]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
73c04bcf A |
3 | /** |
4 | ******************************************************************************* | |
2ca993e8 | 5 | * Copyright (C) 2006-2016, International Business Machines Corporation |
51004dcb | 6 | * and others. All Rights Reserved. |
73c04bcf A |
7 | ******************************************************************************* |
8 | */ | |
9 | ||
10 | #include "unicode/utypes.h" | |
11 | ||
12 | #if !UCONFIG_NO_BREAK_ITERATION | |
13 | ||
14 | #include "brkeng.h" | |
15 | #include "dictbe.h" | |
16 | #include "unicode/uniset.h" | |
17 | #include "unicode/chariter.h" | |
18 | #include "unicode/ubrk.h" | |
b331163b | 19 | #include "uvectr32.h" |
73c04bcf | 20 | #include "uvector.h" |
51004dcb A |
21 | #include "uassert.h" |
22 | #include "unicode/normlzr.h" | |
23 | #include "cmemory.h" | |
24 | #include "dictionarydata.h" | |
73c04bcf A |
25 | |
26 | U_NAMESPACE_BEGIN | |
27 | ||
28 | /* | |
29 | ****************************************************************** | |
30 | */ | |
31 | ||
0f5d89e8 | 32 | DictionaryBreakEngine::DictionaryBreakEngine() { |
73c04bcf A |
33 | } |
34 | ||
35 | DictionaryBreakEngine::~DictionaryBreakEngine() { | |
36 | } | |
37 | ||
38 | UBool | |
0f5d89e8 A |
39 | DictionaryBreakEngine::handles(UChar32 c) const { |
40 | return fSet.contains(c); | |
73c04bcf A |
41 | } |
42 | ||
43 | int32_t | |
44 | DictionaryBreakEngine::findBreaks( UText *text, | |
45 | int32_t startPos, | |
46 | int32_t endPos, | |
0f5d89e8 A |
47 | UVector32 &foundBreaks ) const { |
48 | (void)startPos; // TODO: remove this param? | |
73c04bcf A |
49 | int32_t result = 0; |
50 | ||
51 | // Find the span of characters included in the set. | |
57a6839d A |
52 | // The span to break begins at the current position in the text, and |
53 | // extends towards the start or end of the text, depending on 'reverse'. | |
54 | ||
73c04bcf A |
55 | int32_t start = (int32_t)utext_getNativeIndex(text); |
56 | int32_t current; | |
57 | int32_t rangeStart; | |
58 | int32_t rangeEnd; | |
59 | UChar32 c = utext_current32(text); | |
0f5d89e8 A |
60 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
61 | utext_next32(text); // TODO: recast loop for postincrement | |
62 | c = utext_current32(text); | |
73c04bcf | 63 | } |
0f5d89e8 A |
64 | rangeStart = start; |
65 | rangeEnd = current; | |
66 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); | |
67 | utext_setNativeIndex(text, current); | |
73c04bcf A |
68 | |
69 | return result; | |
70 | } | |
71 | ||
72 | void | |
46f4442e | 73 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
73c04bcf | 74 | fSet = set; |
46f4442e A |
75 | // Compact for caching |
76 | fSet.compact(); | |
73c04bcf A |
77 | } |
78 | ||
73c04bcf A |
79 | /* |
80 | ****************************************************************** | |
57a6839d | 81 | * PossibleWord |
73c04bcf A |
82 | */ |
83 | ||
57a6839d | 84 | // Helper class for improving readability of the Thai/Lao/Khmer word break |
73c04bcf A |
85 | // algorithm. The implementation is completely inline. |
86 | ||
87 | // List size, limited by the maximum number of words in the dictionary | |
88 | // that form a nested sequence. | |
b331163b | 89 | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; |
73c04bcf A |
90 | |
91 | class PossibleWord { | |
51004dcb A |
92 | private: |
93 | // list of word candidate lengths, in increasing length order | |
b331163b | 94 | // TODO: bytes would be sufficient for word lengths. |
51004dcb A |
95 | int32_t count; // Count of candidates |
96 | int32_t prefix; // The longest match with a dictionary word | |
97 | int32_t offset; // Offset in the text of these candidates | |
b331163b A |
98 | int32_t mark; // The preferred candidate's offset |
99 | int32_t current; // The candidate we're currently looking at | |
100 | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. | |
101 | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. | |
51004dcb A |
102 | |
103 | public: | |
b331163b A |
104 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {}; |
105 | ~PossibleWord() {}; | |
73c04bcf | 106 | |
51004dcb | 107 | // Fill the list of candidates if needed, select the longest, and return the number found |
b331163b | 108 | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
73c04bcf | 109 | |
51004dcb A |
110 | // Select the currently marked candidate, point after it in the text, and invalidate self |
111 | int32_t acceptMarked( UText *text ); | |
73c04bcf | 112 | |
51004dcb A |
113 | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
114 | // and point the text after it | |
115 | UBool backUp( UText *text ); | |
73c04bcf | 116 | |
51004dcb | 117 | // Return the longest prefix this candidate location shares with a dictionary word |
b331163b A |
118 | // Return value is in code points. |
119 | int32_t longestPrefix() { return prefix; }; | |
73c04bcf | 120 | |
51004dcb | 121 | // Mark the current candidate as the one we like |
b331163b A |
122 | void markCurrent() { mark = current; }; |
123 | ||
124 | // Get length in code points of the marked word. | |
125 | int32_t markedCPLength() { return cpLengths[mark]; }; | |
73c04bcf A |
126 | }; |
127 | ||
73c04bcf | 128 | |
b331163b | 129 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
73c04bcf A |
130 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
131 | int32_t start = (int32_t)utext_getNativeIndex(text); | |
132 | if (start != offset) { | |
133 | offset = start; | |
b331163b | 134 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); |
73c04bcf A |
135 | // Dictionary leaves text after longest prefix, not longest word. Back up. |
136 | if (count <= 0) { | |
137 | utext_setNativeIndex(text, start); | |
138 | } | |
139 | } | |
140 | if (count > 0) { | |
b331163b | 141 | utext_setNativeIndex(text, start+cuLengths[count-1]); |
73c04bcf A |
142 | } |
143 | current = count-1; | |
144 | mark = current; | |
145 | return count; | |
146 | } | |
147 | ||
b331163b | 148 | int32_t |
73c04bcf | 149 | PossibleWord::acceptMarked( UText *text ) { |
b331163b A |
150 | utext_setNativeIndex(text, offset + cuLengths[mark]); |
151 | return cuLengths[mark]; | |
73c04bcf A |
152 | } |
153 | ||
b331163b A |
154 | |
155 | UBool | |
73c04bcf A |
156 | PossibleWord::backUp( UText *text ) { |
157 | if (current > 0) { | |
b331163b | 158 | utext_setNativeIndex(text, offset + cuLengths[--current]); |
73c04bcf A |
159 | return TRUE; |
160 | } | |
161 | return FALSE; | |
162 | } | |
163 | ||
57a6839d A |
164 | /* |
165 | ****************************************************************** | |
166 | * ThaiBreakEngine | |
167 | */ | |
168 | ||
73c04bcf | 169 | // How many words in a row are "good enough"? |
b331163b | 170 | static const int32_t THAI_LOOKAHEAD = 3; |
73c04bcf A |
171 | |
172 | // Will not combine a non-word with a preceding dictionary word longer than this | |
b331163b | 173 | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; |
73c04bcf A |
174 | |
175 | // Will not combine a non-word that shares at least this much prefix with a | |
176 | // dictionary word, with a preceding word | |
b331163b | 177 | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; |
73c04bcf A |
178 | |
179 | // Ellision character | |
b331163b | 180 | static const int32_t THAI_PAIYANNOI = 0x0E2F; |
73c04bcf A |
181 | |
182 | // Repeat character | |
b331163b | 183 | static const int32_t THAI_MAIYAMOK = 0x0E46; |
73c04bcf A |
184 | |
185 | // Minimum word size | |
b331163b | 186 | static const int32_t THAI_MIN_WORD = 2; |
73c04bcf A |
187 | |
188 | // Minimum number of characters for two words | |
b331163b | 189 | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; |
73c04bcf | 190 | |
51004dcb | 191 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
0f5d89e8 | 192 | : DictionaryBreakEngine(), |
73c04bcf A |
193 | fDictionary(adoptDictionary) |
194 | { | |
195 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); | |
196 | if (U_SUCCESS(status)) { | |
197 | setCharacters(fThaiWordSet); | |
198 | } | |
199 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); | |
46f4442e | 200 | fMarkSet.add(0x0020); |
73c04bcf A |
201 | fEndWordSet = fThaiWordSet; |
202 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT | |
203 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
204 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK | |
205 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
206 | fSuffixSet.add(THAI_PAIYANNOI); | |
207 | fSuffixSet.add(THAI_MAIYAMOK); | |
46f4442e A |
208 | |
209 | // Compact for caching. | |
210 | fMarkSet.compact(); | |
211 | fEndWordSet.compact(); | |
212 | fBeginWordSet.compact(); | |
213 | fSuffixSet.compact(); | |
73c04bcf A |
214 | } |
215 | ||
216 | ThaiBreakEngine::~ThaiBreakEngine() { | |
217 | delete fDictionary; | |
218 | } | |
219 | ||
220 | int32_t | |
221 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, | |
222 | int32_t rangeStart, | |
223 | int32_t rangeEnd, | |
0f5d89e8 | 224 | UVector32 &foundBreaks ) const { |
b331163b A |
225 | utext_setNativeIndex(text, rangeStart); |
226 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); | |
227 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
73c04bcf A |
228 | return 0; // Not enough characters for two words |
229 | } | |
b331163b A |
230 | utext_setNativeIndex(text, rangeStart); |
231 | ||
73c04bcf A |
232 | |
233 | uint32_t wordsFound = 0; | |
b331163b A |
234 | int32_t cpWordLength = 0; // Word Length in Code Points. |
235 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) | |
73c04bcf A |
236 | int32_t current; |
237 | UErrorCode status = U_ZERO_ERROR; | |
238 | PossibleWord words[THAI_LOOKAHEAD]; | |
73c04bcf A |
239 | |
240 | utext_setNativeIndex(text, rangeStart); | |
241 | ||
242 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
b331163b A |
243 | cpWordLength = 0; |
244 | cuWordLength = 0; | |
73c04bcf A |
245 | |
246 | // Look for candidate words at the current position | |
b331163b | 247 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
73c04bcf A |
248 | |
249 | // If we found exactly one, use that | |
250 | if (candidates == 1) { | |
b331163b A |
251 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
252 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); | |
73c04bcf A |
253 | wordsFound += 1; |
254 | } | |
73c04bcf A |
255 | // If there was more than one, see which one can take us forward the most words |
256 | else if (candidates > 1) { | |
257 | // If we're already at the end of the range, we're done | |
258 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
259 | goto foundBest; | |
260 | } | |
261 | do { | |
b331163b | 262 | int32_t wordsMatched = 1; |
51004dcb | 263 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
73c04bcf A |
264 | if (wordsMatched < 2) { |
265 | // Followed by another dictionary word; mark first word as a good candidate | |
266 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); | |
267 | wordsMatched = 2; | |
268 | } | |
269 | ||
270 | // If we're already at the end of the range, we're done | |
271 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
272 | goto foundBest; | |
273 | } | |
274 | ||
275 | // See if any of the possible second words is followed by a third word | |
276 | do { | |
277 | // If we find a third word, stop right away | |
51004dcb A |
278 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
279 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); | |
73c04bcf A |
280 | goto foundBest; |
281 | } | |
282 | } | |
51004dcb | 283 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
73c04bcf A |
284 | } |
285 | } | |
51004dcb | 286 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
73c04bcf | 287 | foundBest: |
b331163b A |
288 | // Set UText position to after the accepted word. |
289 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); | |
290 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); | |
73c04bcf A |
291 | wordsFound += 1; |
292 | } | |
293 | ||
294 | // We come here after having either found a word or not. We look ahead to the | |
b331163b | 295 | // next word. If it's not a dictionary word, we will combine it with the word we |
73c04bcf A |
296 | // just found (if there is one), but only if the preceding word does not exceed |
297 | // the threshold. | |
298 | // The text iterator should now be positioned at the end of the word we found. | |
b331163b A |
299 | |
300 | UChar32 uc = 0; | |
301 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { | |
73c04bcf A |
302 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
303 | // no preceding word, or the non-word shares less than the minimum threshold | |
304 | // of characters with a dictionary word, then scan to resynchronize | |
51004dcb | 305 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
b331163b | 306 | && (cuWordLength == 0 |
73c04bcf A |
307 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
308 | // Look for a plausible word boundary | |
b331163b A |
309 | int32_t remaining = rangeEnd - (current+cuWordLength); |
310 | UChar32 pc; | |
73c04bcf | 311 | int32_t chars = 0; |
46f4442e | 312 | for (;;) { |
2ca993e8 | 313 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 314 | pc = utext_next32(text); |
2ca993e8 | 315 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
316 | chars += pcSize; |
317 | remaining -= pcSize; | |
318 | if (remaining <= 0) { | |
73c04bcf A |
319 | break; |
320 | } | |
b331163b | 321 | uc = utext_current32(text); |
73c04bcf A |
322 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
323 | // Maybe. See if it's in the dictionary. | |
324 | // NOTE: In the original Apple code, checked that the next | |
325 | // two characters after uc were not 0x0E4C THANTHAKHAT before | |
326 | // checking the dictionary. That is just a performance filter, | |
327 | // but it's not clear it's faster than checking the trie. | |
b331163b A |
328 | int32_t candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
329 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
73c04bcf A |
330 | if (candidates > 0) { |
331 | break; | |
332 | } | |
333 | } | |
73c04bcf A |
334 | } |
335 | ||
336 | // Bump the word count if there wasn't already one | |
b331163b | 337 | if (cuWordLength <= 0) { |
73c04bcf A |
338 | wordsFound += 1; |
339 | } | |
340 | ||
341 | // Update the length with the passed-over characters | |
b331163b | 342 | cuWordLength += chars; |
73c04bcf A |
343 | } |
344 | else { | |
345 | // Back up to where we were for next iteration | |
b331163b | 346 | utext_setNativeIndex(text, current+cuWordLength); |
73c04bcf A |
347 | } |
348 | } | |
349 | ||
350 | // Never stop before a combining mark. | |
351 | int32_t currPos; | |
352 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
353 | utext_next32(text); | |
b331163b | 354 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
73c04bcf A |
355 | } |
356 | ||
357 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
358 | // We do this in code rather than using a rule so that the heuristic | |
359 | // resynch continues to function. For example, one of the suffix characters | |
360 | // could be a typo in the middle of a word. | |
b331163b | 361 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { |
73c04bcf A |
362 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
363 | && fSuffixSet.contains(uc = utext_current32(text))) { | |
364 | if (uc == THAI_PAIYANNOI) { | |
365 | if (!fSuffixSet.contains(utext_previous32(text))) { | |
366 | // Skip over previous end and PAIYANNOI | |
367 | utext_next32(text); | |
2ca993e8 | 368 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); |
73c04bcf | 369 | utext_next32(text); |
2ca993e8 | 370 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word |
73c04bcf A |
371 | uc = utext_current32(text); // Fetch next character |
372 | } | |
373 | else { | |
374 | // Restore prior position | |
375 | utext_next32(text); | |
376 | } | |
377 | } | |
378 | if (uc == THAI_MAIYAMOK) { | |
379 | if (utext_previous32(text) != THAI_MAIYAMOK) { | |
380 | // Skip over previous end and MAIYAMOK | |
381 | utext_next32(text); | |
2ca993e8 | 382 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); |
73c04bcf | 383 | utext_next32(text); |
2ca993e8 | 384 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word |
73c04bcf A |
385 | } |
386 | else { | |
387 | // Restore prior position | |
388 | utext_next32(text); | |
389 | } | |
390 | } | |
391 | } | |
392 | else { | |
b331163b | 393 | utext_setNativeIndex(text, current+cuWordLength); |
73c04bcf A |
394 | } |
395 | } | |
4388f060 A |
396 | |
397 | // Did we find a word on this iteration? If so, push it on the break stack | |
b331163b A |
398 | if (cuWordLength > 0) { |
399 | foundBreaks.push((current+cuWordLength), status); | |
4388f060 A |
400 | } |
401 | } | |
402 | ||
403 | // Don't return a break for the end of the dictionary range if there is one there. | |
404 | if (foundBreaks.peeki() >= rangeEnd) { | |
405 | (void) foundBreaks.popi(); | |
406 | wordsFound -= 1; | |
407 | } | |
408 | ||
409 | return wordsFound; | |
410 | } | |
411 | ||
57a6839d A |
412 | /* |
413 | ****************************************************************** | |
414 | * LaoBreakEngine | |
415 | */ | |
416 | ||
417 | // How many words in a row are "good enough"? | |
b331163b | 418 | static const int32_t LAO_LOOKAHEAD = 3; |
57a6839d A |
419 | |
420 | // Will not combine a non-word with a preceding dictionary word longer than this | |
b331163b | 421 | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; |
57a6839d A |
422 | |
423 | // Will not combine a non-word that shares at least this much prefix with a | |
424 | // dictionary word, with a preceding word | |
b331163b | 425 | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; |
57a6839d A |
426 | |
427 | // Minimum word size | |
b331163b | 428 | static const int32_t LAO_MIN_WORD = 2; |
57a6839d A |
429 | |
430 | // Minimum number of characters for two words | |
b331163b | 431 | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; |
57a6839d A |
432 | |
433 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
0f5d89e8 | 434 | : DictionaryBreakEngine(), |
57a6839d A |
435 | fDictionary(adoptDictionary) |
436 | { | |
437 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); | |
438 | if (U_SUCCESS(status)) { | |
439 | setCharacters(fLaoWordSet); | |
440 | } | |
441 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); | |
442 | fMarkSet.add(0x0020); | |
443 | fEndWordSet = fLaoWordSet; | |
444 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels | |
445 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) | |
446 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) | |
447 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels | |
448 | ||
449 | // Compact for caching. | |
450 | fMarkSet.compact(); | |
451 | fEndWordSet.compact(); | |
452 | fBeginWordSet.compact(); | |
453 | } | |
454 | ||
455 | LaoBreakEngine::~LaoBreakEngine() { | |
456 | delete fDictionary; | |
457 | } | |
458 | ||
459 | int32_t | |
460 | LaoBreakEngine::divideUpDictionaryRange( UText *text, | |
461 | int32_t rangeStart, | |
462 | int32_t rangeEnd, | |
0f5d89e8 | 463 | UVector32 &foundBreaks ) const { |
57a6839d A |
464 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
465 | return 0; // Not enough characters for two words | |
466 | } | |
467 | ||
468 | uint32_t wordsFound = 0; | |
b331163b A |
469 | int32_t cpWordLength = 0; |
470 | int32_t cuWordLength = 0; | |
57a6839d A |
471 | int32_t current; |
472 | UErrorCode status = U_ZERO_ERROR; | |
473 | PossibleWord words[LAO_LOOKAHEAD]; | |
57a6839d A |
474 | |
475 | utext_setNativeIndex(text, rangeStart); | |
476 | ||
477 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
b331163b A |
478 | cuWordLength = 0; |
479 | cpWordLength = 0; | |
57a6839d A |
480 | |
481 | // Look for candidate words at the current position | |
b331163b | 482 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
57a6839d A |
483 | |
484 | // If we found exactly one, use that | |
485 | if (candidates == 1) { | |
b331163b A |
486 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
487 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); | |
57a6839d A |
488 | wordsFound += 1; |
489 | } | |
490 | // If there was more than one, see which one can take us forward the most words | |
491 | else if (candidates > 1) { | |
492 | // If we're already at the end of the range, we're done | |
b331163b | 493 | if (utext_getNativeIndex(text) >= rangeEnd) { |
57a6839d A |
494 | goto foundBest; |
495 | } | |
496 | do { | |
b331163b | 497 | int32_t wordsMatched = 1; |
57a6839d A |
498 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
499 | if (wordsMatched < 2) { | |
500 | // Followed by another dictionary word; mark first word as a good candidate | |
501 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); | |
502 | wordsMatched = 2; | |
503 | } | |
504 | ||
505 | // If we're already at the end of the range, we're done | |
506 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
507 | goto foundBest; | |
508 | } | |
509 | ||
510 | // See if any of the possible second words is followed by a third word | |
511 | do { | |
512 | // If we find a third word, stop right away | |
513 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
514 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); | |
515 | goto foundBest; | |
516 | } | |
517 | } | |
518 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); | |
519 | } | |
520 | } | |
521 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); | |
522 | foundBest: | |
b331163b A |
523 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
524 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); | |
57a6839d A |
525 | wordsFound += 1; |
526 | } | |
527 | ||
528 | // We come here after having either found a word or not. We look ahead to the | |
529 | // next word. If it's not a dictionary word, we will combine it withe the word we | |
530 | // just found (if there is one), but only if the preceding word does not exceed | |
531 | // the threshold. | |
532 | // The text iterator should now be positioned at the end of the word we found. | |
b331163b | 533 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
57a6839d A |
534 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
535 | // no preceding word, or the non-word shares less than the minimum threshold | |
536 | // of characters with a dictionary word, then scan to resynchronize | |
537 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
b331163b | 538 | && (cuWordLength == 0 |
57a6839d A |
539 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
540 | // Look for a plausible word boundary | |
b331163b A |
541 | int32_t remaining = rangeEnd - (current + cuWordLength); |
542 | UChar32 pc; | |
543 | UChar32 uc; | |
57a6839d A |
544 | int32_t chars = 0; |
545 | for (;;) { | |
2ca993e8 | 546 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 547 | pc = utext_next32(text); |
2ca993e8 | 548 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
549 | chars += pcSize; |
550 | remaining -= pcSize; | |
551 | if (remaining <= 0) { | |
57a6839d A |
552 | break; |
553 | } | |
b331163b | 554 | uc = utext_current32(text); |
57a6839d A |
555 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
556 | // Maybe. See if it's in the dictionary. | |
b331163b A |
557 | // TODO: this looks iffy; compare with old code. |
558 | int32_t candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
559 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
57a6839d A |
560 | if (candidates > 0) { |
561 | break; | |
562 | } | |
563 | } | |
57a6839d A |
564 | } |
565 | ||
566 | // Bump the word count if there wasn't already one | |
b331163b | 567 | if (cuWordLength <= 0) { |
57a6839d A |
568 | wordsFound += 1; |
569 | } | |
570 | ||
571 | // Update the length with the passed-over characters | |
b331163b | 572 | cuWordLength += chars; |
57a6839d A |
573 | } |
574 | else { | |
575 | // Back up to where we were for next iteration | |
b331163b | 576 | utext_setNativeIndex(text, current + cuWordLength); |
57a6839d A |
577 | } |
578 | } | |
579 | ||
580 | // Never stop before a combining mark. | |
581 | int32_t currPos; | |
582 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
583 | utext_next32(text); | |
b331163b | 584 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
57a6839d A |
585 | } |
586 | ||
587 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
588 | // We do this in code rather than using a rule so that the heuristic | |
589 | // resynch continues to function. For example, one of the suffix characters | |
590 | // could be a typo in the middle of a word. | |
591 | // NOT CURRENTLY APPLICABLE TO LAO | |
592 | ||
593 | // Did we find a word on this iteration? If so, push it on the break stack | |
b331163b A |
594 | if (cuWordLength > 0) { |
595 | foundBreaks.push((current+cuWordLength), status); | |
596 | } | |
597 | } | |
598 | ||
599 | // Don't return a break for the end of the dictionary range if there is one there. | |
600 | if (foundBreaks.peeki() >= rangeEnd) { | |
601 | (void) foundBreaks.popi(); | |
602 | wordsFound -= 1; | |
603 | } | |
604 | ||
605 | return wordsFound; | |
606 | } | |
607 | ||
608 | /* | |
609 | ****************************************************************** | |
610 | * BurmeseBreakEngine | |
611 | */ | |
612 | ||
613 | // How many words in a row are "good enough"? | |
614 | static const int32_t BURMESE_LOOKAHEAD = 3; | |
615 | ||
616 | // Will not combine a non-word with a preceding dictionary word longer than this | |
617 | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; | |
618 | ||
619 | // Will not combine a non-word that shares at least this much prefix with a | |
620 | // dictionary word, with a preceding word | |
621 | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; | |
622 | ||
623 | // Minimum word size | |
624 | static const int32_t BURMESE_MIN_WORD = 2; | |
625 | ||
626 | // Minimum number of characters for two words | |
627 | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; | |
628 | ||
629 | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
0f5d89e8 | 630 | : DictionaryBreakEngine(), |
b331163b A |
631 | fDictionary(adoptDictionary) |
632 | { | |
633 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status); | |
634 | if (U_SUCCESS(status)) { | |
635 | setCharacters(fBurmeseWordSet); | |
636 | } | |
637 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status); | |
638 | fMarkSet.add(0x0020); | |
639 | fEndWordSet = fBurmeseWordSet; | |
640 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels | |
641 | ||
642 | // Compact for caching. | |
643 | fMarkSet.compact(); | |
644 | fEndWordSet.compact(); | |
645 | fBeginWordSet.compact(); | |
646 | } | |
647 | ||
648 | BurmeseBreakEngine::~BurmeseBreakEngine() { | |
649 | delete fDictionary; | |
650 | } | |
651 | ||
652 | int32_t | |
653 | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, | |
654 | int32_t rangeStart, | |
655 | int32_t rangeEnd, | |
0f5d89e8 | 656 | UVector32 &foundBreaks ) const { |
b331163b A |
657 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { |
658 | return 0; // Not enough characters for two words | |
659 | } | |
660 | ||
661 | uint32_t wordsFound = 0; | |
662 | int32_t cpWordLength = 0; | |
663 | int32_t cuWordLength = 0; | |
664 | int32_t current; | |
665 | UErrorCode status = U_ZERO_ERROR; | |
666 | PossibleWord words[BURMESE_LOOKAHEAD]; | |
667 | ||
668 | utext_setNativeIndex(text, rangeStart); | |
669 | ||
670 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
671 | cuWordLength = 0; | |
672 | cpWordLength = 0; | |
673 | ||
674 | // Look for candidate words at the current position | |
675 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
676 | ||
677 | // If we found exactly one, use that | |
678 | if (candidates == 1) { | |
679 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); | |
680 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); | |
681 | wordsFound += 1; | |
682 | } | |
683 | // If there was more than one, see which one can take us forward the most words | |
684 | else if (candidates > 1) { | |
685 | // If we're already at the end of the range, we're done | |
686 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
687 | goto foundBest; | |
688 | } | |
689 | do { | |
690 | int32_t wordsMatched = 1; | |
691 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { | |
692 | if (wordsMatched < 2) { | |
693 | // Followed by another dictionary word; mark first word as a good candidate | |
694 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); | |
695 | wordsMatched = 2; | |
696 | } | |
697 | ||
698 | // If we're already at the end of the range, we're done | |
699 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
700 | goto foundBest; | |
701 | } | |
702 | ||
703 | // See if any of the possible second words is followed by a third word | |
704 | do { | |
705 | // If we find a third word, stop right away | |
706 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
707 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); | |
708 | goto foundBest; | |
709 | } | |
710 | } | |
711 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); | |
712 | } | |
713 | } | |
714 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); | |
715 | foundBest: | |
716 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); | |
717 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); | |
718 | wordsFound += 1; | |
719 | } | |
720 | ||
721 | // We come here after having either found a word or not. We look ahead to the | |
722 | // next word. If it's not a dictionary word, we will combine it withe the word we | |
723 | // just found (if there is one), but only if the preceding word does not exceed | |
724 | // the threshold. | |
725 | // The text iterator should now be positioned at the end of the word we found. | |
726 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { | |
727 | // if it is a dictionary word, do nothing. If it isn't, then if there is | |
728 | // no preceding word, or the non-word shares less than the minimum threshold | |
729 | // of characters with a dictionary word, then scan to resynchronize | |
730 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
731 | && (cuWordLength == 0 | |
732 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { | |
733 | // Look for a plausible word boundary | |
734 | int32_t remaining = rangeEnd - (current + cuWordLength); | |
735 | UChar32 pc; | |
736 | UChar32 uc; | |
737 | int32_t chars = 0; | |
738 | for (;;) { | |
2ca993e8 | 739 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 740 | pc = utext_next32(text); |
2ca993e8 | 741 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
742 | chars += pcSize; |
743 | remaining -= pcSize; | |
744 | if (remaining <= 0) { | |
745 | break; | |
746 | } | |
747 | uc = utext_current32(text); | |
748 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { | |
749 | // Maybe. See if it's in the dictionary. | |
750 | // TODO: this looks iffy; compare with old code. | |
751 | int32_t candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
752 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
753 | if (candidates > 0) { | |
754 | break; | |
755 | } | |
756 | } | |
757 | } | |
758 | ||
759 | // Bump the word count if there wasn't already one | |
760 | if (cuWordLength <= 0) { | |
761 | wordsFound += 1; | |
762 | } | |
763 | ||
764 | // Update the length with the passed-over characters | |
765 | cuWordLength += chars; | |
766 | } | |
767 | else { | |
768 | // Back up to where we were for next iteration | |
769 | utext_setNativeIndex(text, current + cuWordLength); | |
770 | } | |
771 | } | |
772 | ||
773 | // Never stop before a combining mark. | |
774 | int32_t currPos; | |
775 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
776 | utext_next32(text); | |
777 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; | |
778 | } | |
779 | ||
780 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
781 | // We do this in code rather than using a rule so that the heuristic | |
782 | // resynch continues to function. For example, one of the suffix characters | |
783 | // could be a typo in the middle of a word. | |
784 | // NOT CURRENTLY APPLICABLE TO BURMESE | |
785 | ||
786 | // Did we find a word on this iteration? If so, push it on the break stack | |
787 | if (cuWordLength > 0) { | |
788 | foundBreaks.push((current+cuWordLength), status); | |
57a6839d A |
789 | } |
790 | } | |
791 | ||
792 | // Don't return a break for the end of the dictionary range if there is one there. | |
793 | if (foundBreaks.peeki() >= rangeEnd) { | |
794 | (void) foundBreaks.popi(); | |
795 | wordsFound -= 1; | |
796 | } | |
797 | ||
798 | return wordsFound; | |
799 | } | |
800 | ||
801 | /* | |
802 | ****************************************************************** | |
803 | * KhmerBreakEngine | |
804 | */ | |
805 | ||
4388f060 | 806 | // How many words in a row are "good enough"? |
b331163b | 807 | static const int32_t KHMER_LOOKAHEAD = 3; |
4388f060 A |
808 | |
809 | // Will not combine a non-word with a preceding dictionary word longer than this | |
b331163b | 810 | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3; |
4388f060 A |
811 | |
812 | // Will not combine a non-word that shares at least this much prefix with a | |
813 | // dictionary word, with a preceding word | |
b331163b | 814 | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3; |
4388f060 A |
815 | |
816 | // Minimum word size | |
b331163b | 817 | static const int32_t KHMER_MIN_WORD = 2; |
4388f060 A |
818 | |
819 | // Minimum number of characters for two words | |
b331163b | 820 | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; |
4388f060 | 821 | |
51004dcb | 822 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
0f5d89e8 | 823 | : DictionaryBreakEngine(), |
4388f060 A |
824 | fDictionary(adoptDictionary) |
825 | { | |
826 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); | |
827 | if (U_SUCCESS(status)) { | |
828 | setCharacters(fKhmerWordSet); | |
829 | } | |
830 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); | |
831 | fMarkSet.add(0x0020); | |
832 | fEndWordSet = fKhmerWordSet; | |
833 | fBeginWordSet.add(0x1780, 0x17B3); | |
834 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels | |
835 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word | |
836 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word | |
837 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters | |
838 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels | |
839 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT | |
840 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
841 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK | |
842 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
843 | // fSuffixSet.add(THAI_PAIYANNOI); | |
844 | // fSuffixSet.add(THAI_MAIYAMOK); | |
845 | ||
846 | // Compact for caching. | |
847 | fMarkSet.compact(); | |
848 | fEndWordSet.compact(); | |
849 | fBeginWordSet.compact(); | |
850 | // fSuffixSet.compact(); | |
851 | } | |
852 | ||
853 | KhmerBreakEngine::~KhmerBreakEngine() { | |
854 | delete fDictionary; | |
855 | } | |
856 | ||
857 | int32_t | |
858 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, | |
859 | int32_t rangeStart, | |
860 | int32_t rangeEnd, | |
0f5d89e8 | 861 | UVector32 &foundBreaks ) const { |
4388f060 A |
862 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
863 | return 0; // Not enough characters for two words | |
864 | } | |
865 | ||
866 | uint32_t wordsFound = 0; | |
b331163b A |
867 | int32_t cpWordLength = 0; |
868 | int32_t cuWordLength = 0; | |
4388f060 A |
869 | int32_t current; |
870 | UErrorCode status = U_ZERO_ERROR; | |
871 | PossibleWord words[KHMER_LOOKAHEAD]; | |
4388f060 A |
872 | |
873 | utext_setNativeIndex(text, rangeStart); | |
874 | ||
875 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
b331163b A |
876 | cuWordLength = 0; |
877 | cpWordLength = 0; | |
4388f060 A |
878 | |
879 | // Look for candidate words at the current position | |
b331163b | 880 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
4388f060 A |
881 | |
882 | // If we found exactly one, use that | |
883 | if (candidates == 1) { | |
b331163b A |
884 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
885 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); | |
4388f060 A |
886 | wordsFound += 1; |
887 | } | |
888 | ||
889 | // If there was more than one, see which one can take us forward the most words | |
890 | else if (candidates > 1) { | |
891 | // If we're already at the end of the range, we're done | |
892 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
893 | goto foundBest; | |
894 | } | |
895 | do { | |
b331163b | 896 | int32_t wordsMatched = 1; |
51004dcb | 897 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
4388f060 A |
898 | if (wordsMatched < 2) { |
899 | // Followed by another dictionary word; mark first word as a good candidate | |
51004dcb | 900 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
4388f060 A |
901 | wordsMatched = 2; |
902 | } | |
903 | ||
904 | // If we're already at the end of the range, we're done | |
905 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
906 | goto foundBest; | |
907 | } | |
908 | ||
909 | // See if any of the possible second words is followed by a third word | |
910 | do { | |
911 | // If we find a third word, stop right away | |
51004dcb A |
912 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
913 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); | |
4388f060 A |
914 | goto foundBest; |
915 | } | |
916 | } | |
51004dcb | 917 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
4388f060 A |
918 | } |
919 | } | |
51004dcb | 920 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
4388f060 | 921 | foundBest: |
b331163b A |
922 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
923 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); | |
4388f060 A |
924 | wordsFound += 1; |
925 | } | |
926 | ||
927 | // We come here after having either found a word or not. We look ahead to the | |
928 | // next word. If it's not a dictionary word, we will combine it with the word we | |
929 | // just found (if there is one), but only if the preceding word does not exceed | |
930 | // the threshold. | |
931 | // The text iterator should now be positioned at the end of the word we found. | |
b331163b | 932 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
4388f060 A |
933 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
934 | // no preceding word, or the non-word shares less than the minimum threshold | |
935 | // of characters with a dictionary word, then scan to resynchronize | |
51004dcb | 936 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
b331163b | 937 | && (cuWordLength == 0 |
51004dcb | 938 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
4388f060 | 939 | // Look for a plausible word boundary |
b331163b A |
940 | int32_t remaining = rangeEnd - (current+cuWordLength); |
941 | UChar32 pc; | |
942 | UChar32 uc; | |
4388f060 A |
943 | int32_t chars = 0; |
944 | for (;;) { | |
2ca993e8 | 945 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 946 | pc = utext_next32(text); |
2ca993e8 | 947 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
948 | chars += pcSize; |
949 | remaining -= pcSize; | |
950 | if (remaining <= 0) { | |
4388f060 A |
951 | break; |
952 | } | |
b331163b | 953 | uc = utext_current32(text); |
4388f060 A |
954 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
955 | // Maybe. See if it's in the dictionary. | |
b331163b A |
956 | int32_t candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
957 | utext_setNativeIndex(text, current+cuWordLength+chars); | |
4388f060 A |
958 | if (candidates > 0) { |
959 | break; | |
960 | } | |
961 | } | |
4388f060 A |
962 | } |
963 | ||
964 | // Bump the word count if there wasn't already one | |
b331163b | 965 | if (cuWordLength <= 0) { |
4388f060 A |
966 | wordsFound += 1; |
967 | } | |
968 | ||
969 | // Update the length with the passed-over characters | |
b331163b | 970 | cuWordLength += chars; |
4388f060 A |
971 | } |
972 | else { | |
973 | // Back up to where we were for next iteration | |
b331163b | 974 | utext_setNativeIndex(text, current+cuWordLength); |
4388f060 A |
975 | } |
976 | } | |
977 | ||
978 | // Never stop before a combining mark. | |
979 | int32_t currPos; | |
980 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
981 | utext_next32(text); | |
b331163b | 982 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
4388f060 A |
983 | } |
984 | ||
985 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
986 | // We do this in code rather than using a rule so that the heuristic | |
987 | // resynch continues to function. For example, one of the suffix characters | |
988 | // could be a typo in the middle of a word. | |
989 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { | |
990 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
991 | // && fSuffixSet.contains(uc = utext_current32(text))) { | |
992 | // if (uc == KHMER_PAIYANNOI) { | |
993 | // if (!fSuffixSet.contains(utext_previous32(text))) { | |
994 | // // Skip over previous end and PAIYANNOI | |
995 | // utext_next32(text); | |
996 | // utext_next32(text); | |
997 | // wordLength += 1; // Add PAIYANNOI to word | |
998 | // uc = utext_current32(text); // Fetch next character | |
999 | // } | |
1000 | // else { | |
1001 | // // Restore prior position | |
1002 | // utext_next32(text); | |
1003 | // } | |
1004 | // } | |
1005 | // if (uc == KHMER_MAIYAMOK) { | |
1006 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { | |
1007 | // // Skip over previous end and MAIYAMOK | |
1008 | // utext_next32(text); | |
1009 | // utext_next32(text); | |
1010 | // wordLength += 1; // Add MAIYAMOK to word | |
1011 | // } | |
1012 | // else { | |
1013 | // // Restore prior position | |
1014 | // utext_next32(text); | |
1015 | // } | |
1016 | // } | |
1017 | // } | |
1018 | // else { | |
1019 | // utext_setNativeIndex(text, current+wordLength); | |
1020 | // } | |
1021 | // } | |
1022 | ||
73c04bcf | 1023 | // Did we find a word on this iteration? If so, push it on the break stack |
b331163b A |
1024 | if (cuWordLength > 0) { |
1025 | foundBreaks.push((current+cuWordLength), status); | |
73c04bcf A |
1026 | } |
1027 | } | |
1028 | ||
1029 | // Don't return a break for the end of the dictionary range if there is one there. | |
1030 | if (foundBreaks.peeki() >= rangeEnd) { | |
1031 | (void) foundBreaks.popi(); | |
1032 | wordsFound -= 1; | |
1033 | } | |
1034 | ||
1035 | return wordsFound; | |
1036 | } | |
1037 | ||
51004dcb A |
1038 | #if !UCONFIG_NO_NORMALIZATION |
1039 | /* | |
1040 | ****************************************************************** | |
1041 | * CjkBreakEngine | |
1042 | */ | |
1043 | static const uint32_t kuint32max = 0xFFFFFFFF; | |
1044 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) | |
0f5d89e8 | 1045 | : DictionaryBreakEngine(), fDictionary(adoptDictionary) { |
51004dcb A |
1046 | // Korean dictionary only includes Hangul syllables |
1047 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); | |
1048 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); | |
1049 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); | |
1050 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); | |
b331163b | 1051 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); |
51004dcb A |
1052 | |
1053 | if (U_SUCCESS(status)) { | |
1054 | // handle Korean and Japanese/Chinese using different dictionaries | |
1055 | if (type == kKorean) { | |
1056 | setCharacters(fHangulWordSet); | |
1057 | } else { //Chinese and Japanese | |
1058 | UnicodeSet cjSet; | |
1059 | cjSet.addAll(fHanWordSet); | |
1060 | cjSet.addAll(fKatakanaWordSet); | |
1061 | cjSet.addAll(fHiraganaWordSet); | |
57a6839d A |
1062 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1063 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK | |
51004dcb A |
1064 | setCharacters(cjSet); |
1065 | } | |
1066 | } | |
1067 | } | |
1068 | ||
1069 | CjkBreakEngine::~CjkBreakEngine(){ | |
1070 | delete fDictionary; | |
1071 | } | |
1072 | ||
1073 | // The katakanaCost values below are based on the length frequencies of all | |
1074 | // katakana phrases in the dictionary | |
b331163b A |
1075 | static const int32_t kMaxKatakanaLength = 8; |
1076 | static const int32_t kMaxKatakanaGroupLength = 20; | |
51004dcb A |
1077 | static const uint32_t maxSnlp = 255; |
1078 | ||
b331163b | 1079 | static inline uint32_t getKatakanaCost(int32_t wordLength){ |
51004dcb A |
1080 | //TODO: fill array with actual values from dictionary! |
1081 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] | |
1082 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; | |
1083 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; | |
1084 | } | |
1085 | ||
0f5d89e8 A |
1086 | static inline bool isKatakana(UChar32 value) { |
1087 | return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || | |
1088 | (value >= 0xFF66 && value <= 0xFF9f); | |
51004dcb A |
1089 | } |
1090 | ||
51004dcb | 1091 | |
b331163b A |
1092 | // Function for accessing internal utext flags. |
1093 | // Replicates an internal UText function. | |
51004dcb | 1094 | |
b331163b A |
1095 | static inline int32_t utext_i32_flag(int32_t bitIndex) { |
1096 | return (int32_t)1 << bitIndex; | |
1097 | } | |
51004dcb | 1098 | |
b331163b | 1099 | |
51004dcb A |
1100 | /* |
1101 | * @param text A UText representing the text | |
1102 | * @param rangeStart The start of the range of dictionary characters | |
1103 | * @param rangeEnd The end of the range of dictionary characters | |
0f5d89e8 | 1104 | * @param foundBreaks vector<int32> to receive the break positions |
51004dcb A |
1105 | * @return The number of breaks found |
1106 | */ | |
1107 | int32_t | |
b331163b | 1108 | CjkBreakEngine::divideUpDictionaryRange( UText *inText, |
51004dcb A |
1109 | int32_t rangeStart, |
1110 | int32_t rangeEnd, | |
0f5d89e8 | 1111 | UVector32 &foundBreaks ) const { |
51004dcb A |
1112 | if (rangeStart >= rangeEnd) { |
1113 | return 0; | |
1114 | } | |
1115 | ||
2ca993e8 A |
1116 | // UnicodeString version of input UText, NFKC normalized if necessary. |
1117 | UnicodeString inString; | |
b331163b A |
1118 | |
1119 | // inputMap[inStringIndex] = corresponding native index from UText inText. | |
1120 | // If NULL then mapping is 1:1 | |
2ca993e8 | 1121 | LocalPointer<UVector32> inputMap; |
b331163b A |
1122 | |
1123 | UErrorCode status = U_ZERO_ERROR; | |
51004dcb | 1124 | |
51004dcb | 1125 | |
b331163b A |
1126 | // if UText has the input string as one contiguous UTF-16 chunk |
1127 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && | |
1128 | inText->chunkNativeStart <= rangeStart && | |
1129 | inText->chunkNativeLimit >= rangeEnd && | |
1130 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { | |
2ca993e8 A |
1131 | |
1132 | // Input UText is in one contiguous UTF-16 chunk. | |
1133 | // Use Read-only aliasing UnicodeString. | |
1134 | inString.setTo(FALSE, | |
1135 | inText->chunkContents + rangeStart - inText->chunkNativeStart, | |
1136 | rangeEnd - rangeStart); | |
b331163b A |
1137 | } else { |
1138 | // Copy the text from the original inText (UText) to inString (UnicodeString). | |
1139 | // Create a map from UnicodeString indices -> UText offsets. | |
1140 | utext_setNativeIndex(inText, rangeStart); | |
1141 | int32_t limit = rangeEnd; | |
1142 | U_ASSERT(limit <= utext_nativeLength(inText)); | |
1143 | if (limit > utext_nativeLength(inText)) { | |
2ca993e8 A |
1144 | limit = (int32_t)utext_nativeLength(inText); |
1145 | } | |
1146 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); | |
1147 | if (U_FAILURE(status)) { | |
1148 | return 0; | |
b331163b | 1149 | } |
b331163b | 1150 | while (utext_getNativeIndex(inText) < limit) { |
2ca993e8 | 1151 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); |
b331163b A |
1152 | UChar32 c = utext_next32(inText); |
1153 | U_ASSERT(c != U_SENTINEL); | |
2ca993e8 A |
1154 | inString.append(c); |
1155 | while (inputMap->size() < inString.length()) { | |
b331163b A |
1156 | inputMap->addElement(nativePosition, status); |
1157 | } | |
51004dcb | 1158 | } |
b331163b | 1159 | inputMap->addElement(limit, status); |
51004dcb | 1160 | } |
b331163b A |
1161 | |
1162 | ||
2ca993e8 A |
1163 | if (!nfkcNorm2->isNormalized(inString, status)) { |
1164 | UnicodeString normalizedInput; | |
b331163b | 1165 | // normalizedMap[normalizedInput position] == original UText position. |
2ca993e8 | 1166 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); |
51004dcb A |
1167 | if (U_FAILURE(status)) { |
1168 | return 0; | |
1169 | } | |
b331163b A |
1170 | |
1171 | UnicodeString fragment; | |
1172 | UnicodeString normalizedFragment; | |
2ca993e8 | 1173 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk |
b331163b A |
1174 | fragment.remove(); |
1175 | int32_t fragmentStartI = srcI; | |
2ca993e8 | 1176 | UChar32 c = inString.char32At(srcI); |
b331163b A |
1177 | for (;;) { |
1178 | fragment.append(c); | |
2ca993e8 A |
1179 | srcI = inString.moveIndex32(srcI, 1); |
1180 | if (srcI == inString.length()) { | |
b331163b A |
1181 | break; |
1182 | } | |
2ca993e8 | 1183 | c = inString.char32At(srcI); |
b331163b A |
1184 | if (nfkcNorm2->hasBoundaryBefore(c)) { |
1185 | break; | |
1186 | } | |
1187 | } | |
1188 | nfkcNorm2->normalize(fragment, normalizedFragment, status); | |
2ca993e8 | 1189 | normalizedInput.append(normalizedFragment); |
b331163b A |
1190 | |
1191 | // Map every position in the normalized chunk to the start of the chunk | |
1192 | // in the original input. | |
2ca993e8 A |
1193 | int32_t fragmentOriginalStart = inputMap.isValid() ? |
1194 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; | |
1195 | while (normalizedMap->size() < normalizedInput.length()) { | |
b331163b A |
1196 | normalizedMap->addElement(fragmentOriginalStart, status); |
1197 | if (U_FAILURE(status)) { | |
1198 | break; | |
1199 | } | |
1200 | } | |
51004dcb | 1201 | } |
2ca993e8 A |
1202 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); |
1203 | int32_t nativeEnd = inputMap.isValid() ? | |
1204 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; | |
b331163b A |
1205 | normalizedMap->addElement(nativeEnd, status); |
1206 | ||
2ca993e8 A |
1207 | inputMap.moveFrom(normalizedMap); |
1208 | inString.moveFrom(normalizedInput); | |
51004dcb A |
1209 | } |
1210 | ||
2ca993e8 A |
1211 | int32_t numCodePts = inString.countChar32(); |
1212 | if (numCodePts != inString.length()) { | |
b331163b A |
1213 | // There are supplementary characters in the input. |
1214 | // The dictionary will produce boundary positions in terms of code point indexes, | |
1215 | // not in terms of code unit string indexes. | |
1216 | // Use the inputMap mechanism to take care of this in addition to indexing differences | |
1217 | // from normalization and/or UTF-8 input. | |
2ca993e8 | 1218 | UBool hadExistingMap = inputMap.isValid(); |
b331163b | 1219 | if (!hadExistingMap) { |
2ca993e8 A |
1220 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1221 | if (U_FAILURE(status)) { | |
1222 | return 0; | |
1223 | } | |
b331163b A |
1224 | } |
1225 | int32_t cpIdx = 0; | |
2ca993e8 | 1226 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { |
b331163b A |
1227 | U_ASSERT(cuIdx >= cpIdx); |
1228 | if (hadExistingMap) { | |
1229 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); | |
1230 | } else { | |
1231 | inputMap->addElement(cuIdx+rangeStart, status); | |
1232 | } | |
1233 | cpIdx++; | |
2ca993e8 | 1234 | if (cuIdx == inString.length()) { |
b331163b A |
1235 | break; |
1236 | } | |
1237 | } | |
51004dcb | 1238 | } |
b331163b | 1239 | |
51004dcb | 1240 | // bestSnlp[i] is the snlp of the best segmentation of the first i |
b331163b A |
1241 | // code points in the range to be matched. |
1242 | UVector32 bestSnlp(numCodePts + 1, status); | |
1243 | bestSnlp.addElement(0, status); | |
1244 | for(int32_t i = 1; i <= numCodePts; i++) { | |
1245 | bestSnlp.addElement(kuint32max, status); | |
51004dcb A |
1246 | } |
1247 | ||
b331163b A |
1248 | |
1249 | // prev[i] is the index of the last CJK code point in the previous word in | |
51004dcb | 1250 | // the best segmentation of the first i characters. |
b331163b A |
1251 | UVector32 prev(numCodePts + 1, status); |
1252 | for(int32_t i = 0; i <= numCodePts; i++){ | |
1253 | prev.addElement(-1, status); | |
51004dcb A |
1254 | } |
1255 | ||
b331163b A |
1256 | const int32_t maxWordSize = 20; |
1257 | UVector32 values(numCodePts, status); | |
1258 | values.setSize(numCodePts); | |
1259 | UVector32 lengths(numCodePts, status); | |
1260 | lengths.setSize(numCodePts); | |
1261 | ||
1262 | UText fu = UTEXT_INITIALIZER; | |
2ca993e8 | 1263 | utext_openUnicodeString(&fu, &inString, &status); |
51004dcb A |
1264 | |
1265 | // Dynamic programming to find the best segmentation. | |
b331163b A |
1266 | |
1267 | // In outer loop, i is the code point index, | |
1268 | // ix is the corresponding string (code unit) index. | |
1269 | // They differ when the string contains supplementary characters. | |
1270 | int32_t ix = 0; | |
f3c0d7a5 | 1271 | bool is_prev_katakana = false; |
2ca993e8 | 1272 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { |
b331163b | 1273 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { |
51004dcb | 1274 | continue; |
b331163b | 1275 | } |
51004dcb A |
1276 | |
1277 | int32_t count; | |
b331163b A |
1278 | utext_setNativeIndex(&fu, ix); |
1279 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, | |
1280 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); | |
1281 | // Note: lengths is filled with code point lengths | |
1282 | // The NULL parameter is the ignored code unit lengths. | |
51004dcb A |
1283 | |
1284 | // if there are no single character matches found in the dictionary | |
f3c0d7a5 | 1285 | // starting with this character, treat character as a 1-character word |
51004dcb A |
1286 | // with the highest value possible, i.e. the least likely to occur. |
1287 | // Exclude Korean characters from this treatment, as they should be left | |
1288 | // together by default. | |
b331163b | 1289 | if ((count == 0 || lengths.elementAti(0) != 1) && |
2ca993e8 | 1290 | !fHangulWordSet.contains(inString.char32At(ix))) { |
b331163b A |
1291 | values.setElementAt(maxSnlp, count); // 255 |
1292 | lengths.setElementAt(1, count++); | |
51004dcb A |
1293 | } |
1294 | ||
b331163b A |
1295 | for (int32_t j = 0; j < count; j++) { |
1296 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); | |
1297 | int32_t ln_j_i = lengths.elementAti(j) + i; | |
1298 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { | |
1299 | bestSnlp.setElementAt(newSnlp, ln_j_i); | |
1300 | prev.setElementAt(i, ln_j_i); | |
51004dcb A |
1301 | } |
1302 | } | |
1303 | ||
1304 | // In Japanese, | |
1305 | // Katakana word in single character is pretty rare. So we apply | |
1306 | // the following heuristic to Katakana: any continuous run of Katakana | |
1307 | // characters is considered a candidate word with a default cost | |
1308 | // specified in the katakanaCost table according to its length. | |
b331163b | 1309 | |
2ca993e8 | 1310 | bool is_katakana = isKatakana(inString.char32At(ix)); |
b331163b | 1311 | int32_t katakanaRunLength = 1; |
51004dcb | 1312 | if (!is_prev_katakana && is_katakana) { |
2ca993e8 | 1313 | int32_t j = inString.moveIndex32(ix, 1); |
51004dcb | 1314 | // Find the end of the continuous run of Katakana characters |
2ca993e8 A |
1315 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && |
1316 | isKatakana(inString.char32At(j))) { | |
1317 | j = inString.moveIndex32(j, 1); | |
b331163b | 1318 | katakanaRunLength++; |
51004dcb | 1319 | } |
b331163b A |
1320 | if (katakanaRunLength < kMaxKatakanaGroupLength) { |
1321 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); | |
0f5d89e8 A |
1322 | if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { |
1323 | bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); | |
b331163b | 1324 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; |
51004dcb A |
1325 | } |
1326 | } | |
1327 | } | |
1328 | is_prev_katakana = is_katakana; | |
1329 | } | |
b331163b | 1330 | utext_close(&fu); |
51004dcb A |
1331 | |
1332 | // Start pushing the optimal offset index into t_boundary (t for tentative). | |
b331163b | 1333 | // prev[numCodePts] is guaranteed to be meaningful. |
51004dcb | 1334 | // We'll first push in the reverse order, i.e., |
b331163b A |
1335 | // t_boundary[0] = numCodePts, and afterwards do a swap. |
1336 | UVector32 t_boundary(numCodePts+1, status); | |
51004dcb | 1337 | |
b331163b | 1338 | int32_t numBreaks = 0; |
51004dcb | 1339 | // No segmentation found, set boundary to end of range |
b331163b A |
1340 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { |
1341 | t_boundary.addElement(numCodePts, status); | |
1342 | numBreaks++; | |
51004dcb | 1343 | } else { |
b331163b A |
1344 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { |
1345 | t_boundary.addElement(i, status); | |
1346 | numBreaks++; | |
51004dcb | 1347 | } |
b331163b | 1348 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); |
51004dcb A |
1349 | } |
1350 | ||
b331163b | 1351 | // Add a break for the start of the dictionary range if there is not one |
51004dcb A |
1352 | // there already. |
1353 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { | |
b331163b A |
1354 | t_boundary.addElement(0, status); |
1355 | numBreaks++; | |
51004dcb A |
1356 | } |
1357 | ||
b331163b A |
1358 | // Now that we're done, convert positions in t_boundary[] (indices in |
1359 | // the normalized input string) back to indices in the original input UText | |
1360 | // while reversing t_boundary and pushing values to foundBreaks. | |
f3c0d7a5 A |
1361 | int32_t prevCPPos = -1; |
1362 | int32_t prevUTextPos = -1; | |
b331163b A |
1363 | for (int32_t i = numBreaks-1; i >= 0; i--) { |
1364 | int32_t cpPos = t_boundary.elementAti(i); | |
f3c0d7a5 | 1365 | U_ASSERT(cpPos > prevCPPos); |
2ca993e8 | 1366 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; |
f3c0d7a5 A |
1367 | U_ASSERT(utextPos >= prevUTextPos); |
1368 | if (utextPos > prevUTextPos) { | |
1369 | // Boundaries are added to foundBreaks output in ascending order. | |
1370 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); | |
1371 | foundBreaks.push(utextPos, status); | |
1372 | } else { | |
1373 | // Normalization expanded the input text, the dictionary found a boundary | |
1374 | // within the expansion, giving two boundaries with the same index in the | |
1375 | // original text. Ignore the second. See ticket #12918. | |
1376 | --numBreaks; | |
1377 | } | |
1378 | prevCPPos = cpPos; | |
1379 | prevUTextPos = utextPos; | |
51004dcb | 1380 | } |
0f5d89e8 | 1381 | (void)prevCPPos; // suppress compiler warnings about unused variable |
51004dcb | 1382 | |
2ca993e8 A |
1383 | // inString goes out of scope |
1384 | // inputMap goes out of scope | |
51004dcb A |
1385 | return numBreaks; |
1386 | } | |
1387 | #endif | |
1388 | ||
73c04bcf A |
1389 | U_NAMESPACE_END |
1390 | ||
1391 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ | |
51004dcb | 1392 |