | |
289 | ||
290 | trie->initialValue=other->initialValue; | |
291 | trie->errorValue=other->errorValue; | |
292 | trie->highStart=other->highStart; | |
293 | trie->isCompacted=other->isCompacted; | |
294 | ||
295 | return trie; | |
296 | } | |
297 | ||
298 | U_CAPI UTrie2 * U_EXPORT2 | |
299 | utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) { | |
300 | UTrie2 *trie; | |
301 | ||
302 | if(U_FAILURE(*pErrorCode)) { | |
303 | return NULL; | |
304 | } | |
305 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { | |
306 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
307 | return NULL; | |
308 | } | |
309 | ||
310 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); | |
311 | if(trie==NULL) { | |
3d1f044b | 312 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
729e4ab9 A |
313 | return NULL; |
314 | } | |
315 | uprv_memcpy(trie, other, sizeof(UTrie2)); | |
316 | ||
317 | if(other->memory!=NULL) { | |
318 | trie->memory=uprv_malloc(other->length); | |
319 | if(trie->memory!=NULL) { | |
320 | trie->isMemoryOwned=TRUE; | |
321 | uprv_memcpy(trie->memory, other->memory, other->length); | |
322 | ||
323 | /* make the clone's pointers point to its own memory */ | |
324 | trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory); | |
325 | if(other->data16!=NULL) { | |
326 | trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory); | |
327 | } | |
328 | if(other->data32!=NULL) { | |
329 | trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory); | |
330 | } | |
331 | } | |
332 | } else /* other->newTrie!=NULL */ { | |
333 | trie->newTrie=cloneBuilder(other->newTrie); | |
334 | } | |
335 | ||
336 | if(trie->memory==NULL && trie->newTrie==NULL) { | |
3d1f044b | 337 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
729e4ab9 A |
338 | uprv_free(trie); |
339 | trie=NULL; | |
340 | } | |
341 | return trie; | |
342 | } | |
343 | ||
344 | typedef struct NewTrieAndStatus { | |
345 | UTrie2 *trie; | |
346 | UErrorCode errorCode; | |
347 | UBool exclusiveLimit; /* rather than inclusive range end */ | |
348 | } NewTrieAndStatus; | |
349 | ||
350 | static UBool U_CALLCONV | |
351 | copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { | |
352 | NewTrieAndStatus *nt=(NewTrieAndStatus *)context; | |
353 | if(value!=nt->trie->initialValue) { | |
354 | if(nt->exclusiveLimit) { | |
355 | --end; | |
356 | } | |
357 | if(start==end) { | |
358 | utrie2_set32(nt->trie, start, value, &nt->errorCode); | |
359 | } else { | |
360 | utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode); | |
361 | } | |
362 | return U_SUCCESS(nt->errorCode); | |
363 | } else { | |
364 | return TRUE; | |
365 | } | |
366 | } | |
367 | ||
368 | #ifdef UTRIE2_DEBUG | |
3d1f044b A |
369 | static long countInitial(const UTrie2 *trie) { |
370 | uint32_t initialValue=trie->initialValue; | |
371 | int32_t length=trie->dataLength; | |
372 | long count=0; | |
373 | if(trie->data16!=nullptr) { | |
374 | for(int32_t i=0; i<length; ++i) { | |
375 | if(trie->data16[i]==initialValue) { ++count; } | |
376 | } | |
377 | } else { | |
378 | for(int32_t i=0; i<length; ++i) { | |
379 | if(trie->data32[i]==initialValue) { ++count; } | |
380 | } | |
381 | } | |
382 | return count; | |
383 | } | |
384 | ||
729e4ab9 A |
385 | static void |
386 | utrie_printLengths(const UTrie *trie) { | |
387 | long indexLength=trie->indexLength; | |
388 | long dataLength=(long)trie->dataLength; | |
389 | long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); | |
390 | printf("**UTrieLengths** index:%6ld data:%6ld serialized:%6ld\n", | |
391 | indexLength, dataLength, totalLength); | |
392 | } | |
393 | ||
394 | static void | |
395 | utrie2_printLengths(const UTrie2 *trie, const char *which) { | |
396 | long indexLength=trie->indexLength; | |
397 | long dataLength=(long)trie->dataLength; | |
398 | long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); | |
3d1f044b A |
399 | printf("**UTrie2Lengths(%s %s)** index:%6ld data:%6ld countInitial:%6ld serialized:%6ld\n", |
400 | which, trie->name, indexLength, dataLength, countInitial(trie), totalLength); | |
729e4ab9 A |
401 | } |
402 | #endif | |
403 | ||
404 | U_CAPI UTrie2 * U_EXPORT2 | |
405 | utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) { | |
406 | NewTrieAndStatus context; | |
407 | UChar lead; | |
408 | ||
409 | if(U_FAILURE(*pErrorCode)) { | |
410 | return NULL; | |
411 | } | |
412 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { | |
413 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
414 | return NULL; | |
415 | } | |
416 | if(other->newTrie!=NULL && !other->newTrie->isCompacted) { | |
417 | return utrie2_clone(other, pErrorCode); /* clone an unfrozen trie */ | |
418 | } | |
419 | ||
420 | /* Clone the frozen trie by enumerating it and building a new one. */ | |
421 | context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode); | |
422 | if(U_FAILURE(*pErrorCode)) { | |
423 | return NULL; | |
424 | } | |
425 | context.exclusiveLimit=FALSE; | |
426 | context.errorCode=*pErrorCode; | |
427 | utrie2_enum(other, NULL, copyEnumRange, &context); | |
428 | *pErrorCode=context.errorCode; | |
429 | for(lead=0xd800; lead<0xdc00; ++lead) { | |
430 | uint32_t value; | |
431 | if(other->data32==NULL) { | |
432 | value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead); | |
433 | } else { | |
434 | value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead); | |
435 | } | |
436 | if(value!=other->initialValue) { | |
437 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); | |
438 | } | |
439 | } | |
440 | if(U_FAILURE(*pErrorCode)) { | |
441 | utrie2_close(context.trie); | |
442 | context.trie=NULL; | |
443 | } | |
444 | return context.trie; | |
445 | } | |
446 | ||
447 | /* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */ | |
448 | U_CAPI UTrie2 * U_EXPORT2 | |
449 | utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) { | |
450 | NewTrieAndStatus context; | |
451 | UChar lead; | |
452 | ||
453 | if(U_FAILURE(*pErrorCode)) { | |
454 | return NULL; | |
455 | } | |
456 | if(trie1==NULL) { | |
457 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
458 | return NULL; | |
459 | } | |
460 | context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode); | |
461 | if(U_FAILURE(*pErrorCode)) { | |
462 | return NULL; | |
463 | } | |
464 | context.exclusiveLimit=TRUE; | |
465 | context.errorCode=*pErrorCode; | |
466 | utrie_enum(trie1, NULL, copyEnumRange, &context); | |
467 | *pErrorCode=context.errorCode; | |
468 | for(lead=0xd800; lead<0xdc00; ++lead) { | |
469 | uint32_t value; | |
470 | if(trie1->data32==NULL) { | |
471 | value=UTRIE_GET16_FROM_LEAD(trie1, lead); | |
472 | } else { | |
473 | value=UTRIE_GET32_FROM_LEAD(trie1, lead); | |
474 | } | |
475 | if(value!=trie1->initialValue) { | |
476 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); | |
477 | } | |
478 | } | |
479 | if(U_SUCCESS(*pErrorCode)) { | |
480 | utrie2_freeze(context.trie, | |
481 | trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS, | |
482 | pErrorCode); | |
483 | } | |
484 | #ifdef UTRIE2_DEBUG | |
485 | if(U_SUCCESS(*pErrorCode)) { | |
486 | utrie_printLengths(trie1); | |
487 | utrie2_printLengths(context.trie, "fromUTrie"); | |
488 | } | |
489 | #endif | |
490 | if(U_FAILURE(*pErrorCode)) { | |
491 | utrie2_close(context.trie); | |
492 | context.trie=NULL; | |
493 | } | |
494 | return context.trie; | |
495 | } | |
496 | ||
4388f060 | 497 | static inline UBool |
729e4ab9 A |
498 | isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
499 | int32_t i2, block; | |
500 | ||
501 | if(U_IS_LEAD(c) && forLSCP) { | |
502 | i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+ | |
503 | (c>>UTRIE2_SHIFT_2); | |
504 | } else { | |
505 | i2=trie->index1[c>>UTRIE2_SHIFT_1]+ | |
506 | ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK); | |
507 | } | |
508 | block=trie->index2[i2]; | |
509 | return (UBool)(block==trie->dataNullOffset); | |
510 | } | |
511 | ||
512 | static int32_t | |
513 | allocIndex2Block(UNewTrie2 *trie) { | |
514 | int32_t newBlock, newTop; | |
515 | ||
516 | newBlock=trie->index2Length; | |
517 | newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH; | |
b331163b | 518 | if(newTop>UPRV_LENGTHOF(trie->index2)) { |
729e4ab9 A |
519 | /* |
520 | * Should never occur. | |
521 | * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect, | |
522 | * or the code writes more values than should be possible. | |
523 | */ | |
524 | return -1; | |
525 | } | |
526 | trie->index2Length=newTop; | |
527 | uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4); | |
528 | return newBlock; | |
529 | } | |
530 | ||
531 | static int32_t | |
532 | getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { | |
533 | int32_t i1, i2; | |
534 | ||
535 | if(U_IS_LEAD(c) && forLSCP) { | |
536 | return UTRIE2_LSCP_INDEX_2_OFFSET; | |
537 | } | |
538 | ||
539 | i1=c>>UTRIE2_SHIFT_1; | |
540 | i2=trie->index1[i1]; | |
541 | if(i2==trie->index2NullOffset) { | |
542 | i2=allocIndex2Block(trie); | |
543 | if(i2<0) { | |
544 | return -1; /* program error */ | |
545 | } | |
546 | trie->index1[i1]=i2; | |
547 | } | |
548 | return i2; | |
549 | } | |
550 | ||
551 | static int32_t | |
552 | allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) { | |
553 | int32_t newBlock, newTop; | |
554 | ||
555 | if(trie->firstFreeBlock!=0) { | |
556 | /* get the first free block */ | |
557 | newBlock=trie->firstFreeBlock; | |
558 | trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2]; | |
559 | } else { | |
560 | /* get a new block from the high end */ | |
561 | newBlock=trie->dataLength; | |
562 | newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH; | |
563 | if(newTop>trie->dataCapacity) { | |
564 | /* out of memory in the data array */ | |
565 | int32_t capacity; | |
566 | uint32_t *data; | |
567 | ||
568 | if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) { | |
569 | capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH; | |
570 | } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) { | |
571 | capacity=UNEWTRIE2_MAX_DATA_LENGTH; | |
572 | } else { | |
573 | /* | |
574 | * Should never occur. | |
575 | * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect, | |
576 | * or the code writes more values than should be possible. | |
577 | */ | |
578 | return -1; | |
579 | } | |
580 | data=(uint32_t *)uprv_malloc(capacity*4); | |
581 | if(data==NULL) { | |
582 | return -1; | |
583 | } | |
a62d09fc | 584 | uprv_memcpy(data, trie->data, (size_t)trie->dataLength*4); |
729e4ab9 A |
585 | uprv_free(trie->data); |
586 | trie->data=data; | |
587 | trie->dataCapacity=capacity; | |
588 | } | |
589 | trie->dataLength=newTop; | |
590 | } | |
591 | uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4); | |
592 | trie->map[newBlock>>UTRIE2_SHIFT_2]=0; | |
593 | return newBlock; | |
594 | } | |
595 | ||
596 | /* call when the block's reference counter reaches 0 */ | |
597 | static void | |
598 | releaseDataBlock(UNewTrie2 *trie, int32_t block) { | |
599 | /* put this block at the front of the free-block chain */ | |
600 | trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock; | |
601 | trie->firstFreeBlock=block; | |
602 | } | |
603 | ||
4388f060 | 604 | static inline UBool |
729e4ab9 A |
605 | isWritableBlock(UNewTrie2 *trie, int32_t block) { |
606 | return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]); | |
607 | } | |
608 | ||
4388f060 | 609 | static inline void |
729e4ab9 A |
610 | setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) { |
611 | int32_t oldBlock; | |
612 | ++trie->map[block>>UTRIE2_SHIFT_2]; /* increment first, in case block==oldBlock! */ | |
613 | oldBlock=trie->index2[i2]; | |
614 | if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) { | |
615 | releaseDataBlock(trie, oldBlock); | |
616 | } | |
617 | trie->index2[i2]=block; | |
618 | } | |
619 | ||
620 | /** | |
621 | * No error checking for illegal arguments. | |
622 | * | |
623 | * @return -1 if no new data block available (out of memory in data array) | |
624 | * @internal | |
625 | */ | |
626 | static int32_t | |
627 | getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { | |
628 | int32_t i2, oldBlock, newBlock; | |
629 | ||
630 | i2=getIndex2Block(trie, c, forLSCP); | |
631 | if(i2<0) { | |
632 | return -1; /* program error */ | |
633 | } | |
634 | ||
635 | i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; | |
636 | oldBlock=trie->index2[i2]; | |
637 | if(isWritableBlock(trie, oldBlock)) { | |
638 | return oldBlock; | |
639 | } | |
640 | ||
641 | /* allocate a new data block */ | |
642 | newBlock=allocDataBlock(trie, oldBlock); | |
643 | if(newBlock<0) { | |
644 | /* out of memory in the data array */ | |
645 | return -1; | |
646 | } | |
647 | setIndex2Entry(trie, i2, newBlock); | |
648 | return newBlock; | |
649 | } | |
650 | ||
651 | /** | |
652 | * @return TRUE if the value was successfully set | |
653 | */ | |
654 | static void | |
655 | set32(UNewTrie2 *trie, | |
656 | UChar32 c, UBool forLSCP, uint32_t value, | |
657 | UErrorCode *pErrorCode) { | |
658 | int32_t block; | |
659 | ||
660 | if(trie==NULL || trie->isCompacted) { | |
661 | *pErrorCode=U_NO_WRITE_PERMISSION; | |
662 | return; | |
663 | } | |
3d1f044b A |
664 | #ifdef UCPTRIE_DEBUG |
665 | umutablecptrie_set(trie->t3, c, value, pErrorCode); | |
666 | #endif | |
729e4ab9 A |
667 | |
668 | block=getDataBlock(trie, c, forLSCP); | |
669 | if(block<0) { | |
670 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
671 | return; | |
672 | } | |
673 | ||
674 | trie->data[block+(c&UTRIE2_DATA_MASK)]=value; | |
675 | } | |
676 | ||
677 | U_CAPI void U_EXPORT2 | |
678 | utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) { | |
679 | if(U_FAILURE(*pErrorCode)) { | |
680 | return; | |
681 | } | |
682 | if((uint32_t)c>0x10ffff) { | |
683 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
684 | return; | |
685 | } | |
686 | set32(trie->newTrie, c, TRUE, value, pErrorCode); | |
687 | } | |
688 | ||
689 | U_CAPI void U_EXPORT2 | |
690 | utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie, | |
691 | UChar32 c, uint32_t value, | |
692 | UErrorCode *pErrorCode) { | |
693 | if(U_FAILURE(*pErrorCode)) { | |
694 | return; | |
695 | } | |
696 | if(!U_IS_LEAD(c)) { | |
697 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
698 | return; | |
699 | } | |
700 | set32(trie->newTrie, c, FALSE, value, pErrorCode); | |
701 | } | |
702 | ||
703 | static void | |
704 | writeBlock(uint32_t *block, uint32_t value) { | |
705 | uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH; | |
706 | while(block<limit) { | |
707 | *block++=value; | |
708 | } | |
709 | } | |
710 | ||
711 | /** | |
712 | * initialValue is ignored if overwrite=TRUE | |
713 | * @internal | |
714 | */ | |
715 | static void | |
716 | fillBlock(uint32_t *block, UChar32 start, UChar32 limit, | |
717 | uint32_t value, uint32_t initialValue, UBool overwrite) { | |
718 | uint32_t *pLimit; | |
719 | ||
720 | pLimit=block+limit; | |
721 | block+=start; | |
722 | if(overwrite) { | |
723 | while(block<pLimit) { | |
724 | *block++=value; | |
725 | } | |
726 | } else { | |
727 | while(block<pLimit) { | |
728 | if(*block==initialValue) { | |
729 | *block=value; | |
730 | } | |
731 | ++block; | |
732 | } | |
733 | } | |
734 | } | |
735 | ||
736 | U_CAPI void U_EXPORT2 | |
737 | utrie2_setRange32(UTrie2 *trie, | |
738 | UChar32 start, UChar32 end, | |
739 | uint32_t value, UBool overwrite, | |
740 | UErrorCode *pErrorCode) { | |
741 | /* | |
742 | * repeat value in [start..end] | |
743 | * mark index values for repeat-data blocks by setting bit 31 of the index values | |
744 | * fill around existing values if any, if(overwrite) | |
745 | */ | |
746 | UNewTrie2 *newTrie; | |
747 | int32_t block, rest, repeatBlock; | |
748 | UChar32 limit; | |
749 | ||
750 | if(U_FAILURE(*pErrorCode)) { | |
751 | return; | |
752 | } | |
753 | if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) { | |
754 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
755 | return; | |
756 | } | |
757 | newTrie=trie->newTrie; | |
758 | if(newTrie==NULL || newTrie->isCompacted) { | |
759 | *pErrorCode=U_NO_WRITE_PERMISSION; | |
760 | return; | |
761 | } | |
3d1f044b A |
762 | #ifdef UCPTRIE_DEBUG |
763 | umutablecptrie_setRange(newTrie->t3, start, end, value, pErrorCode); | |
764 | #endif | |
729e4ab9 A |
765 | if(!overwrite && value==newTrie->initialValue) { |
766 | return; /* nothing to do */ | |
767 | } | |
768 | ||
769 | limit=end+1; | |
770 | if(start&UTRIE2_DATA_MASK) { | |
771 | UChar32 nextStart; | |
772 | ||
773 | /* set partial block at [start..following block boundary[ */ | |
774 | block=getDataBlock(newTrie, start, TRUE); | |
775 | if(block<0) { | |
776 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
777 | return; | |
778 | } | |
779 | ||
3d1f044b | 780 | nextStart=(start+UTRIE2_DATA_MASK)&~UTRIE2_DATA_MASK; |
729e4ab9 A |
781 | if(nextStart<=limit) { |
782 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH, | |
783 | value, newTrie->initialValue, overwrite); | |
784 | start=nextStart; | |
785 | } else { | |
786 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK, | |
787 | value, newTrie->initialValue, overwrite); | |
788 | return; | |
789 | } | |
790 | } | |
791 | ||
792 | /* number of positions in the last, partial block */ | |
793 | rest=limit&UTRIE2_DATA_MASK; | |
794 | ||
795 | /* round down limit to a block boundary */ | |
796 | limit&=~UTRIE2_DATA_MASK; | |
797 | ||
798 | /* iterate over all-value blocks */ | |
799 | if(value==newTrie->initialValue) { | |
800 | repeatBlock=newTrie->dataNullOffset; | |
801 | } else { | |
802 | repeatBlock=-1; | |
803 | } | |
804 | ||
805 | while(start<limit) { | |
806 | int32_t i2; | |
807 | UBool setRepeatBlock=FALSE; | |
808 | ||
809 | if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) { | |
810 | start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */ | |
811 | continue; | |
812 | } | |
813 | ||
814 | /* get index value */ | |
815 | i2=getIndex2Block(newTrie, start, TRUE); | |
816 | if(i2<0) { | |
817 | *pErrorCode=U_INTERNAL_PROGRAM_ERROR; | |
818 | return; | |
819 | } | |
820 | i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; | |
821 | block=newTrie->index2[i2]; | |
822 | if(isWritableBlock(newTrie, block)) { | |
823 | /* already allocated */ | |
824 | if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) { | |
825 | /* | |
826 | * We overwrite all values, and it's not a | |
827 | * protected (ASCII-linear or 2-byte UTF-8) block: | |
828 | * replace with the repeatBlock. | |
829 | */ | |
830 | setRepeatBlock=TRUE; | |
831 | } else { | |
832 | /* !overwrite, or protected block: just write the values into this block */ | |
833 | fillBlock(newTrie->data+block, | |
834 | 0, UTRIE2_DATA_BLOCK_LENGTH, | |
835 | value, newTrie->initialValue, overwrite); | |
836 | } | |
837 | } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) { | |
838 | /* | |
839 | * Set the repeatBlock instead of the null block or previous repeat block: | |
840 | * | |
841 | * If !isWritableBlock() then all entries in the block have the same value | |
842 | * because it's the null block or a range block (the repeatBlock from a previous | |
843 | * call to utrie2_setRange32()). | |
844 | * No other blocks are used multiple times before compacting. | |
845 | * | |
846 | * The null block is the only non-writable block with the initialValue because | |
847 | * of the repeatBlock initialization above. (If value==initialValue, then | |
848 | * the repeatBlock will be the null data block.) | |
849 | * | |
850 | * We set our repeatBlock if the desired value differs from the block's value, | |
851 | * and if we overwrite any data or if the data is all initial values | |
852 | * (which is the same as the block being the null block, see above). | |
853 | */ | |
854 | setRepeatBlock=TRUE; | |
855 | } | |
856 | if(setRepeatBlock) { | |
857 | if(repeatBlock>=0) { | |
858 | setIndex2Entry(newTrie, i2, repeatBlock); | |
859 | } else { | |
860 | /* create and set and fill the repeatBlock */ | |
861 | repeatBlock=getDataBlock(newTrie, start, TRUE); | |
862 | if(repeatBlock<0) { | |
863 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
864 | return; | |
865 | } | |
866 | writeBlock(newTrie->data+repeatBlock, value); | |
867 | } | |
868 | } | |
869 | ||
870 | start+=UTRIE2_DATA_BLOCK_LENGTH; | |
871 | } | |
872 | ||
873 | if(rest>0) { | |
874 | /* set partial block at [last block boundary..limit[ */ | |
875 | block=getDataBlock(newTrie, start, TRUE); | |
876 | if(block<0) { | |
877 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
878 | return; | |
879 | } | |
880 | ||
881 | fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite); | |
882 | } | |
883 | ||
884 | return; | |
885 | } | |
886 | ||
887 | /* compaction --------------------------------------------------------------- */ | |
888 | ||
4388f060 | 889 | static inline UBool |
729e4ab9 A |
890 | equal_int32(const int32_t *s, const int32_t *t, int32_t length) { |
891 | while(length>0 && *s==*t) { | |
892 | ++s; | |
893 | ++t; | |
894 | --length; | |
895 | } | |
896 | return (UBool)(length==0); | |
897 | } | |
898 | ||
4388f060 | 899 | static inline UBool |
729e4ab9 A |
900 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
901 | while(length>0 && *s==*t) { | |
902 | ++s; | |
903 | ++t; | |
904 | --length; | |
905 | } | |
906 | return (UBool)(length==0); | |
907 | } | |
908 | ||
909 | static int32_t | |
910 | findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) { | |
911 | int32_t block; | |
912 | ||
913 | /* ensure that we do not even partially get past index2Length */ | |
914 | index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH; | |
915 | ||
916 | for(block=0; block<=index2Length; ++block) { | |
917 | if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) { | |
918 | return block; | |
919 | } | |
920 | } | |
921 | return -1; | |
922 | } | |
923 | ||
924 | static int32_t | |
925 | findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) { | |
926 | int32_t block; | |
927 | ||
928 | /* ensure that we do not even partially get past dataLength */ | |
929 | dataLength-=blockLength; | |
930 | ||
931 | for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) { | |
932 | if(equal_uint32(data+block, data+otherBlock, blockLength)) { | |
933 | return block; | |
934 | } | |
935 | } | |
936 | return -1; | |
937 | } | |
938 | ||
939 | /* | |
940 | * Find the start of the last range in the trie by enumerating backward. | |
941 | * Indexes for supplementary code points higher than this will be omitted. | |
942 | */ | |
943 | static UChar32 | |
944 | findHighStart(UNewTrie2 *trie, uint32_t highValue) { | |
945 | const uint32_t *data32; | |
946 | ||
947 | uint32_t value, initialValue; | |
948 | UChar32 c, prev; | |
949 | int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock; | |
950 | ||
951 | data32=trie->data; | |
952 | initialValue=trie->initialValue; | |
953 | ||
954 | index2NullOffset=trie->index2NullOffset; | |
955 | nullBlock=trie->dataNullOffset; | |
956 | ||
957 | /* set variables for previous range */ | |
958 | if(highValue==initialValue) { | |
959 | prevI2Block=index2NullOffset; | |
960 | prevBlock=nullBlock; | |
961 | } else { | |
962 | prevI2Block=-1; | |
963 | prevBlock=-1; | |
964 | } | |
965 | prev=0x110000; | |
966 | ||
967 | /* enumerate index-2 blocks */ | |
968 | i1=UNEWTRIE2_INDEX_1_LENGTH; | |
969 | c=prev; | |
970 | while(c>0) { | |
971 | i2Block=trie->index1[--i1]; | |
972 | if(i2Block==prevI2Block) { | |
973 | /* the index-2 block is the same as the previous one, and filled with highValue */ | |
974 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; | |
975 | continue; | |
976 | } | |
977 | prevI2Block=i2Block; | |
978 | if(i2Block==index2NullOffset) { | |
979 | /* this is the null index-2 block */ | |
980 | if(highValue!=initialValue) { | |
981 | return c; | |
982 | } | |
983 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; | |
984 | } else { | |
985 | /* enumerate data blocks for one index-2 block */ | |
986 | for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) { | |
987 | block=trie->index2[i2Block+ --i2]; | |
988 | if(block==prevBlock) { | |
989 | /* the block is the same as the previous one, and filled with highValue */ | |
990 | c-=UTRIE2_DATA_BLOCK_LENGTH; | |
991 | continue; | |
992 | } | |
993 | prevBlock=block; | |
994 | if(block==nullBlock) { | |
995 | /* this is the null data block */ | |
996 | if(highValue!=initialValue) { | |
997 | return c; | |
998 | } | |
999 | c-=UTRIE2_DATA_BLOCK_LENGTH; | |
1000 | } else { | |
1001 | for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) { | |
1002 | value=data32[block+ --j]; | |
1003 | if(value!=highValue) { | |
1004 | return c; | |
1005 | } | |
1006 | --c; | |
1007 | } | |
1008 | } | |
1009 | } | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | /* deliver last range */ | |
1014 | return 0; | |
1015 | } | |
1016 | ||
1017 | /* | |
1018 | * Compact a build-time trie. | |
1019 | * | |
1020 | * The compaction | |
1021 | * - removes blocks that are identical with earlier ones | |
1022 | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) | |
1023 | * - moves blocks in steps of the data granularity | |
1024 | * - moves and overlaps blocks that overlap with multiple values in the overlap region | |
1025 | * | |
1026 | * It does not | |
1027 | * - try to move and overlap blocks that are not already adjacent | |
1028 | */ | |
1029 | static void | |
1030 | compactData(UNewTrie2 *trie) { | |
3d1f044b A |
1031 | #ifdef UTRIE2_DEBUG |
1032 | int32_t countSame=0, sumOverlaps=0; | |
1033 | #endif | |
1034 | ||
729e4ab9 A |
1035 | int32_t start, newStart, movedStart; |
1036 | int32_t blockLength, overlap; | |
1037 | int32_t i, mapIndex, blockCount; | |
1038 | ||
1039 | /* do not compact linear-ASCII data */ | |
1040 | newStart=UTRIE2_DATA_START_OFFSET; | |
1041 | for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) { | |
1042 | trie->map[i]=start; | |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * Start with a block length of 64 for 2-byte UTF-8, | |
1047 | * then switch to UTRIE2_DATA_BLOCK_LENGTH. | |
1048 | */ | |
1049 | blockLength=64; | |
1050 | blockCount=blockLength>>UTRIE2_SHIFT_2; | |
1051 | for(start=newStart; start<trie->dataLength;) { | |
1052 | /* | |
1053 | * start: index of first entry of current block | |
1054 | * newStart: index where the current block is to be moved | |
1055 | * (right after current end of already-compacted data) | |
1056 | */ | |
1057 | if(start==UNEWTRIE2_DATA_0800_OFFSET) { | |
1058 | blockLength=UTRIE2_DATA_BLOCK_LENGTH; | |
1059 | blockCount=1; | |
1060 | } | |
1061 | ||
1062 | /* skip blocks that are not used */ | |
1063 | if(trie->map[start>>UTRIE2_SHIFT_2]<=0) { | |
1064 | /* advance start to the next block */ | |
1065 | start+=blockLength; | |
1066 | ||
1067 | /* leave newStart with the previous block! */ | |
1068 | continue; | |
1069 | } | |
1070 | ||
1071 | /* search for an identical block */ | |
1072 | if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength)) | |
1073 | >=0 | |
1074 | ) { | |
3d1f044b A |
1075 | #ifdef UTRIE2_DEBUG |
1076 | ++countSame; | |
1077 | #endif | |
729e4ab9 A |
1078 | /* found an identical block, set the other block's index value for the current block */ |
1079 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { | |
1080 | trie->map[mapIndex++]=movedStart; | |
1081 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; | |
1082 | } | |
1083 | ||
1084 | /* advance start to the next block */ | |
1085 | start+=blockLength; | |
1086 | ||
1087 | /* leave newStart with the previous block! */ | |
1088 | continue; | |
1089 | } | |
1090 | ||
1091 | /* see if the beginning of this block can be overlapped with the end of the previous block */ | |
1092 | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ | |
1093 | for(overlap=blockLength-UTRIE2_DATA_GRANULARITY; | |
1094 | overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap); | |
1095 | overlap-=UTRIE2_DATA_GRANULARITY) {} | |
1096 | ||
3d1f044b A |
1097 | #ifdef UTRIE2_DEBUG |
1098 | sumOverlaps+=overlap; | |
1099 | #endif | |
729e4ab9 A |
1100 | if(overlap>0 || newStart<start) { |
1101 | /* some overlap, or just move the whole block */ | |
1102 | movedStart=newStart-overlap; | |
1103 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { | |
1104 | trie->map[mapIndex++]=movedStart; | |
1105 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; | |
1106 | } | |
1107 | ||
1108 | /* move the non-overlapping indexes to their new positions */ | |
1109 | start+=overlap; | |
1110 | for(i=blockLength-overlap; i>0; --i) { | |
1111 | trie->data[newStart++]=trie->data[start++]; | |
1112 | } | |
1113 | } else /* no overlap && newStart==start */ { | |
1114 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { | |
1115 | trie->map[mapIndex++]=start; | |
1116 | start+=UTRIE2_DATA_BLOCK_LENGTH; | |
1117 | } | |
1118 | newStart=start; | |
1119 | } | |
1120 | } | |
1121 | ||
1122 | /* now adjust the index-2 table */ | |
1123 | for(i=0; i<trie->index2Length; ++i) { | |
1124 | if(i==UNEWTRIE2_INDEX_GAP_OFFSET) { | |
1125 | /* Gap indexes are invalid (-1). Skip over the gap. */ | |
1126 | i+=UNEWTRIE2_INDEX_GAP_LENGTH; | |
1127 | } | |
1128 | trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2]; | |
1129 | } | |
1130 | trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2]; | |
1131 | ||
1132 | /* ensure dataLength alignment */ | |
1133 | while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) { | |
1134 | trie->data[newStart++]=trie->initialValue; | |
1135 | } | |
1136 | ||
1137 | #ifdef UTRIE2_DEBUG | |
1138 | /* we saved some space */ | |
3d1f044b A |
1139 | printf("compacting UTrie2: count of 32-bit data words %lu->%lu countSame=%ld sumOverlaps=%ld\n", |
1140 | (long)trie->dataLength, (long)newStart, (long)countSame, (long)sumOverlaps); | |
729e4ab9 A |
1141 | #endif |
1142 | ||
1143 | trie->dataLength=newStart; | |
1144 | } | |
1145 | ||
1146 | static void | |
1147 | compactIndex2(UNewTrie2 *trie) { | |
1148 | int32_t i, start, newStart, movedStart, overlap; | |
1149 | ||
1150 | /* do not compact linear-BMP index-2 blocks */ | |
1151 | newStart=UTRIE2_INDEX_2_BMP_LENGTH; | |
1152 | for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) { | |
1153 | trie->map[i]=start; | |
1154 | } | |
1155 | ||
1156 | /* Reduce the index table gap to what will be needed at runtime. */ | |
1157 | newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1); | |
1158 | ||
1159 | for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) { | |
1160 | /* | |
1161 | * start: index of first entry of current block | |
1162 | * newStart: index where the current block is to be moved | |
1163 | * (right after current end of already-compacted data) | |
1164 | */ | |
1165 | ||
1166 | /* search for an identical block */ | |
1167 | if( (movedStart=findSameIndex2Block(trie->index2, newStart, start)) | |
1168 | >=0 | |
1169 | ) { | |
1170 | /* found an identical block, set the other block's index value for the current block */ | |
1171 | trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart; | |
1172 | ||
1173 | /* advance start to the next block */ | |
1174 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; | |
1175 | ||
1176 | /* leave newStart with the previous block! */ | |
1177 | continue; | |
1178 | } | |
1179 | ||
1180 | /* see if the beginning of this block can be overlapped with the end of the previous block */ | |
1181 | /* look for maximum overlap with the previous, adjacent block */ | |
1182 | for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1; | |
1183 | overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap); | |
1184 | --overlap) {} | |
1185 | ||
1186 | if(overlap>0 || newStart<start) { | |
1187 | /* some overlap, or just move the whole block */ | |
1188 | trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap; | |
1189 | ||
1190 | /* move the non-overlapping indexes to their new positions */ | |
1191 | start+=overlap; | |
1192 | for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) { | |
1193 | trie->index2[newStart++]=trie->index2[start++]; | |
1194 | } | |
1195 | } else /* no overlap && newStart==start */ { | |
1196 | trie->map[start>>UTRIE2_SHIFT_1_2]=start; | |
1197 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; | |
1198 | newStart=start; | |
1199 | } | |
1200 | } | |
1201 | ||
1202 | /* now adjust the index-1 table */ | |
1203 | for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { | |
1204 | trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2]; | |
1205 | } | |
1206 | trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2]; | |
1207 | ||
1208 | /* | |
1209 | * Ensure data table alignment: | |
1210 | * Needs to be granularity-aligned for 16-bit trie | |
1211 | * (so that dataMove will be down-shiftable), | |
1212 | * and 2-aligned for uint32_t data. | |
1213 | */ | |
1214 | while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) { | |
1215 | /* Arbitrary value: 0x3fffc not possible for real data. */ | |
1216 | trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT; | |
1217 | } | |
1218 | ||
1219 | #ifdef UTRIE2_DEBUG | |
1220 | /* we saved some space */ | |
3d1f044b | 1221 | printf("compacting UTrie2: count of 16-bit index words %lu->%lu\n", |
729e4ab9 A |
1222 | (long)trie->index2Length, (long)newStart); |
1223 | #endif | |
1224 | ||
1225 | trie->index2Length=newStart; | |
1226 | } | |
1227 | ||
1228 | static void | |
1229 | compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) { | |
1230 | UNewTrie2 *newTrie; | |
1231 | UChar32 highStart, suppHighStart; | |
1232 | uint32_t highValue; | |
1233 | ||
1234 | newTrie=trie->newTrie; | |
1235 | ||
1236 | /* find highStart and round it up */ | |
1237 | highValue=utrie2_get32(trie, 0x10ffff); | |
1238 | highStart=findHighStart(newTrie, highValue); | |
1239 | highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1); | |
1240 | if(highStart==0x110000) { | |
1241 | highValue=trie->errorValue; | |
1242 | } | |
1243 | ||
1244 | /* | |
1245 | * Set trie->highStart only after utrie2_get32(trie, highStart). | |
1246 | * Otherwise utrie2_get32(trie, highStart) would try to read the highValue. | |
1247 | */ | |
1248 | trie->highStart=newTrie->highStart=highStart; | |
1249 | ||
1250 | #ifdef UTRIE2_DEBUG | |
3d1f044b | 1251 | printf("UTrie2: highStart U+%06lx highValue 0x%lx initialValue 0x%lx\n", |
729e4ab9 A |
1252 | (long)highStart, (long)highValue, (long)trie->initialValue); |
1253 | #endif | |
1254 | ||
1255 | if(highStart<0x110000) { | |
1256 | /* Blank out [highStart..10ffff] to release associated data blocks. */ | |
1257 | suppHighStart= highStart<=0x10000 ? 0x10000 : highStart; | |
1258 | utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode); | |
1259 | if(U_FAILURE(*pErrorCode)) { | |
1260 | return; | |
1261 | } | |
1262 | } | |
1263 | ||
1264 | compactData(newTrie); | |
1265 | if(highStart>0x10000) { | |
1266 | compactIndex2(newTrie); | |
1267 | #ifdef UTRIE2_DEBUG | |
1268 | } else { | |
3d1f044b | 1269 | printf("UTrie2: highStart U+%04lx count of 16-bit index words %lu->%lu\n", |
729e4ab9 A |
1270 | (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET); |
1271 | #endif | |
1272 | } | |
1273 | ||
1274 | /* | |
1275 | * Store the highValue in the data array and round up the dataLength. | |
1276 | * Must be done after compactData() because that assumes that dataLength | |
1277 | * is a multiple of UTRIE2_DATA_BLOCK_LENGTH. | |
1278 | */ | |
1279 | newTrie->data[newTrie->dataLength++]=highValue; | |
1280 | while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) { | |
1281 | newTrie->data[newTrie->dataLength++]=trie->initialValue; | |
1282 | } | |
1283 | ||
1284 | newTrie->isCompacted=TRUE; | |
1285 | } | |
1286 | ||
1287 | /* serialization ------------------------------------------------------------ */ | |
1288 | ||
1289 | /** | |
1290 | * Maximum length of the runtime index array. | |
1291 | * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. | |
1292 | * (The actual maximum length is lower, | |
1293 | * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.) | |
1294 | */ | |
1295 | #define UTRIE2_MAX_INDEX_LENGTH 0xffff | |
1296 | ||
1297 | /** | |
1298 | * Maximum length of the runtime data array. | |
1299 | * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT, | |
1300 | * and by uint16_t UTrie2Header.shiftedDataLength. | |
1301 | */ | |
1302 | #define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT) | |
1303 | ||
1304 | /* Compact and internally serialize the trie. */ | |
1305 | U_CAPI void U_EXPORT2 | |
1306 | utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) { | |
1307 | UNewTrie2 *newTrie; | |
1308 | UTrie2Header *header; | |
1309 | uint32_t *p; | |
1310 | uint16_t *dest16; | |
1311 | int32_t i, length; | |
1312 | int32_t allIndexesLength; | |
1313 | int32_t dataMove; /* >0 if the data is moved to the end of the index array */ | |
1314 | UChar32 highStart; | |
1315 | ||
1316 | /* argument check */ | |
1317 | if(U_FAILURE(*pErrorCode)) { | |
1318 | return; | |
1319 | } | |
1320 | if( trie==NULL || | |
1321 | valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits | |
1322 | ) { | |
1323 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1324 | return; | |
1325 | } | |
1326 | newTrie=trie->newTrie; | |
1327 | if(newTrie==NULL) { | |
1328 | /* already frozen */ | |
1329 | UTrie2ValueBits frozenValueBits= | |
1330 | trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS; | |
1331 | if(valueBits!=frozenValueBits) { | |
1332 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1333 | } | |
1334 | return; | |
1335 | } | |
1336 | ||
1337 | /* compact if necessary */ | |
1338 | if(!newTrie->isCompacted) { | |
1339 | compactTrie(trie, pErrorCode); | |
1340 | if(U_FAILURE(*pErrorCode)) { | |
1341 | return; | |
1342 | } | |
1343 | } | |
1344 | highStart=trie->highStart; | |
1345 | ||
1346 | if(highStart<=0x10000) { | |
1347 | allIndexesLength=UTRIE2_INDEX_1_OFFSET; | |
1348 | } else { | |
1349 | allIndexesLength=newTrie->index2Length; | |
1350 | } | |
1351 | if(valueBits==UTRIE2_16_VALUE_BITS) { | |
1352 | dataMove=allIndexesLength; | |
1353 | } else { | |
1354 | dataMove=0; | |
1355 | } | |
1356 | ||
1357 | /* are indexLength and dataLength within limits? */ | |
1358 | if( /* for unshifted indexLength */ | |
1359 | allIndexesLength>UTRIE2_MAX_INDEX_LENGTH || | |
1360 | /* for unshifted dataNullOffset */ | |
1361 | (dataMove+newTrie->dataNullOffset)>0xffff || | |
1362 | /* for unshifted 2-byte UTF-8 index-2 values */ | |
1363 | (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff || | |
1364 | /* for shiftedDataLength */ | |
1365 | (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH | |
1366 | ) { | |
1367 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
1368 | return; | |
1369 | } | |
1370 | ||
1371 | /* calculate the total serialized length */ | |
1372 | length=sizeof(UTrie2Header)+allIndexesLength*2; | |
1373 | if(valueBits==UTRIE2_16_VALUE_BITS) { | |
1374 | length+=newTrie->dataLength*2; | |
1375 | } else { | |
1376 | length+=newTrie->dataLength*4; | |
1377 | } | |
1378 | ||
1379 | trie->memory=uprv_malloc(length); | |
1380 | if(trie->memory==NULL) { | |
1381 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
1382 | return; | |
1383 | } | |
1384 | trie->length=length; | |
1385 | trie->isMemoryOwned=TRUE; | |
1386 | ||
1387 | trie->indexLength=allIndexesLength; | |
1388 | trie->dataLength=newTrie->dataLength; | |
1389 | if(highStart<=0x10000) { | |
1390 | trie->index2NullOffset=0xffff; | |
1391 | } else { | |
3d1f044b | 1392 | trie->index2NullOffset=static_cast<uint16_t>(UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset); |
729e4ab9 A |
1393 | } |
1394 | trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset); | |
1395 | trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY; | |
1396 | ||
1397 | /* set the header fields */ | |
1398 | header=(UTrie2Header *)trie->memory; | |
1399 | ||
1400 | header->signature=UTRIE2_SIG; /* "Tri2" */ | |
1401 | header->options=(uint16_t)valueBits; | |
1402 | ||
1403 | header->indexLength=(uint16_t)trie->indexLength; | |
1404 | header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT); | |
1405 | header->index2NullOffset=trie->index2NullOffset; | |
1406 | header->dataNullOffset=trie->dataNullOffset; | |
1407 | header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1); | |
1408 | ||
1409 | /* fill the index and data arrays */ | |
1410 | dest16=(uint16_t *)(header+1); | |
1411 | trie->index=dest16; | |
1412 | ||
1413 | /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */ | |
1414 | p=(uint32_t *)newTrie->index2; | |
1415 | for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) { | |
1416 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); | |
1417 | } | |
1418 | ||
1419 | /* write UTF-8 2-byte index-2 values, not right-shifted */ | |
1420 | for(i=0; i<(0xc2-0xc0); ++i) { /* C0..C1 */ | |
1421 | *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET); | |
1422 | } | |
1423 | for(; i<(0xe0-0xc0); ++i) { /* C2..DF */ | |
1424 | *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]); | |
1425 | } | |
1426 | ||
1427 | if(highStart>0x10000) { | |
1428 | int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1; | |
1429 | int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length; | |
1430 | ||
1431 | /* write 16-bit index-1 values for supplementary code points */ | |
1432 | p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; | |
1433 | for(i=index1Length; i>0; --i) { | |
1434 | *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++); | |
1435 | } | |
1436 | ||
1437 | /* | |
1438 | * write the index-2 array values for supplementary code points, | |
1439 | * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove | |
1440 | */ | |
1441 | p=(uint32_t *)newTrie->index2+index2Offset; | |
1442 | for(i=newTrie->index2Length-index2Offset; i>0; --i) { | |
1443 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); | |
1444 | } | |
1445 | } | |
1446 | ||
1447 | /* write the 16/32-bit data array */ | |
1448 | switch(valueBits) { | |
1449 | case UTRIE2_16_VALUE_BITS: | |
1450 | /* write 16-bit data values */ | |
1451 | trie->data16=dest16; | |
1452 | trie->data32=NULL; | |
1453 | p=newTrie->data; | |
1454 | for(i=newTrie->dataLength; i>0; --i) { | |
1455 | *dest16++=(uint16_t)*p++; | |
1456 | } | |
1457 | break; | |
1458 | case UTRIE2_32_VALUE_BITS: | |
1459 | /* write 32-bit data values */ | |
1460 | trie->data16=NULL; | |
1461 | trie->data32=(uint32_t *)dest16; | |
a62d09fc | 1462 | uprv_memcpy(dest16, newTrie->data, (size_t)newTrie->dataLength*4); |
729e4ab9 A |
1463 | break; |
1464 | default: | |
1465 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1466 | return; | |
1467 | } | |
1468 | ||
3d1f044b A |
1469 | #ifdef UTRIE2_DEBUG |
1470 | utrie2_printLengths(trie, ""); | |
1471 | #endif | |
1472 | ||
1473 | #ifdef UCPTRIE_DEBUG | |
1474 | umutablecptrie_setName(newTrie->t3, trie->name); | |
1475 | ucptrie_close( | |
1476 | umutablecptrie_buildImmutable( | |
1477 | newTrie->t3, UCPTRIE_TYPE_FAST, (UCPTrieValueWidth)valueBits, pErrorCode)); | |
1478 | #endif | |
729e4ab9 A |
1479 | /* Delete the UNewTrie2. */ |
1480 | uprv_free(newTrie->data); | |
1481 | uprv_free(newTrie); | |
1482 | trie->newTrie=NULL; | |
1483 | } |