]> git.saurik.com Git - apple/icu.git/blame - icuSources/i18n/number_decimalquantity.cpp
ICU-64252.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / number_decimalquantity.cpp
CommitLineData
0f5d89e8
A
1// © 2017 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3
4#include "unicode/utypes.h"
5
6#if !UCONFIG_NO_FORMATTING
7
8#include <cstdlib>
9#include <cmath>
10#include <limits>
11#include <stdlib.h>
12
13#include "unicode/plurrule.h"
14#include "cmemory.h"
15#include "number_decnum.h"
16#include "putilimp.h"
17#include "number_decimalquantity.h"
18#include "number_roundingutils.h"
19#include "double-conversion.h"
20#include "charstr.h"
21#include "number_utils.h"
22#include "uassert.h"
23
24using namespace icu;
25using namespace icu::number;
26using namespace icu::number::impl;
27
28using icu::double_conversion::DoubleToStringConverter;
29using icu::double_conversion::StringToDoubleConverter;
30
31namespace {
32
33int8_t NEGATIVE_FLAG = 1;
34int8_t INFINITY_FLAG = 2;
35int8_t NAN_FLAG = 4;
36
37/** Helper function for safe subtraction (no overflow). */
38inline int32_t safeSubtract(int32_t a, int32_t b) {
39 // Note: In C++, signed integer subtraction is undefined behavior.
40 int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
41 if (b < 0 && diff < a) { return INT32_MAX; }
42 if (b > 0 && diff > a) { return INT32_MIN; }
43 return diff;
44}
45
46static double DOUBLE_MULTIPLIERS[] = {
47 1e0,
48 1e1,
49 1e2,
50 1e3,
51 1e4,
52 1e5,
53 1e6,
54 1e7,
55 1e8,
56 1e9,
57 1e10,
58 1e11,
59 1e12,
60 1e13,
61 1e14,
62 1e15,
63 1e16,
64 1e17,
65 1e18,
66 1e19,
67 1e20,
68 1e21};
69
70} // namespace
71
72icu::IFixedDecimal::~IFixedDecimal() = default;
73
74DecimalQuantity::DecimalQuantity() {
75 setBcdToZero();
76 flags = 0;
77}
78
79DecimalQuantity::~DecimalQuantity() {
80 if (usingBytes) {
81 uprv_free(fBCD.bcdBytes.ptr);
82 fBCD.bcdBytes.ptr = nullptr;
83 usingBytes = false;
84 }
85}
86
87DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
88 *this = other;
89}
90
91DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
92 *this = std::move(src);
93}
94
95DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
96 if (this == &other) {
97 return *this;
98 }
99 copyBcdFrom(other);
100 copyFieldsFrom(other);
101 return *this;
102}
103
104DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
105 if (this == &src) {
106 return *this;
107 }
108 moveBcdFrom(src);
109 copyFieldsFrom(src);
110 return *this;
111}
112
113void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
114 bogus = other.bogus;
0f5d89e8
A
115 lReqPos = other.lReqPos;
116 rReqPos = other.rReqPos;
0f5d89e8
A
117 scale = other.scale;
118 precision = other.precision;
119 flags = other.flags;
120 origDouble = other.origDouble;
121 origDelta = other.origDelta;
122 isApproximate = other.isApproximate;
123}
124
125void DecimalQuantity::clear() {
0f5d89e8
A
126 lReqPos = 0;
127 rReqPos = 0;
0f5d89e8
A
128 flags = 0;
129 setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
130}
131
3d1f044b 132void DecimalQuantity::setMinInteger(int32_t minInt) {
0f5d89e8
A
133 // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
134 U_ASSERT(minInt >= 0);
0f5d89e8
A
135
136 // Special behavior: do not set minInt to be less than what is already set.
137 // This is so significant digits rounding can set the integer length.
138 if (minInt < lReqPos) {
139 minInt = lReqPos;
140 }
141
142 // Save values into internal state
0f5d89e8
A
143 lReqPos = minInt;
144}
145
3d1f044b 146void DecimalQuantity::setMinFraction(int32_t minFrac) {
0f5d89e8
A
147 // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
148 U_ASSERT(minFrac >= 0);
0f5d89e8
A
149
150 // Save values into internal state
151 // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
152 rReqPos = -minFrac;
3d1f044b
A
153}
154
155void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
156 // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
157 U_ASSERT(maxInt >= 0);
158
159 if (precision == 0) {
160 return;
161 }
162
163 if (maxInt <= scale) {
164 setBcdToZero();
165 return;
166 }
167
168 int32_t magnitude = getMagnitude();
169 if (maxInt <= magnitude) {
170 popFromLeft(magnitude - maxInt + 1);
171 compact();
172 }
0f5d89e8
A
173}
174
175uint64_t DecimalQuantity::getPositionFingerprint() const {
176 uint64_t fingerprint = 0;
0f5d89e8
A
177 fingerprint ^= (lReqPos << 16);
178 fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
0f5d89e8
A
179 return fingerprint;
180}
181
182void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
3d1f044b
A
183 UErrorCode& status) {
184 // Do not call this method with an increment having only a 1 or a 5 digit!
185 // Use a more efficient call to either roundToMagnitude() or roundToNickel().
186 // Check a few popular rounding increments; a more thorough check is in Java.
187 U_ASSERT(roundingIncrement != 0.01);
188 U_ASSERT(roundingIncrement != 0.05);
189 U_ASSERT(roundingIncrement != 0.1);
190 U_ASSERT(roundingIncrement != 0.5);
191 U_ASSERT(roundingIncrement != 1);
192 U_ASSERT(roundingIncrement != 5);
193
194 DecNum incrementDN;
195 incrementDN.setTo(roundingIncrement, status);
196 if (U_FAILURE(status)) { return; }
197
198 // Divide this DecimalQuantity by the increment, round, then multiply back.
199 divideBy(incrementDN, status);
200 if (U_FAILURE(status)) { return; }
201 roundToMagnitude(0, roundingMode, status);
202 if (U_FAILURE(status)) { return; }
203 multiplyBy(incrementDN, status);
204 if (U_FAILURE(status)) { return; }
0f5d89e8
A
205}
206
207void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
208 if (isInfinite() || isZero() || isNaN()) {
209 return;
210 }
211 // Convert to DecNum, multiply, and convert back.
212 DecNum decnum;
213 toDecNum(decnum, status);
214 if (U_FAILURE(status)) { return; }
215 decnum.multiplyBy(multiplicand, status);
216 if (U_FAILURE(status)) { return; }
217 setToDecNum(decnum, status);
218}
219
220void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
221 if (isInfinite() || isZero() || isNaN()) {
222 return;
223 }
224 // Convert to DecNum, multiply, and convert back.
225 DecNum decnum;
226 toDecNum(decnum, status);
227 if (U_FAILURE(status)) { return; }
228 decnum.divideBy(divisor, status);
229 if (U_FAILURE(status)) { return; }
230 setToDecNum(decnum, status);
231}
232
233void DecimalQuantity::negate() {
234 flags ^= NEGATIVE_FLAG;
235}
236
237int32_t DecimalQuantity::getMagnitude() const {
238 U_ASSERT(precision != 0);
239 return scale + precision - 1;
240}
241
242bool DecimalQuantity::adjustMagnitude(int32_t delta) {
243 if (precision != 0) {
244 // i.e., scale += delta; origDelta += delta
245 bool overflow = uprv_add32_overflow(scale, delta, &scale);
246 overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
247 // Make sure that precision + scale won't overflow, either
248 int32_t dummy;
249 overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
250 return overflow;
251 }
252 return false;
253}
254
255double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
256 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
257 // See the comment at the top of this file explaining the "isApproximate" field.
258 U_ASSERT(!isApproximate);
259
260 switch (operand) {
261 case PLURAL_OPERAND_I:
262 // Invert the negative sign if necessary
263 return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
264 case PLURAL_OPERAND_F:
265 return static_cast<double>(toFractionLong(true));
266 case PLURAL_OPERAND_T:
267 return static_cast<double>(toFractionLong(false));
268 case PLURAL_OPERAND_V:
269 return fractionCount();
270 case PLURAL_OPERAND_W:
271 return fractionCountWithoutTrailingZeros();
272 default:
273 return std::abs(toDouble());
274 }
275}
276
277bool DecimalQuantity::hasIntegerValue() const {
278 return scale >= 0;
279}
280
281int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
282 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
283 // See the comment in the header file explaining the "isApproximate" field.
284 U_ASSERT(!isApproximate);
285
286 int32_t magnitude = scale + precision;
3d1f044b 287 int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
0f5d89e8
A
288 return result - 1;
289}
290
291int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
292 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
293 // See the comment in the header file explaining the "isApproximate" field.
294 U_ASSERT(!isApproximate);
295
296 int32_t magnitude = scale;
3d1f044b 297 int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
0f5d89e8
A
298 return result;
299}
300
301int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
302 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
303 // See the comment at the top of this file explaining the "isApproximate" field.
304 U_ASSERT(!isApproximate);
305
306 return getDigitPos(magnitude - scale);
307}
308
309int32_t DecimalQuantity::fractionCount() const {
310 return -getLowerDisplayMagnitude();
311}
312
313int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
314 return -scale > 0 ? -scale : 0; // max(-scale, 0)
315}
316
317bool DecimalQuantity::isNegative() const {
318 return (flags & NEGATIVE_FLAG) != 0;
319}
320
321int8_t DecimalQuantity::signum() const {
322 return isNegative() ? -1 : isZero() ? 0 : 1;
323}
324
325bool DecimalQuantity::isInfinite() const {
326 return (flags & INFINITY_FLAG) != 0;
327}
328
329bool DecimalQuantity::isNaN() const {
330 return (flags & NAN_FLAG) != 0;
331}
332
333bool DecimalQuantity::isZero() const {
334 return precision == 0;
335}
336
337DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
338 setBcdToZero();
339 flags = 0;
340 if (n == INT32_MIN) {
341 flags |= NEGATIVE_FLAG;
342 // leave as INT32_MIN; handled below in _setToInt()
343 } else if (n < 0) {
344 flags |= NEGATIVE_FLAG;
345 n = -n;
346 }
347 if (n != 0) {
348 _setToInt(n);
349 compact();
350 }
351 return *this;
352}
353
354void DecimalQuantity::_setToInt(int32_t n) {
355 if (n == INT32_MIN) {
356 readLongToBcd(-static_cast<int64_t>(n));
357 } else {
358 readIntToBcd(n);
359 }
360}
361
362DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
363 setBcdToZero();
364 flags = 0;
365 if (n < 0 && n > INT64_MIN) {
366 flags |= NEGATIVE_FLAG;
367 n = -n;
368 }
369 if (n != 0) {
370 _setToLong(n);
371 compact();
372 }
373 return *this;
374}
375
376void DecimalQuantity::_setToLong(int64_t n) {
377 if (n == INT64_MIN) {
378 DecNum decnum;
379 UErrorCode localStatus = U_ZERO_ERROR;
380 decnum.setTo("9.223372036854775808E+18", localStatus);
381 if (U_FAILURE(localStatus)) { return; } // unexpected
382 flags |= NEGATIVE_FLAG;
383 readDecNumberToBcd(decnum);
384 } else if (n <= INT32_MAX) {
385 readIntToBcd(static_cast<int32_t>(n));
386 } else {
387 readLongToBcd(n);
388 }
389}
390
391DecimalQuantity &DecimalQuantity::setToDouble(double n) {
392 setBcdToZero();
393 flags = 0;
394 // signbit() from <math.h> handles +0.0 vs -0.0
395 if (std::signbit(n)) {
396 flags |= NEGATIVE_FLAG;
397 n = -n;
398 }
399 if (std::isnan(n) != 0) {
400 flags |= NAN_FLAG;
401 } else if (std::isfinite(n) == 0) {
402 flags |= INFINITY_FLAG;
403 } else if (n != 0) {
404 _setToDoubleFast(n);
405 compact();
406 }
407 return *this;
408}
409
410void DecimalQuantity::_setToDoubleFast(double n) {
411 isApproximate = true;
412 origDouble = n;
413 origDelta = 0;
414
415 // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now.
416 // TODO: Make a fast path for other types of doubles.
417 if (!std::numeric_limits<double>::is_iec559) {
418 convertToAccurateDouble();
419 // Turn off the approximate double flag, since the value is now exact.
420 isApproximate = false;
421 origDouble = 0.0;
422 return;
423 }
424
425 // To get the bits from the double, use memcpy, which takes care of endianness.
426 uint64_t ieeeBits;
427 uprv_memcpy(&ieeeBits, &n, sizeof(n));
428 int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
429
430 // Not all integers can be represented exactly for exponent > 52
431 if (exponent <= 52 && static_cast<int64_t>(n) == n) {
432 _setToLong(static_cast<int64_t>(n));
433 return;
434 }
435
436 // 3.3219... is log2(10)
437 auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809489);
438 if (fracLength >= 0) {
439 int32_t i = fracLength;
440 // 1e22 is the largest exact double.
441 for (; i >= 22; i -= 22) n *= 1e22;
442 n *= DOUBLE_MULTIPLIERS[i];
443 } else {
444 int32_t i = fracLength;
445 // 1e22 is the largest exact double.
446 for (; i <= -22; i += 22) n /= 1e22;
447 n /= DOUBLE_MULTIPLIERS[-i];
448 }
449 auto result = static_cast<int64_t>(std::round(n));
450 if (result != 0) {
451 _setToLong(result);
452 scale -= fracLength;
453 }
454}
455
456void DecimalQuantity::convertToAccurateDouble() {
457 U_ASSERT(origDouble != 0);
458 int32_t delta = origDelta;
459
460 // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
461 char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
462 bool sign; // unused; always positive
463 int32_t length;
464 int32_t point;
465 DoubleToStringConverter::DoubleToAscii(
466 origDouble,
467 DoubleToStringConverter::DtoaMode::SHORTEST,
468 0,
469 buffer,
470 sizeof(buffer),
471 &sign,
472 &length,
473 &point
474 );
475
476 setBcdToZero();
477 readDoubleConversionToBcd(buffer, length, point);
478 scale += delta;
479 explicitExactDouble = true;
480}
481
482DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
483 setBcdToZero();
484 flags = 0;
485
486 // Compute the decNumber representation
487 DecNum decnum;
488 decnum.setTo(n, status);
489
490 _setToDecNum(decnum, status);
491 return *this;
492}
493
494DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
495 setBcdToZero();
496 flags = 0;
497
498 _setToDecNum(decnum, status);
499 return *this;
500}
501
502void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
503 if (U_FAILURE(status)) { return; }
504 if (decnum.isNegative()) {
505 flags |= NEGATIVE_FLAG;
506 }
507 if (!decnum.isZero()) {
508 readDecNumberToBcd(decnum);
509 compact();
510 }
511}
512
513int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
514 // NOTE: Call sites should be guarded by fitsInLong(), like this:
515 // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
516 // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
517 uint64_t result = 0L;
3d1f044b 518 int32_t upperMagnitude = scale + precision - 1;
0f5d89e8
A
519 if (truncateIfOverflow) {
520 upperMagnitude = std::min(upperMagnitude, 17);
521 }
522 for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
523 result = result * 10 + getDigitPos(magnitude - scale);
524 }
525 if (isNegative()) {
526 return static_cast<int64_t>(0LL - result); // i.e., -result
527 }
528 return static_cast<int64_t>(result);
529}
530
531uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
532 uint64_t result = 0L;
533 int32_t magnitude = -1;
3d1f044b 534 int32_t lowerMagnitude = scale;
0f5d89e8
A
535 if (includeTrailingZeros) {
536 lowerMagnitude = std::min(lowerMagnitude, rReqPos);
537 }
538 for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
539 result = result * 10 + getDigitPos(magnitude - scale);
540 }
541 // Remove trailing zeros; this can happen during integer overflow cases.
542 if (!includeTrailingZeros) {
543 while (result > 0 && (result % 10) == 0) {
544 result /= 10;
545 }
546 }
547 return result;
548}
549
550bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
551 if (isZero()) {
552 return true;
553 }
554 if (scale < 0 && !ignoreFraction) {
555 return false;
556 }
557 int magnitude = getMagnitude();
558 if (magnitude < 18) {
559 return true;
560 }
561 if (magnitude > 18) {
562 return false;
563 }
564 // Hard case: the magnitude is 10^18.
565 // The largest int64 is: 9,223,372,036,854,775,807
566 for (int p = 0; p < precision; p++) {
567 int8_t digit = getDigit(18 - p);
568 static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
569 if (digit < INT64_BCD[p]) {
570 return true;
571 } else if (digit > INT64_BCD[p]) {
572 return false;
573 }
574 }
575 // Exactly equal to max long plus one.
576 return isNegative();
577}
578
579double DecimalQuantity::toDouble() const {
580 // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
581 // See the comment in the header file explaining the "isApproximate" field.
582 U_ASSERT(!isApproximate);
583
584 if (isNaN()) {
585 return NAN;
586 } else if (isInfinite()) {
587 return isNegative() ? -INFINITY : INFINITY;
588 }
589
590 // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
591 StringToDoubleConverter converter(0, 0, 0, "", "");
592 UnicodeString numberString = this->toScientificString();
593 int32_t count;
594 return converter.StringToDouble(
595 reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
596 numberString.length(),
597 &count);
598}
599
600void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
601 // Special handling for zero
602 if (precision == 0) {
603 output.setTo("0", status);
604 }
605
606 // Use the BCD constructor. We need to do a little bit of work to convert, though.
607 // The decNumber constructor expects most-significant first, but we store least-significant first.
608 MaybeStackArray<uint8_t, 20> ubcd(precision);
609 for (int32_t m = 0; m < precision; m++) {
610 ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
611 }
612 output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
613}
614
615void DecimalQuantity::truncate() {
616 if (scale < 0) {
617 shiftRight(-scale);
618 scale = 0;
619 compact();
620 }
621}
622
3d1f044b
A
623void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
624 roundToMagnitude(magnitude, roundingMode, true, status);
625}
626
0f5d89e8 627void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
3d1f044b
A
628 roundToMagnitude(magnitude, roundingMode, false, status);
629}
630
631void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
0f5d89e8
A
632 // The position in the BCD at which rounding will be performed; digits to the right of position
633 // will be rounded away.
0f5d89e8
A
634 int position = safeSubtract(magnitude, scale);
635
3d1f044b
A
636 // "trailing" = least significant digit to the left of rounding
637 int8_t trailingDigit = getDigitPos(position);
638
639 if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
0f5d89e8
A
640 // All digits are to the left of the rounding magnitude.
641 } else if (precision == 0) {
642 // No rounding for zero.
643 } else {
644 // Perform rounding logic.
645 // "leading" = most significant digit to the right of rounding
0f5d89e8 646 int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
0f5d89e8
A
647
648 // Compute which section of the number we are in.
649 // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
650 // LOWER means we are between the bottom edge and the midpoint, like 1.391
651 // MIDPOINT means we are exactly in the middle, like 1.500
652 // UPPER means we are between the midpoint and the top edge, like 1.916
3d1f044b 653 roundingutils::Section section;
0f5d89e8 654 if (!isApproximate) {
3d1f044b
A
655 if (nickel && trailingDigit != 2 && trailingDigit != 7) {
656 // Nickel rounding, and not at .02x or .07x
657 if (trailingDigit < 2) {
658 // .00, .01 => down to .00
659 section = roundingutils::SECTION_LOWER;
660 } else if (trailingDigit < 5) {
661 // .03, .04 => up to .05
662 section = roundingutils::SECTION_UPPER;
663 } else if (trailingDigit < 7) {
664 // .05, .06 => down to .05
665 section = roundingutils::SECTION_LOWER;
666 } else {
667 // .08, .09 => up to .10
668 section = roundingutils::SECTION_UPPER;
669 }
670 } else if (leadingDigit < 5) {
671 // Includes nickel rounding .020-.024 and .070-.074
0f5d89e8
A
672 section = roundingutils::SECTION_LOWER;
673 } else if (leadingDigit > 5) {
3d1f044b 674 // Includes nickel rounding .026-.029 and .076-.079
0f5d89e8
A
675 section = roundingutils::SECTION_UPPER;
676 } else {
3d1f044b
A
677 // Includes nickel rounding .025 and .075
678 section = roundingutils::SECTION_MIDPOINT;
0f5d89e8
A
679 for (int p = safeSubtract(position, 2); p >= 0; p--) {
680 if (getDigitPos(p) != 0) {
681 section = roundingutils::SECTION_UPPER;
682 break;
683 }
684 }
685 }
686 } else {
687 int32_t p = safeSubtract(position, 2);
688 int32_t minP = uprv_max(0, precision - 14);
3d1f044b 689 if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
0f5d89e8
A
690 section = roundingutils::SECTION_LOWER_EDGE;
691 for (; p >= minP; p--) {
692 if (getDigitPos(p) != 0) {
693 section = roundingutils::SECTION_LOWER;
694 break;
695 }
696 }
3d1f044b
A
697 } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
698 section = roundingutils::SECTION_MIDPOINT;
0f5d89e8
A
699 for (; p >= minP; p--) {
700 if (getDigitPos(p) != 9) {
701 section = roundingutils::SECTION_LOWER;
702 break;
703 }
704 }
3d1f044b
A
705 } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
706 section = roundingutils::SECTION_MIDPOINT;
0f5d89e8
A
707 for (; p >= minP; p--) {
708 if (getDigitPos(p) != 0) {
709 section = roundingutils::SECTION_UPPER;
710 break;
711 }
712 }
3d1f044b 713 } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
0f5d89e8
A
714 section = roundingutils::SECTION_UPPER_EDGE;
715 for (; p >= minP; p--) {
716 if (getDigitPos(p) != 9) {
717 section = roundingutils::SECTION_UPPER;
718 break;
719 }
720 }
3d1f044b
A
721 } else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
722 // Nickel rounding, and not at .02x or .07x
723 if (trailingDigit < 2) {
724 // .00, .01 => down to .00
725 section = roundingutils::SECTION_LOWER;
726 } else if (trailingDigit < 5) {
727 // .03, .04 => up to .05
728 section = roundingutils::SECTION_UPPER;
729 } else if (trailingDigit < 7) {
730 // .05, .06 => down to .05
731 section = roundingutils::SECTION_LOWER;
732 } else {
733 // .08, .09 => up to .10
734 section = roundingutils::SECTION_UPPER;
735 }
0f5d89e8 736 } else if (leadingDigit < 5) {
3d1f044b 737 // Includes nickel rounding .020-.024 and .070-.074
0f5d89e8
A
738 section = roundingutils::SECTION_LOWER;
739 } else {
3d1f044b 740 // Includes nickel rounding .026-.029 and .076-.079
0f5d89e8
A
741 section = roundingutils::SECTION_UPPER;
742 }
743
744 bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
745 if (safeSubtract(position, 1) < precision - 14 ||
746 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
747 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
3d1f044b
A
748 // Oops! This means that we have to get the exact representation of the double,
749 // because the zone of uncertainty is along the rounding boundary.
0f5d89e8 750 convertToAccurateDouble();
3d1f044b 751 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
0f5d89e8
A
752 return;
753 }
754
755 // Turn off the approximate double flag, since the value is now confirmed to be exact.
756 isApproximate = false;
757 origDouble = 0.0;
758 origDelta = 0;
759
3d1f044b 760 if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
0f5d89e8
A
761 // All digits are to the left of the rounding magnitude.
762 return;
763 }
764
765 // Good to continue rounding.
766 if (section == -1) { section = roundingutils::SECTION_LOWER; }
767 if (section == -2) { section = roundingutils::SECTION_UPPER; }
768 }
769
3d1f044b
A
770 // Nickel rounding "half even" goes to the nearest whole (away from the 5).
771 bool isEven = nickel
772 ? (trailingDigit < 2 || trailingDigit > 7
773 || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
774 || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
775 : (trailingDigit % 2) == 0;
776
777 bool roundDown = roundingutils::getRoundingDirection(isEven,
0f5d89e8
A
778 isNegative(),
779 section,
780 roundingMode,
781 status);
782 if (U_FAILURE(status)) {
783 return;
784 }
785
786 // Perform truncation
787 if (position >= precision) {
788 setBcdToZero();
789 scale = magnitude;
790 } else {
791 shiftRight(position);
792 }
793
3d1f044b
A
794 if (nickel) {
795 if (trailingDigit < 5 && roundDown) {
796 setDigitPos(0, 0);
797 compact();
798 return;
799 } else if (trailingDigit >= 5 && !roundDown) {
800 setDigitPos(0, 9);
801 trailingDigit = 9;
802 // do not return: use the bubbling logic below
803 } else {
804 setDigitPos(0, 5);
805 // compact not necessary: digit at position 0 is nonzero
806 return;
807 }
808 }
809
0f5d89e8
A
810 // Bubble the result to the higher digits
811 if (!roundDown) {
812 if (trailingDigit == 9) {
813 int bubblePos = 0;
3d1f044b
A
814 // Note: in the long implementation, the most digits BCD can have at this point is
815 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
0f5d89e8
A
816 for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
817 shiftRight(bubblePos); // shift off the trailing 9s
818 }
819 int8_t digit0 = getDigitPos(0);
820 U_ASSERT(digit0 != 9);
821 setDigitPos(0, static_cast<int8_t>(digit0 + 1));
822 precision += 1; // in case an extra digit got added
823 }
824
825 compact();
826 }
827}
828
829void DecimalQuantity::roundToInfinity() {
830 if (isApproximate) {
831 convertToAccurateDouble();
832 }
833}
834
835void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
836 U_ASSERT(leadingZeros >= 0);
837
838 // Zero requires special handling to maintain the invariant that the least-significant digit
839 // in the BCD is nonzero.
840 if (value == 0) {
841 if (appendAsInteger && precision != 0) {
842 scale += leadingZeros + 1;
843 }
844 return;
845 }
846
847 // Deal with trailing zeros
848 if (scale > 0) {
849 leadingZeros += scale;
850 if (appendAsInteger) {
851 scale = 0;
852 }
853 }
854
855 // Append digit
856 shiftLeft(leadingZeros + 1);
857 setDigitPos(0, value);
858
859 // Fix scale if in integer mode
860 if (appendAsInteger) {
861 scale += leadingZeros + 1;
862 }
863}
864
865UnicodeString DecimalQuantity::toPlainString() const {
866 U_ASSERT(!isApproximate);
867 UnicodeString sb;
868 if (isNegative()) {
869 sb.append(u'-');
870 }
871 if (precision == 0 || getMagnitude() < 0) {
872 sb.append(u'0');
873 }
874 for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
875 if (m == -1) { sb.append(u'.'); }
876 sb.append(getDigit(m) + u'0');
877 }
878 return sb;
879}
880
881UnicodeString DecimalQuantity::toScientificString() const {
882 U_ASSERT(!isApproximate);
883 UnicodeString result;
884 if (isNegative()) {
885 result.append(u'-');
886 }
887 if (precision == 0) {
888 result.append(u"0E+0", -1);
889 return result;
890 }
3d1f044b
A
891 int32_t upperPos = precision - 1;
892 int32_t lowerPos = 0;
0f5d89e8
A
893 int32_t p = upperPos;
894 result.append(u'0' + getDigitPos(p));
895 if ((--p) >= lowerPos) {
896 result.append(u'.');
897 for (; p >= lowerPos; p--) {
898 result.append(u'0' + getDigitPos(p));
899 }
900 }
901 result.append(u'E');
902 int32_t _scale = upperPos + scale;
3d1f044b
A
903 if (_scale == INT32_MIN) {
904 result.append({u"-2147483648", -1});
905 return result;
906 } else if (_scale < 0) {
0f5d89e8
A
907 _scale *= -1;
908 result.append(u'-');
909 } else {
910 result.append(u'+');
911 }
912 if (_scale == 0) {
913 result.append(u'0');
914 }
915 int32_t insertIndex = result.length();
916 while (_scale > 0) {
917 std::div_t res = std::div(_scale, 10);
918 result.insert(insertIndex, u'0' + res.rem);
919 _scale = res.quot;
920 }
921 return result;
922}
923
924////////////////////////////////////////////////////
925/// End of DecimalQuantity_AbstractBCD.java ///
926/// Start of DecimalQuantity_DualStorageBCD.java ///
927////////////////////////////////////////////////////
928
929int8_t DecimalQuantity::getDigitPos(int32_t position) const {
930 if (usingBytes) {
931 if (position < 0 || position >= precision) { return 0; }
932 return fBCD.bcdBytes.ptr[position];
933 } else {
934 if (position < 0 || position >= 16) { return 0; }
935 return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
936 }
937}
938
939void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
940 U_ASSERT(position >= 0);
941 if (usingBytes) {
942 ensureCapacity(position + 1);
943 fBCD.bcdBytes.ptr[position] = value;
944 } else if (position >= 16) {
945 switchStorage();
946 ensureCapacity(position + 1);
947 fBCD.bcdBytes.ptr[position] = value;
948 } else {
949 int shift = position * 4;
950 fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
951 }
952}
953
954void DecimalQuantity::shiftLeft(int32_t numDigits) {
955 if (!usingBytes && precision + numDigits > 16) {
956 switchStorage();
957 }
958 if (usingBytes) {
959 ensureCapacity(precision + numDigits);
960 int i = precision + numDigits - 1;
961 for (; i >= numDigits; i--) {
962 fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits];
963 }
964 for (; i >= 0; i--) {
965 fBCD.bcdBytes.ptr[i] = 0;
966 }
967 } else {
968 fBCD.bcdLong <<= (numDigits * 4);
969 }
970 scale -= numDigits;
971 precision += numDigits;
972}
973
974void DecimalQuantity::shiftRight(int32_t numDigits) {
975 if (usingBytes) {
976 int i = 0;
977 for (; i < precision - numDigits; i++) {
978 fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
979 }
980 for (; i < precision; i++) {
981 fBCD.bcdBytes.ptr[i] = 0;
982 }
983 } else {
984 fBCD.bcdLong >>= (numDigits * 4);
985 }
986 scale += numDigits;
987 precision -= numDigits;
988}
989
3d1f044b
A
990void DecimalQuantity::popFromLeft(int32_t numDigits) {
991 U_ASSERT(numDigits <= precision);
992 if (usingBytes) {
993 int i = precision - 1;
994 for (; i >= precision - numDigits; i--) {
995 fBCD.bcdBytes.ptr[i] = 0;
996 }
997 } else {
998 fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
999 }
1000 precision -= numDigits;
1001}
1002
0f5d89e8
A
1003void DecimalQuantity::setBcdToZero() {
1004 if (usingBytes) {
1005 uprv_free(fBCD.bcdBytes.ptr);
1006 fBCD.bcdBytes.ptr = nullptr;
1007 usingBytes = false;
1008 }
1009 fBCD.bcdLong = 0L;
1010 scale = 0;
1011 precision = 0;
1012 isApproximate = false;
1013 origDouble = 0;
1014 origDelta = 0;
1015}
1016
1017void DecimalQuantity::readIntToBcd(int32_t n) {
1018 U_ASSERT(n != 0);
1019 // ints always fit inside the long implementation.
1020 uint64_t result = 0L;
1021 int i = 16;
1022 for (; n != 0; n /= 10, i--) {
1023 result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
1024 }
1025 U_ASSERT(!usingBytes);
1026 fBCD.bcdLong = result >> (i * 4);
1027 scale = 0;
1028 precision = 16 - i;
1029}
1030
1031void DecimalQuantity::readLongToBcd(int64_t n) {
1032 U_ASSERT(n != 0);
1033 if (n >= 10000000000000000L) {
1034 ensureCapacity();
1035 int i = 0;
1036 for (; n != 0L; n /= 10L, i++) {
1037 fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
1038 }
1039 U_ASSERT(usingBytes);
1040 scale = 0;
1041 precision = i;
1042 } else {
1043 uint64_t result = 0L;
1044 int i = 16;
1045 for (; n != 0L; n /= 10L, i--) {
1046 result = (result >> 4) + ((n % 10) << 60);
1047 }
1048 U_ASSERT(i >= 0);
1049 U_ASSERT(!usingBytes);
1050 fBCD.bcdLong = result >> (i * 4);
1051 scale = 0;
1052 precision = 16 - i;
1053 }
1054}
1055
1056void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
1057 const decNumber* dn = decnum.getRawDecNumber();
1058 if (dn->digits > 16) {
1059 ensureCapacity(dn->digits);
1060 for (int32_t i = 0; i < dn->digits; i++) {
1061 fBCD.bcdBytes.ptr[i] = dn->lsu[i];
1062 }
1063 } else {
1064 uint64_t result = 0L;
1065 for (int32_t i = 0; i < dn->digits; i++) {
1066 result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
1067 }
1068 fBCD.bcdLong = result;
1069 }
1070 scale = dn->exponent;
1071 precision = dn->digits;
1072}
1073
1074void DecimalQuantity::readDoubleConversionToBcd(
1075 const char* buffer, int32_t length, int32_t point) {
1076 // NOTE: Despite the fact that double-conversion's API is called
1077 // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
1078 if (length > 16) {
1079 ensureCapacity(length);
1080 for (int32_t i = 0; i < length; i++) {
1081 fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
1082 }
1083 } else {
1084 uint64_t result = 0L;
1085 for (int32_t i = 0; i < length; i++) {
1086 result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
1087 }
1088 fBCD.bcdLong = result;
1089 }
1090 scale = point - length;
1091 precision = length;
1092}
1093
1094void DecimalQuantity::compact() {
1095 if (usingBytes) {
1096 int32_t delta = 0;
1097 for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
1098 if (delta == precision) {
1099 // Number is zero
1100 setBcdToZero();
1101 return;
1102 } else {
1103 // Remove trailing zeros
1104 shiftRight(delta);
1105 }
1106
1107 // Compute precision
1108 int32_t leading = precision - 1;
1109 for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
1110 precision = leading + 1;
1111
1112 // Switch storage mechanism if possible
1113 if (precision <= 16) {
1114 switchStorage();
1115 }
1116
1117 } else {
1118 if (fBCD.bcdLong == 0L) {
1119 // Number is zero
1120 setBcdToZero();
1121 return;
1122 }
1123
1124 // Compact the number (remove trailing zeros)
1125 // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
1126 int32_t delta = 0;
1127 for (; delta < precision && getDigitPos(delta) == 0; delta++);
1128 fBCD.bcdLong >>= delta * 4;
1129 scale += delta;
1130
1131 // Compute precision
1132 int32_t leading = precision - 1;
1133 for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
1134 precision = leading + 1;
1135 }
1136}
1137
1138void DecimalQuantity::ensureCapacity() {
1139 ensureCapacity(40);
1140}
1141
1142void DecimalQuantity::ensureCapacity(int32_t capacity) {
1143 if (capacity == 0) { return; }
1144 int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
1145 if (!usingBytes) {
1146 // TODO: There is nothing being done to check for memory allocation failures.
1147 // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
1148 // make these arrays half the size.
1149 fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
1150 fBCD.bcdBytes.len = capacity;
1151 // Initialize the byte array to zeros (this is done automatically in Java)
1152 uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
1153 } else if (oldCapacity < capacity) {
1154 auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
1155 uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
1156 // Initialize the rest of the byte array to zeros (this is done automatically in Java)
1157 uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
1158 uprv_free(fBCD.bcdBytes.ptr);
1159 fBCD.bcdBytes.ptr = bcd1;
1160 fBCD.bcdBytes.len = capacity * 2;
1161 }
1162 usingBytes = true;
1163}
1164
1165void DecimalQuantity::switchStorage() {
1166 if (usingBytes) {
1167 // Change from bytes to long
1168 uint64_t bcdLong = 0L;
1169 for (int i = precision - 1; i >= 0; i--) {
1170 bcdLong <<= 4;
1171 bcdLong |= fBCD.bcdBytes.ptr[i];
1172 }
1173 uprv_free(fBCD.bcdBytes.ptr);
1174 fBCD.bcdBytes.ptr = nullptr;
1175 fBCD.bcdLong = bcdLong;
1176 usingBytes = false;
1177 } else {
1178 // Change from long to bytes
1179 // Copy the long into a local variable since it will get munged when we allocate the bytes
1180 uint64_t bcdLong = fBCD.bcdLong;
1181 ensureCapacity();
1182 for (int i = 0; i < precision; i++) {
1183 fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
1184 bcdLong >>= 4;
1185 }
1186 U_ASSERT(usingBytes);
1187 }
1188}
1189
1190void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
1191 setBcdToZero();
1192 if (other.usingBytes) {
1193 ensureCapacity(other.precision);
1194 uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
1195 } else {
1196 fBCD.bcdLong = other.fBCD.bcdLong;
1197 }
1198}
1199
1200void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
1201 setBcdToZero();
1202 if (other.usingBytes) {
1203 usingBytes = true;
1204 fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
1205 fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
1206 // Take ownership away from the old instance:
1207 other.fBCD.bcdBytes.ptr = nullptr;
1208 other.usingBytes = false;
1209 } else {
1210 fBCD.bcdLong = other.fBCD.bcdLong;
1211 }
1212}
1213
1214const char16_t* DecimalQuantity::checkHealth() const {
1215 if (usingBytes) {
1216 if (precision == 0) { return u"Zero precision but we are in byte mode"; }
1217 int32_t capacity = fBCD.bcdBytes.len;
1218 if (precision > capacity) { return u"Precision exceeds length of byte array"; }
1219 if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
1220 if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
1221 for (int i = 0; i < precision; i++) {
1222 if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
1223 if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
1224 }
1225 for (int i = precision; i < capacity; i++) {
1226 if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
1227 }
1228 } else {
1229 if (precision == 0 && fBCD.bcdLong != 0) {
1230 return u"Value in bcdLong even though precision is zero";
1231 }
1232 if (precision > 16) { return u"Precision exceeds length of long"; }
1233 if (precision != 0 && getDigitPos(precision - 1) == 0) {
1234 return u"Most significant digit is zero in long mode";
1235 }
1236 if (precision != 0 && getDigitPos(0) == 0) {
1237 return u"Least significant digit is zero in long mode";
1238 }
1239 for (int i = 0; i < precision; i++) {
1240 if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
1241 if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
1242 }
1243 for (int i = precision; i < 16; i++) {
1244 if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
1245 }
1246 }
1247
1248 // No error
1249 return nullptr;
1250}
1251
1252bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
3d1f044b
A
1253 bool basicEquals =
1254 scale == other.scale
1255 && precision == other.precision
1256 && flags == other.flags
1257 && lReqPos == other.lReqPos
1258 && rReqPos == other.rReqPos
1259 && isApproximate == other.isApproximate;
1260 if (!basicEquals) {
1261 return false;
1262 }
1263
1264 if (precision == 0) {
1265 return true;
1266 } else if (isApproximate) {
1267 return origDouble == other.origDouble && origDelta == other.origDelta;
1268 } else {
1269 for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
1270 if (getDigit(m) != other.getDigit(m)) {
1271 return false;
1272 }
1273 }
1274 return true;
1275 }
0f5d89e8
A
1276}
1277
1278UnicodeString DecimalQuantity::toString() const {
1279 MaybeStackArray<char, 30> digits(precision + 1);
1280 for (int32_t i = 0; i < precision; i++) {
1281 digits[i] = getDigitPos(precision - i - 1) + '0';
1282 }
1283 digits[precision] = 0; // terminate buffer
1284 char buffer8[100];
1285 snprintf(
1286 buffer8,
1287 sizeof(buffer8),
3d1f044b 1288 "<DecimalQuantity %d:%d %s %s%s%s%d>",
0f5d89e8
A
1289 lReqPos,
1290 rReqPos,
0f5d89e8
A
1291 (usingBytes ? "bytes" : "long"),
1292 (isNegative() ? "-" : ""),
1293 (precision == 0 ? "0" : digits.getAlias()),
1294 "E",
1295 scale);
1296 return UnicodeString(buffer8, -1, US_INV);
1297}
1298
1299#endif /* #if !UCONFIG_NO_FORMATTING */