]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ******************************************************************************* | |
4388f060 | 3 | * Copyright (C) 1996-2012, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ******************************************************************************* | |
6 | * file name: ucol.cpp | |
7 | * encoding: US-ASCII | |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * Modification history | |
12 | * Date Name Comments | |
13 | * 1996-1999 various members of ICU team maintained C API for collation framework | |
14 | * 02/16/2001 synwee Added internal method getPrevSpecialCE | |
15 | * 03/01/2001 synwee Added maxexpansion functionality. | |
16 | * 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant | |
17 | */ | |
18 | ||
19 | #include "unicode/utypes.h" | |
b75a7d8f A |
20 | |
21 | #if !UCONFIG_NO_COLLATION | |
22 | ||
4388f060 | 23 | #include "unicode/bytestream.h" |
b75a7d8f A |
24 | #include "unicode/coleitr.h" |
25 | #include "unicode/unorm.h" | |
26 | #include "unicode/udata.h" | |
73c04bcf | 27 | #include "unicode/ustring.h" |
51004dcb | 28 | #include "unicode/utf8.h" |
b75a7d8f | 29 | |
b75a7d8f | 30 | #include "ucol_imp.h" |
b75a7d8f A |
31 | #include "bocsu.h" |
32 | ||
729e4ab9 | 33 | #include "normalizer2impl.h" |
b75a7d8f | 34 | #include "unorm_it.h" |
b75a7d8f | 35 | #include "umutex.h" |
73c04bcf | 36 | #include "cmemory.h" |
374ca955 | 37 | #include "ucln_in.h" |
b75a7d8f | 38 | #include "cstring.h" |
374ca955 A |
39 | #include "utracimp.h" |
40 | #include "putilimp.h" | |
46f4442e | 41 | #include "uassert.h" |
4388f060 | 42 | #include "unicode/coll.h" |
b75a7d8f A |
43 | |
44 | #ifdef UCOL_DEBUG | |
45 | #include <stdio.h> | |
46 | #endif | |
47 | ||
48 | U_NAMESPACE_USE | |
49 | ||
729e4ab9 A |
50 | #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
51 | ||
b75a7d8f A |
52 | #define LAST_BYTE_MASK_ 0xFF |
53 | #define SECOND_LAST_BYTE_SHIFT_ 8 | |
54 | ||
55 | #define ZERO_CC_LIMIT_ 0xC0 | |
56 | ||
51004dcb A |
57 | // These are static pointers to the NFC/NFD implementation instance. |
58 | // Each of them is always the same between calls to u_cleanup | |
374ca955 | 59 | // and therefore writing to it is not synchronized. |
51004dcb A |
60 | // They are cleaned in ucol_cleanup |
61 | static const Normalizer2 *g_nfd = NULL; | |
4388f060 | 62 | static const Normalizer2Impl *g_nfcImpl = NULL; |
b75a7d8f | 63 | |
73c04bcf A |
64 | // These are values from UCA required for |
65 | // implicit generation and supressing sort key compression | |
66 | // they should regularly be in the UCA, but if one | |
67 | // is running without UCA, it could be a problem | |
729e4ab9 | 68 | static const int32_t maxRegularPrimary = 0x7A; |
46f4442e A |
69 | static const int32_t minImplicitPrimary = 0xE0; |
70 | static const int32_t maxImplicitPrimary = 0xE4; | |
73c04bcf | 71 | |
b75a7d8f A |
72 | U_CDECL_BEGIN |
73 | static UBool U_CALLCONV | |
46f4442e A |
74 | ucol_cleanup(void) |
75 | { | |
51004dcb | 76 | g_nfd = NULL; |
4388f060 | 77 | g_nfcImpl = NULL; |
46f4442e | 78 | return TRUE; |
b75a7d8f A |
79 | } |
80 | ||
b75a7d8f A |
81 | static int32_t U_CALLCONV |
82 | _getFoldingOffset(uint32_t data) { | |
83 | return (int32_t)(data&0xFFFFFF); | |
84 | } | |
85 | ||
86 | U_CDECL_END | |
87 | ||
51004dcb A |
88 | static inline |
89 | UBool initializeNFD(UErrorCode *status) { | |
90 | if (g_nfd != NULL) { | |
91 | return TRUE; | |
92 | } else { | |
93 | // The result is constant, until the library is reloaded. | |
94 | g_nfd = Normalizer2Factory::getNFDInstance(*status); | |
95 | ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); | |
96 | return U_SUCCESS(*status); | |
97 | } | |
98 | } | |
99 | ||
729e4ab9 A |
100 | // init FCD data |
101 | static inline | |
102 | UBool initializeFCD(UErrorCode *status) { | |
4388f060 | 103 | if (g_nfcImpl != NULL) { |
729e4ab9 A |
104 | return TRUE; |
105 | } else { | |
106 | // The result is constant, until the library is reloaded. | |
4388f060 A |
107 | g_nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
108 | // Note: Alternatively, we could also store this pointer in each collIterate struct, | |
109 | // same as Normalizer2Factory::getImpl(collIterate->nfd). | |
729e4ab9 A |
110 | ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); |
111 | return U_SUCCESS(*status); | |
112 | } | |
113 | } | |
114 | ||
b75a7d8f | 115 | static |
46f4442e | 116 | inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString, |
729e4ab9 A |
117 | int32_t sourceLen, collIterate *s, |
118 | UErrorCode *status) | |
46f4442e | 119 | { |
729e4ab9 | 120 | (s)->string = (s)->pos = sourceString; |
b75a7d8f A |
121 | (s)->origFlags = 0; |
122 | (s)->flags = 0; | |
123 | if (sourceLen >= 0) { | |
124 | s->flags |= UCOL_ITER_HASLEN; | |
125 | (s)->endp = (UChar *)sourceString+sourceLen; | |
126 | } | |
127 | else { | |
128 | /* change to enable easier checking for end of string for fcdpositon */ | |
129 | (s)->endp = NULL; | |
130 | } | |
46f4442e A |
131 | (s)->extendCEs = NULL; |
132 | (s)->extendCEsSize = 0; | |
b75a7d8f | 133 | (s)->CEpos = (s)->toReturn = (s)->CEs; |
46f4442e A |
134 | (s)->offsetBuffer = NULL; |
135 | (s)->offsetBufferSize = 0; | |
136 | (s)->offsetReturn = (s)->offsetStore = NULL; | |
137 | (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0; | |
b75a7d8f | 138 | (s)->coll = (collator); |
51004dcb A |
139 | if (initializeNFD(status)) { |
140 | (s)->nfd = g_nfd; | |
141 | } else { | |
142 | return; | |
143 | } | |
b75a7d8f A |
144 | (s)->fcdPosition = 0; |
145 | if(collator->normalizationMode == UCOL_ON) { | |
374ca955 | 146 | (s)->flags |= UCOL_ITER_NORM; |
b75a7d8f A |
147 | } |
148 | if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) { | |
46f4442e | 149 | (s)->flags |= UCOL_HIRAGANA_Q; |
b75a7d8f A |
150 | } |
151 | (s)->iterator = NULL; | |
152 | //(s)->iteratorIndex = 0; | |
153 | } | |
154 | ||
155 | U_CAPI void U_EXPORT2 | |
156 | uprv_init_collIterate(const UCollator *collator, const UChar *sourceString, | |
729e4ab9 A |
157 | int32_t sourceLen, collIterate *s, |
158 | UErrorCode *status) { | |
b75a7d8f | 159 | /* Out-of-line version for use from other files. */ |
729e4ab9 | 160 | IInit_collIterate(collator, sourceString, sourceLen, s, status); |
b75a7d8f A |
161 | } |
162 | ||
729e4ab9 A |
163 | U_CAPI collIterate * U_EXPORT2 |
164 | uprv_new_collIterate(UErrorCode *status) { | |
165 | if(U_FAILURE(*status)) { | |
166 | return NULL; | |
167 | } | |
168 | collIterate *s = new collIterate; | |
169 | if(s == NULL) { | |
170 | *status = U_MEMORY_ALLOCATION_ERROR; | |
171 | return NULL; | |
172 | } | |
173 | return s; | |
174 | } | |
175 | ||
176 | U_CAPI void U_EXPORT2 | |
177 | uprv_delete_collIterate(collIterate *s) { | |
178 | delete s; | |
179 | } | |
180 | ||
181 | U_CAPI UBool U_EXPORT2 | |
182 | uprv_collIterateAtEnd(collIterate *s) { | |
183 | return s == NULL || s->pos == s->endp; | |
184 | } | |
b75a7d8f A |
185 | |
186 | /** | |
187 | * Backup the state of the collIterate struct data | |
188 | * @param data collIterate to backup | |
189 | * @param backup storage | |
190 | */ | |
191 | static | |
192 | inline void backupState(const collIterate *data, collIterateState *backup) | |
193 | { | |
194 | backup->fcdPosition = data->fcdPosition; | |
195 | backup->flags = data->flags; | |
196 | backup->origFlags = data->origFlags; | |
197 | backup->pos = data->pos; | |
729e4ab9 A |
198 | backup->bufferaddress = data->writableBuffer.getBuffer(); |
199 | backup->buffersize = data->writableBuffer.length(); | |
73c04bcf A |
200 | backup->iteratorMove = 0; |
201 | backup->iteratorIndex = 0; | |
b75a7d8f | 202 | if(data->iterator != NULL) { |
73c04bcf A |
203 | //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT); |
204 | backup->iteratorIndex = data->iterator->getState(data->iterator); | |
205 | // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE | |
206 | if(backup->iteratorIndex == UITER_NO_STATE) { | |
207 | while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) { | |
208 | backup->iteratorMove++; | |
209 | data->iterator->move(data->iterator, -1, UITER_CURRENT); | |
210 | } | |
211 | data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); | |
212 | } | |
b75a7d8f A |
213 | } |
214 | } | |
215 | ||
216 | /** | |
217 | * Loads the state into the collIterate struct data | |
218 | * @param data collIterate to backup | |
219 | * @param backup storage | |
220 | * @param forwards boolean to indicate if forwards iteration is used, | |
221 | * false indicates backwards iteration | |
222 | */ | |
223 | static | |
224 | inline void loadState(collIterate *data, const collIterateState *backup, | |
225 | UBool forwards) | |
226 | { | |
73c04bcf | 227 | UErrorCode status = U_ZERO_ERROR; |
b75a7d8f A |
228 | data->flags = backup->flags; |
229 | data->origFlags = backup->origFlags; | |
230 | if(data->iterator != NULL) { | |
73c04bcf A |
231 | //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO); |
232 | data->iterator->setState(data->iterator, backup->iteratorIndex, &status); | |
233 | if(backup->iteratorMove != 0) { | |
234 | data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); | |
235 | } | |
b75a7d8f A |
236 | } |
237 | data->pos = backup->pos; | |
46f4442e | 238 | |
b75a7d8f | 239 | if ((data->flags & UCOL_ITER_INNORMBUF) && |
729e4ab9 | 240 | data->writableBuffer.getBuffer() != backup->bufferaddress) { |
b75a7d8f A |
241 | /* |
242 | this is when a new buffer has been reallocated and we'll have to | |
243 | calculate the new position. | |
244 | note the new buffer has to contain the contents of the old buffer. | |
245 | */ | |
246 | if (forwards) { | |
729e4ab9 | 247 | data->pos = data->writableBuffer.getTerminatedBuffer() + |
b75a7d8f A |
248 | (data->pos - backup->bufferaddress); |
249 | } | |
250 | else { | |
251 | /* backwards direction */ | |
729e4ab9 A |
252 | int32_t temp = backup->buffersize - |
253 | (int32_t)(data->pos - backup->bufferaddress); | |
254 | data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp); | |
b75a7d8f A |
255 | } |
256 | } | |
257 | if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { | |
258 | /* | |
259 | this is alittle tricky. | |
260 | if we are initially not in the normalization buffer, even if we | |
261 | normalize in the later stage, the data in the buffer will be | |
262 | ignored, since we skip back up to the data string. | |
263 | however if we are already in the normalization buffer, any | |
264 | further normalization will pull data into the normalization | |
265 | buffer and modify the fcdPosition. | |
266 | since we are keeping the data in the buffer for use, the | |
267 | fcdPosition can not be reverted back. | |
268 | arrgghh.... | |
269 | */ | |
270 | data->fcdPosition = backup->fcdPosition; | |
271 | } | |
272 | } | |
273 | ||
729e4ab9 A |
274 | static UBool |
275 | reallocCEs(collIterate *data, int32_t newCapacity) { | |
276 | uint32_t *oldCEs = data->extendCEs; | |
277 | if(oldCEs == NULL) { | |
278 | oldCEs = data->CEs; | |
279 | } | |
280 | int32_t length = data->CEpos - oldCEs; | |
281 | uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4); | |
282 | if(newCEs == NULL) { | |
283 | return FALSE; | |
284 | } | |
285 | uprv_memcpy(newCEs, oldCEs, length * 4); | |
286 | uprv_free(data->extendCEs); | |
287 | data->extendCEs = newCEs; | |
288 | data->extendCEsSize = newCapacity; | |
289 | data->CEpos = newCEs + length; | |
290 | return TRUE; | |
291 | } | |
292 | ||
293 | static UBool | |
294 | increaseCEsCapacity(collIterate *data) { | |
295 | int32_t oldCapacity; | |
296 | if(data->extendCEs != NULL) { | |
297 | oldCapacity = data->extendCEsSize; | |
298 | } else { | |
299 | oldCapacity = LENGTHOF(data->CEs); | |
300 | } | |
301 | return reallocCEs(data, 2 * oldCapacity); | |
302 | } | |
303 | ||
304 | static UBool | |
305 | ensureCEsCapacity(collIterate *data, int32_t minCapacity) { | |
306 | int32_t oldCapacity; | |
307 | if(data->extendCEs != NULL) { | |
308 | oldCapacity = data->extendCEsSize; | |
309 | } else { | |
310 | oldCapacity = LENGTHOF(data->CEs); | |
311 | } | |
312 | if(minCapacity <= oldCapacity) { | |
313 | return TRUE; | |
314 | } | |
315 | oldCapacity *= 2; | |
316 | return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity); | |
317 | } | |
318 | ||
319 | void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) { | |
320 | if(U_FAILURE(errorCode)) { | |
321 | return; | |
322 | } | |
323 | int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer); | |
4388f060 | 324 | U_ASSERT(length >= offsetBufferSize || offsetStore != NULL); |
729e4ab9 A |
325 | if(length >= offsetBufferSize) { |
326 | int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE; | |
51004dcb | 327 | int32_t *newBuffer = static_cast<int32_t *>(uprv_malloc(newCapacity * 4)); |
729e4ab9 A |
328 | if(newBuffer == NULL) { |
329 | errorCode = U_MEMORY_ALLOCATION_ERROR; | |
330 | return; | |
331 | } | |
332 | if(length > 0) { | |
333 | uprv_memcpy(newBuffer, offsetBuffer, length * 4); | |
334 | } | |
335 | uprv_free(offsetBuffer); | |
336 | offsetBuffer = newBuffer; | |
337 | offsetStore = offsetBuffer + length; | |
338 | offsetBufferSize = newCapacity; | |
339 | } | |
340 | *offsetStore++ = offset; | |
341 | } | |
b75a7d8f A |
342 | |
343 | /* | |
344 | * collIter_eos() | |
345 | * Checks for a collIterate being positioned at the end of | |
346 | * its source string. | |
347 | * | |
348 | */ | |
349 | static | |
350 | inline UBool collIter_eos(collIterate *s) { | |
351 | if(s->flags & UCOL_USE_ITERATOR) { | |
352 | return !(s->iterator->hasNext(s->iterator)); | |
353 | } | |
354 | if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) { | |
355 | // Null terminated string, but not at null, so not at end. | |
356 | // Whether in main or normalization buffer doesn't matter. | |
357 | return FALSE; | |
358 | } | |
359 | ||
360 | // String with length. Can't be in normalization buffer, which is always | |
361 | // null termintated. | |
362 | if (s->flags & UCOL_ITER_HASLEN) { | |
363 | return (s->pos == s->endp); | |
364 | } | |
365 | ||
366 | // We are at a null termination, could be either normalization buffer or main string. | |
367 | if ((s->flags & UCOL_ITER_INNORMBUF) == 0) { | |
368 | // At null at end of main string. | |
369 | return TRUE; | |
370 | } | |
371 | ||
372 | // At null at end of normalization buffer. Need to check whether there there are | |
373 | // any characters left in the main buffer. | |
374 | if(s->origFlags & UCOL_USE_ITERATOR) { | |
375 | return !(s->iterator->hasNext(s->iterator)); | |
376 | } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) { | |
377 | // Null terminated main string. fcdPosition is the 'return' position into main buf. | |
378 | return (*s->fcdPosition == 0); | |
379 | } | |
380 | else { | |
381 | // Main string with an end pointer. | |
382 | return s->fcdPosition == s->endp; | |
383 | } | |
384 | } | |
385 | ||
386 | /* | |
387 | * collIter_bos() | |
388 | * Checks for a collIterate being positioned at the start of | |
389 | * its source string. | |
390 | * | |
391 | */ | |
392 | static | |
393 | inline UBool collIter_bos(collIterate *source) { | |
394 | // if we're going backwards, we need to know whether there is more in the | |
395 | // iterator, even if we are in the side buffer | |
396 | if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { | |
397 | return !source->iterator->hasPrevious(source->iterator); | |
398 | } | |
399 | if (source->pos <= source->string || | |
400 | ((source->flags & UCOL_ITER_INNORMBUF) && | |
401 | *(source->pos - 1) == 0 && source->fcdPosition == NULL)) { | |
402 | return TRUE; | |
403 | } | |
404 | return FALSE; | |
405 | } | |
406 | ||
46f4442e | 407 | /*static |
b75a7d8f A |
408 | inline UBool collIter_SimpleBos(collIterate *source) { |
409 | // if we're going backwards, we need to know whether there is more in the | |
410 | // iterator, even if we are in the side buffer | |
411 | if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { | |
412 | return !source->iterator->hasPrevious(source->iterator); | |
413 | } | |
414 | if (source->pos == source->string) { | |
415 | return TRUE; | |
416 | } | |
417 | return FALSE; | |
46f4442e | 418 | }*/ |
b75a7d8f A |
419 | //return (data->pos == data->string) || |
420 | ||
421 | ||
b75a7d8f A |
422 | /****************************************************************************/ |
423 | /* Following are the open/close functions */ | |
424 | /* */ | |
425 | /****************************************************************************/ | |
b75a7d8f | 426 | |
73c04bcf A |
427 | static UCollator* |
428 | ucol_initFromBinary(const uint8_t *bin, int32_t length, | |
429 | const UCollator *base, | |
430 | UCollator *fillIn, | |
431 | UErrorCode *status) | |
b75a7d8f | 432 | { |
73c04bcf | 433 | UCollator *result = fillIn; |
b75a7d8f | 434 | if(U_FAILURE(*status)) { |
73c04bcf | 435 | return NULL; |
b75a7d8f | 436 | } |
73c04bcf A |
437 | /* |
438 | if(base == NULL) { | |
439 | // we don't support null base yet | |
440 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
441 | return NULL; | |
442 | } | |
443 | */ | |
444 | // We need these and we could be running without UCA | |
46f4442e | 445 | uprv_uca_initImplicitConstants(status); |
73c04bcf A |
446 | UCATableHeader *colData = (UCATableHeader *)bin; |
447 | // do we want version check here? We're trying to figure out whether collators are compatible | |
448 | if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 || | |
449 | uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) || | |
450 | colData->version[0] != UCOL_BUILDER_VERSION) | |
451 | { | |
452 | *status = U_COLLATOR_VERSION_MISMATCH; | |
453 | return NULL; | |
454 | } | |
455 | else { | |
456 | if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) { | |
457 | result = ucol_initCollator((const UCATableHeader *)bin, result, base, status); | |
458 | if(U_FAILURE(*status)){ | |
459 | return NULL; | |
460 | } | |
461 | result->hasRealData = TRUE; | |
b75a7d8f | 462 | } |
73c04bcf A |
463 | else { |
464 | if(base) { | |
465 | result = ucol_initCollator(base->image, result, base, status); | |
466 | ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status); | |
467 | if(U_FAILURE(*status)){ | |
468 | return NULL; | |
469 | } | |
470 | result->hasRealData = FALSE; | |
471 | } | |
472 | else { | |
473 | *status = U_USELESS_COLLATOR_ERROR; | |
474 | return NULL; | |
475 | } | |
b75a7d8f A |
476 | } |
477 | result->freeImageOnClose = FALSE; | |
374ca955 | 478 | } |
46f4442e | 479 | result->actualLocale = NULL; |
73c04bcf A |
480 | result->validLocale = NULL; |
481 | result->requestedLocale = NULL; | |
482 | result->rules = NULL; | |
483 | result->rulesLength = 0; | |
484 | result->freeRulesOnClose = FALSE; | |
46f4442e | 485 | result->ucaRules = NULL; |
73c04bcf | 486 | return result; |
b75a7d8f A |
487 | } |
488 | ||
73c04bcf A |
489 | U_CAPI UCollator* U_EXPORT2 |
490 | ucol_openBinary(const uint8_t *bin, int32_t length, | |
491 | const UCollator *base, | |
492 | UErrorCode *status) | |
b75a7d8f | 493 | { |
73c04bcf | 494 | return ucol_initFromBinary(bin, length, base, NULL, status); |
b75a7d8f A |
495 | } |
496 | ||
46f4442e A |
497 | U_CAPI int32_t U_EXPORT2 |
498 | ucol_cloneBinary(const UCollator *coll, | |
499 | uint8_t *buffer, int32_t capacity, | |
500 | UErrorCode *status) | |
501 | { | |
502 | int32_t length = 0; | |
503 | if(U_FAILURE(*status)) { | |
504 | return length; | |
505 | } | |
506 | if(capacity < 0) { | |
507 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
508 | return length; | |
509 | } | |
510 | if(coll->hasRealData == TRUE) { | |
511 | length = coll->image->size; | |
512 | if(length <= capacity) { | |
513 | uprv_memcpy(buffer, coll->image, length); | |
514 | } else { | |
515 | *status = U_BUFFER_OVERFLOW_ERROR; | |
516 | } | |
517 | } else { | |
518 | length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); | |
519 | if(length <= capacity) { | |
520 | /* build the UCATableHeader with minimal entries */ | |
521 | /* do not copy the header from the UCA file because its values are wrong! */ | |
522 | /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ | |
523 | ||
524 | /* reset everything */ | |
525 | uprv_memset(buffer, 0, length); | |
526 | ||
527 | /* set the tailoring-specific values */ | |
528 | UCATableHeader *myData = (UCATableHeader *)buffer; | |
529 | myData->size = length; | |
530 | ||
531 | /* offset for the options, the only part of the data that is present after the header */ | |
532 | myData->options = sizeof(UCATableHeader); | |
533 | ||
534 | /* need to always set the expansion value for an upper bound of the options */ | |
535 | myData->expansion = myData->options + sizeof(UColOptionSet); | |
536 | ||
537 | myData->magic = UCOL_HEADER_MAGIC; | |
538 | myData->isBigEndian = U_IS_BIG_ENDIAN; | |
539 | myData->charSetFamily = U_CHARSET_FAMILY; | |
540 | ||
541 | /* copy UCA's version; genrb will override all but the builder version with tailoring data */ | |
542 | uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); | |
543 | ||
544 | uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); | |
545 | uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); | |
546 | uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); | |
547 | myData->jamoSpecial = coll->image->jamoSpecial; | |
548 | ||
549 | /* copy the collator options */ | |
550 | uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); | |
551 | } else { | |
552 | *status = U_BUFFER_OVERFLOW_ERROR; | |
553 | } | |
554 | } | |
555 | return length; | |
556 | } | |
557 | ||
b75a7d8f | 558 | U_CAPI UCollator* U_EXPORT2 |
73c04bcf | 559 | ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status) |
b75a7d8f | 560 | { |
73c04bcf A |
561 | UCollator * localCollator; |
562 | int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator); | |
563 | char *stackBufferChars = (char *)stackBuffer; | |
564 | int32_t imageSize = 0; | |
565 | int32_t rulesSize = 0; | |
566 | int32_t rulesPadding = 0; | |
4388f060 A |
567 | int32_t defaultReorderCodesSize = 0; |
568 | int32_t reorderCodesSize = 0; | |
73c04bcf A |
569 | uint8_t *image; |
570 | UChar *rules; | |
4388f060 A |
571 | int32_t* defaultReorderCodes; |
572 | int32_t* reorderCodes; | |
573 | uint8_t* leadBytePermutationTable; | |
73c04bcf A |
574 | UBool colAllocated = FALSE; |
575 | UBool imageAllocated = FALSE; | |
b75a7d8f | 576 | |
73c04bcf A |
577 | if (status == NULL || U_FAILURE(*status)){ |
578 | return 0; | |
579 | } | |
580 | if ((stackBuffer && !pBufferSize) || !coll){ | |
581 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
582 | return 0; | |
583 | } | |
4388f060 | 584 | |
73c04bcf A |
585 | if (coll->rules && coll->freeRulesOnClose) { |
586 | rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar); | |
587 | rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar)); | |
588 | bufferSizeNeeded += rulesSize + rulesPadding; | |
589 | } | |
4388f060 A |
590 | // no padding for alignment needed from here since the next two are 4 byte quantities |
591 | if (coll->defaultReorderCodes) { | |
592 | defaultReorderCodesSize = coll->defaultReorderCodesLength * sizeof(int32_t); | |
593 | bufferSizeNeeded += defaultReorderCodesSize; | |
594 | } | |
595 | if (coll->reorderCodes) { | |
596 | reorderCodesSize = coll->reorderCodesLength * sizeof(int32_t); | |
597 | bufferSizeNeeded += reorderCodesSize; | |
598 | } | |
599 | if (coll->leadBytePermutationTable) { | |
600 | bufferSizeNeeded += 256 * sizeof(uint8_t); | |
601 | } | |
602 | ||
603 | if (stackBuffer && *pBufferSize <= 0) { /* 'preflighting' request - set needed size into *pBufferSize */ | |
73c04bcf A |
604 | *pBufferSize = bufferSizeNeeded; |
605 | return 0; | |
606 | } | |
b75a7d8f | 607 | |
73c04bcf A |
608 | /* Pointers on 64-bit platforms need to be aligned |
609 | * on a 64-bit boundry in memory. | |
610 | */ | |
611 | if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { | |
612 | int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars); | |
613 | if (*pBufferSize > offsetUp) { | |
614 | *pBufferSize -= offsetUp; | |
615 | stackBufferChars += offsetUp; | |
616 | } | |
617 | else { | |
618 | /* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */ | |
619 | *pBufferSize = 1; | |
620 | } | |
b75a7d8f | 621 | } |
73c04bcf | 622 | stackBuffer = (void *)stackBufferChars; |
b75a7d8f | 623 | |
73c04bcf A |
624 | if (stackBuffer == NULL || *pBufferSize < bufferSizeNeeded) { |
625 | /* allocate one here...*/ | |
626 | stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded); | |
46f4442e A |
627 | // Null pointer check. |
628 | if (stackBufferChars == NULL) { | |
629 | *status = U_MEMORY_ALLOCATION_ERROR; | |
630 | return NULL; | |
631 | } | |
73c04bcf A |
632 | colAllocated = TRUE; |
633 | if (U_SUCCESS(*status)) { | |
634 | *status = U_SAFECLONE_ALLOCATED_WARNING; | |
635 | } | |
636 | } | |
637 | localCollator = (UCollator *)stackBufferChars; | |
638 | rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding); | |
4388f060 A |
639 | defaultReorderCodes = (int32_t*)((uint8_t*)rules + rulesSize); |
640 | reorderCodes = (int32_t*)((uint8_t*)defaultReorderCodes + defaultReorderCodesSize); | |
641 | leadBytePermutationTable = (uint8_t*)reorderCodes + reorderCodesSize; | |
642 | ||
73c04bcf A |
643 | { |
644 | UErrorCode tempStatus = U_ZERO_ERROR; | |
645 | imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus); | |
646 | } | |
647 | if (coll->freeImageOnClose) { | |
648 | image = (uint8_t *)uprv_malloc(imageSize); | |
46f4442e A |
649 | // Null pointer check |
650 | if (image == NULL) { | |
651 | *status = U_MEMORY_ALLOCATION_ERROR; | |
652 | return NULL; | |
653 | } | |
73c04bcf A |
654 | ucol_cloneBinary(coll, image, imageSize, status); |
655 | imageAllocated = TRUE; | |
656 | } | |
657 | else { | |
658 | image = (uint8_t *)coll->image; | |
659 | } | |
660 | localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status); | |
661 | if (U_FAILURE(*status)) { | |
662 | return NULL; | |
b75a7d8f | 663 | } |
b75a7d8f | 664 | |
73c04bcf A |
665 | if (coll->rules) { |
666 | if (coll->freeRulesOnClose) { | |
667 | localCollator->rules = u_strcpy(rules, coll->rules); | |
668 | //bufferEnd += rulesSize; | |
669 | } | |
670 | else { | |
671 | localCollator->rules = coll->rules; | |
672 | } | |
673 | localCollator->freeRulesOnClose = FALSE; | |
674 | localCollator->rulesLength = coll->rulesLength; | |
b75a7d8f | 675 | } |
4388f060 A |
676 | |
677 | // collator reordering | |
678 | if (coll->defaultReorderCodes) { | |
679 | localCollator->defaultReorderCodes = | |
680 | (int32_t*) uprv_memcpy(defaultReorderCodes, coll->defaultReorderCodes, coll->defaultReorderCodesLength * sizeof(int32_t)); | |
681 | localCollator->defaultReorderCodesLength = coll->defaultReorderCodesLength; | |
682 | localCollator->freeDefaultReorderCodesOnClose = FALSE; | |
683 | } | |
684 | if (coll->reorderCodes) { | |
685 | localCollator->reorderCodes = | |
686 | (int32_t*)uprv_memcpy(reorderCodes, coll->reorderCodes, coll->reorderCodesLength * sizeof(int32_t)); | |
687 | localCollator->reorderCodesLength = coll->reorderCodesLength; | |
688 | localCollator->freeReorderCodesOnClose = FALSE; | |
689 | } | |
690 | if (coll->leadBytePermutationTable) { | |
691 | localCollator->leadBytePermutationTable = | |
692 | (uint8_t*) uprv_memcpy(leadBytePermutationTable, coll->leadBytePermutationTable, 256); | |
693 | localCollator->freeLeadBytePermutationTableOnClose = FALSE; | |
694 | } | |
73c04bcf A |
695 | |
696 | int32_t i; | |
697 | for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) { | |
698 | ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status); | |
b75a7d8f | 699 | } |
46f4442e A |
700 | // zero copies of pointers |
701 | localCollator->actualLocale = NULL; | |
73c04bcf | 702 | localCollator->validLocale = NULL; |
46f4442e A |
703 | localCollator->requestedLocale = NULL; |
704 | localCollator->ucaRules = coll->ucaRules; // There should only be one copy here. | |
73c04bcf A |
705 | localCollator->freeOnClose = colAllocated; |
706 | localCollator->freeImageOnClose = imageAllocated; | |
707 | return localCollator; | |
708 | } | |
b75a7d8f | 709 | |
73c04bcf A |
710 | U_CAPI void U_EXPORT2 |
711 | ucol_close(UCollator *coll) | |
712 | { | |
713 | UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE); | |
714 | UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll); | |
715 | if(coll != NULL) { | |
716 | // these are always owned by each UCollator struct, | |
717 | // so we always free them | |
718 | if(coll->validLocale != NULL) { | |
719 | uprv_free(coll->validLocale); | |
720 | } | |
46f4442e A |
721 | if(coll->actualLocale != NULL) { |
722 | uprv_free(coll->actualLocale); | |
723 | } | |
73c04bcf A |
724 | if(coll->requestedLocale != NULL) { |
725 | uprv_free(coll->requestedLocale); | |
726 | } | |
73c04bcf A |
727 | if(coll->latinOneCEs != NULL) { |
728 | uprv_free(coll->latinOneCEs); | |
729 | } | |
730 | if(coll->options != NULL && coll->freeOptionsOnClose) { | |
731 | uprv_free(coll->options); | |
732 | } | |
733 | if(coll->rules != NULL && coll->freeRulesOnClose) { | |
734 | uprv_free((UChar *)coll->rules); | |
735 | } | |
736 | if(coll->image != NULL && coll->freeImageOnClose) { | |
737 | uprv_free((UCATableHeader *)coll->image); | |
738 | } | |
4388f060 A |
739 | |
740 | if(coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { | |
729e4ab9 A |
741 | uprv_free(coll->leadBytePermutationTable); |
742 | } | |
4388f060 A |
743 | if(coll->defaultReorderCodes != NULL && coll->freeDefaultReorderCodesOnClose == TRUE) { |
744 | uprv_free(coll->defaultReorderCodes); | |
745 | } | |
746 | if(coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { | |
729e4ab9 A |
747 | uprv_free(coll->reorderCodes); |
748 | } | |
b75a7d8f | 749 | |
4388f060 A |
750 | if(coll->delegate != NULL) { |
751 | delete (Collator*)coll->delegate; | |
752 | } | |
753 | ||
73c04bcf A |
754 | /* Here, it would be advisable to close: */ |
755 | /* - UData for UCA (unless we stuff it in the root resb */ | |
756 | /* Again, do we need additional housekeeping... HMMM! */ | |
757 | UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose); | |
758 | if(coll->freeOnClose){ | |
759 | /* for safeClone, if freeOnClose is FALSE, | |
760 | don't free the other instance data */ | |
761 | uprv_free(coll); | |
762 | } | |
763 | } | |
764 | UTRACE_EXIT(); | |
b75a7d8f A |
765 | } |
766 | ||
767 | /* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/ | |
768 | /* you should be able to get the binary chunk to write out... Doesn't look very full now */ | |
46f4442e | 769 | U_CFUNC uint8_t* U_EXPORT2 |
b75a7d8f A |
770 | ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status) |
771 | { | |
46f4442e A |
772 | uint8_t *result = NULL; |
773 | if(U_FAILURE(*status)) { | |
b75a7d8f A |
774 | return NULL; |
775 | } | |
46f4442e A |
776 | if(coll->hasRealData == TRUE) { |
777 | *length = coll->image->size; | |
778 | result = (uint8_t *)uprv_malloc(*length); | |
779 | /* test for NULL */ | |
780 | if (result == NULL) { | |
781 | *status = U_MEMORY_ALLOCATION_ERROR; | |
782 | return NULL; | |
783 | } | |
784 | uprv_memcpy(result, coll->image, *length); | |
785 | } else { | |
786 | *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); | |
787 | result = (uint8_t *)uprv_malloc(*length); | |
788 | /* test for NULL */ | |
789 | if (result == NULL) { | |
790 | *status = U_MEMORY_ALLOCATION_ERROR; | |
791 | return NULL; | |
792 | } | |
374ca955 | 793 | |
46f4442e A |
794 | /* build the UCATableHeader with minimal entries */ |
795 | /* do not copy the header from the UCA file because its values are wrong! */ | |
796 | /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ | |
374ca955 | 797 | |
46f4442e A |
798 | /* reset everything */ |
799 | uprv_memset(result, 0, *length); | |
374ca955 | 800 | |
46f4442e A |
801 | /* set the tailoring-specific values */ |
802 | UCATableHeader *myData = (UCATableHeader *)result; | |
803 | myData->size = *length; | |
374ca955 | 804 | |
46f4442e A |
805 | /* offset for the options, the only part of the data that is present after the header */ |
806 | myData->options = sizeof(UCATableHeader); | |
374ca955 | 807 | |
46f4442e A |
808 | /* need to always set the expansion value for an upper bound of the options */ |
809 | myData->expansion = myData->options + sizeof(UColOptionSet); | |
374ca955 | 810 | |
46f4442e A |
811 | myData->magic = UCOL_HEADER_MAGIC; |
812 | myData->isBigEndian = U_IS_BIG_ENDIAN; | |
813 | myData->charSetFamily = U_CHARSET_FAMILY; | |
374ca955 | 814 | |
46f4442e A |
815 | /* copy UCA's version; genrb will override all but the builder version with tailoring data */ |
816 | uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); | |
374ca955 | 817 | |
46f4442e A |
818 | uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); |
819 | uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); | |
820 | uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); | |
821 | myData->jamoSpecial = coll->image->jamoSpecial; | |
374ca955 | 822 | |
46f4442e A |
823 | /* copy the collator options */ |
824 | uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); | |
825 | } | |
826 | return result; | |
b75a7d8f A |
827 | } |
828 | ||
829 | void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) { | |
46f4442e A |
830 | if(U_FAILURE(*status)) { |
831 | return; | |
832 | } | |
b75a7d8f A |
833 | result->caseFirst = (UColAttributeValue)opts->caseFirst; |
834 | result->caseLevel = (UColAttributeValue)opts->caseLevel; | |
835 | result->frenchCollation = (UColAttributeValue)opts->frenchCollation; | |
836 | result->normalizationMode = (UColAttributeValue)opts->normalizationMode; | |
729e4ab9 A |
837 | if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) { |
838 | return; | |
839 | } | |
b75a7d8f A |
840 | result->strength = (UColAttributeValue)opts->strength; |
841 | result->variableTopValue = opts->variableTopValue; | |
842 | result->alternateHandling = (UColAttributeValue)opts->alternateHandling; | |
843 | result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ; | |
844 | result->numericCollation = (UColAttributeValue)opts->numericCollation; | |
b75a7d8f A |
845 | result->caseFirstisDefault = TRUE; |
846 | result->caseLevelisDefault = TRUE; | |
847 | result->frenchCollationisDefault = TRUE; | |
848 | result->normalizationModeisDefault = TRUE; | |
849 | result->strengthisDefault = TRUE; | |
850 | result->variableTopValueisDefault = TRUE; | |
729e4ab9 | 851 | result->alternateHandlingisDefault = TRUE; |
b75a7d8f A |
852 | result->hiraganaQisDefault = TRUE; |
853 | result->numericCollationisDefault = TRUE; | |
854 | ||
855 | ucol_updateInternalState(result, status); | |
856 | ||
857 | result->options = opts; | |
858 | } | |
859 | ||
b75a7d8f A |
860 | |
861 | /** | |
862 | * Approximate determination if a character is at a contraction end. | |
863 | * Guaranteed to be TRUE if a character is at the end of a contraction, | |
864 | * otherwise it is not deterministic. | |
865 | * @param c character to be determined | |
866 | * @param coll collator | |
867 | */ | |
868 | static | |
869 | inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) { | |
b75a7d8f A |
870 | if (c < coll->minContrEndCP) { |
871 | return FALSE; | |
872 | } | |
873 | ||
874 | int32_t hash = c; | |
875 | uint8_t htbyte; | |
876 | if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { | |
46f4442e A |
877 | if (U16_IS_TRAIL(c)) { |
878 | return TRUE; | |
879 | } | |
b75a7d8f A |
880 | hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; |
881 | } | |
882 | htbyte = coll->contrEndCP[hash>>3]; | |
883 | return (((htbyte >> (hash & 7)) & 1) == 1); | |
884 | } | |
885 | ||
886 | ||
887 | ||
888 | /* | |
889 | * i_getCombiningClass() | |
890 | * A fast, at least partly inline version of u_getCombiningClass() | |
891 | * This is a candidate for further optimization. Used heavily | |
892 | * in contraction processing. | |
893 | */ | |
894 | static | |
73c04bcf | 895 | inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) { |
b75a7d8f | 896 | uint8_t sCC = 0; |
73c04bcf | 897 | if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) { |
b75a7d8f A |
898 | sCC = u_getCombiningClass(c); |
899 | } | |
900 | return sCC; | |
901 | } | |
902 | ||
374ca955 | 903 | UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) { |
b75a7d8f A |
904 | UChar c; |
905 | UCollator *result = fillIn; | |
906 | if(U_FAILURE(*status) || image == NULL) { | |
907 | return NULL; | |
908 | } | |
909 | ||
910 | if(result == NULL) { | |
911 | result = (UCollator *)uprv_malloc(sizeof(UCollator)); | |
912 | if(result == NULL) { | |
913 | *status = U_MEMORY_ALLOCATION_ERROR; | |
914 | return result; | |
915 | } | |
916 | result->freeOnClose = TRUE; | |
917 | } else { | |
918 | result->freeOnClose = FALSE; | |
919 | } | |
920 | ||
4388f060 A |
921 | result->delegate = NULL; |
922 | ||
b75a7d8f | 923 | result->image = image; |
73c04bcf | 924 | result->mapping.getFoldingOffset = _getFoldingOffset; |
b75a7d8f | 925 | const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition; |
73c04bcf A |
926 | utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status); |
927 | if(U_FAILURE(*status)) { | |
b75a7d8f A |
928 | if(result->freeOnClose == TRUE) { |
929 | uprv_free(result); | |
930 | result = NULL; | |
931 | } | |
b75a7d8f A |
932 | return result; |
933 | } | |
934 | ||
73c04bcf | 935 | result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping); |
b75a7d8f A |
936 | result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs); |
937 | result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex); | |
938 | result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion); | |
b75a7d8f A |
939 | result->rules = NULL; |
940 | result->rulesLength = 0; | |
46f4442e | 941 | result->freeRulesOnClose = FALSE; |
4388f060 A |
942 | result->defaultReorderCodes = NULL; |
943 | result->defaultReorderCodesLength = 0; | |
944 | result->freeDefaultReorderCodesOnClose = FALSE; | |
729e4ab9 A |
945 | result->reorderCodes = NULL; |
946 | result->reorderCodesLength = 0; | |
4388f060 | 947 | result->freeReorderCodesOnClose = FALSE; |
729e4ab9 | 948 | result->leadBytePermutationTable = NULL; |
4388f060 | 949 | result->freeLeadBytePermutationTableOnClose = FALSE; |
b75a7d8f A |
950 | |
951 | /* get the version info from UCATableHeader and populate the Collator struct*/ | |
73c04bcf A |
952 | result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/ |
953 | result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/ | |
954 | result->dataVersion[2] = 0; | |
955 | result->dataVersion[3] = 0; | |
b75a7d8f A |
956 | |
957 | result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP; | |
958 | result->minUnsafeCP = 0; | |
959 | for (c=0; c<0x300; c++) { // Find the smallest unsafe char. | |
960 | if (ucol_unsafeCP(c, result)) break; | |
961 | } | |
962 | result->minUnsafeCP = c; | |
963 | ||
964 | result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP; | |
965 | result->minContrEndCP = 0; | |
966 | for (c=0; c<0x300; c++) { // Find the Contraction-ending char. | |
967 | if (ucol_contractionEndCP(c, result)) break; | |
968 | } | |
969 | result->minContrEndCP = c; | |
970 | ||
971 | /* max expansion tables */ | |
972 | result->endExpansionCE = (uint32_t*)((uint8_t*)result->image + | |
973 | result->image->endExpansionCE); | |
974 | result->lastEndExpansionCE = result->endExpansionCE + | |
975 | result->image->endExpansionCECount - 1; | |
976 | result->expansionCESize = (uint8_t*)result->image + | |
977 | result->image->expansionCESize; | |
978 | ||
b75a7d8f A |
979 | |
980 | //result->errorCode = *status; | |
981 | ||
982 | result->latinOneCEs = NULL; | |
983 | ||
984 | result->latinOneRegenTable = FALSE; | |
985 | result->latinOneFailed = FALSE; | |
374ca955 | 986 | result->UCA = UCA; |
b75a7d8f | 987 | |
46f4442e A |
988 | /* Normally these will be set correctly later. This is the default if you use UCA or the default. */ |
989 | result->ucaRules = NULL; | |
990 | result->actualLocale = NULL; | |
991 | result->validLocale = NULL; | |
992 | result->requestedLocale = NULL; | |
993 | result->hasRealData = FALSE; // real data lives in .dat file... | |
994 | result->freeImageOnClose = FALSE; | |
b75a7d8f | 995 | |
729e4ab9 A |
996 | /* set attributes */ |
997 | ucol_setOptionsFromHeader( | |
998 | result, | |
999 | (UColOptionSet*)((uint8_t*)result->image+result->image->options), | |
1000 | status); | |
1001 | result->freeOptionsOnClose = FALSE; | |
1002 | ||
b75a7d8f A |
1003 | return result; |
1004 | } | |
1005 | ||
374ca955 | 1006 | /* new Mark's code */ |
b75a7d8f | 1007 | |
374ca955 A |
1008 | /** |
1009 | * For generation of Implicit CEs | |
1010 | * @author Davis | |
1011 | * | |
1012 | * Cleaned up so that changes can be made more easily. | |
1013 | * Old values: | |
1014 | # First Implicit: E26A792D | |
1015 | # Last Implicit: E3DC70C0 | |
1016 | # First CJK: E0030300 | |
1017 | # Last CJK: E0A9DD00 | |
1018 | # First CJK_A: E0A9DF00 | |
1019 | # Last CJK_A: E0DE3100 | |
1020 | */ | |
b75a7d8f | 1021 | /* Following is a port of Mark's code for new treatment of implicits. |
374ca955 | 1022 | * It is positioned here, since ucol_initUCA need to initialize the |
b75a7d8f A |
1023 | * variables below according to the data in the fractional UCA. |
1024 | */ | |
374ca955 | 1025 | |
b75a7d8f | 1026 | /** |
46f4442e A |
1027 | * Function used to: |
1028 | * a) collapse the 2 different Han ranges from UCA into one (in the right order), and | |
1029 | * b) bump any non-CJK characters by 10FFFF. | |
1030 | * The relevant blocks are: | |
1031 | * A: 4E00..9FFF; CJK Unified Ideographs | |
1032 | * F900..FAFF; CJK Compatibility Ideographs | |
1033 | * B: 3400..4DBF; CJK Unified Ideographs Extension A | |
1034 | * 20000..XX; CJK Unified Ideographs Extension B (and others later on) | |
1035 | * As long as | |
1036 | * no new B characters are allocated between 4E00 and FAFF, and | |
1037 | * no new A characters are outside of this range, | |
1038 | * (very high probability) this simple code will work. | |
1039 | * The reordered blocks are: | |
1040 | * Block1 is CJK | |
1041 | * Block2 is CJK_COMPAT_USED | |
1042 | * Block3 is CJK_A | |
1043 | * (all contiguous) | |
1044 | * Any other CJK gets its normal code point | |
1045 | * Any non-CJK gets +10FFFF | |
1046 | * When we reorder Block1, we make sure that it is at the very start, | |
1047 | * so that it will use a 3-byte form. | |
1048 | * Warning: the we only pick up the compatibility characters that are | |
1049 | * NOT decomposed, so that block is smaller! | |
1050 | */ | |
b75a7d8f A |
1051 | |
1052 | // CONSTANTS | |
374ca955 | 1053 | static const UChar32 |
b75a7d8f | 1054 | NON_CJK_OFFSET = 0x110000, |
374ca955 A |
1055 | UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2 |
1056 | ||
1057 | /** | |
729e4ab9 | 1058 | * Precomputed by initImplicitConstants() |
374ca955 A |
1059 | */ |
1060 | static int32_t | |
1061 | final3Multiplier = 0, | |
1062 | final4Multiplier = 0, | |
1063 | final3Count = 0, | |
1064 | final4Count = 0, | |
1065 | medialCount = 0, | |
1066 | min3Primary = 0, | |
1067 | min4Primary = 0, | |
1068 | max4Primary = 0, | |
1069 | minTrail = 0, | |
1070 | maxTrail = 0, | |
1071 | max3Trail = 0, | |
1072 | max4Trail = 0, | |
1073 | min4Boundary = 0; | |
b75a7d8f A |
1074 | |
1075 | static const UChar32 | |
729e4ab9 | 1076 | // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;; |
4388f060 | 1077 | // 9FCC;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;; (Unicode 6.1) |
b75a7d8f | 1078 | CJK_BASE = 0x4E00, |
4388f060 | 1079 | CJK_LIMIT = 0x9FCC+1, |
729e4ab9 | 1080 | // Unified CJK ideographs in the compatibility ideographs block. |
b75a7d8f A |
1081 | CJK_COMPAT_USED_BASE = 0xFA0E, |
1082 | CJK_COMPAT_USED_LIMIT = 0xFA2F+1, | |
729e4ab9 A |
1083 | // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;; |
1084 | // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;; | |
b75a7d8f | 1085 | CJK_A_BASE = 0x3400, |
729e4ab9 A |
1086 | CJK_A_LIMIT = 0x4DB5+1, |
1087 | // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;; | |
1088 | // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;; | |
b75a7d8f | 1089 | CJK_B_BASE = 0x20000, |
729e4ab9 A |
1090 | CJK_B_LIMIT = 0x2A6D6+1, |
1091 | // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;; | |
1092 | // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;; | |
1093 | CJK_C_BASE = 0x2A700, | |
1094 | CJK_C_LIMIT = 0x2B734+1, | |
1095 | // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;; | |
1096 | // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;; | |
1097 | CJK_D_BASE = 0x2B740, | |
1098 | CJK_D_LIMIT = 0x2B81D+1; | |
1099 | // when adding to this list, look for all occurrences (in project) | |
1100 | // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!! | |
b75a7d8f | 1101 | |
374ca955 | 1102 | static UChar32 swapCJK(UChar32 i) { |
729e4ab9 A |
1103 | if (i < CJK_A_BASE) { |
1104 | // non-CJK | |
1105 | } else if (i < CJK_A_LIMIT) { | |
1106 | // Extension A has lower code points than the original Unihan+compat | |
1107 | // but sorts higher. | |
1108 | return i - CJK_A_BASE | |
1109 | + (CJK_LIMIT - CJK_BASE) | |
1110 | + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); | |
1111 | } else if (i < CJK_BASE) { | |
1112 | // non-CJK | |
1113 | } else if (i < CJK_LIMIT) { | |
1114 | return i - CJK_BASE; | |
1115 | } else if (i < CJK_COMPAT_USED_BASE) { | |
1116 | // non-CJK | |
1117 | } else if (i < CJK_COMPAT_USED_LIMIT) { | |
1118 | return i - CJK_COMPAT_USED_BASE | |
1119 | + (CJK_LIMIT - CJK_BASE); | |
1120 | } else if (i < CJK_B_BASE) { | |
1121 | // non-CJK | |
1122 | } else if (i < CJK_B_LIMIT) { | |
1123 | return i; // non-BMP-CJK | |
1124 | } else if (i < CJK_C_BASE) { | |
1125 | // non-CJK | |
1126 | } else if (i < CJK_C_LIMIT) { | |
1127 | return i; // non-BMP-CJK | |
1128 | } else if (i < CJK_D_BASE) { | |
1129 | // non-CJK | |
1130 | } else if (i < CJK_D_LIMIT) { | |
1131 | return i; // non-BMP-CJK | |
374ca955 | 1132 | } |
374ca955 A |
1133 | return i + NON_CJK_OFFSET; // non-CJK |
1134 | } | |
1135 | ||
1136 | U_CAPI UChar32 U_EXPORT2 | |
1137 | uprv_uca_getRawFromCodePoint(UChar32 i) { | |
1138 | return swapCJK(i)+1; | |
1139 | } | |
1140 | ||
1141 | U_CAPI UChar32 U_EXPORT2 | |
1142 | uprv_uca_getCodePointFromRaw(UChar32 i) { | |
1143 | i--; | |
1144 | UChar32 result = 0; | |
1145 | if(i >= NON_CJK_OFFSET) { | |
1146 | result = i - NON_CJK_OFFSET; | |
1147 | } else if(i >= CJK_B_BASE) { | |
1148 | result = i; | |
1149 | } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted | |
1150 | if(i < CJK_LIMIT - CJK_BASE) { | |
1151 | result = i + CJK_BASE; | |
1152 | } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { | |
1153 | result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE); | |
1154 | } else { | |
1155 | result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); | |
1156 | } | |
1157 | } else { | |
1158 | result = -1; | |
1159 | } | |
1160 | return result; | |
b75a7d8f | 1161 | } |
b75a7d8f A |
1162 | |
1163 | // GET IMPLICIT PRIMARY WEIGHTS | |
1164 | // Return value is left justified primary key | |
374ca955 A |
1165 | U_CAPI uint32_t U_EXPORT2 |
1166 | uprv_uca_getImplicitFromRaw(UChar32 cp) { | |
1167 | /* | |
1168 | if (cp < 0 || cp > UCOL_MAX_INPUT) { | |
1169 | throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp)); | |
1170 | } | |
1171 | */ | |
1172 | int32_t last0 = cp - min4Boundary; | |
1173 | if (last0 < 0) { | |
1174 | int32_t last1 = cp / final3Count; | |
1175 | last0 = cp % final3Count; | |
b75a7d8f | 1176 | |
374ca955 A |
1177 | int32_t last2 = last1 / medialCount; |
1178 | last1 %= medialCount; | |
b75a7d8f | 1179 | |
374ca955 A |
1180 | last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start |
1181 | last1 = minTrail + last1; // offset | |
1182 | last2 = min3Primary + last2; // offset | |
b75a7d8f | 1183 | /* |
374ca955 A |
1184 | if (last2 >= min4Primary) { |
1185 | throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2)); | |
1186 | } | |
b75a7d8f | 1187 | */ |
374ca955 | 1188 | return (last2 << 24) + (last1 << 16) + (last0 << 8); |
b75a7d8f | 1189 | } else { |
374ca955 A |
1190 | int32_t last1 = last0 / final4Count; |
1191 | last0 %= final4Count; | |
b75a7d8f | 1192 | |
374ca955 A |
1193 | int32_t last2 = last1 / medialCount; |
1194 | last1 %= medialCount; | |
1195 | ||
1196 | int32_t last3 = last2 / medialCount; | |
1197 | last2 %= medialCount; | |
1198 | ||
1199 | last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start | |
1200 | last1 = minTrail + last1; // offset | |
1201 | last2 = minTrail + last2; // offset | |
1202 | last3 = min4Primary + last3; // offset | |
b75a7d8f | 1203 | /* |
374ca955 A |
1204 | if (last3 > max4Primary) { |
1205 | throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3)); | |
1206 | } | |
b75a7d8f | 1207 | */ |
374ca955 | 1208 | return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0; |
b75a7d8f A |
1209 | } |
1210 | } | |
1211 | ||
46f4442e | 1212 | static uint32_t U_EXPORT2 |
374ca955 | 1213 | uprv_uca_getImplicitPrimary(UChar32 cp) { |
729e4ab9 | 1214 | //fprintf(stdout, "Incoming: %04x\n", cp); |
374ca955 A |
1215 | //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp)); |
1216 | ||
1217 | cp = swapCJK(cp); | |
1218 | cp++; | |
1219 | // we now have a range of numbers from 0 to 21FFFF. | |
1220 | ||
1221 | //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp)); | |
729e4ab9 | 1222 | //fprintf(stdout, "CJK swapped: %04x\n", cp); |
374ca955 A |
1223 | |
1224 | return uprv_uca_getImplicitFromRaw(cp); | |
1225 | } | |
1226 | ||
1227 | /** | |
1228 | * Converts implicit CE into raw integer ("code point") | |
1229 | * @param implicit | |
1230 | * @return -1 if illegal format | |
1231 | */ | |
1232 | U_CAPI UChar32 U_EXPORT2 | |
1233 | uprv_uca_getRawFromImplicit(uint32_t implicit) { | |
1234 | UChar32 result; | |
1235 | UChar32 b3 = implicit & 0xFF; | |
46f4442e A |
1236 | UChar32 b2 = (implicit >> 8) & 0xFF; |
1237 | UChar32 b1 = (implicit >> 16) & 0xFF; | |
1238 | UChar32 b0 = (implicit >> 24) & 0xFF; | |
374ca955 A |
1239 | |
1240 | // simple parameter checks | |
1241 | if (b0 < min3Primary || b0 > max4Primary | |
46f4442e A |
1242 | || b1 < minTrail || b1 > maxTrail) |
1243 | return -1; | |
374ca955 A |
1244 | // normal offsets |
1245 | b1 -= minTrail; | |
1246 | ||
1247 | // take care of the final values, and compose | |
1248 | if (b0 < min4Primary) { | |
46f4442e A |
1249 | if (b2 < minTrail || b2 > max3Trail || b3 != 0) |
1250 | return -1; | |
374ca955 A |
1251 | b2 -= minTrail; |
1252 | UChar32 remainder = b2 % final3Multiplier; | |
46f4442e A |
1253 | if (remainder != 0) |
1254 | return -1; | |
374ca955 A |
1255 | b0 -= min3Primary; |
1256 | b2 /= final3Multiplier; | |
1257 | result = ((b0 * medialCount) + b1) * final3Count + b2; | |
1258 | } else { | |
46f4442e A |
1259 | if (b2 < minTrail || b2 > maxTrail |
1260 | || b3 < minTrail || b3 > max4Trail) | |
1261 | return -1; | |
374ca955 A |
1262 | b2 -= minTrail; |
1263 | b3 -= minTrail; | |
1264 | UChar32 remainder = b3 % final4Multiplier; | |
46f4442e A |
1265 | if (remainder != 0) |
1266 | return -1; | |
374ca955 A |
1267 | b3 /= final4Multiplier; |
1268 | b0 -= min4Primary; | |
1269 | result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary; | |
1270 | } | |
1271 | // final check | |
46f4442e A |
1272 | if (result < 0 || result > UCOL_MAX_INPUT) |
1273 | return -1; | |
374ca955 A |
1274 | return result; |
1275 | } | |
1276 | ||
1277 | ||
1278 | static inline int32_t divideAndRoundUp(int a, int b) { | |
1279 | return 1 + (a-1)/b; | |
1280 | } | |
1281 | ||
b75a7d8f A |
1282 | /* this function is either called from initUCA or from genUCA before |
1283 | * doing canonical closure for the UCA. | |
1284 | */ | |
374ca955 A |
1285 | |
1286 | /** | |
1287 | * Set up to generate implicits. | |
729e4ab9 A |
1288 | * Maintenance Note: this function may end up being called more than once, due |
1289 | * to threading races during initialization. Make sure that | |
1290 | * none of the Constants is ever transiently assigned an | |
1291 | * incorrect value. | |
374ca955 A |
1292 | * @param minPrimary |
1293 | * @param maxPrimary | |
1294 | * @param minTrail final byte | |
1295 | * @param maxTrail final byte | |
1296 | * @param gap3 the gap we leave for tailoring for 3-byte forms | |
1297 | * @param gap4 the gap we leave for tailoring for 4-byte forms | |
1298 | */ | |
1299 | static void initImplicitConstants(int minPrimary, int maxPrimary, | |
1300 | int minTrailIn, int maxTrailIn, | |
1301 | int gap3, int primaries3count, | |
1302 | UErrorCode *status) { | |
1303 | // some simple parameter checks | |
46f4442e A |
1304 | if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF) |
1305 | || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF) | |
1306 | || (primaries3count < 1)) | |
1307 | { | |
374ca955 A |
1308 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
1309 | return; | |
1310 | }; | |
1311 | ||
1312 | minTrail = minTrailIn; | |
1313 | maxTrail = maxTrailIn; | |
1314 | ||
1315 | min3Primary = minPrimary; | |
1316 | max4Primary = maxPrimary; | |
1317 | // compute constants for use later. | |
1318 | // number of values we can use in trailing bytes | |
1319 | // leave room for empty values between AND above, e.g. if gap = 2 | |
1320 | // range 3..7 => +3 -4 -5 -6 -7: so 1 value | |
1321 | // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values | |
1322 | // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values | |
1323 | final3Multiplier = gap3 + 1; | |
1324 | final3Count = (maxTrail - minTrail + 1) / final3Multiplier; | |
1325 | max3Trail = minTrail + (final3Count - 1) * final3Multiplier; | |
1326 | ||
1327 | // medials can use full range | |
1328 | medialCount = (maxTrail - minTrail + 1); | |
1329 | // find out how many values fit in each form | |
1330 | int32_t threeByteCount = medialCount * final3Count; | |
1331 | // now determine where the 3/4 boundary is. | |
1332 | // we use 3 bytes below the boundary, and 4 above | |
1333 | int32_t primariesAvailable = maxPrimary - minPrimary + 1; | |
1334 | int32_t primaries4count = primariesAvailable - primaries3count; | |
1335 | ||
1336 | ||
1337 | int32_t min3ByteCoverage = primaries3count * threeByteCount; | |
1338 | min4Primary = minPrimary + primaries3count; | |
1339 | min4Boundary = min3ByteCoverage; | |
1340 | // Now expand out the multiplier for the 4 bytes, and redo. | |
1341 | ||
1342 | int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary; | |
1343 | int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count); | |
374ca955 | 1344 | int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount); |
374ca955 | 1345 | int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte; |
374ca955 A |
1346 | if (gap4 < 1) { |
1347 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
1348 | return; | |
1349 | } | |
1350 | final4Multiplier = gap4 + 1; | |
1351 | final4Count = neededPerFinalByte; | |
1352 | max4Trail = minTrail + (final4Count - 1) * final4Multiplier; | |
374ca955 A |
1353 | } |
1354 | ||
1355 | /** | |
1356 | * Supply parameters for generating implicit CEs | |
1357 | */ | |
1358 | U_CAPI void U_EXPORT2 | |
46f4442e | 1359 | uprv_uca_initImplicitConstants(UErrorCode *status) { |
374ca955 | 1360 | // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms. |
73c04bcf | 1361 | //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status); |
46f4442e | 1362 | initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status); |
b75a7d8f A |
1363 | } |
1364 | ||
1365 | ||
1366 | /* collIterNormalize Incremental Normalization happens here. */ | |
1367 | /* pick up the range of chars identifed by FCD, */ | |
1368 | /* normalize it into the collIterate's writable buffer, */ | |
1369 | /* switch the collIterate's state to use the writable buffer. */ | |
1370 | /* */ | |
1371 | static | |
1372 | void collIterNormalize(collIterate *collationSource) | |
1373 | { | |
1374 | UErrorCode status = U_ZERO_ERROR; | |
729e4ab9 A |
1375 | const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */ |
1376 | const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */ | |
b75a7d8f | 1377 | |
729e4ab9 A |
1378 | collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)), |
1379 | collationSource->writableBuffer, | |
1380 | status); | |
b75a7d8f A |
1381 | if (U_FAILURE(status)) { |
1382 | #ifdef UCOL_DEBUG | |
729e4ab9 | 1383 | fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status)); |
b75a7d8f A |
1384 | #endif |
1385 | return; | |
1386 | } | |
1387 | ||
729e4ab9 | 1388 | collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer(); |
46f4442e A |
1389 | collationSource->origFlags = collationSource->flags; |
1390 | collationSource->flags |= UCOL_ITER_INNORMBUF; | |
1391 | collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); | |
b75a7d8f A |
1392 | } |
1393 | ||
1394 | ||
1395 | // This function takes the iterator and extracts normalized stuff up to the next boundary | |
1396 | // It is similar in the end results to the collIterNormalize, but for the cases when we | |
1397 | // use an iterator | |
46f4442e | 1398 | /*static |
b75a7d8f A |
1399 | inline void normalizeIterator(collIterate *collationSource) { |
1400 | UErrorCode status = U_ZERO_ERROR; | |
1401 | UBool wasNormalized = FALSE; | |
1402 | //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT); | |
1403 | uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator); | |
374ca955 | 1404 | int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
b75a7d8f A |
1405 | (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
1406 | if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) { | |
1407 | // reallocate and terminate | |
1408 | if(!u_growBufferFromStatic(collationSource->stackWritableBuffer, | |
1409 | &collationSource->writableBuffer, | |
1410 | (int32_t *)&collationSource->writableBufSize, normLen + 1, | |
1411 | 0) | |
1412 | ) { | |
1413 | #ifdef UCOL_DEBUG | |
1414 | fprintf(stderr, "normalizeIterator(), out of memory\n"); | |
1415 | #endif | |
1416 | return; | |
1417 | } | |
1418 | status = U_ZERO_ERROR; | |
1419 | //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO); | |
1420 | collationSource->iterator->setState(collationSource->iterator, iterIndex, &status); | |
374ca955 | 1421 | normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
b75a7d8f A |
1422 | (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
1423 | } | |
1424 | // Terminate the buffer - we already checked that it is big enough | |
374ca955 | 1425 | collationSource->writableBuffer[normLen] = 0; |
b75a7d8f A |
1426 | if(collationSource->writableBuffer != collationSource->stackWritableBuffer) { |
1427 | collationSource->flags |= UCOL_ITER_ALLOCATED; | |
1428 | } | |
1429 | collationSource->pos = collationSource->writableBuffer; | |
1430 | collationSource->origFlags = collationSource->flags; | |
1431 | collationSource->flags |= UCOL_ITER_INNORMBUF; | |
1432 | collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); | |
46f4442e | 1433 | }*/ |
b75a7d8f A |
1434 | |
1435 | ||
1436 | /* Incremental FCD check and normalize */ | |
1437 | /* Called from getNextCE when normalization state is suspect. */ | |
1438 | /* When entering, the state is known to be this: */ | |
1439 | /* o We are working in the main buffer of the collIterate, not the side */ | |
1440 | /* writable buffer. When in the side buffer, normalization mode is always off, */ | |
1441 | /* so we won't get here. */ | |
1442 | /* o The leading combining class from the current character is 0 or */ | |
1443 | /* the trailing combining class of the previous char was zero. */ | |
1444 | /* True because the previous call to this function will have always exited */ | |
1445 | /* that way, and we get called for every char where cc might be non-zero. */ | |
1446 | static | |
1447 | inline UBool collIterFCD(collIterate *collationSource) { | |
b75a7d8f A |
1448 | const UChar *srcP, *endP; |
1449 | uint8_t leadingCC; | |
1450 | uint8_t prevTrailingCC = 0; | |
1451 | uint16_t fcd; | |
1452 | UBool needNormalize = FALSE; | |
1453 | ||
1454 | srcP = collationSource->pos-1; | |
1455 | ||
1456 | if (collationSource->flags & UCOL_ITER_HASLEN) { | |
1457 | endP = collationSource->endp; | |
1458 | } else { | |
1459 | endP = NULL; | |
1460 | } | |
1461 | ||
4388f060 A |
1462 | // Get the trailing combining class of the current character. If it's zero, we are OK. |
1463 | fcd = g_nfcImpl->nextFCD16(srcP, endP); | |
b75a7d8f | 1464 | if (fcd != 0) { |
b75a7d8f A |
1465 | prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
1466 | ||
1467 | if (prevTrailingCC != 0) { | |
1468 | // The current char has a non-zero trailing CC. Scan forward until we find | |
1469 | // a char with a leading cc of zero. | |
1470 | while (endP == NULL || srcP != endP) | |
1471 | { | |
1472 | const UChar *savedSrcP = srcP; | |
1473 | ||
4388f060 | 1474 | fcd = g_nfcImpl->nextFCD16(srcP, endP); |
b75a7d8f A |
1475 | leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
1476 | if (leadingCC == 0) { | |
1477 | srcP = savedSrcP; // Hit char that is not part of combining sequence. | |
1478 | // back up over it. (Could be surrogate pair!) | |
1479 | break; | |
1480 | } | |
1481 | ||
1482 | if (leadingCC < prevTrailingCC) { | |
1483 | needNormalize = TRUE; | |
1484 | } | |
1485 | ||
1486 | prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); | |
1487 | } | |
1488 | } | |
1489 | } | |
1490 | ||
1491 | collationSource->fcdPosition = (UChar *)srcP; | |
1492 | ||
1493 | return needNormalize; | |
1494 | } | |
1495 | ||
1496 | /****************************************************************************/ | |
1497 | /* Following are the CE retrieval functions */ | |
1498 | /* */ | |
1499 | /****************************************************************************/ | |
1500 | ||
73c04bcf A |
1501 | static uint32_t getImplicit(UChar32 cp, collIterate *collationSource); |
1502 | static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource); | |
1503 | ||
b75a7d8f A |
1504 | /* there should be a macro version of this function in the header file */ |
1505 | /* This is the first function that tries to fetch a collation element */ | |
1506 | /* If it's not succesfull or it encounters a more difficult situation */ | |
1507 | /* some more sofisticated and slower functions are invoked */ | |
1508 | static | |
1509 | inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { | |
1510 | uint32_t order = 0; | |
1511 | if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */ | |
46f4442e A |
1512 | order = *(collationSource->toReturn++); /* if so, return them */ |
1513 | if(collationSource->CEpos == collationSource->toReturn) { | |
1514 | collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs; | |
1515 | } | |
1516 | return order; | |
b75a7d8f A |
1517 | } |
1518 | ||
1519 | UChar ch = 0; | |
46f4442e | 1520 | collationSource->offsetReturn = NULL; |
b75a7d8f | 1521 | |
729e4ab9 A |
1522 | do { |
1523 | for (;;) /* Loop handles case when incremental normalize switches */ | |
1524 | { /* to or from the side buffer / original string, and we */ | |
1525 | /* need to start again to get the next character. */ | |
b75a7d8f | 1526 | |
729e4ab9 A |
1527 | if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0) |
1528 | { | |
1529 | // The source string is null terminated and we're not working from the side buffer, | |
1530 | // and we're not normalizing. This is the fast path. | |
1531 | // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.) | |
1532 | ch = *collationSource->pos++; | |
1533 | if (ch != 0) { | |
1534 | break; | |
1535 | } | |
1536 | else { | |
1537 | return UCOL_NO_MORE_CES; | |
1538 | } | |
b75a7d8f | 1539 | } |
b75a7d8f | 1540 | |
729e4ab9 A |
1541 | if (collationSource->flags & UCOL_ITER_HASLEN) { |
1542 | // Normal path for strings when length is specified. | |
1543 | // (We can't be in side buffer because it is always null terminated.) | |
1544 | if (collationSource->pos >= collationSource->endp) { | |
1545 | // Ran off of the end of the main source string. We're done. | |
1546 | return UCOL_NO_MORE_CES; | |
1547 | } | |
1548 | ch = *collationSource->pos++; | |
b75a7d8f | 1549 | } |
729e4ab9 A |
1550 | else if(collationSource->flags & UCOL_USE_ITERATOR) { |
1551 | UChar32 iterCh = collationSource->iterator->next(collationSource->iterator); | |
1552 | if(iterCh == U_SENTINEL) { | |
b75a7d8f A |
1553 | return UCOL_NO_MORE_CES; |
1554 | } | |
729e4ab9 A |
1555 | ch = (UChar)iterCh; |
1556 | } | |
1557 | else | |
1558 | { | |
1559 | // Null terminated string. | |
1560 | ch = *collationSource->pos++; | |
1561 | if (ch == 0) { | |
1562 | // Ran off end of buffer. | |
1563 | if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { | |
1564 | // Ran off end of main string. backing up one character. | |
1565 | collationSource->pos--; | |
1566 | return UCOL_NO_MORE_CES; | |
b75a7d8f | 1567 | } |
729e4ab9 A |
1568 | else |
1569 | { | |
1570 | // Hit null in the normalize side buffer. | |
1571 | // Usually this means the end of the normalized data, | |
1572 | // except for one odd case: a null followed by combining chars, | |
1573 | // which is the case if we are at the start of the buffer. | |
1574 | if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) { | |
1575 | break; | |
1576 | } | |
b75a7d8f | 1577 | |
729e4ab9 A |
1578 | // Null marked end of side buffer. |
1579 | // Revert to the main string and | |
1580 | // loop back to top to try again to get a character. | |
1581 | collationSource->pos = collationSource->fcdPosition; | |
1582 | collationSource->flags = collationSource->origFlags; | |
1583 | continue; | |
1584 | } | |
b75a7d8f A |
1585 | } |
1586 | } | |
b75a7d8f | 1587 | |
729e4ab9 A |
1588 | if(collationSource->flags&UCOL_HIRAGANA_Q) { |
1589 | /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag | |
1590 | * based on whether the previous codepoint was Hiragana or Katakana. | |
1591 | */ | |
1592 | if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) || | |
1593 | ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) { | |
1594 | collationSource->flags |= UCOL_WAS_HIRAGANA; | |
1595 | } else { | |
1596 | collationSource->flags &= ~UCOL_WAS_HIRAGANA; | |
1597 | } | |
46f4442e | 1598 | } |
b75a7d8f | 1599 | |
729e4ab9 A |
1600 | // We've got a character. See if there's any fcd and/or normalization stuff to do. |
1601 | // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer. | |
1602 | if ((collationSource->flags & UCOL_ITER_NORM) == 0) { | |
1603 | break; | |
1604 | } | |
b75a7d8f | 1605 | |
729e4ab9 A |
1606 | if (collationSource->fcdPosition >= collationSource->pos) { |
1607 | // An earlier FCD check has already covered the current character. | |
1608 | // We can go ahead and process this char. | |
b75a7d8f A |
1609 | break; |
1610 | } | |
1611 | ||
729e4ab9 A |
1612 | if (ch < ZERO_CC_LIMIT_ ) { |
1613 | // Fast fcd safe path. Trailing combining class == 0. This char is OK. | |
b75a7d8f A |
1614 | break; |
1615 | } | |
b75a7d8f | 1616 | |
729e4ab9 A |
1617 | if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
1618 | // We need to peek at the next character in order to tell if we are FCD | |
1619 | if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) { | |
1620 | // We are at the last char of source string. | |
1621 | // It is always OK for FCD check. | |
1622 | break; | |
1623 | } | |
b75a7d8f | 1624 | |
729e4ab9 A |
1625 | // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test |
1626 | if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) { | |
1627 | break; | |
1628 | } | |
1629 | } | |
b75a7d8f | 1630 | |
b75a7d8f | 1631 | |
729e4ab9 A |
1632 | // Need a more complete FCD check and possible normalization. |
1633 | if (collIterFCD(collationSource)) { | |
1634 | collIterNormalize(collationSource); | |
1635 | } | |
1636 | if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { | |
1637 | // No normalization was needed. Go ahead and process the char we already had. | |
1638 | break; | |
1639 | } | |
b75a7d8f | 1640 | |
729e4ab9 A |
1641 | // Some normalization happened. Next loop iteration will pick up a char |
1642 | // from the normalization buffer. | |
b75a7d8f | 1643 | |
729e4ab9 A |
1644 | } // end for (;;) |
1645 | ||
1646 | ||
1647 | if (ch <= 0xFF) { | |
1648 | /* For latin-1 characters we never need to fall back to the UCA table */ | |
1649 | /* because all of the UCA data is replicated in the latinOneMapping array */ | |
1650 | order = coll->latinOneMapping[ch]; | |
1651 | if (order > UCOL_NOT_FOUND) { | |
1652 | order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); | |
1653 | } | |
46f4442e | 1654 | } |
729e4ab9 A |
1655 | else |
1656 | { | |
1657 | // Always use UCA for Han, Hangul | |
1658 | // (Han extension A is before main Han block) | |
1659 | // **** Han compatibility chars ?? **** | |
1660 | if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && | |
1661 | (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) { | |
1662 | if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) { | |
1663 | // between the two target ranges; do normal lookup | |
1664 | // **** this range is YI, Modifier tone letters, **** | |
1665 | // **** Latin-D, Syloti Nagari, Phagas-pa. **** | |
1666 | // **** Latin-D might be tailored, so we need to **** | |
1667 | // **** do the normal lookup for these guys. **** | |
1668 | order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
1669 | } else { | |
1670 | // in one of the target ranges; use UCA | |
1671 | order = UCOL_NOT_FOUND; | |
1672 | } | |
1673 | } else { | |
1674 | order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
1675 | } | |
b75a7d8f | 1676 | |
729e4ab9 A |
1677 | if(order > UCOL_NOT_FOUND) { /* if a CE is special */ |
1678 | order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */ | |
1679 | } | |
1680 | ||
1681 | if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */ | |
1682 | /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */ | |
1683 | order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); | |
1684 | ||
1685 | if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */ | |
1686 | order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status); | |
1687 | } | |
b75a7d8f | 1688 | } |
46f4442e | 1689 | } |
729e4ab9 A |
1690 | } while ( order == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
1691 | ||
46f4442e | 1692 | if(order == UCOL_NOT_FOUND) { |
73c04bcf | 1693 | order = getImplicit(ch, collationSource); |
46f4442e A |
1694 | } |
1695 | return order; /* return the CE */ | |
b75a7d8f A |
1696 | } |
1697 | ||
1698 | /* ucol_getNextCE, out-of-line version for use from other files. */ | |
1699 | U_CAPI uint32_t U_EXPORT2 | |
1700 | ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { | |
1701 | return ucol_IGetNextCE(coll, collationSource, status); | |
374ca955 | 1702 | } |
b75a7d8f A |
1703 | |
1704 | ||
1705 | /** | |
1706 | * Incremental previous normalization happens here. Pick up the range of chars | |
1707 | * identifed by FCD, normalize it into the collIterate's writable buffer, | |
1708 | * switch the collIterate's state to use the writable buffer. | |
1709 | * @param data collation iterator data | |
1710 | */ | |
1711 | static | |
1712 | void collPrevIterNormalize(collIterate *data) | |
1713 | { | |
1714 | UErrorCode status = U_ZERO_ERROR; | |
729e4ab9 A |
1715 | const UChar *pEnd = data->pos; /* End normalize + 1 */ |
1716 | const UChar *pStart; | |
b75a7d8f A |
1717 | |
1718 | /* Start normalize */ | |
1719 | if (data->fcdPosition == NULL) { | |
1720 | pStart = data->string; | |
1721 | } | |
1722 | else { | |
1723 | pStart = data->fcdPosition + 1; | |
1724 | } | |
1725 | ||
729e4ab9 A |
1726 | int32_t normLen = |
1727 | data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)), | |
1728 | data->writableBuffer, | |
1729 | status). | |
1730 | length(); | |
1731 | if(U_FAILURE(status)) { | |
1732 | return; | |
b75a7d8f | 1733 | } |
b75a7d8f A |
1734 | /* |
1735 | this puts the null termination infront of the normalized string instead | |
1736 | of the end | |
1737 | */ | |
729e4ab9 | 1738 | data->writableBuffer.insert(0, (UChar)0); |
46f4442e A |
1739 | |
1740 | /* | |
1741 | * The usual case at this point is that we've got a base | |
1742 | * character followed by marks that were normalized. If | |
1743 | * fcdPosition is NULL, that means that we backed up to | |
1744 | * the beginning of the string and there's no base character. | |
1745 | * | |
1746 | * Forward processing will usually normalize when it sees | |
1747 | * the first mark, so that mark will get it's natural offset | |
1748 | * and the rest will get the offset of the character following | |
1749 | * the marks. The base character will also get its natural offset. | |
1750 | * | |
1751 | * We write the offset of the base character, if there is one, | |
1752 | * followed by the offset of the first mark and then the offsets | |
1753 | * of the rest of the marks. | |
1754 | */ | |
1755 | int32_t firstMarkOffset = 0; | |
729e4ab9 | 1756 | int32_t trailOffset = (int32_t)(data->pos - data->string + 1); |
46f4442e A |
1757 | int32_t trailCount = normLen - 1; |
1758 | ||
1759 | if (data->fcdPosition != NULL) { | |
729e4ab9 | 1760 | int32_t baseOffset = (int32_t)(data->fcdPosition - data->string); |
46f4442e A |
1761 | UChar baseChar = *data->fcdPosition; |
1762 | ||
1763 | firstMarkOffset = baseOffset + 1; | |
1764 | ||
1765 | /* | |
1766 | * If the base character is the start of a contraction, forward processing | |
1767 | * will normalize the marks while checking for the contraction, which means | |
1768 | * that the offset of the first mark will the same as the other marks. | |
1769 | * | |
1770 | * **** THIS IS PROBABLY NOT A COMPLETE TEST **** | |
1771 | */ | |
1772 | if (baseChar >= 0x100) { | |
1773 | uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar); | |
1774 | ||
1775 | if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) { | |
1776 | baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar); | |
1777 | } | |
1778 | ||
1779 | if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) { | |
1780 | firstMarkOffset = trailOffset; | |
1781 | } | |
1782 | } | |
1783 | ||
729e4ab9 | 1784 | data->appendOffset(baseOffset, status); |
46f4442e A |
1785 | } |
1786 | ||
729e4ab9 | 1787 | data->appendOffset(firstMarkOffset, status); |
46f4442e A |
1788 | |
1789 | for (int32_t i = 0; i < trailCount; i += 1) { | |
729e4ab9 | 1790 | data->appendOffset(trailOffset, status); |
46f4442e A |
1791 | } |
1792 | ||
1793 | data->offsetRepeatValue = trailOffset; | |
1794 | ||
1795 | data->offsetReturn = data->offsetStore - 1; | |
1796 | if (data->offsetReturn == data->offsetBuffer) { | |
1797 | data->offsetStore = data->offsetBuffer; | |
1798 | } | |
1799 | ||
729e4ab9 | 1800 | data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen; |
b75a7d8f A |
1801 | data->origFlags = data->flags; |
1802 | data->flags |= UCOL_ITER_INNORMBUF; | |
1803 | data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
1804 | } | |
1805 | ||
1806 | ||
1807 | /** | |
1808 | * Incremental FCD check for previous iteration and normalize. Called from | |
1809 | * getPrevCE when normalization state is suspect. | |
1810 | * When entering, the state is known to be this: | |
1811 | * o We are working in the main buffer of the collIterate, not the side | |
1812 | * writable buffer. When in the side buffer, normalization mode is always | |
1813 | * off, so we won't get here. | |
1814 | * o The leading combining class from the current character is 0 or the | |
1815 | * trailing combining class of the previous char was zero. | |
1816 | * True because the previous call to this function will have always exited | |
1817 | * that way, and we get called for every char where cc might be non-zero. | |
1818 | * @param data collation iterate struct | |
1819 | * @return normalization status, TRUE for normalization to be done, FALSE | |
1820 | * otherwise | |
1821 | */ | |
1822 | static | |
1823 | inline UBool collPrevIterFCD(collIterate *data) | |
1824 | { | |
1825 | const UChar *src, *start; | |
b75a7d8f A |
1826 | uint8_t leadingCC; |
1827 | uint8_t trailingCC = 0; | |
1828 | uint16_t fcd; | |
1829 | UBool result = FALSE; | |
1830 | ||
1831 | start = data->string; | |
1832 | src = data->pos + 1; | |
1833 | ||
1834 | /* Get the trailing combining class of the current character. */ | |
4388f060 | 1835 | fcd = g_nfcImpl->previousFCD16(start, src); |
b75a7d8f A |
1836 | |
1837 | leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); | |
1838 | ||
1839 | if (leadingCC != 0) { | |
1840 | /* | |
1841 | The current char has a non-zero leading combining class. | |
1842 | Scan backward until we find a char with a trailing cc of zero. | |
1843 | */ | |
1844 | for (;;) | |
1845 | { | |
1846 | if (start == src) { | |
1847 | data->fcdPosition = NULL; | |
1848 | return result; | |
1849 | } | |
1850 | ||
4388f060 | 1851 | fcd = g_nfcImpl->previousFCD16(start, src); |
b75a7d8f A |
1852 | |
1853 | trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); | |
1854 | ||
1855 | if (trailingCC == 0) { | |
1856 | break; | |
1857 | } | |
1858 | ||
1859 | if (leadingCC < trailingCC) { | |
1860 | result = TRUE; | |
1861 | } | |
1862 | ||
1863 | leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); | |
1864 | } | |
1865 | } | |
1866 | ||
1867 | data->fcdPosition = (UChar *)src; | |
1868 | ||
1869 | return result; | |
1870 | } | |
1871 | ||
729e4ab9 | 1872 | /** gets a code unit from the string at a given offset |
b75a7d8f A |
1873 | * Handles both normal and iterative cases. |
1874 | * No error checking - caller beware! | |
1875 | */ | |
729e4ab9 A |
1876 | static inline |
1877 | UChar peekCodeUnit(collIterate *source, int32_t offset) { | |
46f4442e A |
1878 | if(source->pos != NULL) { |
1879 | return *(source->pos + offset); | |
1880 | } else if(source->iterator != NULL) { | |
729e4ab9 | 1881 | UChar32 c; |
46f4442e A |
1882 | if(offset != 0) { |
1883 | source->iterator->move(source->iterator, offset, UITER_CURRENT); | |
729e4ab9 | 1884 | c = source->iterator->next(source->iterator); |
46f4442e | 1885 | source->iterator->move(source->iterator, -offset-1, UITER_CURRENT); |
46f4442e | 1886 | } else { |
729e4ab9 | 1887 | c = source->iterator->current(source->iterator); |
46f4442e | 1888 | } |
729e4ab9 | 1889 | return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0. |
b75a7d8f | 1890 | } else { |
729e4ab9 | 1891 | return 0xfffd; |
b75a7d8f | 1892 | } |
b75a7d8f A |
1893 | } |
1894 | ||
729e4ab9 A |
1895 | // Code point version. Treats the offset as a _code point_ delta. |
1896 | // We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16. | |
1897 | // We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer. | |
1898 | static inline | |
1899 | UChar32 peekCodePoint(collIterate *source, int32_t offset) { | |
1900 | UChar32 c; | |
1901 | if(source->pos != NULL) { | |
1902 | const UChar *p = source->pos; | |
1903 | if(offset >= 0) { | |
1904 | // Skip forward over (offset-1) code points. | |
1905 | while(--offset >= 0) { | |
1906 | if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) { | |
1907 | ++p; | |
1908 | } | |
1909 | } | |
1910 | // Read the code point there. | |
1911 | c = *p++; | |
1912 | UChar trail; | |
1913 | if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) { | |
1914 | c = U16_GET_SUPPLEMENTARY(c, trail); | |
1915 | } | |
1916 | } else /* offset<0 */ { | |
1917 | // Skip backward over (offset-1) code points. | |
1918 | while(++offset < 0) { | |
1919 | if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) { | |
1920 | --p; | |
1921 | } | |
1922 | } | |
1923 | // Read the code point before that. | |
1924 | c = *--p; | |
1925 | UChar lead; | |
1926 | if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) { | |
1927 | c = U16_GET_SUPPLEMENTARY(lead, c); | |
1928 | } | |
1929 | } | |
1930 | } else if(source->iterator != NULL) { | |
1931 | if(offset >= 0) { | |
1932 | // Skip forward over (offset-1) code points. | |
1933 | int32_t fwd = offset; | |
1934 | while(fwd-- > 0) { | |
1935 | uiter_next32(source->iterator); | |
1936 | } | |
1937 | // Read the code point there. | |
1938 | c = uiter_current32(source->iterator); | |
1939 | // Return to the starting point, skipping backward over (offset-1) code points. | |
1940 | while(offset-- > 0) { | |
1941 | uiter_previous32(source->iterator); | |
1942 | } | |
1943 | } else /* offset<0 */ { | |
1944 | // Read backward, reading offset code points, remember only the last-read one. | |
1945 | int32_t back = offset; | |
1946 | do { | |
1947 | c = uiter_previous32(source->iterator); | |
1948 | } while(++back < 0); | |
1949 | // Return to the starting position, skipping forward over offset code points. | |
1950 | do { | |
1951 | uiter_next32(source->iterator); | |
1952 | } while(++offset < 0); | |
1953 | } | |
1954 | } else { | |
1955 | c = U_SENTINEL; | |
1956 | } | |
1957 | return c; | |
1958 | } | |
1959 | ||
b75a7d8f A |
1960 | /** |
1961 | * Determines if we are at the start of the data string in the backwards | |
1962 | * collation iterator | |
1963 | * @param data collation iterator | |
1964 | * @return TRUE if we are at the start | |
1965 | */ | |
1966 | static | |
1967 | inline UBool isAtStartPrevIterate(collIterate *data) { | |
46f4442e A |
1968 | if(data->pos == NULL && data->iterator != NULL) { |
1969 | return !data->iterator->hasPrevious(data->iterator); | |
1970 | } | |
1971 | //return (collIter_bos(data)) || | |
1972 | return (data->pos == data->string) || | |
4388f060 | 1973 | ((data->flags & UCOL_ITER_INNORMBUF) && (data->pos != NULL) && |
46f4442e | 1974 | *(data->pos - 1) == 0 && data->fcdPosition == NULL); |
b75a7d8f A |
1975 | } |
1976 | ||
374ca955 A |
1977 | static |
1978 | inline void goBackOne(collIterate *data) { | |
1979 | # if 0 | |
46f4442e A |
1980 | // somehow, it looks like we need to keep iterator synced up |
1981 | // at all times, as above. | |
1982 | if(data->pos) { | |
1983 | data->pos--; | |
1984 | } | |
1985 | if(data->iterator) { | |
1986 | data->iterator->previous(data->iterator); | |
1987 | } | |
374ca955 | 1988 | #endif |
46f4442e A |
1989 | if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) { |
1990 | data->iterator->previous(data->iterator); | |
1991 | } | |
1992 | if(data->pos) { | |
1993 | data->pos --; | |
1994 | } | |
374ca955 A |
1995 | } |
1996 | ||
b75a7d8f A |
1997 | /** |
1998 | * Inline function that gets a simple CE. | |
1999 | * So what it does is that it will first check the expansion buffer. If the | |
2000 | * expansion buffer is not empty, ie the end pointer to the expansion buffer | |
2001 | * is different from the string pointer, we return the collation element at the | |
2002 | * return pointer and decrement it. | |
2003 | * For more complicated CEs it resorts to getComplicatedCE. | |
2004 | * @param coll collator data | |
2005 | * @param data collation iterator struct | |
2006 | * @param status error status | |
2007 | */ | |
2008 | static | |
2009 | inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data, | |
2010 | UErrorCode *status) | |
2011 | { | |
374ca955 | 2012 | uint32_t result = (uint32_t)UCOL_NULLORDER; |
46f4442e A |
2013 | |
2014 | if (data->offsetReturn != NULL) { | |
2015 | if (data->offsetRepeatCount > 0) { | |
2016 | data->offsetRepeatCount -= 1; | |
2017 | } else { | |
2018 | if (data->offsetReturn == data->offsetBuffer) { | |
2019 | data->offsetReturn = NULL; | |
2020 | data->offsetStore = data->offsetBuffer; | |
2021 | } else { | |
2022 | data->offsetReturn -= 1; | |
2023 | } | |
2024 | } | |
2025 | } | |
2026 | ||
2027 | if ((data->extendCEs && data->toReturn > data->extendCEs) || | |
2028 | (!data->extendCEs && data->toReturn > data->CEs)) | |
2029 | { | |
2030 | data->toReturn -= 1; | |
b75a7d8f | 2031 | result = *(data->toReturn); |
46f4442e | 2032 | if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) { |
b75a7d8f A |
2033 | data->CEpos = data->toReturn; |
2034 | } | |
2035 | } | |
2036 | else { | |
2037 | UChar ch = 0; | |
46f4442e | 2038 | |
729e4ab9 A |
2039 | do { |
2040 | /* | |
2041 | Loop handles case when incremental normalize switches to or from the | |
2042 | side buffer / original string, and we need to start again to get the | |
2043 | next character. | |
2044 | */ | |
2045 | for (;;) { | |
2046 | if (data->flags & UCOL_ITER_HASLEN) { | |
b75a7d8f | 2047 | /* |
729e4ab9 A |
2048 | Normal path for strings when length is specified. |
2049 | Not in side buffer because it is always null terminated. | |
b75a7d8f | 2050 | */ |
729e4ab9 A |
2051 | if (data->pos <= data->string) { |
2052 | /* End of the main source string */ | |
b75a7d8f A |
2053 | return UCOL_NO_MORE_CES; |
2054 | } | |
729e4ab9 A |
2055 | data->pos --; |
2056 | ch = *data->pos; | |
2057 | } | |
2058 | // we are using an iterator to go back. Pray for us! | |
2059 | else if (data->flags & UCOL_USE_ITERATOR) { | |
2060 | UChar32 iterCh = data->iterator->previous(data->iterator); | |
2061 | if(iterCh == U_SENTINEL) { | |
2062 | return UCOL_NO_MORE_CES; | |
2063 | } else { | |
2064 | ch = (UChar)iterCh; | |
2065 | } | |
2066 | } | |
2067 | else { | |
2068 | data->pos --; | |
2069 | ch = *data->pos; | |
2070 | /* we are in the side buffer. */ | |
2071 | if (ch == 0) { | |
2072 | /* | |
2073 | At the start of the normalize side buffer. | |
2074 | Go back to string. | |
2075 | Because pointer points to the last accessed character, | |
2076 | hence we have to increment it by one here. | |
2077 | */ | |
2078 | data->flags = data->origFlags; | |
2079 | data->offsetRepeatValue = 0; | |
2080 | ||
2081 | if (data->fcdPosition == NULL) { | |
2082 | data->pos = data->string; | |
2083 | return UCOL_NO_MORE_CES; | |
2084 | } | |
2085 | else { | |
2086 | data->pos = data->fcdPosition + 1; | |
2087 | } | |
2088 | ||
2089 | continue; | |
b75a7d8f | 2090 | } |
729e4ab9 | 2091 | } |
46f4442e | 2092 | |
729e4ab9 A |
2093 | if(data->flags&UCOL_HIRAGANA_Q) { |
2094 | if(ch>=0x3040 && ch<=0x309f) { | |
2095 | data->flags |= UCOL_WAS_HIRAGANA; | |
2096 | } else { | |
2097 | data->flags &= ~UCOL_WAS_HIRAGANA; | |
2098 | } | |
b75a7d8f | 2099 | } |
b75a7d8f | 2100 | |
729e4ab9 A |
2101 | /* |
2102 | * got a character to determine if there's fcd and/or normalization | |
2103 | * stuff to do. | |
2104 | * if the current character is not fcd. | |
2105 | * if current character is at the start of the string | |
2106 | * Trailing combining class == 0. | |
2107 | * Note if pos is in the writablebuffer, norm is always 0 | |
2108 | */ | |
2109 | if (ch < ZERO_CC_LIMIT_ || | |
2110 | // this should propel us out of the loop in the iterator case | |
2111 | (data->flags & UCOL_ITER_NORM) == 0 || | |
2112 | (data->fcdPosition != NULL && data->fcdPosition <= data->pos) | |
2113 | || data->string == data->pos) { | |
2114 | break; | |
2115 | } | |
374ca955 | 2116 | |
729e4ab9 A |
2117 | if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
2118 | /* if next character is FCD */ | |
2119 | if (data->pos == data->string) { | |
2120 | /* First char of string is always OK for FCD check */ | |
2121 | break; | |
2122 | } | |
b75a7d8f | 2123 | |
729e4ab9 A |
2124 | /* Not first char of string, do the FCD fast test */ |
2125 | if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) { | |
2126 | break; | |
2127 | } | |
b75a7d8f A |
2128 | } |
2129 | ||
729e4ab9 A |
2130 | /* Need a more complete FCD check and possible normalization. */ |
2131 | if (collPrevIterFCD(data)) { | |
2132 | collPrevIterNormalize(data); | |
b75a7d8f | 2133 | } |
b75a7d8f | 2134 | |
729e4ab9 A |
2135 | if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
2136 | /* No normalization. Go ahead and process the char. */ | |
2137 | break; | |
2138 | } | |
b75a7d8f | 2139 | |
729e4ab9 A |
2140 | /* |
2141 | Some normalization happened. | |
2142 | Next loop picks up a char from the normalization buffer. | |
2143 | */ | |
b75a7d8f A |
2144 | } |
2145 | ||
729e4ab9 A |
2146 | /* attempt to handle contractions, after removal of the backwards |
2147 | contraction | |
b75a7d8f | 2148 | */ |
729e4ab9 A |
2149 | if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) { |
2150 | result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status); | |
2151 | } else { | |
2152 | if (ch <= 0xFF) { | |
2153 | result = coll->latinOneMapping[ch]; | |
2154 | } | |
2155 | else { | |
2156 | // Always use UCA for [3400..9FFF], [AC00..D7AF] | |
2157 | // **** [FA0E..FA2F] ?? **** | |
2158 | if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && | |
2159 | (ch >= 0x3400 && ch <= 0xD7AF)) { | |
2160 | if (ch > 0x9FFF && ch < 0xAC00) { | |
2161 | // between the two target ranges; do normal lookup | |
2162 | // **** this range is YI, Modifier tone letters, **** | |
2163 | // **** Latin-D, Syloti Nagari, Phagas-pa. **** | |
2164 | // **** Latin-D might be tailored, so we need to **** | |
2165 | // **** do the normal lookup for these guys. **** | |
2166 | result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
2167 | } else { | |
2168 | result = UCOL_NOT_FOUND; | |
2169 | } | |
2170 | } else { | |
2171 | result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
46f4442e A |
2172 | } |
2173 | } | |
46f4442e | 2174 | if (result > UCOL_NOT_FOUND) { |
729e4ab9 A |
2175 | result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status); |
2176 | } | |
2177 | if (result == UCOL_NOT_FOUND) { // Not found in master list | |
2178 | if (!isAtStartPrevIterate(data) && | |
2179 | ucol_contractionEndCP(ch, data->coll)) | |
2180 | { | |
2181 | result = UCOL_CONTRACTION; | |
2182 | } else { | |
2183 | if(coll->UCA) { | |
2184 | result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); | |
2185 | } | |
2186 | } | |
2187 | ||
2188 | if (result > UCOL_NOT_FOUND) { | |
2189 | if(coll->UCA) { | |
2190 | result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status); | |
2191 | } | |
46f4442e A |
2192 | } |
2193 | } | |
2194 | } | |
729e4ab9 | 2195 | } while ( result == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
46f4442e A |
2196 | |
2197 | if(result == UCOL_NOT_FOUND) { | |
2198 | result = getPrevImplicit(ch, data); | |
2199 | } | |
2200 | } | |
2201 | ||
2202 | return result; | |
2203 | } | |
2204 | ||
b75a7d8f A |
2205 | |
2206 | /* ucol_getPrevCE, out-of-line version for use from other files. */ | |
46f4442e | 2207 | U_CFUNC uint32_t U_EXPORT2 |
b75a7d8f A |
2208 | ucol_getPrevCE(const UCollator *coll, collIterate *data, |
2209 | UErrorCode *status) { | |
2210 | return ucol_IGetPrevCE(coll, data, status); | |
2211 | } | |
2212 | ||
2213 | ||
2214 | /* this should be connected to special Jamo handling */ | |
46f4442e | 2215 | U_CFUNC uint32_t U_EXPORT2 |
b75a7d8f | 2216 | ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) { |
46f4442e | 2217 | collIterate colIt; |
729e4ab9 A |
2218 | IInit_collIterate(coll, &u, 1, &colIt, status); |
2219 | if(U_FAILURE(*status)) { | |
2220 | return 0; | |
2221 | } | |
2222 | return ucol_IGetNextCE(coll, &colIt, status); | |
b75a7d8f A |
2223 | } |
2224 | ||
2225 | /** | |
2226 | * Inserts the argument character into the end of the buffer pushing back the | |
2227 | * null terminator. | |
2228 | * @param data collIterate struct data | |
b75a7d8f A |
2229 | * @param ch character to be appended |
2230 | * @return the position of the new addition | |
2231 | */ | |
2232 | static | |
729e4ab9 | 2233 | inline const UChar * insertBufferEnd(collIterate *data, UChar ch) |
b75a7d8f | 2234 | { |
729e4ab9 A |
2235 | int32_t oldLength = data->writableBuffer.length(); |
2236 | return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength; | |
b75a7d8f A |
2237 | } |
2238 | ||
2239 | /** | |
2240 | * Inserts the argument string into the end of the buffer pushing back the | |
2241 | * null terminator. | |
2242 | * @param data collIterate struct data | |
b75a7d8f A |
2243 | * @param string to be appended |
2244 | * @param length of the string to be appended | |
2245 | * @return the position of the new addition | |
2246 | */ | |
2247 | static | |
729e4ab9 | 2248 | inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length) |
b75a7d8f | 2249 | { |
729e4ab9 A |
2250 | int32_t oldLength = data->writableBuffer.length(); |
2251 | return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength; | |
b75a7d8f A |
2252 | } |
2253 | ||
2254 | /** | |
2255 | * Special normalization function for contraction in the forwards iterator. | |
2256 | * This normalization sequence will place the current character at source->pos | |
2257 | * and its following normalized sequence into the buffer. | |
2258 | * The fcd position, pos will be changed. | |
2259 | * pos will now point to positions in the buffer. | |
2260 | * Flags will be changed accordingly. | |
2261 | * @param data collation iterator data | |
2262 | */ | |
2263 | static | |
2264 | inline void normalizeNextContraction(collIterate *data) | |
2265 | { | |
729e4ab9 | 2266 | int32_t strsize; |
b75a7d8f A |
2267 | UErrorCode status = U_ZERO_ERROR; |
2268 | /* because the pointer points to the next character */ | |
729e4ab9 A |
2269 | const UChar *pStart = data->pos - 1; |
2270 | const UChar *pEnd; | |
b75a7d8f A |
2271 | |
2272 | if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { | |
729e4ab9 | 2273 | data->writableBuffer.setTo(*(pStart - 1)); |
b75a7d8f A |
2274 | strsize = 1; |
2275 | } | |
2276 | else { | |
729e4ab9 | 2277 | strsize = data->writableBuffer.length(); |
b75a7d8f A |
2278 | } |
2279 | ||
2280 | pEnd = data->fcdPosition; | |
2281 | ||
729e4ab9 A |
2282 | data->writableBuffer.append( |
2283 | data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status)); | |
2284 | if(U_FAILURE(status)) { | |
2285 | return; | |
b75a7d8f A |
2286 | } |
2287 | ||
729e4ab9 | 2288 | data->pos = data->writableBuffer.getTerminatedBuffer() + strsize; |
b75a7d8f A |
2289 | data->origFlags = data->flags; |
2290 | data->flags |= UCOL_ITER_INNORMBUF; | |
2291 | data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
2292 | } | |
2293 | ||
2294 | /** | |
2295 | * Contraction character management function that returns the next character | |
2296 | * for the forwards iterator. | |
2297 | * Does nothing if the next character is in buffer and not the first character | |
2298 | * in it. | |
2299 | * Else it checks next character in data string to see if it is normalizable. | |
2300 | * If it is not, the character is simply copied into the buffer, else | |
2301 | * the whole normalized substring is copied into the buffer, including the | |
2302 | * current character. | |
2303 | * @param data collation element iterator data | |
2304 | * @return next character | |
2305 | */ | |
2306 | static | |
2307 | inline UChar getNextNormalizedChar(collIterate *data) | |
2308 | { | |
2309 | UChar nextch; | |
2310 | UChar ch; | |
2311 | // Here we need to add the iterator code. One problem is the way | |
2312 | // end of string is handled. If we just return next char, it could | |
2313 | // be the sentinel. Most of the cases already check for this, but we | |
2314 | // need to be sure. | |
2315 | if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) { | |
2316 | /* if no normalization and not in buffer. */ | |
2317 | if(data->flags & UCOL_USE_ITERATOR) { | |
2318 | return (UChar)data->iterator->next(data->iterator); | |
2319 | } else { | |
2320 | return *(data->pos ++); | |
2321 | } | |
2322 | } | |
2323 | ||
2324 | //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) { | |
2325 | //normalizeIterator(data); | |
2326 | //} | |
2327 | ||
b75a7d8f A |
2328 | UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
2329 | if ((innormbuf && *data->pos != 0) || | |
2330 | (data->fcdPosition != NULL && !innormbuf && | |
2331 | data->pos < data->fcdPosition)) { | |
2332 | /* | |
2333 | if next character is in normalized buffer, no further normalization | |
2334 | is required | |
2335 | */ | |
2336 | return *(data->pos ++); | |
2337 | } | |
2338 | ||
2339 | if (data->flags & UCOL_ITER_HASLEN) { | |
2340 | /* in data string */ | |
2341 | if (data->pos + 1 == data->endp) { | |
2342 | return *(data->pos ++); | |
2343 | } | |
2344 | } | |
2345 | else { | |
2346 | if (innormbuf) { | |
374ca955 A |
2347 | // inside the normalization buffer, but at the end |
2348 | // (since we encountered zero). This means, in the | |
2349 | // case we're using char iterator, that we need to | |
2350 | // do another round of normalization. | |
b75a7d8f A |
2351 | //if(data->origFlags & UCOL_USE_ITERATOR) { |
2352 | // we need to restore original flags, | |
2353 | // otherwise, we'll lose them | |
2354 | //data->flags = data->origFlags; | |
2355 | //normalizeIterator(data); | |
2356 | //return *(data->pos++); | |
2357 | //} else { | |
2358 | /* | |
2359 | in writable buffer, at this point fcdPosition can not be | |
2360 | pointing to the end of the data string. see contracting tag. | |
2361 | */ | |
2362 | if(data->fcdPosition) { | |
2363 | if (*(data->fcdPosition + 1) == 0 || | |
2364 | data->fcdPosition + 1 == data->endp) { | |
2365 | /* at the end of the string, dump it into the normalizer */ | |
729e4ab9 | 2366 | data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1; |
46f4442e A |
2367 | // Check if data->pos received a null pointer |
2368 | if (data->pos == NULL) { | |
2369 | return (UChar)-1; // Return to indicate error. | |
2370 | } | |
b75a7d8f A |
2371 | return *(data->fcdPosition ++); |
2372 | } | |
b75a7d8f A |
2373 | data->pos = data->fcdPosition; |
2374 | } else if(data->origFlags & UCOL_USE_ITERATOR) { | |
2375 | // if we are here, we're using a normalizing iterator. | |
2376 | // we should just continue further. | |
2377 | data->flags = data->origFlags; | |
2378 | data->pos = NULL; | |
2379 | return (UChar)data->iterator->next(data->iterator); | |
2380 | } | |
2381 | //} | |
2382 | } | |
2383 | else { | |
2384 | if (*(data->pos + 1) == 0) { | |
2385 | return *(data->pos ++); | |
2386 | } | |
2387 | } | |
2388 | } | |
2389 | ||
2390 | ch = *data->pos ++; | |
2391 | nextch = *data->pos; | |
2392 | ||
2393 | /* | |
2394 | * if the current character is not fcd. | |
2395 | * Trailing combining class == 0. | |
2396 | */ | |
2397 | if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) && | |
2398 | (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ || | |
2399 | ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) { | |
2400 | /* | |
2401 | Need a more complete FCD check and possible normalization. | |
2402 | normalize substring will be appended to buffer | |
2403 | */ | |
2404 | if (collIterFCD(data)) { | |
2405 | normalizeNextContraction(data); | |
2406 | return *(data->pos ++); | |
2407 | } | |
2408 | else if (innormbuf) { | |
2409 | /* fcdposition shifted even when there's no normalization, if we | |
2410 | don't input the rest into this, we'll get the wrong position when | |
2411 | we reach the end of the writableBuffer */ | |
729e4ab9 A |
2412 | int32_t length = (int32_t)(data->fcdPosition - data->pos + 1); |
2413 | data->pos = insertBufferEnd(data, data->pos - 1, length); | |
46f4442e A |
2414 | // Check if data->pos received a null pointer |
2415 | if (data->pos == NULL) { | |
2416 | return (UChar)-1; // Return to indicate error. | |
2417 | } | |
b75a7d8f A |
2418 | return *(data->pos ++); |
2419 | } | |
2420 | } | |
2421 | ||
2422 | if (innormbuf) { | |
2423 | /* | |
2424 | no normalization is to be done hence only one character will be | |
2425 | appended to the buffer. | |
2426 | */ | |
729e4ab9 | 2427 | data->pos = insertBufferEnd(data, ch) + 1; |
46f4442e A |
2428 | // Check if data->pos received a null pointer |
2429 | if (data->pos == NULL) { | |
2430 | return (UChar)-1; // Return to indicate error. | |
2431 | } | |
b75a7d8f A |
2432 | } |
2433 | ||
2434 | /* points back to the pos in string */ | |
2435 | return ch; | |
2436 | } | |
2437 | ||
b75a7d8f A |
2438 | |
2439 | ||
2440 | /** | |
2441 | * Function to copy the buffer into writableBuffer and sets the fcd position to | |
2442 | * the correct position | |
2443 | * @param source data string source | |
2444 | * @param buffer character buffer | |
b75a7d8f A |
2445 | */ |
2446 | static | |
729e4ab9 | 2447 | inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer) |
b75a7d8f A |
2448 | { |
2449 | /* okay confusing part here. to ensure that the skipped characters are | |
2450 | considered later, we need to place it in the appropriate position in the | |
2451 | normalization buffer and reassign the pos pointer. simple case if pos | |
2452 | reside in string, simply copy to normalization buffer and | |
2453 | fcdposition = pos, pos = start of normalization buffer. if pos in | |
2454 | normalization buffer, we'll insert the copy infront of pos and point pos | |
2455 | to the start of the normalization buffer. why am i doing these copies? | |
2456 | well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does | |
2457 | not require any changes, which be really painful. */ | |
b75a7d8f | 2458 | if (source->flags & UCOL_ITER_INNORMBUF) { |
729e4ab9 A |
2459 | int32_t replaceLength = source->pos - source->writableBuffer.getBuffer(); |
2460 | source->writableBuffer.replace(0, replaceLength, buffer); | |
b75a7d8f A |
2461 | } |
2462 | else { | |
2463 | source->fcdPosition = source->pos; | |
2464 | source->origFlags = source->flags; | |
2465 | source->flags |= UCOL_ITER_INNORMBUF; | |
2466 | source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); | |
729e4ab9 | 2467 | source->writableBuffer = buffer; |
b75a7d8f A |
2468 | } |
2469 | ||
729e4ab9 | 2470 | source->pos = source->writableBuffer.getTerminatedBuffer(); |
b75a7d8f A |
2471 | } |
2472 | ||
2473 | /** | |
2474 | * Function to get the discontiguos collation element within the source. | |
2475 | * Note this function will set the position to the appropriate places. | |
2476 | * @param coll current collator used | |
2477 | * @param source data string source | |
2478 | * @param constart index to the start character in the contraction table | |
2479 | * @return discontiguos collation element offset | |
2480 | */ | |
2481 | static | |
2482 | uint32_t getDiscontiguous(const UCollator *coll, collIterate *source, | |
2483 | const UChar *constart) | |
2484 | { | |
2485 | /* source->pos currently points to the second combining character after | |
2486 | the start character */ | |
729e4ab9 A |
2487 | const UChar *temppos = source->pos; |
2488 | UnicodeString buffer; | |
b75a7d8f A |
2489 | const UChar *tempconstart = constart; |
2490 | uint8_t tempflags = source->flags; | |
2491 | UBool multicontraction = FALSE; | |
b75a7d8f A |
2492 | collIterateState discState; |
2493 | ||
2494 | backupState(source, &discState); | |
2495 | ||
729e4ab9 | 2496 | buffer.setTo(peekCodePoint(source, -1)); |
46f4442e | 2497 | for (;;) { |
b75a7d8f A |
2498 | UChar *UCharOffset; |
2499 | UChar schar, | |
2500 | tchar; | |
2501 | uint32_t result; | |
2502 | ||
2503 | if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp) | |
729e4ab9 | 2504 | || (peekCodeUnit(source, 0) == 0 && |
b75a7d8f A |
2505 | //|| (*source->pos == 0 && |
2506 | ((source->flags & UCOL_ITER_INNORMBUF) == 0 || | |
2507 | source->fcdPosition == NULL || | |
2508 | source->fcdPosition == source->endp || | |
2509 | *(source->fcdPosition) == 0 || | |
2510 | u_getCombiningClass(*(source->fcdPosition)) == 0)) || | |
2511 | /* end of string in null terminated string or stopped by a | |
2512 | null character, note fcd does not always point to a base | |
2513 | character after the discontiguos change */ | |
729e4ab9 | 2514 | u_getCombiningClass(peekCodePoint(source, 0)) == 0) { |
b75a7d8f A |
2515 | //u_getCombiningClass(*(source->pos)) == 0) { |
2516 | //constart = (UChar *)coll->image + getContractOffset(CE); | |
2517 | if (multicontraction) { | |
b75a7d8f | 2518 | source->pos = temppos - 1; |
729e4ab9 | 2519 | setDiscontiguosAttribute(source, buffer); |
b75a7d8f A |
2520 | return *(coll->contractionCEs + |
2521 | (tempconstart - coll->contractionIndex)); | |
2522 | } | |
2523 | constart = tempconstart; | |
2524 | break; | |
2525 | } | |
2526 | ||
2527 | UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/ | |
2528 | schar = getNextNormalizedChar(source); | |
2529 | ||
2530 | while (schar > (tchar = *UCharOffset)) { | |
2531 | UCharOffset++; | |
2532 | } | |
2533 | ||
2534 | if (schar != tchar) { | |
2535 | /* not the correct codepoint. we stuff the current codepoint into | |
2536 | the discontiguos buffer and try the next character */ | |
729e4ab9 | 2537 | buffer.append(schar); |
b75a7d8f A |
2538 | continue; |
2539 | } | |
2540 | else { | |
2541 | if (u_getCombiningClass(schar) == | |
729e4ab9 A |
2542 | u_getCombiningClass(peekCodePoint(source, -2))) { |
2543 | buffer.append(schar); | |
b75a7d8f A |
2544 | continue; |
2545 | } | |
2546 | result = *(coll->contractionCEs + | |
2547 | (UCharOffset - coll->contractionIndex)); | |
2548 | } | |
b75a7d8f A |
2549 | |
2550 | if (result == UCOL_NOT_FOUND) { | |
2551 | break; | |
2552 | } else if (isContraction(result)) { | |
2553 | /* this is a multi-contraction*/ | |
2554 | tempconstart = (UChar *)coll->image + getContractOffset(result); | |
2555 | if (*(coll->contractionCEs + (constart - coll->contractionIndex)) | |
2556 | != UCOL_NOT_FOUND) { | |
2557 | multicontraction = TRUE; | |
2558 | temppos = source->pos + 1; | |
b75a7d8f A |
2559 | } |
2560 | } else { | |
729e4ab9 | 2561 | setDiscontiguosAttribute(source, buffer); |
b75a7d8f A |
2562 | return result; |
2563 | } | |
2564 | } | |
2565 | ||
2566 | /* no problems simply reverting just like that, | |
2567 | if we are in string before getting into this function, points back to | |
2568 | string hence no problem. | |
2569 | if we are in normalization buffer before getting into this function, | |
2570 | since we'll never use another normalization within this function, we | |
2571 | know that fcdposition points to a base character. the normalization buffer | |
2572 | never change, hence this revert works. */ | |
2573 | loadState(source, &discState, TRUE); | |
2574 | goBackOne(source); | |
2575 | ||
2576 | //source->pos = temppos - 1; | |
2577 | source->flags = tempflags; | |
2578 | return *(coll->contractionCEs + (constart - coll->contractionIndex)); | |
2579 | } | |
2580 | ||
b75a7d8f A |
2581 | /* now uses Mark's getImplicitPrimary code */ |
2582 | static | |
2583 | inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) { | |
46f4442e A |
2584 | uint32_t r = uprv_uca_getImplicitPrimary(cp); |
2585 | *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0; | |
2586 | collationSource->offsetRepeatCount += 1; | |
2587 | return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order' | |
b75a7d8f A |
2588 | } |
2589 | ||
2590 | /** | |
2591 | * Inserts the argument character into the front of the buffer replacing the | |
2592 | * front null terminator. | |
2593 | * @param data collation element iterator data | |
b75a7d8f | 2594 | * @param ch character to be appended |
b75a7d8f A |
2595 | */ |
2596 | static | |
729e4ab9 | 2597 | inline void insertBufferFront(collIterate *data, UChar ch) |
b75a7d8f | 2598 | { |
729e4ab9 | 2599 | data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2; |
b75a7d8f A |
2600 | } |
2601 | ||
2602 | /** | |
2603 | * Special normalization function for contraction in the previous iterator. | |
2604 | * This normalization sequence will place the current character at source->pos | |
2605 | * and its following normalized sequence into the buffer. | |
2606 | * The fcd position, pos will be changed. | |
2607 | * pos will now point to positions in the buffer. | |
2608 | * Flags will be changed accordingly. | |
2609 | * @param data collation iterator data | |
2610 | */ | |
2611 | static | |
73c04bcf | 2612 | inline void normalizePrevContraction(collIterate *data, UErrorCode *status) |
b75a7d8f | 2613 | { |
729e4ab9 A |
2614 | const UChar *pEnd = data->pos + 1; /* End normalize + 1 */ |
2615 | const UChar *pStart; | |
b75a7d8f | 2616 | |
729e4ab9 | 2617 | UnicodeString endOfBuffer; |
b75a7d8f A |
2618 | if (data->flags & UCOL_ITER_HASLEN) { |
2619 | /* | |
2620 | normalization buffer not used yet, we'll pull down the next | |
2621 | character into the end of the buffer | |
2622 | */ | |
729e4ab9 | 2623 | endOfBuffer.setTo(*pEnd); |
b75a7d8f A |
2624 | } |
2625 | else { | |
729e4ab9 | 2626 | endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL |
b75a7d8f A |
2627 | } |
2628 | ||
b75a7d8f A |
2629 | if (data->fcdPosition == NULL) { |
2630 | pStart = data->string; | |
2631 | } | |
2632 | else { | |
2633 | pStart = data->fcdPosition + 1; | |
2634 | } | |
729e4ab9 A |
2635 | int32_t normLen = |
2636 | data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), | |
2637 | data->writableBuffer, | |
2638 | *status). | |
2639 | length(); | |
2640 | if(U_FAILURE(*status)) { | |
2641 | return; | |
b75a7d8f | 2642 | } |
b75a7d8f A |
2643 | /* |
2644 | this puts the null termination infront of the normalized string instead | |
2645 | of the end | |
2646 | */ | |
729e4ab9 A |
2647 | data->pos = |
2648 | data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() + | |
2649 | 1 + normLen; | |
b75a7d8f A |
2650 | data->origFlags = data->flags; |
2651 | data->flags |= UCOL_ITER_INNORMBUF; | |
2652 | data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
2653 | } | |
2654 | ||
2655 | /** | |
2656 | * Contraction character management function that returns the previous character | |
2657 | * for the backwards iterator. | |
2658 | * Does nothing if the previous character is in buffer and not the first | |
2659 | * character in it. | |
2660 | * Else it checks previous character in data string to see if it is | |
2661 | * normalizable. | |
2662 | * If it is not, the character is simply copied into the buffer, else | |
2663 | * the whole normalized substring is copied into the buffer, including the | |
2664 | * current character. | |
2665 | * @param data collation element iterator data | |
2666 | * @return previous character | |
2667 | */ | |
2668 | static | |
73c04bcf | 2669 | inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status) |
b75a7d8f A |
2670 | { |
2671 | UChar prevch; | |
2672 | UChar ch; | |
729e4ab9 | 2673 | const UChar *start; |
b75a7d8f | 2674 | UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
b75a7d8f A |
2675 | if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 || |
2676 | (innormbuf && *(data->pos - 1) != 0)) { | |
2677 | /* | |
2678 | if no normalization. | |
2679 | if previous character is in normalized buffer, no further normalization | |
2680 | is required | |
2681 | */ | |
2682 | if(data->flags & UCOL_USE_ITERATOR) { | |
2683 | data->iterator->move(data->iterator, -1, UITER_CURRENT); | |
2684 | return (UChar)data->iterator->next(data->iterator); | |
2685 | } else { | |
2686 | return *(data->pos - 1); | |
2687 | } | |
2688 | } | |
2689 | ||
2690 | start = data->pos; | |
46f4442e | 2691 | if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) { |
b75a7d8f A |
2692 | /* in data string */ |
2693 | if ((start - 1) == data->string) { | |
2694 | return *(start - 1); | |
2695 | } | |
2696 | start --; | |
2697 | ch = *start; | |
2698 | prevch = *(start - 1); | |
2699 | } | |
2700 | else { | |
2701 | /* | |
2702 | in writable buffer, at this point fcdPosition can not be NULL. | |
2703 | see contracting tag. | |
2704 | */ | |
2705 | if (data->fcdPosition == data->string) { | |
2706 | /* at the start of the string, just dump it into the normalizer */ | |
729e4ab9 | 2707 | insertBufferFront(data, *(data->fcdPosition)); |
b75a7d8f A |
2708 | data->fcdPosition = NULL; |
2709 | return *(data->pos - 1); | |
2710 | } | |
b75a7d8f A |
2711 | start = data->fcdPosition; |
2712 | ch = *start; | |
2713 | prevch = *(start - 1); | |
2714 | } | |
2715 | /* | |
2716 | * if the current character is not fcd. | |
2717 | * Trailing combining class == 0. | |
2718 | */ | |
2719 | if (data->fcdPosition > start && | |
2720 | (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_)) | |
2721 | { | |
2722 | /* | |
2723 | Need a more complete FCD check and possible normalization. | |
2724 | normalize substring will be appended to buffer | |
2725 | */ | |
729e4ab9 | 2726 | const UChar *backuppos = data->pos; |
b75a7d8f A |
2727 | data->pos = start; |
2728 | if (collPrevIterFCD(data)) { | |
73c04bcf | 2729 | normalizePrevContraction(data, status); |
b75a7d8f A |
2730 | return *(data->pos - 1); |
2731 | } | |
2732 | data->pos = backuppos; | |
2733 | data->fcdPosition ++; | |
2734 | } | |
2735 | ||
2736 | if (innormbuf) { | |
2737 | /* | |
2738 | no normalization is to be done hence only one character will be | |
2739 | appended to the buffer. | |
2740 | */ | |
729e4ab9 | 2741 | insertBufferFront(data, ch); |
b75a7d8f A |
2742 | data->fcdPosition --; |
2743 | } | |
2744 | ||
2745 | return ch; | |
2746 | } | |
2747 | ||
2748 | /* This function handles the special CEs like contractions, expansions, surrogates, Thai */ | |
2749 | /* It is called by getNextCE */ | |
2750 | ||
46f4442e A |
2751 | /* The following should be even */ |
2752 | #define UCOL_MAX_DIGITS_FOR_NUMBER 254 | |
2753 | ||
b75a7d8f | 2754 | uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) { |
46f4442e A |
2755 | collIterateState entryState; |
2756 | backupState(source, &entryState); | |
2757 | UChar32 cp = ch; | |
2758 | ||
2759 | for (;;) { | |
2760 | // This loop will repeat only in the case of contractions, and only when a contraction | |
2761 | // is found and the first CE resulting from that contraction is itself a special | |
2762 | // (an expansion, for example.) All other special CE types are fully handled the | |
2763 | // first time through, and the loop exits. | |
2764 | ||
2765 | const uint32_t *CEOffset = NULL; | |
2766 | switch(getCETag(CE)) { | |
2767 | case NOT_FOUND_TAG: | |
2768 | /* This one is not found, and we'll let somebody else bother about it... no more games */ | |
b75a7d8f | 2769 | return CE; |
46f4442e A |
2770 | case SPEC_PROC_TAG: |
2771 | { | |
2772 | // Special processing is getting a CE that is preceded by a certain prefix | |
2773 | // Currently this is only needed for optimizing Japanese length and iteration marks. | |
2774 | // When we encouter a special processing tag, we go backwards and try to see if | |
2775 | // we have a match. | |
2776 | // Contraction tables are used - so the whole process is not unlike contraction. | |
2777 | // prefix data is stored backwards in the table. | |
2778 | const UChar *UCharOffset; | |
2779 | UChar schar, tchar; | |
2780 | collIterateState prefixState; | |
2781 | backupState(source, &prefixState); | |
2782 | loadState(source, &entryState, TRUE); | |
2783 | goBackOne(source); // We want to look at the point where we entered - actually one | |
2784 | // before that... | |
2785 | ||
2786 | for(;;) { | |
2787 | // This loop will run once per source string character, for as long as we | |
2788 | // are matching a potential contraction sequence | |
2789 | ||
2790 | // First we position ourselves at the begining of contraction sequence | |
2791 | const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
2792 | if (collIter_bos(source)) { | |
2793 | CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); | |
2794 | break; | |
2795 | } | |
2796 | schar = getPrevNormalizedChar(source, status); | |
2797 | goBackOne(source); | |
b75a7d8f | 2798 | |
46f4442e A |
2799 | while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
2800 | UCharOffset++; | |
2801 | } | |
b75a7d8f | 2802 | |
46f4442e A |
2803 | if (schar == tchar) { |
2804 | // Found the source string char in the table. | |
2805 | // Pick up the corresponding CE from the table. | |
2806 | CE = *(coll->contractionCEs + | |
2807 | (UCharOffset - coll->contractionIndex)); | |
2808 | } | |
2809 | else | |
2810 | { | |
2811 | // Source string char was not in the table. | |
2812 | // We have not found the prefix. | |
2813 | CE = *(coll->contractionCEs + | |
2814 | (ContractionStart - coll->contractionIndex)); | |
2815 | } | |
b75a7d8f | 2816 | |
46f4442e A |
2817 | if(!isPrefix(CE)) { |
2818 | // The source string char was in the contraction table, and the corresponding | |
2819 | // CE is not a prefix CE. We found the prefix, break | |
2820 | // out of loop, this CE will end up being returned. This is the normal | |
2821 | // way out of prefix handling when the source actually contained | |
2822 | // the prefix. | |
2823 | break; | |
73c04bcf | 2824 | } |
46f4442e A |
2825 | } |
2826 | if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue | |
2827 | loadState(source, &prefixState, TRUE); | |
2828 | if(source->origFlags & UCOL_USE_ITERATOR) { | |
2829 | source->flags = source->origFlags; | |
73c04bcf | 2830 | } |
46f4442e A |
2831 | } else { // prefix search was a failure, we have to backup all the way to the start |
2832 | loadState(source, &entryState, TRUE); | |
b75a7d8f | 2833 | } |
46f4442e | 2834 | break; |
b75a7d8f | 2835 | } |
46f4442e A |
2836 | case CONTRACTION_TAG: |
2837 | { | |
2838 | /* This should handle contractions */ | |
2839 | collIterateState state; | |
2840 | backupState(source, &state); | |
2841 | uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND; | |
2842 | const UChar *UCharOffset; | |
2843 | UChar schar, tchar; | |
2844 | ||
2845 | for (;;) { | |
2846 | /* This loop will run once per source string character, for as long as we */ | |
2847 | /* are matching a potential contraction sequence */ | |
2848 | ||
2849 | /* First we position ourselves at the begining of contraction sequence */ | |
2850 | const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
2851 | ||
2852 | if (collIter_eos(source)) { | |
2853 | // Ran off the end of the source string. | |
2854 | CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); | |
2855 | // So we'll pick whatever we have at the point... | |
2856 | if (CE == UCOL_NOT_FOUND) { | |
2857 | // back up the source over all the chars we scanned going into this contraction. | |
2858 | CE = firstCE; | |
2859 | loadState(source, &state, TRUE); | |
2860 | if(source->origFlags & UCOL_USE_ITERATOR) { | |
2861 | source->flags = source->origFlags; | |
2862 | } | |
2863 | } | |
2864 | break; | |
2865 | } | |
b75a7d8f | 2866 | |
46f4442e A |
2867 | uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */ |
2868 | uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8); | |
374ca955 | 2869 | |
46f4442e A |
2870 | schar = getNextNormalizedChar(source); |
2871 | while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ | |
2872 | UCharOffset++; | |
2873 | } | |
374ca955 | 2874 | |
46f4442e A |
2875 | if (schar == tchar) { |
2876 | // Found the source string char in the contraction table. | |
2877 | // Pick up the corresponding CE from the table. | |
2878 | CE = *(coll->contractionCEs + | |
2879 | (UCharOffset - coll->contractionIndex)); | |
2880 | } | |
2881 | else | |
2882 | { | |
2883 | // Source string char was not in contraction table. | |
2884 | // Unless we have a discontiguous contraction, we have finished | |
2885 | // with this contraction. | |
2886 | // in order to do the proper detection, we | |
2887 | // need to see if we're dealing with a supplementary | |
2888 | /* We test whether the next two char are surrogate pairs. | |
2889 | * This test is done if the iterator is not NULL. | |
2890 | * If there is no surrogate pair, the iterator | |
2891 | * goes back one if needed. */ | |
2892 | UChar32 miss = schar; | |
2893 | if (source->iterator) { | |
2894 | UChar32 surrNextChar; /* the next char in the iteration to test */ | |
2895 | int32_t prevPos; /* holds the previous position before move forward of the source iterator */ | |
2896 | if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) { | |
2897 | prevPos = source->iterator->index; | |
2898 | surrNextChar = getNextNormalizedChar(source); | |
2899 | if (U16_IS_TRAIL(surrNextChar)) { | |
2900 | miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar); | |
2901 | } else if (prevPos < source->iterator->index){ | |
2902 | goBackOne(source); | |
2903 | } | |
2904 | } | |
2905 | } else if (U16_IS_LEAD(schar)) { | |
2906 | miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source)); | |
2907 | } | |
374ca955 | 2908 | |
46f4442e A |
2909 | uint8_t sCC; |
2910 | if (miss < 0x300 || | |
2911 | maxCC == 0 || | |
2912 | (sCC = i_getCombiningClass(miss, coll)) == 0 || | |
2913 | sCC>maxCC || | |
2914 | (allSame != 0 && sCC == maxCC) || | |
2915 | collIter_eos(source)) | |
2916 | { | |
2917 | // Contraction can not be discontiguous. | |
2918 | goBackOne(source); // back up the source string by one, | |
2919 | // because the character we just looked at was | |
2920 | // not part of the contraction. */ | |
2921 | if(U_IS_SUPPLEMENTARY(miss)) { | |
2922 | goBackOne(source); | |
2923 | } | |
2924 | CE = *(coll->contractionCEs + | |
2925 | (ContractionStart - coll->contractionIndex)); | |
2926 | } else { | |
2927 | // | |
2928 | // Contraction is possibly discontiguous. | |
2929 | // Scan more of source string looking for a match | |
2930 | // | |
2931 | UChar tempchar; | |
2932 | /* find the next character if schar is not a base character | |
2933 | and we are not yet at the end of the string */ | |
2934 | tempchar = getNextNormalizedChar(source); | |
2935 | // probably need another supplementary thingie here | |
2936 | goBackOne(source); | |
2937 | if (i_getCombiningClass(tempchar, coll) == 0) { | |
2938 | goBackOne(source); | |
2939 | if(U_IS_SUPPLEMENTARY(miss)) { | |
2940 | goBackOne(source); | |
2941 | } | |
2942 | /* Spit out the last char of the string, wasn't tasty enough */ | |
2943 | CE = *(coll->contractionCEs + | |
2944 | (ContractionStart - coll->contractionIndex)); | |
2945 | } else { | |
2946 | CE = getDiscontiguous(coll, source, ContractionStart); | |
2947 | } | |
2948 | } | |
2949 | } // else after if(schar == tchar) | |
2950 | ||
2951 | if(CE == UCOL_NOT_FOUND) { | |
2952 | /* The Source string did not match the contraction that we were checking. */ | |
2953 | /* Back up the source position to undo the effects of having partially */ | |
2954 | /* scanned through what ultimately proved to not be a contraction. */ | |
2955 | loadState(source, &state, TRUE); | |
2956 | CE = firstCE; | |
2957 | break; | |
2958 | } | |
374ca955 | 2959 | |
46f4442e A |
2960 | if(!isContraction(CE)) { |
2961 | // The source string char was in the contraction table, and the corresponding | |
2962 | // CE is not a contraction CE. We completed the contraction, break | |
2963 | // out of loop, this CE will end up being returned. This is the normal | |
2964 | // way out of contraction handling when the source actually contained | |
2965 | // the contraction. | |
2966 | break; | |
2967 | } | |
374ca955 | 2968 | |
374ca955 | 2969 | |
46f4442e A |
2970 | // The source string char was in the contraction table, and the corresponding |
2971 | // CE is IS a contraction CE. We will continue looping to check the source | |
2972 | // string for the remaining chars in the contraction. | |
2973 | uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex)); | |
2974 | if(tempCE != UCOL_NOT_FOUND) { | |
2975 | // We have scanned a a section of source string for which there is a | |
2976 | // CE from the contraction table. Remember the CE and scan position, so | |
2977 | // that we can return to this point if further scanning fails to | |
2978 | // match a longer contraction sequence. | |
2979 | firstCE = tempCE; | |
374ca955 | 2980 | |
46f4442e A |
2981 | goBackOne(source); |
2982 | backupState(source, &state); | |
2983 | getNextNormalizedChar(source); | |
2984 | ||
2985 | // Another way to do this is: | |
2986 | //collIterateState tempState; | |
2987 | //backupState(source, &tempState); | |
2988 | //goBackOne(source); | |
2989 | //backupState(source, &state); | |
2990 | //loadState(source, &tempState, TRUE); | |
2991 | ||
2992 | // The problem is that for incomplete contractions we have to remember the previous | |
2993 | // position. Before, the only thing I needed to do was state.pos--; | |
2994 | // After iterator introduction and especially after introduction of normalizing | |
2995 | // iterators, it became much more difficult to decrease the saved state. | |
2996 | // I'm not yet sure which of the two methods above is faster. | |
2997 | } | |
2998 | } // for(;;) | |
2999 | break; | |
3000 | } // case CONTRACTION_TAG: | |
3001 | case LONG_PRIMARY_TAG: | |
3002 | { | |
3003 | *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; | |
3004 | CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; | |
3005 | source->offsetRepeatCount += 1; | |
3006 | return CE; | |
374ca955 | 3007 | } |
46f4442e | 3008 | case EXPANSION_TAG: |
73c04bcf | 3009 | { |
46f4442e A |
3010 | /* This should handle expansion. */ |
3011 | /* NOTE: we can encounter both continuations and expansions in an expansion! */ | |
3012 | /* I have to decide where continuations are going to be dealt with */ | |
3013 | uint32_t size; | |
3014 | uint32_t i; /* general counter */ | |
3015 | ||
3016 | CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ | |
3017 | size = getExpansionCount(CE); | |
3018 | CE = *CEOffset++; | |
3019 | //source->offsetRepeatCount = -1; | |
3020 | ||
3021 | if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ | |
3022 | for(i = 1; i<size; i++) { | |
3023 | *(source->CEpos++) = *CEOffset++; | |
3024 | source->offsetRepeatCount += 1; | |
3025 | } | |
3026 | } else { /* else, we do */ | |
3027 | while(*CEOffset != 0) { | |
3028 | *(source->CEpos++) = *CEOffset++; | |
3029 | source->offsetRepeatCount += 1; | |
3030 | } | |
73c04bcf | 3031 | } |
374ca955 | 3032 | |
46f4442e | 3033 | return CE; |
73c04bcf | 3034 | } |
46f4442e A |
3035 | case DIGIT_TAG: |
3036 | { | |
374ca955 | 3037 | /* |
46f4442e A |
3038 | We do a check to see if we want to collate digits as numbers; if so we generate |
3039 | a custom collation key. Otherwise we pull out the value stored in the expansion table. | |
3040 | */ | |
3041 | //uint32_t size; | |
3042 | uint32_t i; /* general counter */ | |
374ca955 | 3043 | |
46f4442e A |
3044 | if (source->coll->numericCollation == UCOL_ON){ |
3045 | collIterateState digitState = {0,0,0,0,0,0,0,0,0}; | |
3046 | UChar32 char32 = 0; | |
3047 | int32_t digVal = 0; | |
374ca955 | 3048 | |
46f4442e A |
3049 | uint32_t digIndx = 0; |
3050 | uint32_t endIndex = 0; | |
3051 | uint32_t trailingZeroIndex = 0; | |
374ca955 | 3052 | |
46f4442e | 3053 | uint8_t collateVal = 0; |
374ca955 | 3054 | |
46f4442e | 3055 | UBool nonZeroValReached = FALSE; |
374ca955 | 3056 | |
46f4442e A |
3057 | uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs. |
3058 | /* | |
3059 | We parse the source string until we hit a char that's NOT a digit. | |
3060 | Use this u_charDigitValue. This might be slow because we have to | |
3061 | handle surrogates... | |
3062 | */ | |
3063 | /* | |
3064 | if (U16_IS_LEAD(ch)){ | |
3065 | if (!collIter_eos(source)) { | |
3066 | backupState(source, &digitState); | |
3067 | UChar trail = getNextNormalizedChar(source); | |
3068 | if(U16_IS_TRAIL(trail)) { | |
3069 | char32 = U16_GET_SUPPLEMENTARY(ch, trail); | |
3070 | } else { | |
3071 | loadState(source, &digitState, TRUE); | |
3072 | char32 = ch; | |
3073 | } | |
3074 | } else { | |
3075 | char32 = ch; | |
3076 | } | |
374ca955 | 3077 | } else { |
374ca955 A |
3078 | char32 = ch; |
3079 | } | |
46f4442e A |
3080 | digVal = u_charDigitValue(char32); |
3081 | */ | |
3082 | digVal = u_charDigitValue(cp); // if we have arrived here, we have | |
3083 | // already processed possible supplementaries that trigered the digit tag - | |
3084 | // all supplementaries are marked in the UCA. | |
3085 | /* | |
3086 | We pad a zero in front of the first element anyways. This takes | |
3087 | care of the (probably) most common case where people are sorting things followed | |
3088 | by a single digit | |
3089 | */ | |
3090 | digIndx++; | |
3091 | for(;;){ | |
3092 | // Make sure we have enough space. No longer needed; | |
3093 | // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER | |
3094 | // (it has been pre-incremented) so we just ensure that numTempBuf is big enough | |
3095 | // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3). | |
3096 | ||
3097 | // Skipping over leading zeroes. | |
3098 | if (digVal != 0) { | |
3099 | nonZeroValReached = TRUE; | |
3100 | } | |
3101 | if (nonZeroValReached) { | |
3102 | /* | |
3103 | We parse the digit string into base 100 numbers (this fits into a byte). | |
3104 | We only add to the buffer in twos, thus if we are parsing an odd character, | |
3105 | that serves as the 'tens' digit while the if we are parsing an even one, that | |
3106 | is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into | |
3107 | a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid | |
3108 | overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less | |
3109 | than all the other bytes. | |
3110 | */ | |
3111 | ||
3112 | if (digIndx % 2 == 1){ | |
3113 | collateVal += (uint8_t)digVal; | |
3114 | ||
3115 | // We don't enter the low-order-digit case unless we've already seen | |
3116 | // the high order, or for the first digit, which is always non-zero. | |
3117 | if (collateVal != 0) | |
3118 | trailingZeroIndex = 0; | |
3119 | ||
3120 | numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; | |
3121 | collateVal = 0; | |
3122 | } | |
3123 | else{ | |
3124 | // We drop the collation value into the buffer so if we need to do | |
3125 | // a "front patch" we don't have to check to see if we're hitting the | |
3126 | // last element. | |
3127 | collateVal = (uint8_t)(digVal * 10); | |
3128 | ||
3129 | // Check for trailing zeroes. | |
3130 | if (collateVal == 0) | |
3131 | { | |
3132 | if (!trailingZeroIndex) | |
3133 | trailingZeroIndex = (digIndx/2) + 2; | |
3134 | } | |
3135 | else | |
3136 | trailingZeroIndex = 0; | |
3137 | ||
3138 | numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; | |
3139 | } | |
3140 | digIndx++; | |
3141 | } | |
374ca955 | 3142 | |
46f4442e A |
3143 | // Get next character. |
3144 | if (!collIter_eos(source)){ | |
3145 | ch = getNextNormalizedChar(source); | |
3146 | if (U16_IS_LEAD(ch)){ | |
3147 | if (!collIter_eos(source)) { | |
3148 | backupState(source, &digitState); | |
3149 | UChar trail = getNextNormalizedChar(source); | |
3150 | if(U16_IS_TRAIL(trail)) { | |
3151 | char32 = U16_GET_SUPPLEMENTARY(ch, trail); | |
3152 | } else { | |
3153 | loadState(source, &digitState, TRUE); | |
3154 | char32 = ch; | |
3155 | } | |
3156 | } | |
3157 | } else { | |
3158 | char32 = ch; | |
3159 | } | |
3160 | ||
3161 | if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){ | |
3162 | // Resetting position to point to the next unprocessed char. We | |
3163 | // overshot it when doing our test/set for numbers. | |
3164 | if (char32 > 0xFFFF) { // For surrogates. | |
3165 | loadState(source, &digitState, TRUE); | |
3166 | //goBackOne(source); | |
3167 | } | |
3168 | goBackOne(source); | |
3169 | break; | |
3170 | } | |
3171 | } else { | |
3172 | break; | |
3173 | } | |
3174 | } | |
374ca955 | 3175 | |
46f4442e A |
3176 | if (nonZeroValReached == FALSE){ |
3177 | digIndx = 2; | |
3178 | numTempBuf[2] = 6; | |
3179 | } | |
374ca955 | 3180 | |
46f4442e A |
3181 | endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ; |
3182 | if (digIndx % 2 != 0){ | |
3183 | /* | |
3184 | We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what | |
3185 | we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward. | |
3186 | Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a | |
3187 | single pass and optimizes for strings with single digits. I'm just assuming that's the more common case. | |
3188 | */ | |
3189 | ||
3190 | for(i = 2; i < endIndex; i++){ | |
3191 | numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) + | |
3192 | (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6; | |
3193 | } | |
3194 | --digIndx; | |
3195 | } | |
374ca955 | 3196 | |
46f4442e A |
3197 | // Subtract one off of the last byte. |
3198 | numTempBuf[endIndex-1] -= 1; | |
374ca955 | 3199 | |
46f4442e A |
3200 | /* |
3201 | We want to skip over the first two slots in the buffer. The first slot | |
3202 | is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the | |
3203 | sign/exponent byte: 0x80 + (decimalPos/2) & 7f. | |
3204 | */ | |
3205 | numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; | |
3206 | numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F)); | |
3207 | ||
3208 | // Now transfer the collation key to our collIterate struct. | |
3209 | // The total size for our collation key is endIndx bumped up to the next largest even value divided by two. | |
3210 | //size = ((endIndex+1) & ~1)/2; | |
3211 | CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight | |
3212 | (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight | |
3213 | UCOL_BYTE_COMMON; // Tertiary weight. | |
3214 | i = 2; // Reset the index into the buffer. | |
3215 | while(i < endIndex) | |
3216 | { | |
3217 | uint32_t primWeight = numTempBuf[i++] << 8; | |
3218 | if ( i < endIndex) | |
3219 | primWeight |= numTempBuf[i++]; | |
3220 | *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; | |
3221 | } | |
374ca955 | 3222 | |
46f4442e A |
3223 | } else { |
3224 | // no numeric mode, we'll just switch to whatever we stashed and continue | |
3225 | CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ | |
3226 | CE = *CEOffset++; | |
3227 | break; | |
3228 | } | |
3229 | return CE; | |
3230 | } | |
3231 | /* various implicits optimization */ | |
3232 | case IMPLICIT_TAG: /* everything that is not defined otherwise */ | |
3233 | /* UCA is filled with these. Tailorings are NOT_FOUND */ | |
3234 | return getImplicit(cp, source); | |
3235 | case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ | |
3236 | // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit | |
3237 | return getImplicit(cp, source); | |
3238 | case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ | |
3239 | { | |
3240 | static const uint32_t | |
3241 | SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; | |
3242 | //const uint32_t LCount = 19; | |
3243 | static const uint32_t VCount = 21; | |
3244 | static const uint32_t TCount = 28; | |
3245 | //const uint32_t NCount = VCount * TCount; // 588 | |
3246 | //const uint32_t SCount = LCount * NCount; // 11172 | |
3247 | uint32_t L = ch - SBase; | |
3248 | ||
3249 | // divide into pieces | |
3250 | ||
3251 | uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation | |
3252 | L /= TCount; | |
3253 | uint32_t V = L % VCount; | |
3254 | L /= VCount; | |
3255 | ||
3256 | // offset them | |
3257 | ||
3258 | L += LBase; | |
3259 | V += VBase; | |
3260 | T += TBase; | |
3261 | ||
3262 | // return the first CE, but first put the rest into the expansion buffer | |
3263 | if (!source->coll->image->jamoSpecial) { // FAST PATH | |
3264 | ||
3265 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); | |
3266 | if (T != TBase) { | |
3267 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); | |
3268 | } | |
b75a7d8f | 3269 | |
46f4442e A |
3270 | return UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
3271 | ||
3272 | } else { // Jamo is Special | |
3273 | // Since Hanguls pass the FCD check, it is | |
3274 | // guaranteed that we won't be in | |
3275 | // the normalization buffer if something like this happens | |
729e4ab9 | 3276 | |
46f4442e A |
3277 | // However, if we are using a uchar iterator and normalization |
3278 | // is ON, the Hangul that lead us here is going to be in that | |
3279 | // normalization buffer. Here we want to restore the uchar | |
3280 | // iterator state and pull out of the normalization buffer | |
3281 | if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) { | |
3282 | source->flags = source->origFlags; // restore the iterator | |
3283 | source->pos = NULL; | |
3284 | } | |
729e4ab9 | 3285 | |
46f4442e | 3286 | // Move Jamos into normalization buffer |
729e4ab9 A |
3287 | UChar *buffer = source->writableBuffer.getBuffer(4); |
3288 | int32_t bufferLength; | |
3289 | buffer[0] = (UChar)L; | |
3290 | buffer[1] = (UChar)V; | |
46f4442e | 3291 | if (T != TBase) { |
729e4ab9 A |
3292 | buffer[2] = (UChar)T; |
3293 | bufferLength = 3; | |
46f4442e | 3294 | } else { |
729e4ab9 | 3295 | bufferLength = 2; |
46f4442e | 3296 | } |
729e4ab9 A |
3297 | source->writableBuffer.releaseBuffer(bufferLength); |
3298 | ||
3299 | // Indicate where to continue in main input string after exhausting the writableBuffer | |
3300 | source->fcdPosition = source->pos; | |
b75a7d8f | 3301 | |
729e4ab9 | 3302 | source->pos = source->writableBuffer.getTerminatedBuffer(); |
46f4442e A |
3303 | source->origFlags = source->flags; |
3304 | source->flags |= UCOL_ITER_INNORMBUF; | |
3305 | source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
b75a7d8f | 3306 | |
46f4442e A |
3307 | return(UCOL_IGNORABLE); |
3308 | } | |
3309 | } | |
3310 | case SURROGATE_TAG: | |
3311 | /* we encountered a leading surrogate. We shall get the CE by using the following code unit */ | |
3312 | /* two things can happen here: next code point can be a trailing surrogate - we will use it */ | |
3313 | /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */ | |
729e4ab9 | 3314 | /* we treat it like an unassigned code point. */ |
46f4442e A |
3315 | { |
3316 | UChar trail; | |
3317 | collIterateState state; | |
3318 | backupState(source, &state); | |
3319 | if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) { | |
3320 | // we chould have stepped one char forward and it might have turned that it | |
3321 | // was not a trail surrogate. In that case, we have to backup. | |
3322 | loadState(source, &state, TRUE); | |
729e4ab9 | 3323 | return UCOL_NOT_FOUND; |
46f4442e A |
3324 | } else { |
3325 | /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */ | |
3326 | CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail); | |
3327 | if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one. | |
3328 | // We need to backup | |
3329 | loadState(source, &state, TRUE); | |
3330 | return CE; | |
3331 | } | |
3332 | // calculate the supplementary code point value, if surrogate was not tailored | |
3333 | cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); | |
3334 | } | |
3335 | } | |
3336 | break; | |
3337 | case LEAD_SURROGATE_TAG: /* D800-DBFF*/ | |
3338 | UChar nextChar; | |
3339 | if( source->flags & UCOL_USE_ITERATOR) { | |
3340 | if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) { | |
3341 | cp = U16_GET_SUPPLEMENTARY(ch, nextChar); | |
3342 | source->iterator->next(source->iterator); | |
3343 | return getImplicit(cp, source); | |
46f4442e A |
3344 | } |
3345 | } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) && | |
729e4ab9 A |
3346 | U_IS_TRAIL((nextChar=*source->pos))) { |
3347 | cp = U16_GET_SUPPLEMENTARY(ch, nextChar); | |
3348 | source->pos++; | |
3349 | return getImplicit(cp, source); | |
46f4442e | 3350 | } |
729e4ab9 | 3351 | return UCOL_NOT_FOUND; |
46f4442e | 3352 | case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
729e4ab9 | 3353 | return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
46f4442e A |
3354 | case CHARSET_TAG: |
3355 | /* not yet implemented */ | |
3356 | /* probably after 1.8 */ | |
3357 | return UCOL_NOT_FOUND; | |
3358 | default: | |
3359 | *status = U_INTERNAL_PROGRAM_ERROR; | |
3360 | CE=0; | |
3361 | break; | |
b75a7d8f A |
3362 | } |
3363 | if (CE <= UCOL_NOT_FOUND) break; | |
3364 | } | |
3365 | return CE; | |
3366 | } | |
3367 | ||
3368 | ||
3369 | /* now uses Mark's getImplicitPrimary code */ | |
3370 | static | |
3371 | inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) { | |
46f4442e A |
3372 | uint32_t r = uprv_uca_getImplicitPrimary(cp); |
3373 | ||
3374 | *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505; | |
3375 | collationSource->toReturn = collationSource->CEpos; | |
3376 | ||
46f4442e A |
3377 | // **** doesn't work if using iterator **** |
3378 | if (collationSource->flags & UCOL_ITER_INNORMBUF) { | |
729e4ab9 | 3379 | collationSource->offsetRepeatCount = 1; |
46f4442e | 3380 | } else { |
729e4ab9 | 3381 | int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string); |
b75a7d8f | 3382 | |
729e4ab9 A |
3383 | UErrorCode errorCode = U_ZERO_ERROR; |
3384 | collationSource->appendOffset(firstOffset, errorCode); | |
3385 | collationSource->appendOffset(firstOffset + 1, errorCode); | |
b75a7d8f | 3386 | |
46f4442e A |
3387 | collationSource->offsetReturn = collationSource->offsetStore - 1; |
3388 | *(collationSource->offsetBuffer) = firstOffset; | |
3389 | if (collationSource->offsetReturn == collationSource->offsetBuffer) { | |
3390 | collationSource->offsetStore = collationSource->offsetBuffer; | |
3391 | } | |
3392 | } | |
3393 | ||
3394 | return ((r & 0x0000FFFF)<<16) | 0x000000C0; | |
b75a7d8f A |
3395 | } |
3396 | ||
3397 | /** | |
3398 | * This function handles the special CEs like contractions, expansions, | |
3399 | * surrogates, Thai. | |
3400 | * It is called by both getPrevCE | |
3401 | */ | |
3402 | uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE, | |
3403 | collIterate *source, | |
3404 | UErrorCode *status) | |
3405 | { | |
46f4442e A |
3406 | const uint32_t *CEOffset = NULL; |
3407 | UChar *UCharOffset = NULL; | |
3408 | UChar schar; | |
3409 | const UChar *constart = NULL; | |
3410 | uint32_t size; | |
3411 | UChar buffer[UCOL_MAX_BUFFER]; | |
3412 | uint32_t *endCEBuffer; | |
3413 | UChar *strbuffer; | |
3414 | int32_t noChars = 0; | |
3415 | int32_t CECount = 0; | |
3416 | ||
3417 | for(;;) | |
b75a7d8f | 3418 | { |
46f4442e A |
3419 | /* the only ces that loops are thai and contractions */ |
3420 | switch (getCETag(CE)) | |
3421 | { | |
3422 | case NOT_FOUND_TAG: /* this tag always returns */ | |
3423 | return CE; | |
b75a7d8f | 3424 | |
46f4442e A |
3425 | case SPEC_PROC_TAG: |
3426 | { | |
3427 | // Special processing is getting a CE that is preceded by a certain prefix | |
3428 | // Currently this is only needed for optimizing Japanese length and iteration marks. | |
3429 | // When we encouter a special processing tag, we go backwards and try to see if | |
3430 | // we have a match. | |
3431 | // Contraction tables are used - so the whole process is not unlike contraction. | |
3432 | // prefix data is stored backwards in the table. | |
3433 | const UChar *UCharOffset; | |
3434 | UChar schar, tchar; | |
3435 | collIterateState prefixState; | |
3436 | backupState(source, &prefixState); | |
3437 | for(;;) { | |
3438 | // This loop will run once per source string character, for as long as we | |
3439 | // are matching a potential contraction sequence | |
3440 | ||
3441 | // First we position ourselves at the begining of contraction sequence | |
3442 | const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
3443 | ||
3444 | if (collIter_bos(source)) { | |
3445 | CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); | |
3446 | break; | |
3447 | } | |
3448 | schar = getPrevNormalizedChar(source, status); | |
3449 | goBackOne(source); | |
b75a7d8f | 3450 | |
46f4442e A |
3451 | while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
3452 | UCharOffset++; | |
3453 | } | |
b75a7d8f | 3454 | |
46f4442e A |
3455 | if (schar == tchar) { |
3456 | // Found the source string char in the table. | |
3457 | // Pick up the corresponding CE from the table. | |
3458 | CE = *(coll->contractionCEs + | |
3459 | (UCharOffset - coll->contractionIndex)); | |
3460 | } | |
3461 | else | |
3462 | { | |
3463 | // if there is a completely ignorable code point in the middle of | |
3464 | // a prefix, we need to act as if it's not there | |
3465 | // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero) | |
3466 | // lone surrogates cannot be set to zero as it would break other processing | |
3467 | uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); | |
3468 | // it's easy for BMP code points | |
3469 | if(isZeroCE == 0) { | |
3470 | continue; | |
729e4ab9 | 3471 | } else if(U16_IS_SURROGATE(schar)) { |
46f4442e A |
3472 | // for supplementary code points, we have to check the next one |
3473 | // situations where we are going to ignore | |
3474 | // 1. beginning of the string: schar is a lone surrogate | |
3475 | // 2. schar is a lone surrogate | |
3476 | // 3. schar is a trail surrogate in a valid surrogate sequence | |
3477 | // that is explicitly set to zero. | |
3478 | if (!collIter_bos(source)) { | |
3479 | UChar lead; | |
729e4ab9 | 3480 | if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) { |
46f4442e | 3481 | isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead); |
729e4ab9 | 3482 | if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) { |
46f4442e A |
3483 | uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar); |
3484 | if(finalCE == 0) { | |
3485 | // this is a real, assigned completely ignorable code point | |
3486 | goBackOne(source); | |
3487 | continue; | |
3488 | } | |
3489 | } | |
3490 | } else { | |
729e4ab9 A |
3491 | // lone surrogate, treat like unassigned |
3492 | return UCOL_NOT_FOUND; | |
46f4442e A |
3493 | } |
3494 | } else { | |
729e4ab9 A |
3495 | // lone surrogate at the beggining, treat like unassigned |
3496 | return UCOL_NOT_FOUND; | |
46f4442e A |
3497 | } |
3498 | } | |
3499 | // Source string char was not in the table. | |
3500 | // We have not found the prefix. | |
3501 | CE = *(coll->contractionCEs + | |
3502 | (ContractionStart - coll->contractionIndex)); | |
b75a7d8f | 3503 | } |
b75a7d8f | 3504 | |
46f4442e A |
3505 | if(!isPrefix(CE)) { |
3506 | // The source string char was in the contraction table, and the corresponding | |
3507 | // CE is not a prefix CE. We found the prefix, break | |
3508 | // out of loop, this CE will end up being returned. This is the normal | |
3509 | // way out of prefix handling when the source actually contained | |
3510 | // the prefix. | |
3511 | break; | |
3512 | } | |
3513 | } | |
3514 | loadState(source, &prefixState, TRUE); | |
3515 | break; | |
3516 | } | |
b75a7d8f | 3517 | |
729e4ab9 | 3518 | case CONTRACTION_TAG: { |
46f4442e A |
3519 | /* to ensure that the backwards and forwards iteration matches, we |
3520 | take the current region of most possible match and pass it through | |
3521 | the forward iteration. this will ensure that the obstinate problem of | |
3522 | overlapping contractions will not occur. | |
3523 | */ | |
729e4ab9 | 3524 | schar = peekCodeUnit(source, 0); |
46f4442e A |
3525 | constart = (UChar *)coll->image + getContractOffset(CE); |
3526 | if (isAtStartPrevIterate(source) | |
3527 | /* commented away contraction end checks after adding the checks | |
3528 | in getPrevCE */) { | |
3529 | /* start of string or this is not the end of any contraction */ | |
3530 | CE = *(coll->contractionCEs + | |
3531 | (constart - coll->contractionIndex)); | |
3532 | break; | |
3533 | } | |
3534 | strbuffer = buffer; | |
3535 | UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1); | |
3536 | *(UCharOffset --) = 0; | |
3537 | noChars = 0; | |
3538 | // have to swap thai characters | |
3539 | while (ucol_unsafeCP(schar, coll)) { | |
3540 | *(UCharOffset) = schar; | |
3541 | noChars++; | |
3542 | UCharOffset --; | |
3543 | schar = getPrevNormalizedChar(source, status); | |
3544 | goBackOne(source); | |
3545 | // TODO: when we exhaust the contraction buffer, | |
3546 | // it needs to get reallocated. The problem is | |
3547 | // that the size depends on the string which is | |
3548 | // not iterated over. However, since we're travelling | |
3549 | // backwards, we already had to set the iterator at | |
3550 | // the end - so we might as well know where we are? | |
3551 | if (UCharOffset + 1 == buffer) { | |
3552 | /* we have exhausted the buffer */ | |
3553 | int32_t newsize = 0; | |
3554 | if(source->pos) { // actually dealing with a position | |
729e4ab9 | 3555 | newsize = (int32_t)(source->pos - source->string + 1); |
46f4442e A |
3556 | } else { // iterator |
3557 | newsize = 4 * UCOL_MAX_BUFFER; | |
3558 | } | |
3559 | strbuffer = (UChar *)uprv_malloc(sizeof(UChar) * | |
3560 | (newsize + UCOL_MAX_BUFFER)); | |
3561 | /* test for NULL */ | |
3562 | if (strbuffer == NULL) { | |
3563 | *status = U_MEMORY_ALLOCATION_ERROR; | |
3564 | return UCOL_NO_MORE_CES; | |
3565 | } | |
3566 | UCharOffset = strbuffer + newsize; | |
3567 | uprv_memcpy(UCharOffset, buffer, | |
3568 | UCOL_MAX_BUFFER * sizeof(UChar)); | |
3569 | UCharOffset --; | |
3570 | } | |
3571 | if ((source->pos && (source->pos == source->string || | |
3572 | ((source->flags & UCOL_ITER_INNORMBUF) && | |
3573 | *(source->pos - 1) == 0 && source->fcdPosition == NULL))) | |
3574 | || (source->iterator && !source->iterator->hasPrevious(source->iterator))) { | |
3575 | break; | |
3576 | } | |
3577 | } | |
3578 | /* adds the initial base character to the string */ | |
b75a7d8f A |
3579 | *(UCharOffset) = schar; |
3580 | noChars++; | |
46f4442e A |
3581 | |
3582 | int32_t offsetBias; | |
3583 | ||
46f4442e A |
3584 | // **** doesn't work if using iterator **** |
3585 | if (source->flags & UCOL_ITER_INNORMBUF) { | |
46f4442e | 3586 | offsetBias = -1; |
46f4442e A |
3587 | } else { |
3588 | offsetBias = (int32_t)(source->pos - source->string); | |
3589 | } | |
46f4442e A |
3590 | |
3591 | /* a new collIterate is used to simplify things, since using the current | |
3592 | collIterate will mean that the forward and backwards iteration will | |
3593 | share and change the same buffers. we don't want to get into that. */ | |
3594 | collIterate temp; | |
3595 | int32_t rawOffset; | |
3596 | ||
729e4ab9 A |
3597 | IInit_collIterate(coll, UCharOffset, noChars, &temp, status); |
3598 | if(U_FAILURE(*status)) { | |
51004dcb | 3599 | return (uint32_t)UCOL_NULLORDER; |
729e4ab9 | 3600 | } |
46f4442e | 3601 | temp.flags &= ~UCOL_ITER_NORM; |
729e4ab9 | 3602 | temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT; |
46f4442e | 3603 | |
729e4ab9 | 3604 | rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero? |
46f4442e A |
3605 | CE = ucol_IGetNextCE(coll, &temp, status); |
3606 | ||
3607 | if (source->extendCEs) { | |
3608 | endCEBuffer = source->extendCEs + source->extendCEsSize; | |
729e4ab9 | 3609 | CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t)); |
46f4442e A |
3610 | } else { |
3611 | endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE; | |
729e4ab9 | 3612 | CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t)); |
46f4442e A |
3613 | } |
3614 | ||
3615 | while (CE != UCOL_NO_MORE_CES) { | |
3616 | *(source->CEpos ++) = CE; | |
3617 | ||
3618 | if (offsetBias >= 0) { | |
729e4ab9 | 3619 | source->appendOffset(rawOffset + offsetBias, *status); |
374ca955 | 3620 | } |
46f4442e A |
3621 | |
3622 | CECount++; | |
3623 | if (source->CEpos == endCEBuffer) { | |
3624 | /* ran out of CE space, reallocate to new buffer. | |
3625 | If reallocation fails, reset pointers and bail out, | |
3626 | there's no guarantee of the right character position after | |
3627 | this bail*/ | |
729e4ab9 | 3628 | if (!increaseCEsCapacity(source)) { |
46f4442e | 3629 | *status = U_MEMORY_ALLOCATION_ERROR; |
729e4ab9 | 3630 | break; |
46f4442e A |
3631 | } |
3632 | ||
46f4442e A |
3633 | endCEBuffer = source->extendCEs + source->extendCEsSize; |
3634 | } | |
3635 | ||
729e4ab9 A |
3636 | if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) { |
3637 | rawOffset = (int32_t)(temp.fcdPosition - temp.string); | |
3638 | } else { | |
3639 | rawOffset = (int32_t)(temp.pos - temp.string); | |
46f4442e A |
3640 | } |
3641 | ||
46f4442e | 3642 | CE = ucol_IGetNextCE(coll, &temp, status); |
b75a7d8f | 3643 | } |
46f4442e | 3644 | |
729e4ab9 A |
3645 | if (strbuffer != buffer) { |
3646 | uprv_free(strbuffer); | |
3647 | } | |
3648 | if (U_FAILURE(*status)) { | |
3649 | return (uint32_t)UCOL_NULLORDER; | |
3650 | } | |
3651 | ||
46f4442e A |
3652 | if (source->offsetRepeatValue != 0) { |
3653 | if (CECount > noChars) { | |
3654 | source->offsetRepeatCount += temp.offsetRepeatCount; | |
3655 | } else { | |
3656 | // **** does this really skip the right offsets? **** | |
3657 | source->offsetReturn -= (noChars - CECount); | |
3658 | } | |
b75a7d8f | 3659 | } |
46f4442e | 3660 | |
46f4442e A |
3661 | if (offsetBias >= 0) { |
3662 | source->offsetReturn = source->offsetStore - 1; | |
3663 | if (source->offsetReturn == source->offsetBuffer) { | |
3664 | source->offsetStore = source->offsetBuffer; | |
b75a7d8f | 3665 | } |
b75a7d8f | 3666 | } |
374ca955 | 3667 | |
46f4442e A |
3668 | source->toReturn = source->CEpos - 1; |
3669 | if (source->toReturn == source->CEs) { | |
3670 | source->CEpos = source->CEs; | |
3671 | } | |
374ca955 | 3672 | |
46f4442e | 3673 | return *(source->toReturn); |
729e4ab9 | 3674 | } |
46f4442e A |
3675 | case LONG_PRIMARY_TAG: |
3676 | { | |
3677 | *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; | |
3678 | *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; | |
3679 | source->toReturn = source->CEpos - 1; | |
3680 | ||
46f4442e A |
3681 | if (source->flags & UCOL_ITER_INNORMBUF) { |
3682 | source->offsetRepeatCount = 1; | |
3683 | } else { | |
729e4ab9 | 3684 | int32_t firstOffset = (int32_t)(source->pos - source->string); |
374ca955 | 3685 | |
729e4ab9 A |
3686 | source->appendOffset(firstOffset, *status); |
3687 | source->appendOffset(firstOffset + 1, *status); | |
374ca955 | 3688 | |
46f4442e A |
3689 | source->offsetReturn = source->offsetStore - 1; |
3690 | *(source->offsetBuffer) = firstOffset; | |
3691 | if (source->offsetReturn == source->offsetBuffer) { | |
3692 | source->offsetStore = source->offsetBuffer; | |
3693 | } | |
3694 | } | |
374ca955 | 3695 | |
374ca955 | 3696 | |
46f4442e | 3697 | return *(source->toReturn); |
374ca955 | 3698 | } |
374ca955 | 3699 | |
46f4442e A |
3700 | case EXPANSION_TAG: /* this tag always returns */ |
3701 | { | |
3702 | /* | |
3703 | This should handle expansion. | |
3704 | NOTE: we can encounter both continuations and expansions in an expansion! | |
3705 | I have to decide where continuations are going to be dealt with | |
3706 | */ | |
3707 | int32_t firstOffset = (int32_t)(source->pos - source->string); | |
3708 | ||
3709 | // **** doesn't work if using iterator **** | |
3710 | if (source->offsetReturn != NULL) { | |
3711 | if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) { | |
3712 | source->offsetStore = source->offsetBuffer; | |
3713 | }else { | |
3714 | firstOffset = -1; | |
3715 | } | |
3716 | } | |
374ca955 | 3717 | |
46f4442e A |
3718 | /* find the offset to expansion table */ |
3719 | CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); | |
3720 | size = getExpansionCount(CE); | |
3721 | if (size != 0) { | |
3722 | /* | |
3723 | if there are less than 16 elements in expansion, we don't terminate | |
3724 | */ | |
3725 | uint32_t count; | |
374ca955 | 3726 | |
46f4442e A |
3727 | for (count = 0; count < size; count++) { |
3728 | *(source->CEpos ++) = *CEOffset++; | |
3729 | ||
3730 | if (firstOffset >= 0) { | |
729e4ab9 | 3731 | source->appendOffset(firstOffset + 1, *status); |
46f4442e | 3732 | } |
374ca955 | 3733 | } |
46f4442e A |
3734 | } else { |
3735 | /* else, we do */ | |
3736 | while (*CEOffset != 0) { | |
3737 | *(source->CEpos ++) = *CEOffset ++; | |
374ca955 | 3738 | |
46f4442e | 3739 | if (firstOffset >= 0) { |
729e4ab9 | 3740 | source->appendOffset(firstOffset + 1, *status); |
374ca955 | 3741 | } |
46f4442e A |
3742 | } |
3743 | } | |
374ca955 | 3744 | |
46f4442e A |
3745 | if (firstOffset >= 0) { |
3746 | source->offsetReturn = source->offsetStore - 1; | |
3747 | *(source->offsetBuffer) = firstOffset; | |
3748 | if (source->offsetReturn == source->offsetBuffer) { | |
3749 | source->offsetStore = source->offsetBuffer; | |
374ca955 | 3750 | } |
46f4442e A |
3751 | } else { |
3752 | source->offsetRepeatCount += size - 1; | |
374ca955 | 3753 | } |
374ca955 | 3754 | |
46f4442e A |
3755 | source->toReturn = source->CEpos - 1; |
3756 | // in case of one element expansion, we | |
3757 | // want to immediately return CEpos | |
3758 | if(source->toReturn == source->CEs) { | |
3759 | source->CEpos = source->CEs; | |
3760 | } | |
3761 | ||
3762 | return *(source->toReturn); | |
3763 | } | |
3764 | ||
3765 | case DIGIT_TAG: | |
3766 | { | |
3767 | /* | |
3768 | We do a check to see if we want to collate digits as numbers; if so we generate | |
3769 | a custom collation key. Otherwise we pull out the value stored in the expansion table. | |
3770 | */ | |
46f4442e A |
3771 | uint32_t i; /* general counter */ |
3772 | ||
3773 | if (source->coll->numericCollation == UCOL_ON){ | |
3774 | uint32_t digIndx = 0; | |
3775 | uint32_t endIndex = 0; | |
3776 | uint32_t leadingZeroIndex = 0; | |
3777 | uint32_t trailingZeroCount = 0; | |
3778 | ||
3779 | uint8_t collateVal = 0; | |
3780 | ||
3781 | UBool nonZeroValReached = FALSE; | |
3782 | ||
3783 | uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs. | |
3784 | /* | |
3785 | We parse the source string until we hit a char that's NOT a digit. | |
3786 | Use this u_charDigitValue. This might be slow because we have to | |
3787 | handle surrogates... | |
3788 | */ | |
3789 | /* | |
3790 | We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less, | |
3791 | with any chunks smaller than that being on the right end of the digit string - i.e. the first collation | |
3792 | element we process when going backward. To determine how long that chunk might be, we may need to make | |
3793 | two passes through the loop that collects digits - one to see how long the string is (and how much is | |
3794 | leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has | |
3795 | more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation | |
3796 | element chunk after resetting the state to the initialState at the right side of the digit string. | |
3797 | */ | |
3798 | uint32_t ceLimit = 0; | |
3799 | UChar initial_ch = ch; | |
3800 | collIterateState initialState = {0,0,0,0,0,0,0,0,0}; | |
3801 | backupState(source, &initialState); | |
3802 | ||
3803 | for(;;) { | |
3804 | collIterateState state = {0,0,0,0,0,0,0,0,0}; | |
3805 | UChar32 char32 = 0; | |
3806 | int32_t digVal = 0; | |
3807 | ||
3808 | if (U16_IS_TRAIL (ch)) { | |
3809 | if (!collIter_bos(source)){ | |
3810 | UChar lead = getPrevNormalizedChar(source, status); | |
3811 | if(U16_IS_LEAD(lead)) { | |
3812 | char32 = U16_GET_SUPPLEMENTARY(lead,ch); | |
3813 | goBackOne(source); | |
3814 | } else { | |
3815 | char32 = ch; | |
3816 | } | |
3817 | } else { | |
3818 | char32 = ch; | |
3819 | } | |
374ca955 | 3820 | } else { |
46f4442e | 3821 | char32 = ch; |
374ca955 | 3822 | } |
46f4442e A |
3823 | digVal = u_charDigitValue(char32); |
3824 | ||
3825 | for(;;) { | |
3826 | // Make sure we have enough space. No longer needed; | |
3827 | // at this point the largest value of digIndx when we need to save data in numTempBuf | |
3828 | // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure | |
3829 | // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2). | |
3830 | ||
3831 | // Skip over trailing zeroes, and keep a count of them. | |
3832 | if (digVal != 0) | |
3833 | nonZeroValReached = TRUE; | |
3834 | ||
3835 | if (nonZeroValReached) { | |
3836 | /* | |
3837 | We parse the digit string into base 100 numbers (this fits into a byte). | |
3838 | We only add to the buffer in twos, thus if we are parsing an odd character, | |
3839 | that serves as the 'tens' digit while the if we are parsing an even one, that | |
3840 | is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into | |
3841 | a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid | |
3842 | overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less | |
3843 | than all the other bytes. | |
3844 | ||
3845 | Since we're doing in this reverse we want to put the first digit encountered into the | |
3846 | ones place and the second digit encountered into the tens place. | |
3847 | */ | |
3848 | ||
3849 | if ((digIndx + trailingZeroCount) % 2 == 1) { | |
3850 | // High-order digit case (tens place) | |
3851 | collateVal += (uint8_t)(digVal * 10); | |
3852 | ||
3853 | // We cannot set leadingZeroIndex unless it has been set for the | |
3854 | // low-order digit. Therefore, all we can do for the high-order | |
3855 | // digit is turn it off, never on. | |
3856 | // The only time we will have a high digit without a low is for | |
3857 | // the very first non-zero digit, so no zero check is necessary. | |
3858 | if (collateVal != 0) | |
3859 | leadingZeroIndex = 0; | |
3860 | ||
3861 | // The first pass through, digIndx may exceed the limit, but in that case | |
3862 | // we no longer care about numTempBuf contents since they will be discarded | |
3863 | if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) { | |
3864 | numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; | |
3865 | } | |
3866 | collateVal = 0; | |
3867 | } else { | |
3868 | // Low-order digit case (ones place) | |
3869 | collateVal = (uint8_t)digVal; | |
3870 | ||
3871 | // Check for leading zeroes. | |
3872 | if (collateVal == 0) { | |
3873 | if (!leadingZeroIndex) | |
3874 | leadingZeroIndex = (digIndx/2) + 2; | |
3875 | } else | |
3876 | leadingZeroIndex = 0; | |
3877 | ||
3878 | // No need to write to buffer; the case of a last odd digit | |
3879 | // is handled below. | |
3880 | } | |
3881 | ++digIndx; | |
3882 | } else | |
3883 | ++trailingZeroCount; | |
3884 | ||
3885 | if (!collIter_bos(source)) { | |
3886 | ch = getPrevNormalizedChar(source, status); | |
3887 | //goBackOne(source); | |
3888 | if (U16_IS_TRAIL(ch)) { | |
3889 | backupState(source, &state); | |
3890 | if (!collIter_bos(source)) { | |
3891 | goBackOne(source); | |
3892 | UChar lead = getPrevNormalizedChar(source, status); | |
3893 | ||
3894 | if(U16_IS_LEAD(lead)) { | |
3895 | char32 = U16_GET_SUPPLEMENTARY(lead,ch); | |
3896 | } else { | |
3897 | loadState(source, &state, FALSE); | |
3898 | char32 = ch; | |
3899 | } | |
3900 | } | |
3901 | } else | |
3902 | char32 = ch; | |
3903 | ||
3904 | if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) { | |
3905 | if (char32 > 0xFFFF) {// For surrogates. | |
3906 | loadState(source, &state, FALSE); | |
3907 | } | |
3908 | // Don't need to "reverse" the goBackOne call, | |
3909 | // as this points to the next position to process.. | |
3910 | //if (char32 > 0xFFFF) // For surrogates. | |
3911 | //getNextNormalizedChar(source); | |
3912 | break; | |
3913 | } | |
3914 | ||
3915 | goBackOne(source); | |
3916 | }else | |
3917 | break; | |
3918 | } | |
3919 | ||
3920 | if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) { | |
3921 | // our collation element is not too big, go ahead and finish with it | |
3922 | break; | |
3923 | } | |
3924 | // our digit string is too long for a collation element; | |
3925 | // set the limit for it, reset the state and begin again | |
3926 | ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER; | |
3927 | if ( ceLimit == 0 ) { | |
3928 | ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER; | |
3929 | } | |
3930 | ch = initial_ch; | |
3931 | loadState(source, &initialState, FALSE); | |
3932 | digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0; | |
3933 | collateVal = 0; | |
3934 | nonZeroValReached = FALSE; | |
374ca955 | 3935 | } |
46f4442e A |
3936 | |
3937 | if (! nonZeroValReached) { | |
3938 | digIndx = 2; | |
3939 | trailingZeroCount = 0; | |
3940 | numTempBuf[2] = 6; | |
3941 | } | |
3942 | ||
3943 | if ((digIndx + trailingZeroCount) % 2 != 0) { | |
3944 | numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6; | |
3945 | digIndx += 1; // The implicit leading zero | |
3946 | } | |
3947 | if (trailingZeroCount % 2 != 0) { | |
3948 | // We had to consume one trailing zero for the low digit | |
3949 | // of the least significant byte | |
3950 | digIndx += 1; // The trailing zero not in the exponent | |
3951 | trailingZeroCount -= 1; | |
3952 | } | |
3953 | ||
3954 | endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ; | |
3955 | ||
3956 | // Subtract one off of the last byte. Really the first byte here, but it's reversed... | |
3957 | numTempBuf[2] -= 1; | |
3958 | ||
3959 | /* | |
3960 | We want to skip over the first two slots in the buffer. The first slot | |
3961 | is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the | |
3962 | sign/exponent byte: 0x80 + (decimalPos/2) & 7f. | |
3963 | The exponent must be adjusted by the number of leading zeroes, and the number of | |
3964 | trailing zeroes. | |
3965 | */ | |
3966 | numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; | |
3967 | uint32_t exponent = (digIndx+trailingZeroCount)/2; | |
3968 | if (leadingZeroIndex) | |
3969 | exponent -= ((digIndx/2) + 2 - leadingZeroIndex); | |
3970 | numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F)); | |
3971 | ||
3972 | // Now transfer the collation key to our collIterate struct. | |
729e4ab9 A |
3973 | // The total size for our collation key is half of endIndex, rounded up. |
3974 | int32_t size = (endIndex+1)/2; | |
3975 | if(!ensureCEsCapacity(source, size)) { | |
51004dcb | 3976 | return (uint32_t)UCOL_NULLORDER; |
729e4ab9 | 3977 | } |
46f4442e A |
3978 | *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
3979 | (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight | |
3980 | UCOL_BYTE_COMMON; // Tertiary weight. | |
3981 | i = endIndex - 1; // Reset the index into the buffer. | |
3982 | while(i >= 2) { | |
3983 | uint32_t primWeight = numTempBuf[i--] << 8; | |
3984 | if ( i >= 2) | |
3985 | primWeight |= numTempBuf[i--]; | |
3986 | *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; | |
3987 | } | |
3988 | ||
3989 | source->toReturn = source->CEpos -1; | |
3990 | return *(source->toReturn); | |
3991 | } else { | |
3992 | CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); | |
3993 | CE = *(CEOffset++); | |
374ca955 A |
3994 | break; |
3995 | } | |
46f4442e | 3996 | } |
374ca955 | 3997 | |
46f4442e A |
3998 | case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
3999 | { | |
4000 | static const uint32_t | |
4001 | SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; | |
4002 | //const uint32_t LCount = 19; | |
4003 | static const uint32_t VCount = 21; | |
4004 | static const uint32_t TCount = 28; | |
4005 | //const uint32_t NCount = VCount * TCount; /* 588 */ | |
4006 | //const uint32_t SCount = LCount * NCount; /* 11172 */ | |
4007 | ||
4008 | uint32_t L = ch - SBase; | |
4009 | /* | |
4010 | divide into pieces. | |
4011 | we do it in this order since some compilers can do % and / in one | |
4012 | operation | |
4013 | */ | |
4014 | uint32_t T = L % TCount; | |
4015 | L /= TCount; | |
4016 | uint32_t V = L % VCount; | |
4017 | L /= VCount; | |
4018 | ||
4019 | /* offset them */ | |
4020 | L += LBase; | |
4021 | V += VBase; | |
4022 | T += TBase; | |
4023 | ||
729e4ab9 A |
4024 | int32_t firstOffset = (int32_t)(source->pos - source->string); |
4025 | source->appendOffset(firstOffset, *status); | |
46f4442e A |
4026 | |
4027 | /* | |
4028 | * return the first CE, but first put the rest into the expansion buffer | |
4029 | */ | |
4030 | if (!source->coll->image->jamoSpecial) { | |
4031 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L); | |
4032 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); | |
729e4ab9 | 4033 | source->appendOffset(firstOffset + 1, *status); |
46f4442e A |
4034 | |
4035 | if (T != TBase) { | |
4036 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); | |
729e4ab9 | 4037 | source->appendOffset(firstOffset + 1, *status); |
46f4442e A |
4038 | } |
4039 | ||
4040 | source->toReturn = source->CEpos - 1; | |
4041 | ||
4042 | source->offsetReturn = source->offsetStore - 1; | |
4043 | if (source->offsetReturn == source->offsetBuffer) { | |
4044 | source->offsetStore = source->offsetBuffer; | |
4045 | } | |
4046 | ||
4047 | return *(source->toReturn); | |
4048 | } else { | |
4049 | // Since Hanguls pass the FCD check, it is | |
4050 | // guaranteed that we won't be in | |
4051 | // the normalization buffer if something like this happens | |
729e4ab9 | 4052 | |
46f4442e | 4053 | // Move Jamos into normalization buffer |
729e4ab9 A |
4054 | UChar *tempbuffer = source->writableBuffer.getBuffer(5); |
4055 | int32_t tempbufferLength, jamoOffset; | |
4056 | tempbuffer[0] = 0; | |
4057 | tempbuffer[1] = (UChar)L; | |
4058 | tempbuffer[2] = (UChar)V; | |
46f4442e | 4059 | if (T != TBase) { |
729e4ab9 A |
4060 | tempbuffer[3] = (UChar)T; |
4061 | tempbufferLength = 4; | |
46f4442e | 4062 | } else { |
729e4ab9 | 4063 | tempbufferLength = 3; |
46f4442e | 4064 | } |
729e4ab9 | 4065 | source->writableBuffer.releaseBuffer(tempbufferLength); |
46f4442e | 4066 | |
729e4ab9 | 4067 | // Indicate where to continue in main input string after exhausting the writableBuffer |
46f4442e | 4068 | if (source->pos == source->string) { |
729e4ab9 | 4069 | jamoOffset = 0; |
46f4442e A |
4070 | source->fcdPosition = NULL; |
4071 | } else { | |
729e4ab9 | 4072 | jamoOffset = source->pos - source->string; |
46f4442e A |
4073 | source->fcdPosition = source->pos-1; |
4074 | } | |
729e4ab9 A |
4075 | |
4076 | // Append offsets for the additional chars | |
4077 | // (not the 0, and not the L whose offsets match the original Hangul) | |
4078 | int32_t jamoRemaining = tempbufferLength - 2; | |
4079 | jamoOffset++; // appended offsets should match end of original Hangul | |
4080 | while (jamoRemaining-- > 0) { | |
4081 | source->appendOffset(jamoOffset, *status); | |
4082 | } | |
4083 | ||
4084 | source->offsetRepeatValue = jamoOffset; | |
4085 | ||
4086 | source->offsetReturn = source->offsetStore - 1; | |
4087 | if (source->offsetReturn == source->offsetBuffer) { | |
4088 | source->offsetStore = source->offsetBuffer; | |
4089 | } | |
46f4442e | 4090 | |
729e4ab9 | 4091 | source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength; |
46f4442e A |
4092 | source->origFlags = source->flags; |
4093 | source->flags |= UCOL_ITER_INNORMBUF; | |
4094 | source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
4095 | ||
4096 | return(UCOL_IGNORABLE); | |
4097 | } | |
4098 | } | |
374ca955 | 4099 | |
46f4442e | 4100 | case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
46f4442e | 4101 | return getPrevImplicit(ch, source); |
b75a7d8f | 4102 | |
46f4442e A |
4103 | // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function |
4104 | case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ | |
4105 | return getPrevImplicit(ch, source); | |
b75a7d8f | 4106 | |
46f4442e | 4107 | case SURROGATE_TAG: /* This is a surrogate pair */ |
729e4ab9 | 4108 | /* essentially an engaged lead surrogate. */ |
46f4442e A |
4109 | /* if you have encountered it here, it means that a */ |
4110 | /* broken sequence was encountered and this is an error */ | |
729e4ab9 | 4111 | return UCOL_NOT_FOUND; |
b75a7d8f | 4112 | |
46f4442e | 4113 | case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
729e4ab9 | 4114 | return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
b75a7d8f | 4115 | |
46f4442e A |
4116 | case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
4117 | { | |
4118 | UChar32 cp = 0; | |
4119 | UChar prevChar; | |
729e4ab9 | 4120 | const UChar *prev; |
46f4442e A |
4121 | if (isAtStartPrevIterate(source)) { |
4122 | /* we are at the start of the string, wrong place to be at */ | |
729e4ab9 | 4123 | return UCOL_NOT_FOUND; |
46f4442e | 4124 | } |
729e4ab9 | 4125 | if (source->pos != source->writableBuffer.getBuffer()) { |
46f4442e A |
4126 | prev = source->pos - 1; |
4127 | } else { | |
4128 | prev = source->fcdPosition; | |
4129 | } | |
4130 | prevChar = *prev; | |
4131 | ||
4132 | /* Handles Han and Supplementary characters here.*/ | |
4133 | if (U16_IS_LEAD(prevChar)) { | |
4134 | cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); | |
4135 | source->pos = prev; | |
4136 | } else { | |
729e4ab9 | 4137 | return UCOL_NOT_FOUND; /* like unassigned */ |
46f4442e A |
4138 | } |
4139 | ||
4140 | return getPrevImplicit(cp, source); | |
4141 | } | |
b75a7d8f | 4142 | |
46f4442e A |
4143 | /* UCA is filled with these. Tailorings are NOT_FOUND */ |
4144 | /* not yet implemented */ | |
4145 | case CHARSET_TAG: /* this tag always returns */ | |
4146 | /* probably after 1.8 */ | |
4147 | return UCOL_NOT_FOUND; | |
b75a7d8f | 4148 | |
46f4442e A |
4149 | default: /* this tag always returns */ |
4150 | *status = U_INTERNAL_PROGRAM_ERROR; | |
4151 | CE=0; | |
4152 | break; | |
b75a7d8f | 4153 | } |
b75a7d8f | 4154 | |
46f4442e A |
4155 | if (CE <= UCOL_NOT_FOUND) { |
4156 | break; | |
4157 | } | |
b75a7d8f | 4158 | } |
46f4442e A |
4159 | |
4160 | return CE; | |
b75a7d8f A |
4161 | } |
4162 | ||
b75a7d8f A |
4163 | /* This should really be a macro */ |
4164 | /* This function is used to reverse parts of a buffer. We need this operation when doing continuation */ | |
4165 | /* secondaries in French */ | |
4166 | /* | |
4167 | void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) { | |
4168 | uint8_t temp; | |
4169 | while(start<end) { | |
4170 | temp = *start; | |
4171 | *start++ = *end; | |
4172 | *end-- = temp; | |
4173 | } | |
4174 | } | |
4175 | */ | |
4176 | ||
4177 | #define uprv_ucol_reverse_buffer(TYPE, start, end) { \ | |
4178 | TYPE tempA; \ | |
4179 | while((start)<(end)) { \ | |
4180 | tempA = *(start); \ | |
4181 | *(start)++ = *(end); \ | |
4182 | *(end)-- = tempA; \ | |
4183 | } \ | |
4184 | } | |
4185 | ||
4186 | /****************************************************************************/ | |
4187 | /* Following are the sortkey generation functions */ | |
4188 | /* */ | |
4189 | /****************************************************************************/ | |
4190 | ||
b75a7d8f A |
4191 | U_CAPI int32_t U_EXPORT2 |
4192 | ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length, | |
4193 | const uint8_t *src2, int32_t src2Length, | |
4194 | uint8_t *dest, int32_t destCapacity) { | |
b75a7d8f | 4195 | /* check arguments */ |
51004dcb A |
4196 | if( src1==NULL || src1Length<-1 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) || |
4197 | src2==NULL || src2Length<-1 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) || | |
b75a7d8f A |
4198 | destCapacity<0 || (destCapacity>0 && dest==NULL) |
4199 | ) { | |
4200 | /* error, attempt to write a zero byte and return 0 */ | |
4201 | if(dest!=NULL && destCapacity>0) { | |
4202 | *dest=0; | |
4203 | } | |
4204 | return 0; | |
4205 | } | |
4206 | ||
4207 | /* check lengths and capacity */ | |
4208 | if(src1Length<0) { | |
4209 | src1Length=(int32_t)uprv_strlen((const char *)src1)+1; | |
4210 | } | |
4211 | if(src2Length<0) { | |
4212 | src2Length=(int32_t)uprv_strlen((const char *)src2)+1; | |
4213 | } | |
4214 | ||
51004dcb | 4215 | int32_t destLength=src1Length+src2Length; |
b75a7d8f A |
4216 | if(destLength>destCapacity) { |
4217 | /* the merged sort key does not fit into the destination */ | |
4218 | return destLength; | |
4219 | } | |
4220 | ||
4221 | /* merge the sort keys with the same number of levels */ | |
51004dcb A |
4222 | uint8_t *p=dest; |
4223 | for(;;) { | |
b75a7d8f | 4224 | /* copy level from src1 not including 00 or 01 */ |
51004dcb | 4225 | uint8_t b; |
b75a7d8f A |
4226 | while((b=*src1)>=2) { |
4227 | ++src1; | |
51004dcb | 4228 | *p++=b; |
b75a7d8f A |
4229 | } |
4230 | ||
4231 | /* add a 02 merge separator */ | |
51004dcb | 4232 | *p++=2; |
b75a7d8f A |
4233 | |
4234 | /* copy level from src2 not including 00 or 01 */ | |
4235 | while((b=*src2)>=2) { | |
4236 | ++src2; | |
51004dcb | 4237 | *p++=b; |
b75a7d8f A |
4238 | } |
4239 | ||
4240 | /* if both sort keys have another level, then add a 01 level separator and continue */ | |
4241 | if(*src1==1 && *src2==1) { | |
4242 | ++src1; | |
4243 | ++src2; | |
51004dcb A |
4244 | *p++=1; |
4245 | } else { | |
4246 | break; | |
b75a7d8f A |
4247 | } |
4248 | } | |
4249 | ||
4250 | /* | |
4251 | * here, at least one sort key is finished now, but the other one | |
4252 | * might have some contents left from containing more levels; | |
4253 | * that contents is just appended to the result | |
4254 | */ | |
4255 | if(*src1!=0) { | |
4256 | /* src1 is not finished, therefore *src2==0, and src1 is appended */ | |
4257 | src2=src1; | |
4258 | } | |
4259 | /* append src2, "the other, unfinished sort key" */ | |
51004dcb | 4260 | while((*p++=*src2++)!=0) {} |
b75a7d8f | 4261 | |
51004dcb A |
4262 | /* the actual length might be less than destLength if either sort key contained illegally embedded zero bytes */ |
4263 | return (int32_t)(p-dest); | |
b75a7d8f A |
4264 | } |
4265 | ||
4388f060 A |
4266 | U_NAMESPACE_BEGIN |
4267 | ||
4268 | class SortKeyByteSink : public ByteSink { | |
4269 | public: | |
51004dcb A |
4270 | SortKeyByteSink(char *dest, int32_t destCapacity) |
4271 | : buffer_(dest), capacity_(destCapacity), | |
4272 | appended_(0) { | |
4273 | if (buffer_ == NULL) { | |
4274 | capacity_ = 0; | |
4275 | } else if(capacity_ < 0) { | |
4276 | buffer_ = NULL; | |
4388f060 A |
4277 | capacity_ = 0; |
4278 | } | |
4279 | } | |
4280 | virtual ~SortKeyByteSink(); | |
4281 | ||
4282 | virtual void Append(const char *bytes, int32_t n); | |
51004dcb A |
4283 | void Append(uint32_t b) { |
4284 | if (appended_ < capacity_ || Resize(1, appended_)) { | |
4285 | buffer_[appended_] = (char)b; | |
4388f060 | 4286 | } |
51004dcb | 4287 | ++appended_; |
4388f060 | 4288 | } |
51004dcb | 4289 | void Append(uint32_t b1, uint32_t b2) { |
4388f060 | 4290 | int32_t a2 = appended_ + 2; |
51004dcb | 4291 | if (a2 <= capacity_ || Resize(2, appended_)) { |
4388f060 A |
4292 | buffer_[appended_] = (char)b1; |
4293 | buffer_[appended_ + 1] = (char)b2; | |
51004dcb A |
4294 | } else if(appended_ < capacity_) { |
4295 | buffer_[appended_] = (char)b1; | |
4388f060 | 4296 | } |
51004dcb | 4297 | appended_ = a2; |
4388f060 | 4298 | } |
4388f060 A |
4299 | virtual char *GetAppendBuffer(int32_t min_capacity, |
4300 | int32_t desired_capacity_hint, | |
4301 | char *scratch, int32_t scratch_capacity, | |
4302 | int32_t *result_capacity); | |
4303 | int32_t NumberOfBytesAppended() const { return appended_; } | |
51004dcb A |
4304 | /** @return FALSE if memory allocation failed */ |
4305 | UBool IsOk() const { return buffer_ != NULL; } | |
4388f060 | 4306 | |
51004dcb A |
4307 | protected: |
4308 | virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) = 0; | |
4309 | virtual UBool Resize(int32_t appendCapacity, int32_t length) = 0; | |
4388f060 | 4310 | |
4388f060 A |
4311 | void SetNotOk() { |
4312 | buffer_ = NULL; | |
4313 | capacity_ = 0; | |
4314 | } | |
4315 | ||
4388f060 A |
4316 | char *buffer_; |
4317 | int32_t capacity_; | |
4318 | int32_t appended_; | |
4388f060 | 4319 | |
51004dcb A |
4320 | private: |
4321 | SortKeyByteSink(const SortKeyByteSink &); // copy constructor not implemented | |
4322 | SortKeyByteSink &operator=(const SortKeyByteSink &); // assignment operator not implemented | |
4323 | }; | |
4388f060 | 4324 | |
51004dcb | 4325 | SortKeyByteSink::~SortKeyByteSink() {} |
4388f060 A |
4326 | |
4327 | void | |
4328 | SortKeyByteSink::Append(const char *bytes, int32_t n) { | |
51004dcb | 4329 | if (n <= 0 || bytes == NULL) { |
4388f060 A |
4330 | return; |
4331 | } | |
4332 | int32_t length = appended_; | |
4333 | appended_ += n; | |
4334 | if ((buffer_ + length) == bytes) { | |
4335 | return; // the caller used GetAppendBuffer() and wrote the bytes already | |
4336 | } | |
4388f060 | 4337 | int32_t available = capacity_ - length; |
51004dcb A |
4338 | if (n <= available) { |
4339 | uprv_memcpy(buffer_ + length, bytes, n); | |
4340 | } else { | |
4341 | AppendBeyondCapacity(bytes, n, length); | |
4388f060 | 4342 | } |
4388f060 A |
4343 | } |
4344 | ||
4345 | char * | |
4346 | SortKeyByteSink::GetAppendBuffer(int32_t min_capacity, | |
4347 | int32_t desired_capacity_hint, | |
4348 | char *scratch, | |
4349 | int32_t scratch_capacity, | |
4350 | int32_t *result_capacity) { | |
4351 | if (min_capacity < 1 || scratch_capacity < min_capacity) { | |
4352 | *result_capacity = 0; | |
4353 | return NULL; | |
4354 | } | |
4355 | int32_t available = capacity_ - appended_; | |
4356 | if (available >= min_capacity) { | |
4357 | *result_capacity = available; | |
4358 | return buffer_ + appended_; | |
4359 | } else if (Resize(desired_capacity_hint, appended_)) { | |
4360 | *result_capacity = capacity_ - appended_; | |
4361 | return buffer_ + appended_; | |
4362 | } else { | |
4363 | *result_capacity = scratch_capacity; | |
4364 | return scratch; | |
4365 | } | |
4366 | } | |
4367 | ||
51004dcb A |
4368 | class FixedSortKeyByteSink : public SortKeyByteSink { |
4369 | public: | |
4370 | FixedSortKeyByteSink(char *dest, int32_t destCapacity) | |
4371 | : SortKeyByteSink(dest, destCapacity) {} | |
4372 | virtual ~FixedSortKeyByteSink(); | |
4373 | ||
4374 | private: | |
4375 | virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); | |
4376 | virtual UBool Resize(int32_t appendCapacity, int32_t length); | |
4377 | }; | |
4378 | ||
4379 | FixedSortKeyByteSink::~FixedSortKeyByteSink() {} | |
4380 | ||
4381 | void | |
4382 | FixedSortKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t /*n*/, int32_t length) { | |
4383 | // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ | |
4384 | // Fill the buffer completely. | |
4385 | int32_t available = capacity_ - length; | |
4386 | if (available > 0) { | |
4387 | uprv_memcpy(buffer_ + length, bytes, available); | |
4388 | } | |
4389 | } | |
4390 | ||
4388f060 | 4391 | UBool |
51004dcb A |
4392 | FixedSortKeyByteSink::Resize(int32_t /*appendCapacity*/, int32_t /*length*/) { |
4393 | return FALSE; | |
4394 | } | |
4395 | ||
4396 | class CollationKeyByteSink : public SortKeyByteSink { | |
4397 | public: | |
4398 | CollationKeyByteSink(CollationKey &key) | |
4399 | : SortKeyByteSink(reinterpret_cast<char *>(key.getBytes()), key.getCapacity()), | |
4400 | key_(key) {} | |
4401 | virtual ~CollationKeyByteSink(); | |
4402 | ||
4403 | private: | |
4404 | virtual void AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length); | |
4405 | virtual UBool Resize(int32_t appendCapacity, int32_t length); | |
4406 | ||
4407 | CollationKey &key_; | |
4408 | }; | |
4409 | ||
4410 | CollationKeyByteSink::~CollationKeyByteSink() {} | |
4411 | ||
4412 | void | |
4413 | CollationKeyByteSink::AppendBeyondCapacity(const char *bytes, int32_t n, int32_t length) { | |
4414 | // buffer_ != NULL && bytes != NULL && n > 0 && appended_ > capacity_ | |
4415 | if (Resize(n, length)) { | |
4416 | uprv_memcpy(buffer_ + length, bytes, n); | |
4417 | } | |
4418 | } | |
4419 | ||
4420 | UBool | |
4421 | CollationKeyByteSink::Resize(int32_t appendCapacity, int32_t length) { | |
4422 | if (buffer_ == NULL) { | |
4423 | return FALSE; // allocation failed before already | |
4388f060 A |
4424 | } |
4425 | int32_t newCapacity = 2 * capacity_; | |
4426 | int32_t altCapacity = length + 2 * appendCapacity; | |
4427 | if (newCapacity < altCapacity) { | |
4428 | newCapacity = altCapacity; | |
4429 | } | |
51004dcb A |
4430 | if (newCapacity < 200) { |
4431 | newCapacity = 200; | |
4388f060 | 4432 | } |
51004dcb | 4433 | uint8_t *newBuffer = key_.reallocate(newCapacity, length); |
4388f060 | 4434 | if (newBuffer == NULL) { |
51004dcb | 4435 | SetNotOk(); |
4388f060 A |
4436 | return FALSE; |
4437 | } | |
51004dcb | 4438 | buffer_ = reinterpret_cast<char *>(newBuffer); |
4388f060 A |
4439 | capacity_ = newCapacity; |
4440 | return TRUE; | |
4441 | } | |
4442 | ||
51004dcb A |
4443 | /** |
4444 | * uint8_t byte buffer, similar to CharString but simpler. | |
4445 | */ | |
4446 | class SortKeyLevel : public UMemory { | |
4447 | public: | |
4448 | SortKeyLevel() : len(0), ok(TRUE) {} | |
4449 | ~SortKeyLevel() {} | |
4450 | ||
4451 | /** @return FALSE if memory allocation failed */ | |
4452 | UBool isOk() const { return ok; } | |
4453 | UBool isEmpty() const { return len == 0; } | |
4454 | int32_t length() const { return len; } | |
4455 | const uint8_t *data() const { return buffer.getAlias(); } | |
4456 | uint8_t operator[](int32_t index) const { return buffer[index]; } | |
4457 | ||
4458 | void appendByte(uint32_t b); | |
4459 | ||
4460 | void appendTo(ByteSink &sink) const { | |
4461 | sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len); | |
4462 | } | |
4463 | ||
4464 | uint8_t &lastByte() { | |
4465 | U_ASSERT(len > 0); | |
4466 | return buffer[len - 1]; | |
4388f060 | 4467 | } |
51004dcb A |
4468 | |
4469 | uint8_t *getLastFewBytes(int32_t n) { | |
4470 | if (ok && len >= n) { | |
4471 | return buffer.getAlias() + len - n; | |
4472 | } else { | |
4473 | return NULL; | |
4474 | } | |
4388f060 | 4475 | } |
51004dcb A |
4476 | |
4477 | private: | |
4478 | MaybeStackArray<uint8_t, 40> buffer; | |
4479 | int32_t len; | |
4480 | UBool ok; | |
4481 | ||
4482 | UBool ensureCapacity(int32_t appendCapacity); | |
4483 | ||
4484 | SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class | |
4485 | SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class | |
4486 | }; | |
4487 | ||
4488 | void SortKeyLevel::appendByte(uint32_t b) { | |
4489 | if(len < buffer.getCapacity() || ensureCapacity(1)) { | |
4490 | buffer[len++] = (uint8_t)b; | |
4491 | } | |
4492 | } | |
4493 | ||
4494 | UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) { | |
4495 | if(!ok) { | |
4496 | return FALSE; | |
4497 | } | |
4498 | int32_t newCapacity = 2 * buffer.getCapacity(); | |
4499 | int32_t altCapacity = len + 2 * appendCapacity; | |
4500 | if (newCapacity < altCapacity) { | |
4501 | newCapacity = altCapacity; | |
4388f060 | 4502 | } |
51004dcb A |
4503 | if (newCapacity < 200) { |
4504 | newCapacity = 200; | |
4505 | } | |
4506 | if(buffer.resize(newCapacity, len)==NULL) { | |
4507 | return ok = FALSE; | |
4508 | } | |
4509 | return TRUE; | |
4388f060 A |
4510 | } |
4511 | ||
4512 | U_NAMESPACE_END | |
4513 | ||
b75a7d8f A |
4514 | /* sortkey API */ |
4515 | U_CAPI int32_t U_EXPORT2 | |
4516 | ucol_getSortKey(const UCollator *coll, | |
4517 | const UChar *source, | |
4518 | int32_t sourceLength, | |
4519 | uint8_t *result, | |
4520 | int32_t resultLength) | |
4521 | { | |
46f4442e A |
4522 | UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY); |
4523 | if (UTRACE_LEVEL(UTRACE_VERBOSE)) { | |
4524 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, | |
4525 | ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength)); | |
4526 | } | |
374ca955 | 4527 | |
4388f060 A |
4528 | if(coll->delegate != NULL) { |
4529 | return ((const Collator*)coll->delegate)->getSortKey(source, sourceLength, result, resultLength); | |
4530 | } | |
4531 | ||
46f4442e A |
4532 | UErrorCode status = U_ZERO_ERROR; |
4533 | int32_t keySize = 0; | |
4534 | ||
4535 | if(source != NULL) { | |
4536 | // source == NULL is actually an error situation, but we would need to | |
4537 | // have an error code to return it. Until we introduce a new | |
4538 | // API, it stays like this | |
4539 | ||
4540 | /* this uses the function pointer that is set in updateinternalstate */ | |
4541 | /* currently, there are two funcs: */ | |
4542 | /*ucol_calcSortKey(...);*/ | |
4543 | /*ucol_calcSortKeySimpleTertiary(...);*/ | |
4544 | ||
51004dcb A |
4545 | uint8_t noDest[1] = { 0 }; |
4546 | if(result == NULL) { | |
4547 | // Distinguish pure preflighting from an allocation error. | |
4548 | result = noDest; | |
4549 | resultLength = 0; | |
4550 | } | |
4551 | FixedSortKeyByteSink sink(reinterpret_cast<char *>(result), resultLength); | |
4388f060 | 4552 | coll->sortKeyGen(coll, source, sourceLength, sink, &status); |
51004dcb A |
4553 | if(U_SUCCESS(status)) { |
4554 | keySize = sink.NumberOfBytesAppended(); | |
4555 | } | |
46f4442e A |
4556 | } |
4557 | UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize); | |
4558 | UTRACE_EXIT_STATUS(status); | |
4559 | return keySize; | |
b75a7d8f A |
4560 | } |
4561 | ||
b75a7d8f | 4562 | U_CFUNC int32_t |
51004dcb A |
4563 | ucol_getCollationKey(const UCollator *coll, |
4564 | const UChar *source, int32_t sourceLength, | |
4565 | CollationKey &key, | |
4566 | UErrorCode &errorCode) { | |
4567 | CollationKeyByteSink sink(key); | |
4568 | coll->sortKeyGen(coll, source, sourceLength, sink, &errorCode); | |
4569 | return sink.NumberOfBytesAppended(); | |
b75a7d8f A |
4570 | } |
4571 | ||
729e4ab9 A |
4572 | // Is this primary weight compressible? |
4573 | // Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit). | |
4574 | // TODO: This should use per-lead-byte flags from FractionalUCA.txt. | |
4575 | static inline UBool | |
4576 | isCompressible(const UCollator * /*coll*/, uint8_t primary1) { | |
4577 | return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary; | |
4578 | } | |
4579 | ||
4388f060 | 4580 | static |
51004dcb | 4581 | inline void doCaseShift(SortKeyLevel &cases, uint32_t &caseShift) { |
4388f060 | 4582 | if (caseShift == 0) { |
51004dcb | 4583 | cases.appendByte(UCOL_CASE_BYTE_START); |
4388f060 A |
4584 | caseShift = UCOL_CASE_SHIFT_START; |
4585 | } | |
4586 | } | |
4587 | ||
4588 | // Packs the secondary buffer when processing French locale. | |
4589 | static void | |
51004dcb | 4590 | packFrench(const uint8_t *secondaries, int32_t secsize, SortKeyByteSink &result) { |
4388f060 A |
4591 | secondaries += secsize; // We read the secondary-level bytes back to front. |
4592 | uint8_t secondary; | |
4593 | int32_t count2 = 0; | |
4594 | int32_t i = 0; | |
4595 | // we use i here since the key size already accounts for terminators, so we'll discard the increment | |
4596 | for(i = 0; i<secsize; i++) { | |
4597 | secondary = *(secondaries-i-1); | |
4598 | /* This is compression code. */ | |
4599 | if (secondary == UCOL_COMMON2) { | |
4600 | ++count2; | |
4601 | } else { | |
4602 | if (count2 > 0) { | |
4603 | if (secondary > UCOL_COMMON2) { // not necessary for 4th level. | |
4604 | while (count2 > UCOL_TOP_COUNT2) { | |
51004dcb | 4605 | result.Append(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
4388f060 A |
4606 | count2 -= (uint32_t)UCOL_TOP_COUNT2; |
4607 | } | |
51004dcb | 4608 | result.Append(UCOL_COMMON_TOP2 - (count2-1)); |
4388f060 A |
4609 | } else { |
4610 | while (count2 > UCOL_BOT_COUNT2) { | |
51004dcb | 4611 | result.Append(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
4388f060 A |
4612 | count2 -= (uint32_t)UCOL_BOT_COUNT2; |
4613 | } | |
51004dcb | 4614 | result.Append(UCOL_COMMON_BOT2 + (count2-1)); |
4388f060 A |
4615 | } |
4616 | count2 = 0; | |
4617 | } | |
4618 | result.Append(secondary); | |
4619 | } | |
4620 | } | |
4621 | if (count2 > 0) { | |
4622 | while (count2 > UCOL_BOT_COUNT2) { | |
51004dcb | 4623 | result.Append(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
4388f060 A |
4624 | count2 -= (uint32_t)UCOL_BOT_COUNT2; |
4625 | } | |
51004dcb | 4626 | result.Append(UCOL_COMMON_BOT2 + (count2-1)); |
4388f060 A |
4627 | } |
4628 | } | |
4629 | ||
4630 | #define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0 | |
4631 | ||
4632 | /* This is the sortkey work horse function */ | |
4633 | U_CFUNC void U_CALLCONV | |
4634 | ucol_calcSortKey(const UCollator *coll, | |
4635 | const UChar *source, | |
4636 | int32_t sourceLength, | |
4637 | SortKeyByteSink &result, | |
4638 | UErrorCode *status) | |
4639 | { | |
4640 | if(U_FAILURE(*status)) { | |
4641 | return; | |
4642 | } | |
4643 | ||
4388f060 | 4644 | SortKeyByteSink &primaries = result; |
51004dcb A |
4645 | SortKeyLevel secondaries; |
4646 | SortKeyLevel tertiaries; | |
4647 | SortKeyLevel cases; | |
4648 | SortKeyLevel quads; | |
4388f060 A |
4649 | |
4650 | UnicodeString normSource; | |
4651 | ||
4652 | int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength); | |
4653 | ||
4654 | UColAttributeValue strength = coll->strength; | |
4655 | ||
b75a7d8f A |
4656 | uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF); |
4657 | uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF); | |
4658 | uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF); | |
4659 | UBool compareIdent = (strength == UCOL_IDENTICAL); | |
4660 | UBool doCase = (coll->caseLevel == UCOL_ON); | |
4388f060 | 4661 | UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0); |
b75a7d8f | 4662 | UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
4388f060 | 4663 | //UBool qShifted = shifted && (compareQuad == 0); |
b75a7d8f | 4664 | UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0); |
b75a7d8f A |
4665 | |
4666 | uint32_t variableTopValue = coll->variableTopValue; | |
4388f060 A |
4667 | // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no |
4668 | // qShifted, we don't need to set UCOL_COMMON_BOT4 so high. | |
374ca955 | 4669 | uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1); |
4388f060 | 4670 | uint8_t UCOL_HIRAGANA_QUAD = 0; |
b75a7d8f | 4671 | if(doHiragana) { |
4388f060 A |
4672 | UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++; |
4673 | /* allocate one more space for hiragana, value for hiragana */ | |
b75a7d8f A |
4674 | } |
4675 | uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4); | |
4676 | ||
4388f060 A |
4677 | /* support for special features like caselevel and funky secondaries */ |
4678 | int32_t lastSecondaryLength = 0; | |
4679 | uint32_t caseShift = 0; | |
4680 | ||
4681 | /* If we need to normalize, we'll do it all at once at the beginning! */ | |
4682 | const Normalizer2 *norm2; | |
4683 | if(compareIdent) { | |
4684 | norm2 = Normalizer2Factory::getNFDInstance(*status); | |
4685 | } else if(coll->normalizationMode != UCOL_OFF) { | |
4686 | norm2 = Normalizer2Factory::getFCDInstance(*status); | |
4687 | } else { | |
4688 | norm2 = NULL; | |
4689 | } | |
4690 | if(norm2 != NULL) { | |
4691 | normSource.setTo(FALSE, source, len); | |
4692 | int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); | |
4693 | if(qcYesLength != len) { | |
4694 | UnicodeString unnormalized = normSource.tempSubString(qcYesLength); | |
4695 | normSource.truncate(qcYesLength); | |
4696 | norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); | |
4697 | source = normSource.getBuffer(); | |
4698 | len = normSource.length(); | |
4699 | } | |
4700 | } | |
4701 | collIterate s; | |
4702 | IInit_collIterate(coll, source, len, &s, status); | |
4703 | if(U_FAILURE(*status)) { | |
4704 | return; | |
4705 | } | |
4706 | s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. | |
4707 | ||
4708 | uint32_t order = 0; | |
4709 | ||
b75a7d8f A |
4710 | uint8_t primary1 = 0; |
4711 | uint8_t primary2 = 0; | |
4712 | uint8_t secondary = 0; | |
4713 | uint8_t tertiary = 0; | |
b75a7d8f A |
4714 | uint8_t caseSwitch = coll->caseSwitch; |
4715 | uint8_t tertiaryMask = coll->tertiaryMask; | |
4388f060 A |
4716 | int8_t tertiaryAddition = coll->tertiaryAddition; |
4717 | uint8_t tertiaryTop = coll->tertiaryTop; | |
4718 | uint8_t tertiaryBottom = coll->tertiaryBottom; | |
b75a7d8f | 4719 | uint8_t tertiaryCommon = coll->tertiaryCommon; |
4388f060 | 4720 | uint8_t caseBits = 0; |
b75a7d8f A |
4721 | |
4722 | UBool wasShifted = FALSE; | |
4723 | UBool notIsContinuation = FALSE; | |
b75a7d8f | 4724 | |
4388f060 A |
4725 | uint32_t count2 = 0, count3 = 0, count4 = 0; |
4726 | uint8_t leadPrimary = 0; | |
b75a7d8f A |
4727 | |
4728 | for(;;) { | |
4388f060 | 4729 | order = ucol_IGetNextCE(coll, &s, status); |
46f4442e A |
4730 | if(order == UCOL_NO_MORE_CES) { |
4731 | break; | |
4732 | } | |
b75a7d8f | 4733 | |
46f4442e | 4734 | if(order == 0) { |
b75a7d8f | 4735 | continue; |
46f4442e | 4736 | } |
b75a7d8f | 4737 | |
46f4442e | 4738 | notIsContinuation = !isContinuation(order); |
b75a7d8f | 4739 | |
46f4442e | 4740 | if(notIsContinuation) { |
4388f060 | 4741 | tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK); |
46f4442e | 4742 | } else { |
b75a7d8f | 4743 | tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
46f4442e | 4744 | } |
4388f060 | 4745 | |
46f4442e A |
4746 | secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
4747 | primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); | |
4748 | primary1 = (uint8_t)(order >> 8); | |
b75a7d8f | 4749 | |
4388f060 A |
4750 | uint8_t originalPrimary1 = primary1; |
4751 | if(notIsContinuation && coll->leadBytePermutationTable != NULL) { | |
729e4ab9 A |
4752 | primary1 = coll->leadBytePermutationTable[primary1]; |
4753 | } | |
b75a7d8f | 4754 | |
729e4ab9 | 4755 | if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0) |
4388f060 A |
4756 | || (!notIsContinuation && wasShifted))) |
4757 | || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ | |
4758 | { | |
4759 | /* and other ignorables should be removed if following a shifted code point */ | |
4760 | if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */ | |
4761 | /* we should just completely ignore it */ | |
4762 | continue; | |
4763 | } | |
4764 | if(compareQuad == 0) { | |
4765 | if(count4 > 0) { | |
4766 | while (count4 > UCOL_BOT_COUNT4) { | |
51004dcb | 4767 | quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
4388f060 | 4768 | count4 -= UCOL_BOT_COUNT4; |
46f4442e | 4769 | } |
51004dcb | 4770 | quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
4388f060 A |
4771 | count4 = 0; |
4772 | } | |
4773 | /* We are dealing with a variable and we're treating them as shifted */ | |
4774 | /* This is a shifted ignorable */ | |
4775 | if(primary1 != 0) { /* we need to check this since we could be in continuation */ | |
51004dcb | 4776 | quads.appendByte(primary1); |
4388f060 A |
4777 | } |
4778 | if(primary2 != 0) { | |
51004dcb | 4779 | quads.appendByte(primary2); |
46f4442e | 4780 | } |
4388f060 A |
4781 | } |
4782 | wasShifted = TRUE; | |
46f4442e | 4783 | } else { |
b75a7d8f A |
4784 | wasShifted = FALSE; |
4785 | /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ | |
729e4ab9 | 4786 | /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
4388f060 | 4787 | /* regular and simple sortkey calc */ |
b75a7d8f | 4788 | if(primary1 != UCOL_IGNORABLE) { |
46f4442e A |
4789 | if(notIsContinuation) { |
4790 | if(leadPrimary == primary1) { | |
4388f060 | 4791 | primaries.Append(primary2); |
46f4442e A |
4792 | } else { |
4793 | if(leadPrimary != 0) { | |
51004dcb | 4794 | primaries.Append((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
46f4442e A |
4795 | } |
4796 | if(primary2 == UCOL_IGNORABLE) { | |
4797 | /* one byter, not compressed */ | |
4388f060 | 4798 | primaries.Append(primary1); |
46f4442e | 4799 | leadPrimary = 0; |
4388f060 | 4800 | } else if(isCompressible(coll, originalPrimary1)) { |
729e4ab9 | 4801 | /* compress */ |
4388f060 | 4802 | primaries.Append(leadPrimary = primary1, primary2); |
729e4ab9 A |
4803 | } else { |
4804 | leadPrimary = 0; | |
4388f060 | 4805 | primaries.Append(primary1, primary2); |
46f4442e A |
4806 | } |
4807 | } | |
4808 | } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ | |
4388f060 A |
4809 | if(primary2 == UCOL_IGNORABLE) { |
4810 | primaries.Append(primary1); | |
4811 | } else { | |
4812 | primaries.Append(primary1, primary2); | |
46f4442e | 4813 | } |
b75a7d8f | 4814 | } |
b75a7d8f A |
4815 | } |
4816 | ||
4388f060 A |
4817 | if(secondary > compareSec) { |
4818 | if(!isFrenchSec) { | |
4819 | /* This is compression code. */ | |
46f4442e | 4820 | if (secondary == UCOL_COMMON2 && notIsContinuation) { |
4388f060 | 4821 | ++count2; |
b75a7d8f | 4822 | } else { |
4388f060 | 4823 | if (count2 > 0) { |
46f4442e | 4824 | if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
4388f060 | 4825 | while (count2 > UCOL_TOP_COUNT2) { |
51004dcb | 4826 | secondaries.appendByte(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
4388f060 A |
4827 | count2 -= (uint32_t)UCOL_TOP_COUNT2; |
4828 | } | |
51004dcb | 4829 | secondaries.appendByte(UCOL_COMMON_TOP2 - (count2-1)); |
46f4442e | 4830 | } else { |
4388f060 | 4831 | while (count2 > UCOL_BOT_COUNT2) { |
51004dcb | 4832 | secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
4388f060 A |
4833 | count2 -= (uint32_t)UCOL_BOT_COUNT2; |
4834 | } | |
51004dcb | 4835 | secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
46f4442e | 4836 | } |
4388f060 | 4837 | count2 = 0; |
46f4442e | 4838 | } |
51004dcb | 4839 | secondaries.appendByte(secondary); |
b75a7d8f | 4840 | } |
b75a7d8f | 4841 | } else { |
4388f060 A |
4842 | /* Do the special handling for French secondaries */ |
4843 | /* We need to get continuation elements and do intermediate restore */ | |
4844 | /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */ | |
46f4442e | 4845 | if(notIsContinuation) { |
4388f060 | 4846 | if (lastSecondaryLength > 1) { |
51004dcb | 4847 | uint8_t *frenchStartPtr = secondaries.getLastFewBytes(lastSecondaryLength); |
4388f060 A |
4848 | if (frenchStartPtr != NULL) { |
4849 | /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ | |
4850 | uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; | |
4851 | uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); | |
4852 | } | |
46f4442e | 4853 | } |
4388f060 | 4854 | lastSecondaryLength = 1; |
46f4442e | 4855 | } else { |
4388f060 | 4856 | ++lastSecondaryLength; |
46f4442e | 4857 | } |
51004dcb | 4858 | secondaries.appendByte(secondary); |
b75a7d8f | 4859 | } |
b75a7d8f A |
4860 | } |
4861 | ||
73c04bcf A |
4862 | if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) { |
4863 | // do the case level if we need to do it. We don't want to calculate | |
4864 | // case level for primary ignorables if we have only primary strength and case level | |
46f4442e | 4865 | // otherwise we would break well formedness of CEs |
4388f060 A |
4866 | doCaseShift(cases, caseShift); |
4867 | if(notIsContinuation) { | |
4868 | caseBits = (uint8_t)(tertiary & 0xC0); | |
4869 | ||
4870 | if(tertiary != 0) { | |
4871 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
4872 | if((caseBits & 0xC0) == 0) { | |
51004dcb | 4873 | cases.lastByte() |= 1 << (--caseShift); |
4388f060 | 4874 | } else { |
51004dcb | 4875 | cases.lastByte() |= 0 << (--caseShift); |
4388f060 A |
4876 | /* second bit */ |
4877 | doCaseShift(cases, caseShift); | |
51004dcb | 4878 | cases.lastByte() |= ((caseBits>>6)&1) << (--caseShift); |
4388f060 A |
4879 | } |
4880 | } else { | |
4881 | if((caseBits & 0xC0) == 0) { | |
51004dcb | 4882 | cases.lastByte() |= 0 << (--caseShift); |
4388f060 | 4883 | } else { |
51004dcb | 4884 | cases.lastByte() |= 1 << (--caseShift); |
4388f060 A |
4885 | /* second bit */ |
4886 | doCaseShift(cases, caseShift); | |
51004dcb | 4887 | cases.lastByte() |= ((caseBits>>7)&1) << (--caseShift); |
4388f060 | 4888 | } |
46f4442e | 4889 | } |
46f4442e A |
4890 | } |
4891 | } | |
b75a7d8f | 4892 | } else { |
46f4442e A |
4893 | if(notIsContinuation) { |
4894 | tertiary ^= caseSwitch; | |
4895 | } | |
b75a7d8f A |
4896 | } |
4897 | ||
4898 | tertiary &= tertiaryMask; | |
4388f060 A |
4899 | if(tertiary > compareTer) { |
4900 | /* This is compression code. */ | |
4901 | /* sequence size check is included in the if clause */ | |
46f4442e | 4902 | if (tertiary == tertiaryCommon && notIsContinuation) { |
4388f060 | 4903 | ++count3; |
46f4442e | 4904 | } else { |
4388f060 A |
4905 | if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
4906 | tertiary += tertiaryAddition; | |
4907 | } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { | |
4908 | tertiary -= tertiaryAddition; | |
4909 | } | |
4910 | if (count3 > 0) { | |
4911 | if ((tertiary > tertiaryCommon)) { | |
4912 | while (count3 > coll->tertiaryTopCount) { | |
51004dcb | 4913 | tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
4388f060 A |
4914 | count3 -= (uint32_t)coll->tertiaryTopCount; |
4915 | } | |
51004dcb | 4916 | tertiaries.appendByte(tertiaryTop - (count3-1)); |
46f4442e | 4917 | } else { |
4388f060 | 4918 | while (count3 > coll->tertiaryBottomCount) { |
51004dcb | 4919 | tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
4388f060 A |
4920 | count3 -= (uint32_t)coll->tertiaryBottomCount; |
4921 | } | |
51004dcb | 4922 | tertiaries.appendByte(tertiaryBottom + (count3-1)); |
46f4442e | 4923 | } |
4388f060 | 4924 | count3 = 0; |
46f4442e | 4925 | } |
51004dcb | 4926 | tertiaries.appendByte(tertiary); |
b75a7d8f | 4927 | } |
b75a7d8f A |
4928 | } |
4929 | ||
4930 | if(/*qShifted*/(compareQuad==0) && notIsContinuation) { | |
4388f060 A |
4931 | if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
4932 | if(count4>0) { // Close this part | |
4933 | while (count4 > UCOL_BOT_COUNT4) { | |
51004dcb | 4934 | quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
4388f060 A |
4935 | count4 -= UCOL_BOT_COUNT4; |
4936 | } | |
51004dcb | 4937 | quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
4388f060 | 4938 | count4 = 0; |
46f4442e | 4939 | } |
51004dcb | 4940 | quads.appendByte(UCOL_HIRAGANA_QUAD); // Add the Hiragana |
46f4442e | 4941 | } else { // This wasn't Hiragana, so we can continue adding stuff |
4388f060 | 4942 | count4++; |
46f4442e | 4943 | } |
b75a7d8f | 4944 | } |
46f4442e | 4945 | } |
b75a7d8f A |
4946 | } |
4947 | ||
b75a7d8f A |
4948 | /* Here, we are generally done with processing */ |
4949 | /* bailing out would not be too productive */ | |
4950 | ||
51004dcb | 4951 | UBool ok = TRUE; |
b75a7d8f | 4952 | if(U_SUCCESS(*status)) { |
46f4442e A |
4953 | /* we have done all the CE's, now let's put them together to form a key */ |
4954 | if(compareSec == 0) { | |
4955 | if (count2 > 0) { | |
4956 | while (count2 > UCOL_BOT_COUNT2) { | |
51004dcb | 4957 | secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
4388f060 | 4958 | count2 -= (uint32_t)UCOL_BOT_COUNT2; |
46f4442e | 4959 | } |
51004dcb | 4960 | secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
46f4442e | 4961 | } |
4388f060 | 4962 | result.Append(UCOL_LEVELTERMINATOR); |
51004dcb A |
4963 | if(!secondaries.isOk()) { |
4964 | ok = FALSE; | |
4965 | } else if(!isFrenchSec) { | |
4966 | secondaries.appendTo(result); | |
b75a7d8f | 4967 | } else { |
4388f060 A |
4968 | // If there are any unresolved continuation secondaries, |
4969 | // reverse them here so that we can reverse the whole secondary thing. | |
4970 | if (lastSecondaryLength > 1) { | |
51004dcb | 4971 | uint8_t *frenchStartPtr = secondaries.getLastFewBytes(lastSecondaryLength); |
4388f060 A |
4972 | if (frenchStartPtr != NULL) { |
4973 | /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ | |
4974 | uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; | |
4975 | uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); | |
46f4442e | 4976 | } |
46f4442e | 4977 | } |
51004dcb | 4978 | packFrench(secondaries.data(), secondaries.length(), result); |
b75a7d8f | 4979 | } |
b75a7d8f A |
4980 | } |
4981 | ||
4388f060 | 4982 | if(doCase) { |
51004dcb | 4983 | ok &= cases.isOk(); |
4388f060 | 4984 | result.Append(UCOL_LEVELTERMINATOR); |
51004dcb | 4985 | cases.appendTo(result); |
4388f060 A |
4986 | } |
4987 | ||
46f4442e A |
4988 | if(compareTer == 0) { |
4989 | if (count3 > 0) { | |
4990 | if (coll->tertiaryCommon != UCOL_COMMON_BOT3) { | |
4991 | while (count3 >= coll->tertiaryTopCount) { | |
51004dcb | 4992 | tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
46f4442e A |
4993 | count3 -= (uint32_t)coll->tertiaryTopCount; |
4994 | } | |
51004dcb | 4995 | tertiaries.appendByte(tertiaryTop - count3); |
46f4442e A |
4996 | } else { |
4997 | while (count3 > coll->tertiaryBottomCount) { | |
51004dcb | 4998 | tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
46f4442e A |
4999 | count3 -= (uint32_t)coll->tertiaryBottomCount; |
5000 | } | |
51004dcb | 5001 | tertiaries.appendByte(tertiaryBottom + (count3-1)); |
b75a7d8f | 5002 | } |
b75a7d8f | 5003 | } |
51004dcb | 5004 | ok &= tertiaries.isOk(); |
4388f060 | 5005 | result.Append(UCOL_LEVELTERMINATOR); |
51004dcb | 5006 | tertiaries.appendTo(result); |
b75a7d8f | 5007 | |
46f4442e A |
5008 | if(compareQuad == 0/*qShifted == TRUE*/) { |
5009 | if(count4 > 0) { | |
5010 | while (count4 > UCOL_BOT_COUNT4) { | |
51004dcb | 5011 | quads.appendByte(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
46f4442e A |
5012 | count4 -= UCOL_BOT_COUNT4; |
5013 | } | |
51004dcb | 5014 | quads.appendByte(UCOL_COMMON_BOT4 + (count4-1)); |
46f4442e | 5015 | } |
51004dcb | 5016 | ok &= quads.isOk(); |
4388f060 | 5017 | result.Append(UCOL_LEVELTERMINATOR); |
51004dcb | 5018 | quads.appendTo(result); |
46f4442e A |
5019 | } |
5020 | ||
5021 | if(compareIdent) { | |
4388f060 A |
5022 | result.Append(UCOL_LEVELTERMINATOR); |
5023 | u_writeIdenticalLevelRun(s.string, len, result); | |
b75a7d8f | 5024 | } |
b75a7d8f | 5025 | } |
4388f060 | 5026 | result.Append(0); |
b75a7d8f A |
5027 | } |
5028 | ||
46f4442e | 5029 | /* To avoid memory leak, free the offset buffer if necessary. */ |
729e4ab9 | 5030 | ucol_freeOffsetBuffer(&s); |
51004dcb A |
5031 | |
5032 | ok &= result.IsOk(); | |
5033 | if(!ok && U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } | |
b75a7d8f A |
5034 | } |
5035 | ||
5036 | ||
4388f060 | 5037 | U_CFUNC void U_CALLCONV |
b75a7d8f A |
5038 | ucol_calcSortKeySimpleTertiary(const UCollator *coll, |
5039 | const UChar *source, | |
5040 | int32_t sourceLength, | |
4388f060 | 5041 | SortKeyByteSink &result, |
b75a7d8f A |
5042 | UErrorCode *status) |
5043 | { | |
5044 | U_ALIGN_CODE(16); | |
374ca955 | 5045 | |
b75a7d8f | 5046 | if(U_FAILURE(*status)) { |
4388f060 | 5047 | return; |
b75a7d8f A |
5048 | } |
5049 | ||
4388f060 | 5050 | SortKeyByteSink &primaries = result; |
51004dcb A |
5051 | SortKeyLevel secondaries; |
5052 | SortKeyLevel tertiaries; | |
b75a7d8f | 5053 | |
729e4ab9 | 5054 | UnicodeString normSource; |
b75a7d8f A |
5055 | |
5056 | int32_t len = sourceLength; | |
5057 | ||
5058 | /* If we need to normalize, we'll do it all at once at the beginning! */ | |
729e4ab9 A |
5059 | if(coll->normalizationMode != UCOL_OFF) { |
5060 | normSource.setTo(len < 0, source, len); | |
5061 | const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status); | |
5062 | int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); | |
5063 | if(qcYesLength != normSource.length()) { | |
5064 | UnicodeString unnormalized = normSource.tempSubString(qcYesLength); | |
5065 | normSource.truncate(qcYesLength); | |
5066 | norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); | |
5067 | source = normSource.getBuffer(); | |
5068 | len = normSource.length(); | |
b75a7d8f | 5069 | } |
b75a7d8f | 5070 | } |
b75a7d8f | 5071 | collIterate s; |
729e4ab9 A |
5072 | IInit_collIterate(coll, (UChar *)source, len, &s, status); |
5073 | if(U_FAILURE(*status)) { | |
4388f060 | 5074 | return; |
b75a7d8f | 5075 | } |
729e4ab9 | 5076 | s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
b75a7d8f | 5077 | |
b75a7d8f A |
5078 | uint32_t order = 0; |
5079 | ||
5080 | uint8_t primary1 = 0; | |
5081 | uint8_t primary2 = 0; | |
5082 | uint8_t secondary = 0; | |
5083 | uint8_t tertiary = 0; | |
5084 | uint8_t caseSwitch = coll->caseSwitch; | |
5085 | uint8_t tertiaryMask = coll->tertiaryMask; | |
46f4442e | 5086 | int8_t tertiaryAddition = coll->tertiaryAddition; |
b75a7d8f A |
5087 | uint8_t tertiaryTop = coll->tertiaryTop; |
5088 | uint8_t tertiaryBottom = coll->tertiaryBottom; | |
5089 | uint8_t tertiaryCommon = coll->tertiaryCommon; | |
5090 | ||
b75a7d8f A |
5091 | UBool notIsContinuation = FALSE; |
5092 | ||
5093 | uint32_t count2 = 0, count3 = 0; | |
5094 | uint8_t leadPrimary = 0; | |
5095 | ||
5096 | for(;;) { | |
4388f060 | 5097 | order = ucol_IGetNextCE(coll, &s, status); |
b75a7d8f | 5098 | |
4388f060 A |
5099 | if(order == 0) { |
5100 | continue; | |
5101 | } | |
b75a7d8f | 5102 | |
4388f060 A |
5103 | if(order == UCOL_NO_MORE_CES) { |
5104 | break; | |
5105 | } | |
b75a7d8f | 5106 | |
4388f060 | 5107 | notIsContinuation = !isContinuation(order); |
b75a7d8f | 5108 | |
4388f060 A |
5109 | if(notIsContinuation) { |
5110 | tertiary = (uint8_t)((order & tertiaryMask)); | |
5111 | } else { | |
5112 | tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); | |
5113 | } | |
729e4ab9 | 5114 | |
4388f060 A |
5115 | secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
5116 | primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); | |
5117 | primary1 = (uint8_t)(order >> 8); | |
b75a7d8f | 5118 | |
4388f060 A |
5119 | uint8_t originalPrimary1 = primary1; |
5120 | if (coll->leadBytePermutationTable != NULL && notIsContinuation) { | |
5121 | primary1 = coll->leadBytePermutationTable[primary1]; | |
5122 | } | |
729e4ab9 | 5123 | |
4388f060 A |
5124 | /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
5125 | /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ | |
5126 | /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */ | |
5127 | /* regular and simple sortkey calc */ | |
5128 | if(primary1 != UCOL_IGNORABLE) { | |
5129 | if(notIsContinuation) { | |
5130 | if(leadPrimary == primary1) { | |
5131 | primaries.Append(primary2); | |
5132 | } else { | |
5133 | if(leadPrimary != 0) { | |
51004dcb | 5134 | primaries.Append((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
4388f060 A |
5135 | } |
5136 | if(primary2 == UCOL_IGNORABLE) { | |
5137 | /* one byter, not compressed */ | |
5138 | primaries.Append(primary1); | |
5139 | leadPrimary = 0; | |
5140 | } else if(isCompressible(coll, originalPrimary1)) { | |
5141 | /* compress */ | |
5142 | primaries.Append(leadPrimary = primary1, primary2); | |
46f4442e | 5143 | } else { |
4388f060 A |
5144 | leadPrimary = 0; |
5145 | primaries.Append(primary1, primary2); | |
46f4442e | 5146 | } |
b75a7d8f | 5147 | } |
4388f060 A |
5148 | } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
5149 | if(primary2 == UCOL_IGNORABLE) { | |
5150 | primaries.Append(primary1); | |
46f4442e | 5151 | } else { |
4388f060 | 5152 | primaries.Append(primary1, primary2); |
b75a7d8f | 5153 | } |
b75a7d8f | 5154 | } |
4388f060 | 5155 | } |
b75a7d8f | 5156 | |
4388f060 A |
5157 | if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */ |
5158 | /* This is compression code. */ | |
5159 | if (secondary == UCOL_COMMON2 && notIsContinuation) { | |
5160 | ++count2; | |
5161 | } else { | |
5162 | if (count2 > 0) { | |
5163 | if (secondary > UCOL_COMMON2) { // not necessary for 4th level. | |
5164 | while (count2 > UCOL_TOP_COUNT2) { | |
51004dcb | 5165 | secondaries.appendByte(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
4388f060 | 5166 | count2 -= (uint32_t)UCOL_TOP_COUNT2; |
46f4442e | 5167 | } |
51004dcb | 5168 | secondaries.appendByte(UCOL_COMMON_TOP2 - (count2-1)); |
4388f060 A |
5169 | } else { |
5170 | while (count2 > UCOL_BOT_COUNT2) { | |
51004dcb | 5171 | secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
4388f060 A |
5172 | count2 -= (uint32_t)UCOL_BOT_COUNT2; |
5173 | } | |
51004dcb | 5174 | secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
46f4442e | 5175 | } |
4388f060 | 5176 | count2 = 0; |
b75a7d8f | 5177 | } |
51004dcb | 5178 | secondaries.appendByte(secondary); |
b75a7d8f | 5179 | } |
4388f060 | 5180 | } |
b75a7d8f | 5181 | |
4388f060 A |
5182 | if(notIsContinuation) { |
5183 | tertiary ^= caseSwitch; | |
5184 | } | |
5185 | ||
5186 | if(tertiary > 0) { | |
5187 | /* This is compression code. */ | |
5188 | /* sequence size check is included in the if clause */ | |
5189 | if (tertiary == tertiaryCommon && notIsContinuation) { | |
5190 | ++count3; | |
5191 | } else { | |
5192 | if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { | |
5193 | tertiary += tertiaryAddition; | |
5194 | } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { | |
5195 | tertiary -= tertiaryAddition; | |
5196 | } | |
5197 | if (count3 > 0) { | |
5198 | if ((tertiary > tertiaryCommon)) { | |
5199 | while (count3 > coll->tertiaryTopCount) { | |
51004dcb | 5200 | tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
4388f060 A |
5201 | count3 -= (uint32_t)coll->tertiaryTopCount; |
5202 | } | |
51004dcb | 5203 | tertiaries.appendByte(tertiaryTop - (count3-1)); |
46f4442e | 5204 | } else { |
4388f060 | 5205 | while (count3 > coll->tertiaryBottomCount) { |
51004dcb | 5206 | tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
4388f060 A |
5207 | count3 -= (uint32_t)coll->tertiaryBottomCount; |
5208 | } | |
51004dcb | 5209 | tertiaries.appendByte(tertiaryBottom + (count3-1)); |
46f4442e | 5210 | } |
4388f060 | 5211 | count3 = 0; |
b75a7d8f | 5212 | } |
51004dcb | 5213 | tertiaries.appendByte(tertiary); |
46f4442e | 5214 | } |
b75a7d8f A |
5215 | } |
5216 | } | |
5217 | ||
51004dcb | 5218 | UBool ok = TRUE; |
b75a7d8f | 5219 | if(U_SUCCESS(*status)) { |
46f4442e A |
5220 | /* we have done all the CE's, now let's put them together to form a key */ |
5221 | if (count2 > 0) { | |
5222 | while (count2 > UCOL_BOT_COUNT2) { | |
51004dcb | 5223 | secondaries.appendByte(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
46f4442e A |
5224 | count2 -= (uint32_t)UCOL_BOT_COUNT2; |
5225 | } | |
51004dcb | 5226 | secondaries.appendByte(UCOL_COMMON_BOT2 + (count2-1)); |
b75a7d8f | 5227 | } |
51004dcb | 5228 | ok &= secondaries.isOk(); |
4388f060 | 5229 | result.Append(UCOL_LEVELTERMINATOR); |
51004dcb | 5230 | secondaries.appendTo(result); |
b75a7d8f | 5231 | |
46f4442e A |
5232 | if (count3 > 0) { |
5233 | if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) { | |
5234 | while (count3 >= coll->tertiaryTopCount) { | |
51004dcb | 5235 | tertiaries.appendByte(tertiaryTop - coll->tertiaryTopCount); |
46f4442e A |
5236 | count3 -= (uint32_t)coll->tertiaryTopCount; |
5237 | } | |
51004dcb | 5238 | tertiaries.appendByte(tertiaryTop - count3); |
46f4442e A |
5239 | } else { |
5240 | while (count3 > coll->tertiaryBottomCount) { | |
51004dcb | 5241 | tertiaries.appendByte(tertiaryBottom + coll->tertiaryBottomCount); |
46f4442e A |
5242 | count3 -= (uint32_t)coll->tertiaryBottomCount; |
5243 | } | |
51004dcb | 5244 | tertiaries.appendByte(tertiaryBottom + (count3-1)); |
46f4442e | 5245 | } |
b75a7d8f | 5246 | } |
51004dcb | 5247 | ok &= tertiaries.isOk(); |
4388f060 | 5248 | result.Append(UCOL_LEVELTERMINATOR); |
51004dcb | 5249 | tertiaries.appendTo(result); |
b75a7d8f | 5250 | |
4388f060 | 5251 | result.Append(0); |
b75a7d8f A |
5252 | } |
5253 | ||
46f4442e | 5254 | /* To avoid memory leak, free the offset buffer if necessary. */ |
729e4ab9 | 5255 | ucol_freeOffsetBuffer(&s); |
4388f060 | 5256 | |
51004dcb A |
5257 | ok &= result.IsOk(); |
5258 | if(!ok && U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } | |
b75a7d8f A |
5259 | } |
5260 | ||
5261 | static inline | |
5262 | UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) { | |
46f4442e A |
5263 | UBool notIsContinuation = !isContinuation(CE); |
5264 | uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF); | |
729e4ab9 A |
5265 | if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0) |
5266 | || (!notIsContinuation && *wasShifted))) | |
46f4442e A |
5267 | || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
5268 | { | |
5269 | // The stuff below should probably be in the sortkey code... maybe not... | |
5270 | if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */ | |
5271 | /* we should just completely ignore it */ | |
5272 | *wasShifted = TRUE; | |
5273 | //continue; | |
5274 | } | |
5275 | //*wasShifted = TRUE; | |
5276 | return TRUE; | |
5277 | } else { | |
5278 | *wasShifted = FALSE; | |
5279 | return FALSE; | |
5280 | } | |
b75a7d8f A |
5281 | } |
5282 | static inline | |
5283 | void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) { | |
46f4442e A |
5284 | if(level < maxLevel) { |
5285 | dest[i++] = UCOL_LEVELTERMINATOR; | |
5286 | } else { | |
5287 | dest[i++] = 0; | |
5288 | } | |
b75a7d8f A |
5289 | } |
5290 | ||
5291 | /** enumeration of level identifiers for partial sort key generation */ | |
5292 | enum { | |
5293 | UCOL_PSK_PRIMARY = 0, | |
5294 | UCOL_PSK_SECONDARY = 1, | |
5295 | UCOL_PSK_CASE = 2, | |
5296 | UCOL_PSK_TERTIARY = 3, | |
5297 | UCOL_PSK_QUATERNARY = 4, | |
5298 | UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */ | |
5299 | UCOL_PSK_IDENTICAL = 6, | |
5300 | UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */ | |
5301 | UCOL_PSK_LIMIT | |
5302 | }; | |
5303 | ||
374ca955 A |
5304 | /** collation state enum. *_SHIFT value is how much to shift right |
5305 | * to get the state piece to the right. *_MASK value should be | |
b75a7d8f A |
5306 | * ANDed with the shifted state. This data is stored in state[1] |
5307 | * field. | |
5308 | */ | |
5309 | enum { | |
5310 | UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */ | |
5311 | UCOL_PSK_LEVEL_MASK = 7, /** three bits */ | |
5312 | UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */ | |
374ca955 | 5313 | UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1, |
b75a7d8f A |
5314 | /** can be only 0 or 1, since we get up to two bytes from primary or quaternary |
5315 | * This field is also used to denote that the French secondary level is finished | |
5316 | */ | |
5317 | UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */ | |
5318 | UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */ | |
5319 | UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */ | |
5320 | UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */ | |
5321 | /** When we do French we need to reverse secondary values. However, continuations | |
374ca955 | 5322 | * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba |
b75a7d8f | 5323 | */ |
73c04bcf A |
5324 | UCOL_PSK_BOCSU_BYTES_SHIFT = 7, |
5325 | UCOL_PSK_BOCSU_BYTES_MASK = 3, | |
5326 | UCOL_PSK_CONSUMED_CES_SHIFT = 9, | |
5327 | UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF | |
b75a7d8f A |
5328 | }; |
5329 | ||
73c04bcf A |
5330 | // macro calculating the number of expansion CEs available |
5331 | #define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn | |
5332 | ||
b75a7d8f | 5333 | |
374ca955 A |
5334 | /** main sortkey part procedure. On the first call, |
5335 | * you should pass in a collator, an iterator, empty state | |
b75a7d8f A |
5336 | * state[0] == state[1] == 0, a buffer to hold results |
5337 | * number of bytes you need and an error code pointer. | |
5338 | * Make sure your buffer is big enough to hold the wanted | |
374ca955 A |
5339 | * number of sortkey bytes. I don't check. |
5340 | * The only meaningful status you can get back is | |
5341 | * U_BUFFER_OVERFLOW_ERROR, which basically means that you | |
b75a7d8f A |
5342 | * have been dealt a raw deal and that you probably won't |
5343 | * be able to use partial sortkey generation for this | |
5344 | * particular combination of string and collator. This | |
5345 | * is highly unlikely, but you should still check the error code. | |
374ca955 A |
5346 | * Any other status means that you're not in a sane situation |
5347 | * anymore. After the first call, preserve state values and | |
b75a7d8f A |
5348 | * use them on subsequent calls to obtain more bytes of a sortkey. |
5349 | * Use until the number of bytes written is smaller than the requested | |
5350 | * number of bytes. Generated sortkey is not compatible with the | |
5351 | * one generated by ucol_getSortKey, as we don't do any compression. | |
5352 | * However, levels are still terminated by a 1 (one) and the sortkey | |
5353 | * is terminated by a 0 (zero). Identical level is the same as in the | |
374ca955 A |
5354 | * regular sortkey - internal bocu-1 implementation is used. |
5355 | * For curious, although you cannot do much about this, here is | |
b75a7d8f A |
5356 | * the structure of state words. |
5357 | * state[0] - iterator state. Depends on the iterator implementation, | |
5358 | * but allows the iterator to continue where it stopped in | |
5359 | * the last iteration. | |
5360 | * state[1] - collation processing state. Here is the distribution | |
5361 | * of the bits: | |
5362 | * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary | |
5363 | * quaternary, quin (we don't use this one), identical and | |
5364 | * null (producing only zeroes - first one to terminate the | |
5365 | * sortkey and subsequent to fill the buffer). | |
5366 | * 3 - byte count. Number of bytes written on the primary level. | |
5367 | * 4 - was shifted. Whether the previous iteration finished in the | |
5368 | * shifted state. | |
5369 | * 5, 6 - French continuation bytes written. See the comment in the enum | |
73c04bcf | 5370 | * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on |
b75a7d8f | 5371 | * the identical level. |
46f4442e | 5372 | * 9..31 - CEs consumed. Number of getCE or next32 operations performed |
73c04bcf | 5373 | * since thes last successful update of the iterator state. |
b75a7d8f | 5374 | */ |
374ca955 | 5375 | U_CAPI int32_t U_EXPORT2 |
b75a7d8f A |
5376 | ucol_nextSortKeyPart(const UCollator *coll, |
5377 | UCharIterator *iter, | |
5378 | uint32_t state[2], | |
5379 | uint8_t *dest, int32_t count, | |
46f4442e A |
5380 | UErrorCode *status) |
5381 | { | |
b75a7d8f A |
5382 | /* error checking */ |
5383 | if(status==NULL || U_FAILURE(*status)) { | |
5384 | return 0; | |
5385 | } | |
374ca955 | 5386 | UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART); |
b75a7d8f A |
5387 | if( coll==NULL || iter==NULL || |
5388 | state==NULL || | |
5389 | count<0 || (count>0 && dest==NULL) | |
5390 | ) { | |
5391 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
46f4442e A |
5392 | UTRACE_EXIT_STATUS(status); |
5393 | return 0; | |
b75a7d8f A |
5394 | } |
5395 | ||
374ca955 A |
5396 | UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d", |
5397 | coll, iter, state[0], state[1], dest, count); | |
b75a7d8f A |
5398 | |
5399 | if(count==0) { | |
5400 | /* nothing to do */ | |
374ca955 | 5401 | UTRACE_EXIT_VALUE(0); |
b75a7d8f A |
5402 | return 0; |
5403 | } | |
b75a7d8f A |
5404 | /** Setting up situation according to the state we got from the previous iteration */ |
5405 | // The state of the iterator from the previous invocation | |
5406 | uint32_t iterState = state[0]; | |
5407 | // Has the last iteration ended in the shifted state | |
5408 | UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE; | |
5409 | // What is the current level of the sortkey? | |
5410 | int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK; | |
5411 | // Have we written only one byte from a two byte primary in the previous iteration? | |
5412 | // Also on secondary level - have we finished with the French secondary? | |
374ca955 | 5413 | int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK; |
b75a7d8f A |
5414 | // number of bytes in the continuation buffer for French |
5415 | int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK; | |
73c04bcf | 5416 | // Number of bytes already written from a bocsu sequence. Since |
46f4442e | 5417 | // the longes bocsu sequence is 4 long, this can be up to 3. |
73c04bcf A |
5418 | int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK; |
5419 | // Number of elements that need to be consumed in this iteration because | |
46f4442e | 5420 | // the iterator returned UITER_NO_STATE at the end of the last iteration, |
73c04bcf A |
5421 | // so we had to save the last valid state. |
5422 | int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK; | |
b75a7d8f A |
5423 | |
5424 | /** values that depend on the collator attributes */ | |
374ca955 | 5425 | // strength of the collator. |
b75a7d8f A |
5426 | int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status); |
5427 | // maximal level of the partial sortkey. Need to take whether case level is done | |
5428 | int32_t maxLevel = 0; | |
5429 | if(strength < UCOL_TERTIARY) { | |
46f4442e A |
5430 | if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
5431 | maxLevel = UCOL_PSK_CASE; | |
5432 | } else { | |
5433 | maxLevel = strength; | |
5434 | } | |
b75a7d8f A |
5435 | } else { |
5436 | if(strength == UCOL_TERTIARY) { | |
46f4442e | 5437 | maxLevel = UCOL_PSK_TERTIARY; |
b75a7d8f | 5438 | } else if(strength == UCOL_QUATERNARY) { |
46f4442e | 5439 | maxLevel = UCOL_PSK_QUATERNARY; |
b75a7d8f | 5440 | } else { // identical |
46f4442e | 5441 | maxLevel = UCOL_IDENTICAL; |
b75a7d8f A |
5442 | } |
5443 | } | |
5444 | // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation | |
374ca955 | 5445 | uint8_t UCOL_HIRAGANA_QUAD = |
b75a7d8f A |
5446 | (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF; |
5447 | // Boundary value that decides whether a CE is shifted or not | |
5448 | uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0; | |
5449 | // Are we doing French collation? | |
5450 | UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON); | |
5451 | ||
5452 | /** initializing the collation state */ | |
5453 | UBool notIsContinuation = FALSE; | |
5454 | uint32_t CE = UCOL_NO_MORE_CES; | |
5455 | ||
5456 | collIterate s; | |
729e4ab9 A |
5457 | IInit_collIterate(coll, NULL, -1, &s, status); |
5458 | if(U_FAILURE(*status)) { | |
5459 | UTRACE_EXIT_STATUS(*status); | |
5460 | return 0; | |
5461 | } | |
b75a7d8f A |
5462 | s.iterator = iter; |
5463 | s.flags |= UCOL_USE_ITERATOR; | |
5464 | // This variable tells us whether we have produced some other levels in this iteration | |
374ca955 | 5465 | // before we moved to the identical level. In that case, we need to switch the |
b75a7d8f A |
5466 | // type of the iterator. |
5467 | UBool doingIdenticalFromStart = FALSE; | |
5468 | // Normalizing iterator | |
5469 | // The division for the array length may truncate the array size to | |
5470 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
5471 | // for all platforms anyway. | |
5472 | UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
5473 | UNormIterator *normIter = NULL; | |
5474 | // If the normalization is turned on for the collator and we are below identical level | |
5475 | // we will use a FCD normalizing iterator | |
5476 | if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) { | |
46f4442e A |
5477 | normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
5478 | s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status); | |
5479 | s.flags &= ~UCOL_ITER_NORM; | |
5480 | if(U_FAILURE(*status)) { | |
5481 | UTRACE_EXIT_STATUS(*status); | |
5482 | return 0; | |
5483 | } | |
b75a7d8f | 5484 | } else if(level == UCOL_PSK_IDENTICAL) { |
46f4442e A |
5485 | // for identical level, we need a NFD iterator. We need to instantiate it here, since we |
5486 | // will be updating the state - and this cannot be done on an ordinary iterator. | |
5487 | normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); | |
5488 | s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); | |
5489 | s.flags &= ~UCOL_ITER_NORM; | |
5490 | if(U_FAILURE(*status)) { | |
5491 | UTRACE_EXIT_STATUS(*status); | |
5492 | return 0; | |
5493 | } | |
5494 | doingIdenticalFromStart = TRUE; | |
b75a7d8f A |
5495 | } |
5496 | ||
5497 | // This is the tentative new state of the iterator. The problem | |
5498 | // is that the iterator might return an undefined state, in | |
5499 | // which case we should save the last valid state and increase | |
5500 | // the iterator skip value. | |
5501 | uint32_t newState = 0; | |
5502 | ||
5503 | // First, we set the iterator to the last valid position | |
5504 | // from the last iteration. This was saved in state[0]. | |
5505 | if(iterState == 0) { | |
46f4442e A |
5506 | /* initial state */ |
5507 | if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) { | |
5508 | s.iterator->move(s.iterator, 0, UITER_LIMIT); | |
5509 | } else { | |
5510 | s.iterator->move(s.iterator, 0, UITER_START); | |
5511 | } | |
b75a7d8f A |
5512 | } else { |
5513 | /* reset to previous state */ | |
46f4442e A |
5514 | s.iterator->setState(s.iterator, iterState, status); |
5515 | if(U_FAILURE(*status)) { | |
5516 | UTRACE_EXIT_STATUS(*status); | |
5517 | return 0; | |
5518 | } | |
b75a7d8f A |
5519 | } |
5520 | ||
b75a7d8f A |
5521 | |
5522 | ||
73c04bcf A |
5523 | // This variable tells us whether we can attempt to update the state |
5524 | // of iterator. Situations where we don't want to update iterator state | |
5525 | // are the existence of expansion CEs that are not yet processed, and | |
5526 | // finishing the case level without enough space in the buffer to insert | |
5527 | // a level terminator. | |
5528 | UBool canUpdateState = TRUE; | |
5529 | ||
5530 | // Consume all the CEs that were consumed at the end of the previous | |
5531 | // iteration without updating the iterator state. On identical level, | |
46f4442e | 5532 | // consume the code points. |
73c04bcf A |
5533 | int32_t counter = cces; |
5534 | if(level < UCOL_PSK_IDENTICAL) { | |
46f4442e A |
5535 | while(counter-->0) { |
5536 | // If we're doing French and we are on the secondary level, | |
5537 | // we go backwards. | |
5538 | if(level == UCOL_PSK_SECONDARY && doingFrench) { | |
5539 | CE = ucol_IGetPrevCE(coll, &s, status); | |
5540 | } else { | |
5541 | CE = ucol_IGetNextCE(coll, &s, status); | |
5542 | } | |
5543 | if(CE==UCOL_NO_MORE_CES) { | |
5544 | /* should not happen */ | |
5545 | *status=U_INTERNAL_PROGRAM_ERROR; | |
5546 | UTRACE_EXIT_STATUS(*status); | |
5547 | return 0; | |
5548 | } | |
5549 | if(uprv_numAvailableExpCEs(s)) { | |
5550 | canUpdateState = FALSE; | |
5551 | } | |
73c04bcf | 5552 | } |
b75a7d8f | 5553 | } else { |
46f4442e A |
5554 | while(counter-->0) { |
5555 | uiter_next32(s.iterator); | |
5556 | } | |
b75a7d8f A |
5557 | } |
5558 | ||
b75a7d8f A |
5559 | // French secondary needs to know whether the iterator state of zero came from previous level OR |
5560 | // from a new invocation... | |
5561 | UBool wasDoingPrimary = FALSE; | |
b75a7d8f A |
5562 | // destination buffer byte counter. When this guy |
5563 | // gets to count, we're done with the iteration | |
374ca955 A |
5564 | int32_t i = 0; |
5565 | // used to count the zero bytes written after we | |
b75a7d8f A |
5566 | // have finished with the sort key |
5567 | int32_t j = 0; | |
5568 | ||
5569 | ||
5570 | // Hm.... I think we're ready to plunge in. Basic story is as following: | |
5571 | // we have a fall through case based on level. This is used for initial | |
5572 | // positioning on iteration start. Every level processor contains a | |
5573 | // for(;;) which will be broken when we exhaust all the CEs. Other | |
5574 | // way to exit is a goto saveState, which happens when we have filled | |
5575 | // out our buffer. | |
5576 | switch(level) { | |
374ca955 | 5577 | case UCOL_PSK_PRIMARY: |
46f4442e A |
5578 | wasDoingPrimary = TRUE; |
5579 | for(;;) { | |
5580 | if(i==count) { | |
5581 | goto saveState; | |
b75a7d8f A |
5582 | } |
5583 | // We should save the state only if we | |
5584 | // are sure that we are done with the | |
5585 | // previous iterator state | |
46f4442e A |
5586 | if(canUpdateState && byteCountOrFrenchDone == 0) { |
5587 | newState = s.iterator->getState(s.iterator); | |
5588 | if(newState != UITER_NO_STATE) { | |
5589 | iterState = newState; | |
5590 | cces = 0; | |
5591 | } | |
b75a7d8f | 5592 | } |
b75a7d8f | 5593 | CE = ucol_IGetNextCE(coll, &s, status); |
73c04bcf | 5594 | cces++; |
b75a7d8f A |
5595 | if(CE==UCOL_NO_MORE_CES) { |
5596 | // Add the level separator | |
5597 | terminatePSKLevel(level, maxLevel, i, dest); | |
46f4442e | 5598 | byteCountOrFrenchDone=0; |
b75a7d8f A |
5599 | // Restart the iteration an move to the |
5600 | // second level | |
374ca955 | 5601 | s.iterator->move(s.iterator, 0, UITER_START); |
73c04bcf | 5602 | cces = 0; |
46f4442e | 5603 | level = UCOL_PSK_SECONDARY; |
b75a7d8f A |
5604 | break; |
5605 | } | |
729e4ab9 A |
5606 | if(!isContinuation(CE)){ |
5607 | if(coll->leadBytePermutationTable != NULL){ | |
5608 | CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF); | |
5609 | } | |
5610 | } | |
b75a7d8f | 5611 | if(!isShiftedCE(CE, LVT, &wasShifted)) { |
46f4442e A |
5612 | CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */ |
5613 | if(CE != 0) { | |
5614 | if(byteCountOrFrenchDone == 0) { | |
5615 | // get the second byte of primary | |
5616 | dest[i++]=(uint8_t)(CE >> 8); | |
5617 | } else { | |
5618 | byteCountOrFrenchDone = 0; | |
5619 | } | |
5620 | if((CE &=0xff)!=0) { | |
5621 | if(i==count) { | |
5622 | /* overflow */ | |
5623 | byteCountOrFrenchDone = 1; | |
5624 | cces--; | |
5625 | goto saveState; | |
5626 | } | |
5627 | dest[i++]=(uint8_t)CE; | |
5628 | } | |
5629 | } | |
b75a7d8f | 5630 | } |
73c04bcf | 5631 | if(uprv_numAvailableExpCEs(s)) { |
46f4442e | 5632 | canUpdateState = FALSE; |
b75a7d8f | 5633 | } else { |
46f4442e | 5634 | canUpdateState = TRUE; |
b75a7d8f | 5635 | } |
46f4442e A |
5636 | } |
5637 | /* fall through to next level */ | |
5638 | case UCOL_PSK_SECONDARY: | |
5639 | if(strength >= UCOL_SECONDARY) { | |
5640 | if(!doingFrench) { | |
5641 | for(;;) { | |
5642 | if(i == count) { | |
5643 | goto saveState; | |
5644 | } | |
5645 | // We should save the state only if we | |
5646 | // are sure that we are done with the | |
5647 | // previous iterator state | |
5648 | if(canUpdateState) { | |
5649 | newState = s.iterator->getState(s.iterator); | |
5650 | if(newState != UITER_NO_STATE) { | |
5651 | iterState = newState; | |
5652 | cces = 0; | |
5653 | } | |
5654 | } | |
5655 | CE = ucol_IGetNextCE(coll, &s, status); | |
5656 | cces++; | |
5657 | if(CE==UCOL_NO_MORE_CES) { | |
5658 | // Add the level separator | |
5659 | terminatePSKLevel(level, maxLevel, i, dest); | |
5660 | byteCountOrFrenchDone = 0; | |
5661 | // Restart the iteration an move to the | |
5662 | // second level | |
5663 | s.iterator->move(s.iterator, 0, UITER_START); | |
5664 | cces = 0; | |
5665 | level = UCOL_PSK_CASE; | |
5666 | break; | |
5667 | } | |
5668 | if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5669 | CE >>= 8; /* get secondary */ | |
5670 | if(CE != 0) { | |
5671 | dest[i++]=(uint8_t)CE; | |
5672 | } | |
5673 | } | |
5674 | if(uprv_numAvailableExpCEs(s)) { | |
5675 | canUpdateState = FALSE; | |
5676 | } else { | |
5677 | canUpdateState = TRUE; | |
5678 | } | |
b75a7d8f | 5679 | } |
46f4442e A |
5680 | } else { // French secondary processing |
5681 | uint8_t frenchBuff[UCOL_MAX_BUFFER]; | |
5682 | int32_t frenchIndex = 0; | |
5683 | // Here we are going backwards. | |
5684 | // If the iterator is at the beggining, it should be | |
5685 | // moved to end. | |
5686 | if(wasDoingPrimary) { | |
5687 | s.iterator->move(s.iterator, 0, UITER_LIMIT); | |
5688 | cces = 0; | |
5689 | } | |
5690 | for(;;) { | |
5691 | if(i == count) { | |
5692 | goto saveState; | |
5693 | } | |
5694 | if(canUpdateState) { | |
5695 | newState = s.iterator->getState(s.iterator); | |
5696 | if(newState != UITER_NO_STATE) { | |
5697 | iterState = newState; | |
5698 | cces = 0; | |
5699 | } | |
5700 | } | |
5701 | CE = ucol_IGetPrevCE(coll, &s, status); | |
5702 | cces++; | |
5703 | if(CE==UCOL_NO_MORE_CES) { | |
5704 | // Add the level separator | |
5705 | terminatePSKLevel(level, maxLevel, i, dest); | |
5706 | byteCountOrFrenchDone = 0; | |
5707 | // Restart the iteration an move to the next level | |
5708 | s.iterator->move(s.iterator, 0, UITER_START); | |
5709 | level = UCOL_PSK_CASE; | |
5710 | break; | |
5711 | } | |
5712 | if(isContinuation(CE)) { // if it's a continuation, we want to save it and | |
5713 | // reverse when we get a first non-continuation CE. | |
5714 | CE >>= 8; | |
5715 | frenchBuff[frenchIndex++] = (uint8_t)CE; | |
5716 | } else if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5717 | CE >>= 8; /* get secondary */ | |
5718 | if(!frenchIndex) { | |
5719 | if(CE != 0) { | |
5720 | dest[i++]=(uint8_t)CE; | |
5721 | } | |
5722 | } else { | |
5723 | frenchBuff[frenchIndex++] = (uint8_t)CE; | |
5724 | frenchIndex -= usedFrench; | |
5725 | usedFrench = 0; | |
5726 | while(i < count && frenchIndex) { | |
5727 | dest[i++] = frenchBuff[--frenchIndex]; | |
5728 | usedFrench++; | |
5729 | } | |
5730 | } | |
5731 | } | |
5732 | if(uprv_numAvailableExpCEs(s)) { | |
5733 | canUpdateState = FALSE; | |
5734 | } else { | |
5735 | canUpdateState = TRUE; | |
5736 | } | |
b75a7d8f | 5737 | } |
b75a7d8f | 5738 | } |
46f4442e A |
5739 | } else { |
5740 | level = UCOL_PSK_CASE; | |
b75a7d8f | 5741 | } |
b75a7d8f A |
5742 | /* fall through to next level */ |
5743 | case UCOL_PSK_CASE: | |
46f4442e A |
5744 | if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
5745 | uint32_t caseShift = UCOL_CASE_SHIFT_START; | |
5746 | uint8_t caseByte = UCOL_CASE_BYTE_START; | |
5747 | uint8_t caseBits = 0; | |
5748 | ||
5749 | for(;;) { | |
729e4ab9 | 5750 | U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START); |
46f4442e A |
5751 | if(i == count) { |
5752 | goto saveState; | |
5753 | } | |
5754 | // We should save the state only if we | |
5755 | // are sure that we are done with the | |
5756 | // previous iterator state | |
5757 | if(canUpdateState) { | |
5758 | newState = s.iterator->getState(s.iterator); | |
5759 | if(newState != UITER_NO_STATE) { | |
5760 | iterState = newState; | |
5761 | cces = 0; | |
5762 | } | |
5763 | } | |
5764 | CE = ucol_IGetNextCE(coll, &s, status); | |
5765 | cces++; | |
5766 | if(CE==UCOL_NO_MORE_CES) { | |
5767 | // On the case level we might have an unfinished | |
5768 | // case byte. Add one if it's started. | |
5769 | if(caseShift != UCOL_CASE_SHIFT_START) { | |
5770 | dest[i++] = caseByte; | |
5771 | } | |
5772 | cces = 0; | |
5773 | // We have finished processing CEs on this level. | |
5774 | // However, we don't know if we have enough space | |
5775 | // to add a case level terminator. | |
5776 | if(i < count) { | |
5777 | // Add the level separator | |
5778 | terminatePSKLevel(level, maxLevel, i, dest); | |
5779 | // Restart the iteration and move to the | |
5780 | // next level | |
5781 | s.iterator->move(s.iterator, 0, UITER_START); | |
5782 | level = UCOL_PSK_TERTIARY; | |
5783 | } else { | |
5784 | canUpdateState = FALSE; | |
5785 | } | |
5786 | break; | |
5787 | } | |
b75a7d8f | 5788 | |
46f4442e A |
5789 | if(!isShiftedCE(CE, LVT, &wasShifted)) { |
5790 | if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) { | |
5791 | // do the case level if we need to do it. We don't want to calculate | |
5792 | // case level for primary ignorables if we have only primary strength and case level | |
5793 | // otherwise we would break well formedness of CEs | |
5794 | CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); | |
5795 | caseBits = (uint8_t)(CE & 0xC0); | |
5796 | // this copies the case level logic from the | |
5797 | // sort key generation code | |
5798 | if(CE != 0) { | |
729e4ab9 A |
5799 | if (caseShift == 0) { |
5800 | dest[i++] = caseByte; | |
5801 | caseShift = UCOL_CASE_SHIFT_START; | |
5802 | caseByte = UCOL_CASE_BYTE_START; | |
5803 | } | |
46f4442e A |
5804 | if(coll->caseFirst == UCOL_UPPER_FIRST) { |
5805 | if((caseBits & 0xC0) == 0) { | |
5806 | caseByte |= 1 << (--caseShift); | |
5807 | } else { | |
5808 | caseByte |= 0 << (--caseShift); | |
5809 | /* second bit */ | |
5810 | if(caseShift == 0) { | |
5811 | dest[i++] = caseByte; | |
5812 | caseShift = UCOL_CASE_SHIFT_START; | |
5813 | caseByte = UCOL_CASE_BYTE_START; | |
5814 | } | |
5815 | caseByte |= ((caseBits>>6)&1) << (--caseShift); | |
5816 | } | |
5817 | } else { | |
5818 | if((caseBits & 0xC0) == 0) { | |
5819 | caseByte |= 0 << (--caseShift); | |
5820 | } else { | |
5821 | caseByte |= 1 << (--caseShift); | |
5822 | /* second bit */ | |
5823 | if(caseShift == 0) { | |
5824 | dest[i++] = caseByte; | |
5825 | caseShift = UCOL_CASE_SHIFT_START; | |
5826 | caseByte = UCOL_CASE_BYTE_START; | |
5827 | } | |
5828 | caseByte |= ((caseBits>>7)&1) << (--caseShift); | |
5829 | } | |
5830 | } | |
5831 | } | |
b75a7d8f | 5832 | |
46f4442e A |
5833 | } |
5834 | } | |
5835 | // Not sure this is correct for the case level - revisit | |
5836 | if(uprv_numAvailableExpCEs(s)) { | |
5837 | canUpdateState = FALSE; | |
b75a7d8f | 5838 | } else { |
46f4442e | 5839 | canUpdateState = TRUE; |
b75a7d8f | 5840 | } |
b75a7d8f | 5841 | } |
46f4442e A |
5842 | } else { |
5843 | level = UCOL_PSK_TERTIARY; | |
b75a7d8f | 5844 | } |
b75a7d8f A |
5845 | /* fall through to next level */ |
5846 | case UCOL_PSK_TERTIARY: | |
46f4442e A |
5847 | if(strength >= UCOL_TERTIARY) { |
5848 | for(;;) { | |
5849 | if(i == count) { | |
5850 | goto saveState; | |
5851 | } | |
5852 | // We should save the state only if we | |
5853 | // are sure that we are done with the | |
5854 | // previous iterator state | |
5855 | if(canUpdateState) { | |
5856 | newState = s.iterator->getState(s.iterator); | |
5857 | if(newState != UITER_NO_STATE) { | |
5858 | iterState = newState; | |
5859 | cces = 0; | |
5860 | } | |
5861 | } | |
5862 | CE = ucol_IGetNextCE(coll, &s, status); | |
5863 | cces++; | |
5864 | if(CE==UCOL_NO_MORE_CES) { | |
5865 | // Add the level separator | |
5866 | terminatePSKLevel(level, maxLevel, i, dest); | |
5867 | byteCountOrFrenchDone = 0; | |
5868 | // Restart the iteration an move to the | |
5869 | // second level | |
5870 | s.iterator->move(s.iterator, 0, UITER_START); | |
5871 | cces = 0; | |
5872 | level = UCOL_PSK_QUATERNARY; | |
5873 | break; | |
5874 | } | |
5875 | if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5876 | notIsContinuation = !isContinuation(CE); | |
b75a7d8f | 5877 | |
46f4442e A |
5878 | if(notIsContinuation) { |
5879 | CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); | |
5880 | CE ^= coll->caseSwitch; | |
5881 | CE &= coll->tertiaryMask; | |
5882 | } else { | |
5883 | CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); | |
5884 | } | |
b75a7d8f | 5885 | |
46f4442e A |
5886 | if(CE != 0) { |
5887 | dest[i++]=(uint8_t)CE; | |
5888 | } | |
5889 | } | |
5890 | if(uprv_numAvailableExpCEs(s)) { | |
5891 | canUpdateState = FALSE; | |
5892 | } else { | |
5893 | canUpdateState = TRUE; | |
5894 | } | |
b75a7d8f | 5895 | } |
46f4442e A |
5896 | } else { |
5897 | // if we're not doing tertiary | |
5898 | // skip to the end | |
5899 | level = UCOL_PSK_NULL; | |
b75a7d8f | 5900 | } |
b75a7d8f A |
5901 | /* fall through to next level */ |
5902 | case UCOL_PSK_QUATERNARY: | |
46f4442e A |
5903 | if(strength >= UCOL_QUATERNARY) { |
5904 | for(;;) { | |
5905 | if(i == count) { | |
5906 | goto saveState; | |
5907 | } | |
5908 | // We should save the state only if we | |
5909 | // are sure that we are done with the | |
5910 | // previous iterator state | |
5911 | if(canUpdateState) { | |
5912 | newState = s.iterator->getState(s.iterator); | |
5913 | if(newState != UITER_NO_STATE) { | |
5914 | iterState = newState; | |
5915 | cces = 0; | |
5916 | } | |
5917 | } | |
5918 | CE = ucol_IGetNextCE(coll, &s, status); | |
5919 | cces++; | |
5920 | if(CE==UCOL_NO_MORE_CES) { | |
5921 | // Add the level separator | |
5922 | terminatePSKLevel(level, maxLevel, i, dest); | |
5923 | //dest[i++] = UCOL_LEVELTERMINATOR; | |
5924 | byteCountOrFrenchDone = 0; | |
5925 | // Restart the iteration an move to the | |
5926 | // second level | |
5927 | s.iterator->move(s.iterator, 0, UITER_START); | |
5928 | cces = 0; | |
5929 | level = UCOL_PSK_QUIN; | |
5930 | break; | |
5931 | } | |
5932 | if(CE==0) | |
5933 | continue; | |
5934 | if(isShiftedCE(CE, LVT, &wasShifted)) { | |
5935 | CE >>= 16; /* get primary */ | |
5936 | if(CE != 0) { | |
5937 | if(byteCountOrFrenchDone == 0) { | |
5938 | dest[i++]=(uint8_t)(CE >> 8); | |
5939 | } else { | |
5940 | byteCountOrFrenchDone = 0; | |
5941 | } | |
5942 | if((CE &=0xff)!=0) { | |
5943 | if(i==count) { | |
5944 | /* overflow */ | |
5945 | byteCountOrFrenchDone = 1; | |
5946 | goto saveState; | |
5947 | } | |
5948 | dest[i++]=(uint8_t)CE; | |
5949 | } | |
5950 | } | |
5951 | } else { | |
5952 | notIsContinuation = !isContinuation(CE); | |
5953 | if(notIsContinuation) { | |
5954 | if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it | |
5955 | dest[i++] = UCOL_HIRAGANA_QUAD; | |
5956 | } else { | |
5957 | dest[i++] = 0xFF; | |
5958 | } | |
5959 | } | |
5960 | } | |
5961 | if(uprv_numAvailableExpCEs(s)) { | |
5962 | canUpdateState = FALSE; | |
5963 | } else { | |
5964 | canUpdateState = TRUE; | |
5965 | } | |
b75a7d8f | 5966 | } |
46f4442e A |
5967 | } else { |
5968 | // if we're not doing quaternary | |
5969 | // skip to the end | |
5970 | level = UCOL_PSK_NULL; | |
b75a7d8f | 5971 | } |
b75a7d8f A |
5972 | /* fall through to next level */ |
5973 | case UCOL_PSK_QUIN: | |
46f4442e | 5974 | level = UCOL_PSK_IDENTICAL; |
b75a7d8f A |
5975 | /* fall through to next level */ |
5976 | case UCOL_PSK_IDENTICAL: | |
46f4442e A |
5977 | if(strength >= UCOL_IDENTICAL) { |
5978 | UChar32 first, second; | |
5979 | int32_t bocsuBytesWritten = 0; | |
5980 | // We always need to do identical on | |
5981 | // the NFD form of the string. | |
5982 | if(normIter == NULL) { | |
5983 | // we arrived from the level below and | |
5984 | // normalization was not turned on. | |
5985 | // therefore, we need to make a fresh NFD iterator | |
5986 | normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); | |
5987 | s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); | |
5988 | } else if(!doingIdenticalFromStart) { | |
5989 | // there is an iterator, but we did some other levels. | |
5990 | // therefore, we have a FCD iterator - need to make | |
5991 | // a NFD one. | |
5992 | // normIter being at the beginning does not guarantee | |
5993 | // that the underlying iterator is at the beginning | |
5994 | iter->move(iter, 0, UITER_START); | |
5995 | s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); | |
5996 | } | |
5997 | // At this point we have a NFD iterator that is positioned | |
5998 | // in the right place | |
5999 | if(U_FAILURE(*status)) { | |
6000 | UTRACE_EXIT_STATUS(*status); | |
6001 | return 0; | |
6002 | } | |
6003 | first = uiter_previous32(s.iterator); | |
6004 | // maybe we're at the start of the string | |
6005 | if(first == U_SENTINEL) { | |
6006 | first = 0; | |
6007 | } else { | |
6008 | uiter_next32(s.iterator); | |
b75a7d8f | 6009 | } |
b75a7d8f | 6010 | |
46f4442e A |
6011 | j = 0; |
6012 | for(;;) { | |
6013 | if(i == count) { | |
6014 | if(j+1 < bocsuBytesWritten) { | |
6015 | bocsuBytesUsed = j+1; | |
6016 | } | |
6017 | goto saveState; | |
6018 | } | |
6019 | ||
6020 | // On identical level, we will always save | |
6021 | // the state if we reach this point, since | |
6022 | // we don't depend on getNextCE for content | |
6023 | // all the content is in our buffer and we | |
6024 | // already either stored the full buffer OR | |
6025 | // otherwise we won't arrive here. | |
6026 | newState = s.iterator->getState(s.iterator); | |
6027 | if(newState != UITER_NO_STATE) { | |
6028 | iterState = newState; | |
6029 | cces = 0; | |
6030 | } | |
6031 | ||
6032 | uint8_t buff[4]; | |
6033 | second = uiter_next32(s.iterator); | |
6034 | cces++; | |
6035 | ||
6036 | // end condition for identical level | |
6037 | if(second == U_SENTINEL) { | |
6038 | terminatePSKLevel(level, maxLevel, i, dest); | |
6039 | level = UCOL_PSK_NULL; | |
6040 | break; | |
6041 | } | |
6042 | bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff); | |
6043 | first = second; | |
6044 | ||
6045 | j = 0; | |
6046 | if(bocsuBytesUsed != 0) { | |
6047 | while(bocsuBytesUsed-->0) { | |
6048 | j++; | |
6049 | } | |
6050 | } | |
b75a7d8f | 6051 | |
46f4442e A |
6052 | while(i < count && j < bocsuBytesWritten) { |
6053 | dest[i++] = buff[j++]; | |
6054 | } | |
b75a7d8f | 6055 | } |
b75a7d8f | 6056 | |
46f4442e A |
6057 | } else { |
6058 | level = UCOL_PSK_NULL; | |
b75a7d8f | 6059 | } |
b75a7d8f A |
6060 | /* fall through to next level */ |
6061 | case UCOL_PSK_NULL: | |
46f4442e A |
6062 | j = i; |
6063 | while(j<count) { | |
6064 | dest[j++]=0; | |
6065 | } | |
6066 | break; | |
b75a7d8f | 6067 | default: |
46f4442e A |
6068 | *status = U_INTERNAL_PROGRAM_ERROR; |
6069 | UTRACE_EXIT_STATUS(*status); | |
6070 | return 0; | |
b75a7d8f A |
6071 | } |
6072 | ||
6073 | saveState: | |
6074 | // Now we need to return stuff. First we want to see whether we have | |
6075 | // done everything for the current state of iterator. | |
73c04bcf | 6076 | if(byteCountOrFrenchDone |
46f4442e A |
6077 | || canUpdateState == FALSE |
6078 | || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE) | |
6079 | { | |
6080 | // Any of above mean that the previous transaction | |
6081 | // wasn't finished and that we should store the | |
6082 | // previous iterator state. | |
6083 | state[0] = iterState; | |
b75a7d8f | 6084 | } else { |
46f4442e | 6085 | // The transaction is complete. We will continue in the next iteration. |
b75a7d8f | 6086 | state[0] = s.iterator->getState(s.iterator); |
73c04bcf | 6087 | cces = 0; |
b75a7d8f | 6088 | } |
73c04bcf A |
6089 | // Store the number of bocsu bytes written. |
6090 | if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) { | |
46f4442e | 6091 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
b75a7d8f | 6092 | } |
73c04bcf | 6093 | state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT; |
b75a7d8f A |
6094 | |
6095 | // Next we put in the level of comparison | |
374ca955 | 6096 | state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT); |
b75a7d8f A |
6097 | |
6098 | // If we are doing French, we need to store whether we have just finished the French level | |
6099 | if(level == UCOL_PSK_SECONDARY && doingFrench) { | |
51004dcb | 6100 | state[1] |= (((int32_t)(state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
b75a7d8f | 6101 | } else { |
46f4442e | 6102 | state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
b75a7d8f A |
6103 | } |
6104 | ||
6105 | // Was the latest CE shifted | |
6106 | if(wasShifted) { | |
46f4442e | 6107 | state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT; |
b75a7d8f | 6108 | } |
73c04bcf A |
6109 | // Check for cces overflow |
6110 | if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) { | |
46f4442e | 6111 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
b75a7d8f | 6112 | } |
73c04bcf A |
6113 | // Store cces |
6114 | state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT); | |
b75a7d8f A |
6115 | |
6116 | // Check for French overflow | |
6117 | if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) { | |
46f4442e | 6118 | *status = U_INDEX_OUTOFBOUNDS_ERROR; |
b75a7d8f A |
6119 | } |
6120 | // Store number of bytes written in the French secondary continuation sequence | |
6121 | state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT); | |
6122 | ||
6123 | ||
6124 | // If we have used normalizing iterator, get rid of it | |
6125 | if(normIter != NULL) { | |
46f4442e | 6126 | unorm_closeIter(normIter); |
b75a7d8f A |
6127 | } |
6128 | ||
46f4442e | 6129 | /* To avoid memory leak, free the offset buffer if necessary. */ |
729e4ab9 A |
6130 | ucol_freeOffsetBuffer(&s); |
6131 | ||
b75a7d8f | 6132 | // Return number of meaningful sortkey bytes. |
374ca955 A |
6133 | UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d", |
6134 | dest,i, state[0], state[1]); | |
6135 | UTRACE_EXIT_VALUE(i); | |
b75a7d8f A |
6136 | return i; |
6137 | } | |
6138 | ||
6139 | /** | |
6140 | * Produce a bound for a given sortkey and a number of levels. | |
6141 | */ | |
374ca955 | 6142 | U_CAPI int32_t U_EXPORT2 |
b75a7d8f A |
6143 | ucol_getBound(const uint8_t *source, |
6144 | int32_t sourceLength, | |
6145 | UColBoundMode boundType, | |
6146 | uint32_t noOfLevels, | |
6147 | uint8_t *result, | |
6148 | int32_t resultLength, | |
46f4442e A |
6149 | UErrorCode *status) |
6150 | { | |
6151 | // consistency checks | |
6152 | if(status == NULL || U_FAILURE(*status)) { | |
6153 | return 0; | |
6154 | } | |
6155 | if(source == NULL) { | |
6156 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6157 | return 0; | |
6158 | } | |
6159 | ||
6160 | int32_t sourceIndex = 0; | |
6161 | // Scan the string until we skip enough of the key OR reach the end of the key | |
6162 | do { | |
6163 | sourceIndex++; | |
6164 | if(source[sourceIndex] == UCOL_LEVELTERMINATOR) { | |
6165 | noOfLevels--; | |
6166 | } | |
6167 | } while (noOfLevels > 0 | |
6168 | && (source[sourceIndex] != 0 || sourceIndex < sourceLength)); | |
b75a7d8f | 6169 | |
46f4442e A |
6170 | if((source[sourceIndex] == 0 || sourceIndex == sourceLength) |
6171 | && noOfLevels > 0) { | |
6172 | *status = U_SORT_KEY_TOO_SHORT_WARNING; | |
b75a7d8f | 6173 | } |
b75a7d8f | 6174 | |
b75a7d8f | 6175 | |
46f4442e A |
6176 | // READ ME: this code assumes that the values for boundType |
6177 | // enum will not changes. They are set so that the enum value | |
6178 | // corresponds to the number of extra bytes each bound type | |
6179 | // needs. | |
6180 | if(result != NULL && resultLength >= sourceIndex+boundType) { | |
6181 | uprv_memcpy(result, source, sourceIndex); | |
6182 | switch(boundType) { | |
6183 | // Lower bound just gets terminated. No extra bytes | |
6184 | case UCOL_BOUND_LOWER: // = 0 | |
6185 | break; | |
6186 | // Upper bound needs one extra byte | |
6187 | case UCOL_BOUND_UPPER: // = 1 | |
6188 | result[sourceIndex++] = 2; | |
6189 | break; | |
6190 | // Upper long bound needs two extra bytes | |
6191 | case UCOL_BOUND_UPPER_LONG: // = 2 | |
6192 | result[sourceIndex++] = 0xFF; | |
6193 | result[sourceIndex++] = 0xFF; | |
6194 | break; | |
6195 | default: | |
6196 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6197 | return 0; | |
6198 | } | |
6199 | result[sourceIndex++] = 0; | |
b75a7d8f | 6200 | |
46f4442e A |
6201 | return sourceIndex; |
6202 | } else { | |
6203 | return sourceIndex+boundType+1; | |
b75a7d8f | 6204 | } |
b75a7d8f A |
6205 | } |
6206 | ||
b75a7d8f A |
6207 | /****************************************************************************/ |
6208 | /* Following are the functions that deal with the properties of a collator */ | |
6209 | /* there are new APIs and some compatibility APIs */ | |
6210 | /****************************************************************************/ | |
6211 | ||
6212 | static inline void | |
6213 | ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE, | |
46f4442e A |
6214 | int32_t *primShift, int32_t *secShift, int32_t *terShift) |
6215 | { | |
6216 | uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0; | |
6217 | UBool reverseSecondary = FALSE; | |
729e4ab9 A |
6218 | UBool continuation = isContinuation(CE); |
6219 | if(!continuation) { | |
46f4442e A |
6220 | tertiary = (uint8_t)((CE & coll->tertiaryMask)); |
6221 | tertiary ^= coll->caseSwitch; | |
6222 | reverseSecondary = TRUE; | |
6223 | } else { | |
6224 | tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); | |
6225 | tertiary &= UCOL_REMOVE_CASE; | |
6226 | reverseSecondary = FALSE; | |
6227 | } | |
b75a7d8f | 6228 | |
46f4442e A |
6229 | secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
6230 | primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); | |
6231 | primary1 = (uint8_t)(CE >> 8); | |
b75a7d8f | 6232 | |
46f4442e | 6233 | if(primary1 != 0) { |
729e4ab9 A |
6234 | if (coll->leadBytePermutationTable != NULL && !continuation) { |
6235 | primary1 = coll->leadBytePermutationTable[primary1]; | |
6236 | } | |
6237 | ||
46f4442e A |
6238 | coll->latinOneCEs[ch] |= (primary1 << *primShift); |
6239 | *primShift -= 8; | |
6240 | } | |
6241 | if(primary2 != 0) { | |
6242 | if(*primShift < 0) { | |
6243 | coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; | |
6244 | coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6245 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6246 | return; | |
6247 | } | |
6248 | coll->latinOneCEs[ch] |= (primary2 << *primShift); | |
6249 | *primShift -= 8; | |
6250 | } | |
6251 | if(secondary != 0) { | |
6252 | if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary | |
6253 | coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary | |
6254 | coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24); | |
6255 | } else { // normal case | |
6256 | coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift); | |
6257 | } | |
6258 | *secShift -= 8; | |
6259 | } | |
6260 | if(tertiary != 0) { | |
6261 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift); | |
6262 | *terShift -= 8; | |
b75a7d8f | 6263 | } |
b75a7d8f A |
6264 | } |
6265 | ||
6266 | static inline UBool | |
6267 | ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) { | |
6268 | uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3); | |
6269 | if(newTable == NULL) { | |
6270 | *status = U_MEMORY_ALLOCATION_ERROR; | |
6271 | coll->latinOneFailed = TRUE; | |
6272 | return FALSE; | |
6273 | } | |
6274 | int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t); | |
6275 | uprv_memset(newTable, 0, size*sizeof(uint32_t)*3); | |
6276 | uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy); | |
6277 | uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy); | |
6278 | uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy); | |
6279 | coll->latinOneTableLen = size; | |
6280 | uprv_free(coll->latinOneCEs); | |
6281 | coll->latinOneCEs = newTable; | |
6282 | return TRUE; | |
6283 | } | |
6284 | ||
6285 | static UBool | |
6286 | ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) { | |
46f4442e | 6287 | UBool result = TRUE; |
b75a7d8f | 6288 | if(coll->latinOneCEs == NULL) { |
46f4442e A |
6289 | coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3); |
6290 | if(coll->latinOneCEs == NULL) { | |
6291 | *status = U_MEMORY_ALLOCATION_ERROR; | |
6292 | return FALSE; | |
6293 | } | |
6294 | coll->latinOneTableLen = UCOL_LATINONETABLELEN; | |
b75a7d8f | 6295 | } |
46f4442e A |
6296 | UChar ch = 0; |
6297 | UCollationElements *it = ucol_openElements(coll, &ch, 1, status); | |
729e4ab9 | 6298 | // Check for null pointer |
46f4442e | 6299 | if (U_FAILURE(*status)) { |
51004dcb | 6300 | ucol_closeElements(it); |
46f4442e | 6301 | return FALSE; |
b75a7d8f | 6302 | } |
46f4442e | 6303 | uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3); |
b75a7d8f | 6304 | |
46f4442e A |
6305 | int32_t primShift = 24, secShift = 24, terShift = 24; |
6306 | uint32_t CE = 0; | |
6307 | int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1; | |
b75a7d8f | 6308 | |
46f4442e A |
6309 | // TODO: make safe if you get more than you wanted... |
6310 | for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) { | |
6311 | primShift = 24; secShift = 24; terShift = 24; | |
6312 | if(ch < 0x100) { | |
6313 | CE = coll->latinOneMapping[ch]; | |
6314 | } else { | |
6315 | CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
6316 | if(CE == UCOL_NOT_FOUND && coll->UCA) { | |
6317 | CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); | |
6318 | } | |
6319 | } | |
6320 | if(CE < UCOL_NOT_FOUND) { | |
6321 | ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); | |
6322 | } else { | |
6323 | switch (getCETag(CE)) { | |
6324 | case EXPANSION_TAG: | |
6325 | case DIGIT_TAG: | |
6326 | ucol_setText(it, &ch, 1, status); | |
6327 | while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) { | |
b75a7d8f | 6328 | if(primShift < 0 || secShift < 0 || terShift < 0) { |
46f4442e A |
6329 | coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
6330 | coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6331 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6332 | break; | |
b75a7d8f | 6333 | } |
46f4442e A |
6334 | ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
6335 | } | |
6336 | break; | |
6337 | case CONTRACTION_TAG: | |
6338 | // here is the trick | |
6339 | // F2 is contraction. We do something very similar to contractions | |
6340 | // but have two indices, one in the real contraction table and the | |
6341 | // other to where we stuffed things. This hopes that we don't have | |
6342 | // many contractions (this should work for latin-1 tables). | |
6343 | { | |
6344 | if((CE & 0x00FFF000) != 0) { | |
6345 | *status = U_UNSUPPORTED_ERROR; | |
6346 | goto cleanup_after_failure; | |
b75a7d8f | 6347 | } |
46f4442e A |
6348 | |
6349 | const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
6350 | ||
6351 | CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table | |
6352 | ||
6353 | coll->latinOneCEs[ch] = CE; | |
6354 | coll->latinOneCEs[coll->latinOneTableLen+ch] = CE; | |
6355 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE; | |
6356 | ||
6357 | // We're going to jump into contraction table, pick the elements | |
6358 | // and use them | |
6359 | do { | |
6360 | CE = *(coll->contractionCEs + | |
6361 | (UCharOffset - coll->contractionIndex)); | |
6362 | if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) { | |
6363 | uint32_t size; | |
6364 | uint32_t i; /* general counter */ | |
6365 | uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ | |
6366 | size = getExpansionCount(CE); | |
6367 | //CE = *CEOffset++; | |
6368 | if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ | |
6369 | for(i = 0; i<size; i++) { | |
6370 | if(primShift < 0 || secShift < 0 || terShift < 0) { | |
6371 | coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6372 | coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6373 | coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6374 | break; | |
6375 | } | |
6376 | ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); | |
6377 | } | |
6378 | } else { /* else, we do */ | |
6379 | while(*CEOffset != 0) { | |
6380 | if(primShift < 0 || secShift < 0 || terShift < 0) { | |
6381 | coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6382 | coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6383 | coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6384 | break; | |
6385 | } | |
6386 | ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); | |
6387 | } | |
6388 | } | |
6389 | contractionOffset++; | |
6390 | } else if(CE < UCOL_NOT_FOUND) { | |
6391 | ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift); | |
6392 | } else { | |
6393 | coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6394 | coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6395 | coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6396 | contractionOffset++; | |
6397 | } | |
6398 | UCharOffset++; | |
6399 | primShift = 24; secShift = 24; terShift = 24; | |
6400 | if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate | |
6401 | if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) { | |
6402 | goto cleanup_after_failure; | |
6403 | } | |
6404 | } | |
6405 | } while(*UCharOffset != 0xFFFF); | |
b75a7d8f | 6406 | } |
46f4442e A |
6407 | break;; |
6408 | case SPEC_PROC_TAG: | |
6409 | { | |
6410 | // 0xB7 is a precontext character defined in UCA5.1, a special | |
6411 | // handle is implemeted in order to save LatinOne table for | |
6412 | // most locales. | |
6413 | if (ch==0xb7) { | |
6414 | ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); | |
6415 | } | |
6416 | else { | |
6417 | goto cleanup_after_failure; | |
6418 | } | |
b75a7d8f | 6419 | } |
46f4442e A |
6420 | break; |
6421 | default: | |
6422 | goto cleanup_after_failure; | |
6423 | } | |
b75a7d8f | 6424 | } |
b75a7d8f | 6425 | } |
46f4442e A |
6426 | // compact table |
6427 | if(contractionOffset < coll->latinOneTableLen) { | |
6428 | if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) { | |
6429 | goto cleanup_after_failure; | |
6430 | } | |
b75a7d8f | 6431 | } |
46f4442e A |
6432 | ucol_closeElements(it); |
6433 | return result; | |
73c04bcf A |
6434 | |
6435 | cleanup_after_failure: | |
46f4442e A |
6436 | // status should already be set before arriving here. |
6437 | coll->latinOneFailed = TRUE; | |
6438 | ucol_closeElements(it); | |
6439 | return FALSE; | |
b75a7d8f A |
6440 | } |
6441 | ||
6442 | void ucol_updateInternalState(UCollator *coll, UErrorCode *status) { | |
46f4442e A |
6443 | if(U_SUCCESS(*status)) { |
6444 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
6445 | coll->caseSwitch = UCOL_CASE_SWITCH; | |
6446 | } else { | |
6447 | coll->caseSwitch = UCOL_NO_CASE_SWITCH; | |
6448 | } | |
b75a7d8f | 6449 | |
46f4442e A |
6450 | if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) { |
6451 | coll->tertiaryMask = UCOL_REMOVE_CASE; | |
6452 | coll->tertiaryCommon = UCOL_COMMON3_NORMAL; | |
6453 | coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */ | |
6454 | coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF; | |
6455 | coll->tertiaryBottom = UCOL_COMMON_BOT3; | |
6456 | } else { | |
6457 | coll->tertiaryMask = UCOL_KEEP_CASE; | |
6458 | coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON; | |
6459 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
6460 | coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST; | |
6461 | coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER; | |
6462 | coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER; | |
6463 | } else { | |
6464 | coll->tertiaryCommon = UCOL_COMMON3_NORMAL; | |
6465 | coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER; | |
6466 | coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER; | |
6467 | } | |
6468 | } | |
b75a7d8f | 6469 | |
46f4442e | 6470 | /* Set the compression values */ |
4388f060 | 6471 | uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - coll->tertiaryBottom - 1); |
46f4442e A |
6472 | coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */ |
6473 | coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount); | |
b75a7d8f | 6474 | |
46f4442e A |
6475 | if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY |
6476 | && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE) | |
6477 | { | |
6478 | coll->sortKeyGen = ucol_calcSortKeySimpleTertiary; | |
b75a7d8f | 6479 | } else { |
46f4442e | 6480 | coll->sortKeyGen = ucol_calcSortKey; |
374ca955 | 6481 | } |
46f4442e A |
6482 | if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF |
6483 | && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed) | |
6484 | { | |
6485 | if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) { | |
6486 | if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it | |
6487 | //fprintf(stderr, "F"); | |
6488 | coll->latinOneUse = TRUE; | |
6489 | } else { | |
6490 | coll->latinOneUse = FALSE; | |
6491 | } | |
6492 | if(*status == U_UNSUPPORTED_ERROR) { | |
6493 | *status = U_ZERO_ERROR; | |
6494 | } | |
6495 | } else { // latin1Table exists and it doesn't need to be regenerated, just use it | |
6496 | coll->latinOneUse = TRUE; | |
6497 | } | |
6498 | } else { | |
6499 | coll->latinOneUse = FALSE; | |
73c04bcf | 6500 | } |
73c04bcf | 6501 | } |
b75a7d8f A |
6502 | } |
6503 | ||
6504 | U_CAPI uint32_t U_EXPORT2 | |
6505 | ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) { | |
46f4442e A |
6506 | if(U_FAILURE(*status) || coll == NULL) { |
6507 | return 0; | |
6508 | } | |
6509 | if(len == -1) { | |
6510 | len = u_strlen(varTop); | |
6511 | } | |
6512 | if(len == 0) { | |
6513 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6514 | return 0; | |
6515 | } | |
b75a7d8f | 6516 | |
4388f060 A |
6517 | if(coll->delegate!=NULL) { |
6518 | return ((Collator*)coll->delegate)->setVariableTop(varTop, len, *status); | |
6519 | } | |
6520 | ||
6521 | ||
46f4442e | 6522 | collIterate s; |
729e4ab9 A |
6523 | IInit_collIterate(coll, varTop, len, &s, status); |
6524 | if(U_FAILURE(*status)) { | |
6525 | return 0; | |
6526 | } | |
b75a7d8f | 6527 | |
46f4442e | 6528 | uint32_t CE = ucol_IGetNextCE(coll, &s, status); |
b75a7d8f | 6529 | |
46f4442e A |
6530 | /* here we check if we have consumed all characters */ |
6531 | /* you can put in either one character or a contraction */ | |
6532 | /* you shouldn't put more... */ | |
6533 | if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) { | |
6534 | *status = U_CE_NOT_FOUND_ERROR; | |
6535 | return 0; | |
6536 | } | |
b75a7d8f | 6537 | |
46f4442e | 6538 | uint32_t nextCE = ucol_IGetNextCE(coll, &s, status); |
b75a7d8f | 6539 | |
46f4442e A |
6540 | if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) { |
6541 | *status = U_PRIMARY_TOO_LONG_ERROR; | |
6542 | return 0; | |
6543 | } | |
6544 | if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) { | |
6545 | coll->variableTopValueisDefault = FALSE; | |
6546 | coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16; | |
6547 | } | |
729e4ab9 | 6548 | |
46f4442e | 6549 | /* To avoid memory leak, free the offset buffer if necessary. */ |
729e4ab9 | 6550 | ucol_freeOffsetBuffer(&s); |
46f4442e A |
6551 | |
6552 | return CE & UCOL_PRIMARYMASK; | |
b75a7d8f A |
6553 | } |
6554 | ||
6555 | U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) { | |
46f4442e A |
6556 | if(U_FAILURE(*status) || coll == NULL) { |
6557 | return 0; | |
6558 | } | |
4388f060 A |
6559 | if(coll->delegate!=NULL) { |
6560 | return ((const Collator*)coll->delegate)->getVariableTop(*status); | |
6561 | } | |
46f4442e | 6562 | return coll->variableTopValue<<16; |
b75a7d8f A |
6563 | } |
6564 | ||
6565 | U_CAPI void U_EXPORT2 | |
6566 | ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) { | |
46f4442e A |
6567 | if(U_FAILURE(*status) || coll == NULL) { |
6568 | return; | |
6569 | } | |
374ca955 | 6570 | |
46f4442e A |
6571 | if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) { |
6572 | coll->variableTopValueisDefault = FALSE; | |
6573 | coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16; | |
6574 | } | |
b75a7d8f A |
6575 | } |
6576 | /* Attribute setter API */ | |
6577 | U_CAPI void U_EXPORT2 | |
6578 | ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) { | |
6579 | if(U_FAILURE(*status) || coll == NULL) { | |
6580 | return; | |
6581 | } | |
4388f060 A |
6582 | |
6583 | if(coll->delegate != NULL) { | |
6584 | ((Collator*)coll->delegate)->setAttribute(attr,value,*status); | |
6585 | return; | |
6586 | } | |
6587 | ||
b75a7d8f A |
6588 | UColAttributeValue oldFrench = coll->frenchCollation; |
6589 | UColAttributeValue oldCaseFirst = coll->caseFirst; | |
6590 | switch(attr) { | |
6591 | case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */ | |
46f4442e A |
6592 | if(value == UCOL_ON) { |
6593 | coll->numericCollation = UCOL_ON; | |
6594 | coll->numericCollationisDefault = FALSE; | |
6595 | } else if (value == UCOL_OFF) { | |
6596 | coll->numericCollation = UCOL_OFF; | |
6597 | coll->numericCollationisDefault = FALSE; | |
6598 | } else if (value == UCOL_DEFAULT) { | |
6599 | coll->numericCollationisDefault = TRUE; | |
6600 | coll->numericCollation = (UColAttributeValue)coll->options->numericCollation; | |
6601 | } else { | |
6602 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6603 | } | |
6604 | break; | |
b75a7d8f | 6605 | case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */ |
51004dcb A |
6606 | if(value == UCOL_ON || value == UCOL_OFF || value == UCOL_DEFAULT) { |
6607 | // This attribute is an implementation detail of the CLDR Japanese tailoring. | |
6608 | // The implementation might change to use a different mechanism | |
6609 | // to achieve the same Japanese sort order. | |
6610 | // Since ICU 50, this attribute is not settable any more via API functions. | |
46f4442e A |
6611 | } else { |
6612 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6613 | } | |
6614 | break; | |
b75a7d8f A |
6615 | case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
6616 | if(value == UCOL_ON) { | |
6617 | coll->frenchCollation = UCOL_ON; | |
6618 | coll->frenchCollationisDefault = FALSE; | |
6619 | } else if (value == UCOL_OFF) { | |
6620 | coll->frenchCollation = UCOL_OFF; | |
6621 | coll->frenchCollationisDefault = FALSE; | |
6622 | } else if (value == UCOL_DEFAULT) { | |
6623 | coll->frenchCollationisDefault = TRUE; | |
6624 | coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation; | |
6625 | } else { | |
6626 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6627 | } | |
6628 | break; | |
6629 | case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ | |
6630 | if(value == UCOL_SHIFTED) { | |
6631 | coll->alternateHandling = UCOL_SHIFTED; | |
6632 | coll->alternateHandlingisDefault = FALSE; | |
6633 | } else if (value == UCOL_NON_IGNORABLE) { | |
6634 | coll->alternateHandling = UCOL_NON_IGNORABLE; | |
6635 | coll->alternateHandlingisDefault = FALSE; | |
6636 | } else if (value == UCOL_DEFAULT) { | |
6637 | coll->alternateHandlingisDefault = TRUE; | |
6638 | coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ; | |
6639 | } else { | |
6640 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6641 | } | |
6642 | break; | |
6643 | case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ | |
6644 | if(value == UCOL_LOWER_FIRST) { | |
6645 | coll->caseFirst = UCOL_LOWER_FIRST; | |
6646 | coll->caseFirstisDefault = FALSE; | |
6647 | } else if (value == UCOL_UPPER_FIRST) { | |
6648 | coll->caseFirst = UCOL_UPPER_FIRST; | |
6649 | coll->caseFirstisDefault = FALSE; | |
6650 | } else if (value == UCOL_OFF) { | |
46f4442e A |
6651 | coll->caseFirst = UCOL_OFF; |
6652 | coll->caseFirstisDefault = FALSE; | |
b75a7d8f A |
6653 | } else if (value == UCOL_DEFAULT) { |
6654 | coll->caseFirst = (UColAttributeValue)coll->options->caseFirst; | |
6655 | coll->caseFirstisDefault = TRUE; | |
6656 | } else { | |
6657 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6658 | } | |
6659 | break; | |
6660 | case UCOL_CASE_LEVEL: /* do we have an extra case level */ | |
6661 | if(value == UCOL_ON) { | |
6662 | coll->caseLevel = UCOL_ON; | |
6663 | coll->caseLevelisDefault = FALSE; | |
6664 | } else if (value == UCOL_OFF) { | |
6665 | coll->caseLevel = UCOL_OFF; | |
6666 | coll->caseLevelisDefault = FALSE; | |
6667 | } else if (value == UCOL_DEFAULT) { | |
6668 | coll->caseLevel = (UColAttributeValue)coll->options->caseLevel; | |
6669 | coll->caseLevelisDefault = TRUE; | |
6670 | } else { | |
6671 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6672 | } | |
6673 | break; | |
6674 | case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ | |
6675 | if(value == UCOL_ON) { | |
6676 | coll->normalizationMode = UCOL_ON; | |
6677 | coll->normalizationModeisDefault = FALSE; | |
729e4ab9 | 6678 | initializeFCD(status); |
b75a7d8f A |
6679 | } else if (value == UCOL_OFF) { |
6680 | coll->normalizationMode = UCOL_OFF; | |
6681 | coll->normalizationModeisDefault = FALSE; | |
6682 | } else if (value == UCOL_DEFAULT) { | |
6683 | coll->normalizationModeisDefault = TRUE; | |
6684 | coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode; | |
729e4ab9 A |
6685 | if(coll->normalizationMode == UCOL_ON) { |
6686 | initializeFCD(status); | |
6687 | } | |
b75a7d8f A |
6688 | } else { |
6689 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6690 | } | |
6691 | break; | |
6692 | case UCOL_STRENGTH: /* attribute for strength */ | |
6693 | if (value == UCOL_DEFAULT) { | |
6694 | coll->strengthisDefault = TRUE; | |
6695 | coll->strength = (UColAttributeValue)coll->options->strength; | |
6696 | } else if (value <= UCOL_IDENTICAL) { | |
6697 | coll->strengthisDefault = FALSE; | |
6698 | coll->strength = value; | |
6699 | } else { | |
6700 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6701 | } | |
6702 | break; | |
6703 | case UCOL_ATTRIBUTE_COUNT: | |
6704 | default: | |
6705 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6706 | break; | |
6707 | } | |
6708 | if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) { | |
46f4442e | 6709 | coll->latinOneRegenTable = TRUE; |
374ca955 | 6710 | } else { |
46f4442e | 6711 | coll->latinOneRegenTable = FALSE; |
b75a7d8f A |
6712 | } |
6713 | ucol_updateInternalState(coll, status); | |
6714 | } | |
6715 | ||
6716 | U_CAPI UColAttributeValue U_EXPORT2 | |
6717 | ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) { | |
6718 | if(U_FAILURE(*status) || coll == NULL) { | |
6719 | return UCOL_DEFAULT; | |
6720 | } | |
4388f060 A |
6721 | |
6722 | if(coll->delegate != NULL) { | |
6723 | return ((Collator*)coll->delegate)->getAttribute(attr,*status); | |
6724 | } | |
6725 | ||
b75a7d8f A |
6726 | switch(attr) { |
6727 | case UCOL_NUMERIC_COLLATION: | |
374ca955 | 6728 | return coll->numericCollation; |
b75a7d8f A |
6729 | case UCOL_HIRAGANA_QUATERNARY_MODE: |
6730 | return coll->hiraganaQ; | |
6731 | case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ | |
6732 | return coll->frenchCollation; | |
6733 | case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ | |
6734 | return coll->alternateHandling; | |
6735 | case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ | |
6736 | return coll->caseFirst; | |
6737 | case UCOL_CASE_LEVEL: /* do we have an extra case level */ | |
6738 | return coll->caseLevel; | |
6739 | case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ | |
6740 | return coll->normalizationMode; | |
6741 | case UCOL_STRENGTH: /* attribute for strength */ | |
6742 | return coll->strength; | |
6743 | case UCOL_ATTRIBUTE_COUNT: | |
6744 | default: | |
6745 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6746 | break; | |
6747 | } | |
6748 | return UCOL_DEFAULT; | |
6749 | } | |
6750 | ||
6751 | U_CAPI void U_EXPORT2 | |
6752 | ucol_setStrength( UCollator *coll, | |
6753 | UCollationStrength strength) | |
6754 | { | |
46f4442e A |
6755 | UErrorCode status = U_ZERO_ERROR; |
6756 | ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status); | |
b75a7d8f A |
6757 | } |
6758 | ||
6759 | U_CAPI UCollationStrength U_EXPORT2 | |
6760 | ucol_getStrength(const UCollator *coll) | |
6761 | { | |
46f4442e A |
6762 | UErrorCode status = U_ZERO_ERROR; |
6763 | return ucol_getAttribute(coll, UCOL_STRENGTH, &status); | |
b75a7d8f A |
6764 | } |
6765 | ||
51004dcb | 6766 | U_CAPI int32_t U_EXPORT2 |
729e4ab9 A |
6767 | ucol_getReorderCodes(const UCollator *coll, |
6768 | int32_t *dest, | |
6769 | int32_t destCapacity, | |
4388f060 A |
6770 | UErrorCode *status) { |
6771 | if (U_FAILURE(*status)) { | |
729e4ab9 A |
6772 | return 0; |
6773 | } | |
4388f060 A |
6774 | |
6775 | if(coll->delegate!=NULL) { | |
6776 | return ((const Collator*)coll->delegate)->getReorderCodes(dest, destCapacity, *status); | |
6777 | } | |
6778 | ||
729e4ab9 | 6779 | if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { |
4388f060 | 6780 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
729e4ab9 A |
6781 | return 0; |
6782 | } | |
4388f060 A |
6783 | |
6784 | #ifdef UCOL_DEBUG | |
6785 | printf("coll->reorderCodesLength = %d\n", coll->reorderCodesLength); | |
6786 | printf("coll->defaultReorderCodesLength = %d\n", coll->defaultReorderCodesLength); | |
6787 | #endif | |
6788 | ||
729e4ab9 | 6789 | if (coll->reorderCodesLength > destCapacity) { |
4388f060 | 6790 | *status = U_BUFFER_OVERFLOW_ERROR; |
729e4ab9 A |
6791 | return coll->reorderCodesLength; |
6792 | } | |
6793 | for (int32_t i = 0; i < coll->reorderCodesLength; i++) { | |
6794 | dest[i] = coll->reorderCodes[i]; | |
6795 | } | |
6796 | return coll->reorderCodesLength; | |
6797 | } | |
6798 | ||
51004dcb | 6799 | U_CAPI void U_EXPORT2 |
4388f060 A |
6800 | ucol_setReorderCodes(UCollator* coll, |
6801 | const int32_t* reorderCodes, | |
729e4ab9 | 6802 | int32_t reorderCodesLength, |
4388f060 A |
6803 | UErrorCode *status) { |
6804 | if (U_FAILURE(*status)) { | |
729e4ab9 A |
6805 | return; |
6806 | } | |
6807 | ||
6808 | if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) { | |
4388f060 | 6809 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
729e4ab9 A |
6810 | return; |
6811 | } | |
4388f060 A |
6812 | |
6813 | if(coll->delegate!=NULL) { | |
6814 | ((Collator*)coll->delegate)->setReorderCodes(reorderCodes, reorderCodesLength, *status); | |
6815 | return; | |
6816 | } | |
729e4ab9 | 6817 | |
4388f060 A |
6818 | if (coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { |
6819 | uprv_free(coll->reorderCodes); | |
6820 | } | |
729e4ab9 A |
6821 | coll->reorderCodes = NULL; |
6822 | coll->reorderCodesLength = 0; | |
6823 | if (reorderCodesLength == 0) { | |
4388f060 A |
6824 | if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { |
6825 | uprv_free(coll->leadBytePermutationTable); | |
6826 | } | |
729e4ab9 A |
6827 | coll->leadBytePermutationTable = NULL; |
6828 | return; | |
6829 | } | |
6830 | coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t)); | |
6831 | if (coll->reorderCodes == NULL) { | |
4388f060 | 6832 | *status = U_MEMORY_ALLOCATION_ERROR; |
729e4ab9 A |
6833 | return; |
6834 | } | |
4388f060 | 6835 | coll->freeReorderCodesOnClose = TRUE; |
729e4ab9 A |
6836 | for (int32_t i = 0; i < reorderCodesLength; i++) { |
6837 | coll->reorderCodes[i] = reorderCodes[i]; | |
6838 | } | |
6839 | coll->reorderCodesLength = reorderCodesLength; | |
4388f060 A |
6840 | ucol_buildPermutationTable(coll, status); |
6841 | } | |
6842 | ||
51004dcb | 6843 | U_CAPI int32_t U_EXPORT2 |
4388f060 A |
6844 | ucol_getEquivalentReorderCodes(int32_t reorderCode, |
6845 | int32_t* dest, | |
6846 | int32_t destCapacity, | |
6847 | UErrorCode *pErrorCode) { | |
6848 | bool equivalentCodesSet[USCRIPT_CODE_LIMIT]; | |
6849 | uint16_t leadBytes[256]; | |
6850 | int leadBytesCount; | |
6851 | int leadByteIndex; | |
6852 | int16_t reorderCodesForLeadByte[USCRIPT_CODE_LIMIT]; | |
6853 | int reorderCodesForLeadByteCount; | |
6854 | int reorderCodeIndex; | |
6855 | ||
6856 | int32_t equivalentCodesCount = 0; | |
6857 | int setIndex; | |
6858 | ||
729e4ab9 | 6859 | if (U_FAILURE(*pErrorCode)) { |
4388f060 A |
6860 | return 0; |
6861 | } | |
6862 | ||
6863 | if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { | |
6864 | *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; | |
6865 | return 0; | |
6866 | } | |
6867 | ||
6868 | uprv_memset(equivalentCodesSet, 0, USCRIPT_CODE_LIMIT * sizeof(bool)); | |
6869 | ||
6870 | const UCollator* uca = ucol_initUCA(pErrorCode); | |
6871 | if (U_FAILURE(*pErrorCode)) { | |
6872 | return 0; | |
6873 | } | |
6874 | leadBytesCount = ucol_getLeadBytesForReorderCode(uca, reorderCode, leadBytes, 256); | |
6875 | for (leadByteIndex = 0; leadByteIndex < leadBytesCount; leadByteIndex++) { | |
6876 | reorderCodesForLeadByteCount = ucol_getReorderCodesForLeadByte( | |
6877 | uca, leadBytes[leadByteIndex], reorderCodesForLeadByte, USCRIPT_CODE_LIMIT); | |
6878 | for (reorderCodeIndex = 0; reorderCodeIndex < reorderCodesForLeadByteCount; reorderCodeIndex++) { | |
6879 | equivalentCodesSet[reorderCodesForLeadByte[reorderCodeIndex]] = true; | |
6880 | } | |
6881 | } | |
6882 | ||
6883 | for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { | |
6884 | if (equivalentCodesSet[setIndex] == true) { | |
6885 | equivalentCodesCount++; | |
6886 | } | |
6887 | } | |
6888 | ||
6889 | if (destCapacity == 0) { | |
6890 | return equivalentCodesCount; | |
6891 | } | |
6892 | ||
6893 | equivalentCodesCount = 0; | |
6894 | for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { | |
6895 | if (equivalentCodesSet[setIndex] == true) { | |
6896 | dest[equivalentCodesCount++] = setIndex; | |
6897 | if (equivalentCodesCount >= destCapacity) { | |
6898 | break; | |
6899 | } | |
6900 | } | |
6901 | } | |
6902 | return equivalentCodesCount; | |
729e4ab9 A |
6903 | } |
6904 | ||
6905 | ||
b75a7d8f A |
6906 | /****************************************************************************/ |
6907 | /* Following are misc functions */ | |
6908 | /* there are new APIs and some compatibility APIs */ | |
6909 | /****************************************************************************/ | |
6910 | ||
b75a7d8f A |
6911 | U_CAPI void U_EXPORT2 |
6912 | ucol_getVersion(const UCollator* coll, | |
6913 | UVersionInfo versionInfo) | |
6914 | { | |
4388f060 A |
6915 | if(coll->delegate!=NULL) { |
6916 | ((const Collator*)coll->delegate)->getVersion(versionInfo); | |
6917 | return; | |
6918 | } | |
b75a7d8f A |
6919 | /* RunTime version */ |
6920 | uint8_t rtVersion = UCOL_RUNTIME_VERSION; | |
6921 | /* Builder version*/ | |
6922 | uint8_t bdVersion = coll->image->version[0]; | |
6923 | ||
6924 | /* Charset Version. Need to get the version from cnv files | |
6925 | * makeconv should populate cnv files with version and | |
6926 | * an api has to be provided in ucnv.h to obtain this version | |
6927 | */ | |
6928 | uint8_t csVersion = 0; | |
6929 | ||
6930 | /* combine the version info */ | |
6931 | uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion)); | |
6932 | ||
6933 | /* Tailoring rules */ | |
6934 | versionInfo[0] = (uint8_t)(cmbVersion>>8); | |
6935 | versionInfo[1] = (uint8_t)cmbVersion; | |
6936 | versionInfo[2] = coll->image->version[1]; | |
374ca955 | 6937 | if(coll->UCA) { |
729e4ab9 A |
6938 | /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */ |
6939 | versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07); | |
374ca955 A |
6940 | } else { |
6941 | versionInfo[3] = 0; | |
6942 | } | |
b75a7d8f A |
6943 | } |
6944 | ||
6945 | ||
6946 | /* This internal API checks whether a character is tailored or not */ | |
6947 | U_CAPI UBool U_EXPORT2 | |
6948 | ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) { | |
46f4442e | 6949 | if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) { |
b75a7d8f | 6950 | return FALSE; |
46f4442e A |
6951 | } |
6952 | ||
6953 | uint32_t CE = UCOL_NOT_FOUND; | |
6954 | const UChar *ContractionStart = NULL; | |
6955 | if(u < 0x100) { /* latin-1 */ | |
6956 | CE = coll->latinOneMapping[u]; | |
6957 | if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) { | |
6958 | return FALSE; | |
6959 | } | |
b75a7d8f | 6960 | } else { /* regular */ |
46f4442e | 6961 | CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u); |
b75a7d8f A |
6962 | } |
6963 | ||
6964 | if(isContraction(CE)) { | |
46f4442e A |
6965 | ContractionStart = (UChar *)coll->image+getContractOffset(CE); |
6966 | CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex)); | |
b75a7d8f A |
6967 | } |
6968 | ||
46f4442e | 6969 | return (UBool)(CE != UCOL_NOT_FOUND); |
b75a7d8f A |
6970 | } |
6971 | ||
6972 | ||
6973 | /****************************************************************************/ | |
6974 | /* Following are the string compare functions */ | |
6975 | /* */ | |
6976 | /****************************************************************************/ | |
6977 | ||
6978 | ||
6979 | /* ucol_checkIdent internal function. Does byte level string compare. */ | |
6980 | /* Used by strcoll if strength == identical and strings */ | |
729e4ab9 | 6981 | /* are otherwise equal. */ |
b75a7d8f A |
6982 | /* */ |
6983 | /* Comparison must be done on NFD normalized strings. */ | |
6984 | /* FCD is not good enough. */ | |
b75a7d8f A |
6985 | |
6986 | static | |
6987 | UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status) | |
6988 | { | |
729e4ab9 A |
6989 | // When we arrive here, we can have normal strings or UCharIterators. Currently they are both |
6990 | // of same type, but that doesn't really mean that it will stay that way. | |
b75a7d8f | 6991 | int32_t comparison; |
b75a7d8f A |
6992 | |
6993 | if (sColl->flags & UCOL_USE_ITERATOR) { | |
729e4ab9 A |
6994 | // The division for the array length may truncate the array size to |
6995 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
6996 | // for all platforms anyway. | |
6997 | UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
6998 | UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
46f4442e A |
6999 | UNormIterator *sNIt = NULL, *tNIt = NULL; |
7000 | sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); | |
7001 | tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); | |
7002 | sColl->iterator->move(sColl->iterator, 0, UITER_START); | |
7003 | tColl->iterator->move(tColl->iterator, 0, UITER_START); | |
7004 | UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status); | |
7005 | UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status); | |
7006 | comparison = u_strCompareIter(sIt, tIt, TRUE); | |
7007 | unorm_closeIter(sNIt); | |
7008 | unorm_closeIter(tNIt); | |
b75a7d8f | 7009 | } else { |
729e4ab9 A |
7010 | int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1; |
7011 | const UChar *sBuf = sColl->string; | |
7012 | int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1; | |
7013 | const UChar *tBuf = tColl->string; | |
b75a7d8f | 7014 | |
46f4442e A |
7015 | if (normalize) { |
7016 | *status = U_ZERO_ERROR; | |
729e4ab9 A |
7017 | // Note: We could use Normalizer::compare() or similar, but for short strings |
7018 | // which may not be in FCD it might be faster to just NFD them. | |
7019 | // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than | |
7020 | // NFD'ing immediately might be faster for long strings, | |
7021 | // but string comparison is usually done on relatively short strings. | |
7022 | sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen), | |
7023 | sColl->writableBuffer, | |
7024 | *status); | |
7025 | tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen), | |
7026 | tColl->writableBuffer, | |
7027 | *status); | |
7028 | if(U_FAILURE(*status)) { | |
7029 | return UCOL_LESS; | |
46f4442e | 7030 | } |
729e4ab9 | 7031 | comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer); |
46f4442e | 7032 | } else { |
729e4ab9 | 7033 | comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE); |
46f4442e | 7034 | } |
b75a7d8f A |
7035 | } |
7036 | ||
7037 | if (comparison < 0) { | |
7038 | return UCOL_LESS; | |
7039 | } else if (comparison == 0) { | |
7040 | return UCOL_EQUAL; | |
7041 | } else /* comparison > 0 */ { | |
7042 | return UCOL_GREATER; | |
7043 | } | |
7044 | } | |
7045 | ||
7046 | /* CEBuf - A struct and some inline functions to handle the saving */ | |
7047 | /* of CEs in a buffer within ucol_strcoll */ | |
7048 | ||
7049 | #define UCOL_CEBUF_SIZE 512 | |
7050 | typedef struct ucol_CEBuf { | |
7051 | uint32_t *buf; | |
7052 | uint32_t *endp; | |
7053 | uint32_t *pos; | |
7054 | uint32_t localArray[UCOL_CEBUF_SIZE]; | |
7055 | } ucol_CEBuf; | |
7056 | ||
7057 | ||
7058 | static | |
7059 | inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) { | |
7060 | (b)->buf = (b)->pos = (b)->localArray; | |
7061 | (b)->endp = (b)->buf + UCOL_CEBUF_SIZE; | |
73c04bcf | 7062 | } |
b75a7d8f A |
7063 | |
7064 | static | |
46f4442e | 7065 | void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) { |
b75a7d8f A |
7066 | uint32_t oldSize; |
7067 | uint32_t newSize; | |
7068 | uint32_t *newBuf; | |
7069 | ||
7070 | ci->flags |= UCOL_ITER_ALLOCATED; | |
729e4ab9 | 7071 | oldSize = (uint32_t)(b->pos - b->buf); |
b75a7d8f A |
7072 | newSize = oldSize * 2; |
7073 | newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t)); | |
46f4442e A |
7074 | if(newBuf == NULL) { |
7075 | *status = U_MEMORY_ALLOCATION_ERROR; | |
7076 | } | |
7077 | else { | |
7078 | uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t)); | |
7079 | if (b->buf != b->localArray) { | |
7080 | uprv_free(b->buf); | |
7081 | } | |
7082 | b->buf = newBuf; | |
7083 | b->endp = b->buf + newSize; | |
7084 | b->pos = b->buf + oldSize; | |
b75a7d8f A |
7085 | } |
7086 | } | |
7087 | ||
7088 | static | |
46f4442e | 7089 | inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) { |
b75a7d8f | 7090 | if (b->pos == b->endp) { |
46f4442e A |
7091 | ucol_CEBuf_Expand(b, ci, status); |
7092 | } | |
7093 | if (U_SUCCESS(*status)) { | |
7094 | *(b)->pos++ = ce; | |
7095 | } | |
73c04bcf | 7096 | } |
b75a7d8f A |
7097 | |
7098 | /* This is a trick string compare function that goes in and uses sortkeys to compare */ | |
7099 | /* It is used when compare gets in trouble and needs to bail out */ | |
7100 | static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl, | |
73c04bcf A |
7101 | collIterate *tColl, |
7102 | UErrorCode *status) | |
b75a7d8f A |
7103 | { |
7104 | uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER]; | |
7105 | uint8_t *sourceKeyP = sourceKey; | |
7106 | uint8_t *targetKeyP = targetKey; | |
7107 | int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER; | |
7108 | const UCollator *coll = sColl->coll; | |
729e4ab9 A |
7109 | const UChar *source = NULL; |
7110 | const UChar *target = NULL; | |
73c04bcf | 7111 | int32_t result = UCOL_EQUAL; |
729e4ab9 A |
7112 | UnicodeString sourceString, targetString; |
7113 | int32_t sourceLength; | |
7114 | int32_t targetLength; | |
b75a7d8f | 7115 | |
b75a7d8f | 7116 | if(sColl->flags & UCOL_USE_ITERATOR) { |
73c04bcf A |
7117 | sColl->iterator->move(sColl->iterator, 0, UITER_START); |
7118 | tColl->iterator->move(tColl->iterator, 0, UITER_START); | |
729e4ab9 A |
7119 | UChar32 c; |
7120 | while((c=sColl->iterator->next(sColl->iterator))>=0) { | |
7121 | sourceString.append((UChar)c); | |
7122 | } | |
7123 | while((c=tColl->iterator->next(tColl->iterator))>=0) { | |
7124 | targetString.append((UChar)c); | |
7125 | } | |
7126 | source = sourceString.getBuffer(); | |
7127 | sourceLength = sourceString.length(); | |
7128 | target = targetString.getBuffer(); | |
7129 | targetLength = targetString.length(); | |
b75a7d8f | 7130 | } else { // no iterators |
729e4ab9 A |
7131 | sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1; |
7132 | targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1; | |
73c04bcf A |
7133 | source = sColl->string; |
7134 | target = tColl->string; | |
b75a7d8f A |
7135 | } |
7136 | ||
7137 | ||
7138 | ||
7139 | sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); | |
7140 | if(sourceKeyLen > UCOL_MAX_BUFFER) { | |
7141 | sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t)); | |
73c04bcf A |
7142 | if(sourceKeyP == NULL) { |
7143 | *status = U_MEMORY_ALLOCATION_ERROR; | |
7144 | goto cleanup_and_do_compare; | |
b75a7d8f | 7145 | } |
73c04bcf | 7146 | sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
b75a7d8f A |
7147 | } |
7148 | ||
7149 | targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); | |
7150 | if(targetKeyLen > UCOL_MAX_BUFFER) { | |
7151 | targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t)); | |
73c04bcf A |
7152 | if(targetKeyP == NULL) { |
7153 | *status = U_MEMORY_ALLOCATION_ERROR; | |
7154 | goto cleanup_and_do_compare; | |
b75a7d8f | 7155 | } |
73c04bcf | 7156 | targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
b75a7d8f A |
7157 | } |
7158 | ||
73c04bcf | 7159 | result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP); |
b75a7d8f | 7160 | |
73c04bcf A |
7161 | cleanup_and_do_compare: |
7162 | if(sourceKeyP != NULL && sourceKeyP != sourceKey) { | |
b75a7d8f A |
7163 | uprv_free(sourceKeyP); |
7164 | } | |
7165 | ||
73c04bcf | 7166 | if(targetKeyP != NULL && targetKeyP != targetKey) { |
b75a7d8f A |
7167 | uprv_free(targetKeyP); |
7168 | } | |
7169 | ||
7170 | if(result<0) { | |
7171 | return UCOL_LESS; | |
7172 | } else if(result>0) { | |
7173 | return UCOL_GREATER; | |
7174 | } else { | |
7175 | return UCOL_EQUAL; | |
7176 | } | |
7177 | } | |
7178 | ||
7179 | ||
729e4ab9 A |
7180 | static UCollationResult |
7181 | ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status) | |
b75a7d8f A |
7182 | { |
7183 | U_ALIGN_CODE(16); | |
7184 | ||
7185 | const UCollator *coll = sColl->coll; | |
7186 | ||
7187 | ||
7188 | // setting up the collator parameters | |
7189 | UColAttributeValue strength = coll->strength; | |
7190 | UBool initialCheckSecTer = (strength >= UCOL_SECONDARY); | |
7191 | ||
7192 | UBool checkSecTer = initialCheckSecTer; | |
7193 | UBool checkTertiary = (strength >= UCOL_TERTIARY); | |
7194 | UBool checkQuad = (strength >= UCOL_QUATERNARY); | |
7195 | UBool checkIdent = (strength == UCOL_IDENTICAL); | |
7196 | UBool checkCase = (coll->caseLevel == UCOL_ON); | |
7197 | UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer; | |
7198 | UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); | |
7199 | UBool qShifted = shifted && checkQuad; | |
7200 | UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad; | |
7201 | ||
7202 | if(doHiragana && shifted) { | |
46f4442e | 7203 | return (ucol_compareUsingSortKeys(sColl, tColl, status)); |
b75a7d8f A |
7204 | } |
7205 | uint8_t caseSwitch = coll->caseSwitch; | |
7206 | uint8_t tertiaryMask = coll->tertiaryMask; | |
7207 | ||
7208 | // This is the lowest primary value that will not be ignored if shifted | |
7209 | uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0; | |
7210 | ||
7211 | UCollationResult result = UCOL_EQUAL; | |
7212 | UCollationResult hirResult = UCOL_EQUAL; | |
7213 | ||
7214 | // Preparing the CE buffers. They will be filled during the primary phase | |
7215 | ucol_CEBuf sCEs; | |
7216 | ucol_CEBuf tCEs; | |
7217 | UCOL_INIT_CEBUF(&sCEs); | |
7218 | UCOL_INIT_CEBUF(&tCEs); | |
7219 | ||
7220 | uint32_t secS = 0, secT = 0; | |
7221 | uint32_t sOrder=0, tOrder=0; | |
7222 | ||
7223 | // Non shifted primary processing is quite simple | |
7224 | if(!shifted) { | |
b75a7d8f | 7225 | for(;;) { |
46f4442e A |
7226 | |
7227 | // We fetch CEs until we hit a non ignorable primary or end. | |
7228 | do { | |
7229 | // We get the next CE | |
7230 | sOrder = ucol_IGetNextCE(coll, sColl, status); | |
7231 | // Stuff it in the buffer | |
7232 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7233 | // And keep just the primary part. | |
b75a7d8f | 7234 | sOrder &= UCOL_PRIMARYMASK; |
46f4442e | 7235 | } while(sOrder == 0); |
b75a7d8f | 7236 | |
46f4442e A |
7237 | // see the comments on the above block |
7238 | do { | |
7239 | tOrder = ucol_IGetNextCE(coll, tColl, status); | |
7240 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7241 | tOrder &= UCOL_PRIMARYMASK; | |
7242 | } while(tOrder == 0); | |
7243 | ||
7244 | // if both primaries are the same | |
7245 | if(sOrder == tOrder) { | |
7246 | // and there are no more CEs, we advance to the next level | |
7247 | if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { | |
7248 | break; | |
7249 | } | |
7250 | if(doHiragana && hirResult == UCOL_EQUAL) { | |
7251 | if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) { | |
7252 | hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA)) | |
7253 | ? UCOL_LESS:UCOL_GREATER; | |
7254 | } | |
7255 | } | |
7256 | } else { | |
729e4ab9 A |
7257 | // only need to check one for continuation |
7258 | // if one is then the other must be or the preceding CE would be a prefix of the other | |
7259 | if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) { | |
7260 | sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); | |
7261 | tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); | |
7262 | } | |
46f4442e A |
7263 | // if two primaries are different, we are done |
7264 | result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER; | |
7265 | goto commonReturn; | |
7266 | } | |
7267 | } // no primary difference... do the rest from the buffers | |
7268 | } else { // shifted - do a slightly more complicated processing :) | |
b75a7d8f | 7269 | for(;;) { |
46f4442e A |
7270 | UBool sInShifted = FALSE; |
7271 | UBool tInShifted = FALSE; | |
7272 | // This version of code can be refactored. However, it seems easier to understand this way. | |
7273 | // Source loop. Sam as the target loop. | |
7274 | for(;;) { | |
7275 | sOrder = ucol_IGetNextCE(coll, sColl, status); | |
7276 | if(sOrder == UCOL_NO_MORE_CES) { | |
7277 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7278 | break; | |
7279 | } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) { | |
7280 | /* UCA amendment - ignore ignorables that follow shifted code points */ | |
7281 | continue; | |
7282 | } else if(isContinuation(sOrder)) { | |
7283 | if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ | |
7284 | if(sInShifted) { | |
7285 | sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ | |
7286 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7287 | continue; | |
7288 | } else { | |
7289 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7290 | break; | |
7291 | } | |
7292 | } else { /* Just lower level values */ | |
7293 | if(sInShifted) { | |
7294 | continue; | |
7295 | } else { | |
7296 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7297 | continue; | |
7298 | } | |
7299 | } | |
7300 | } else { /* regular */ | |
729e4ab9 A |
7301 | if(coll->leadBytePermutationTable != NULL){ |
7302 | sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); | |
7303 | } | |
46f4442e A |
7304 | if((sOrder & UCOL_PRIMARYMASK) > LVT) { |
7305 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7306 | break; | |
7307 | } else { | |
7308 | if((sOrder & UCOL_PRIMARYMASK) > 0) { | |
7309 | sInShifted = TRUE; | |
7310 | sOrder &= UCOL_PRIMARYMASK; | |
7311 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7312 | continue; | |
7313 | } else { | |
7314 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7315 | sInShifted = FALSE; | |
7316 | continue; | |
7317 | } | |
7318 | } | |
7319 | } | |
b75a7d8f | 7320 | } |
46f4442e A |
7321 | sOrder &= UCOL_PRIMARYMASK; |
7322 | sInShifted = FALSE; | |
7323 | ||
7324 | for(;;) { | |
7325 | tOrder = ucol_IGetNextCE(coll, tColl, status); | |
7326 | if(tOrder == UCOL_NO_MORE_CES) { | |
7327 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7328 | break; | |
7329 | } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) { | |
7330 | /* UCA amendment - ignore ignorables that follow shifted code points */ | |
7331 | continue; | |
7332 | } else if(isContinuation(tOrder)) { | |
7333 | if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ | |
7334 | if(tInShifted) { | |
7335 | tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ | |
7336 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7337 | continue; | |
7338 | } else { | |
7339 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7340 | break; | |
7341 | } | |
7342 | } else { /* Just lower level values */ | |
7343 | if(tInShifted) { | |
7344 | continue; | |
7345 | } else { | |
7346 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7347 | continue; | |
7348 | } | |
7349 | } | |
7350 | } else { /* regular */ | |
729e4ab9 A |
7351 | if(coll->leadBytePermutationTable != NULL){ |
7352 | tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); | |
7353 | } | |
46f4442e A |
7354 | if((tOrder & UCOL_PRIMARYMASK) > LVT) { |
7355 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7356 | break; | |
7357 | } else { | |
7358 | if((tOrder & UCOL_PRIMARYMASK) > 0) { | |
7359 | tInShifted = TRUE; | |
7360 | tOrder &= UCOL_PRIMARYMASK; | |
7361 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7362 | continue; | |
7363 | } else { | |
7364 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7365 | tInShifted = FALSE; | |
7366 | continue; | |
7367 | } | |
7368 | } | |
7369 | } | |
b75a7d8f | 7370 | } |
46f4442e A |
7371 | tOrder &= UCOL_PRIMARYMASK; |
7372 | tInShifted = FALSE; | |
b75a7d8f | 7373 | |
46f4442e A |
7374 | if(sOrder == tOrder) { |
7375 | /* | |
7376 | if(doHiragana && hirResult == UCOL_EQUAL) { | |
7377 | if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) { | |
374ca955 | 7378 | hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA)) |
46f4442e A |
7379 | ? UCOL_LESS:UCOL_GREATER; |
7380 | } | |
7381 | } | |
7382 | */ | |
7383 | if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { | |
7384 | break; | |
7385 | } else { | |
7386 | sOrder = 0; | |
7387 | tOrder = 0; | |
7388 | continue; | |
7389 | } | |
b75a7d8f | 7390 | } else { |
46f4442e A |
7391 | result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER; |
7392 | goto commonReturn; | |
b75a7d8f | 7393 | } |
46f4442e | 7394 | } /* no primary difference... do the rest from the buffers */ |
b75a7d8f A |
7395 | } |
7396 | ||
7397 | /* now, we're gonna reexamine collected CEs */ | |
7398 | uint32_t *sCE; | |
7399 | uint32_t *tCE; | |
7400 | ||
7401 | /* This is the secondary level of comparison */ | |
7402 | if(checkSecTer) { | |
46f4442e A |
7403 | if(!isFrenchSec) { /* normal */ |
7404 | sCE = sCEs.buf; | |
7405 | tCE = tCEs.buf; | |
7406 | for(;;) { | |
7407 | while (secS == 0) { | |
7408 | secS = *(sCE++) & UCOL_SECONDARYMASK; | |
7409 | } | |
b75a7d8f | 7410 | |
46f4442e A |
7411 | while(secT == 0) { |
7412 | secT = *(tCE++) & UCOL_SECONDARYMASK; | |
7413 | } | |
b75a7d8f | 7414 | |
46f4442e A |
7415 | if(secS == secT) { |
7416 | if(secS == UCOL_NO_MORE_CES_SECONDARY) { | |
7417 | break; | |
7418 | } else { | |
7419 | secS = 0; secT = 0; | |
7420 | continue; | |
7421 | } | |
7422 | } else { | |
7423 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7424 | goto commonReturn; | |
7425 | } | |
b75a7d8f | 7426 | } |
46f4442e A |
7427 | } else { /* do the French */ |
7428 | uint32_t *sCESave = NULL; | |
7429 | uint32_t *tCESave = NULL; | |
7430 | sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */ | |
7431 | tCE = tCEs.pos-2; | |
7432 | for(;;) { | |
7433 | while (secS == 0 && sCE >= sCEs.buf) { | |
729e4ab9 | 7434 | if(sCESave == NULL) { |
46f4442e A |
7435 | secS = *(sCE--); |
7436 | if(isContinuation(secS)) { | |
7437 | while(isContinuation(secS = *(sCE--))) | |
7438 | ; | |
7439 | /* after this, secS has the start of continuation, and sCEs points before that */ | |
7440 | sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */ | |
7441 | sCE+=2; /* need to point to the first continuation CP */ | |
7442 | /* However, now you can just continue doing stuff */ | |
7443 | } | |
7444 | } else { | |
7445 | secS = *(sCE++); | |
7446 | if(!isContinuation(secS)) { /* This means we have finished with this cont */ | |
7447 | sCE = sCESave; /* reset the pointer to before continuation */ | |
729e4ab9 A |
7448 | sCESave = NULL; |
7449 | secS = 0; /* Fetch a fresh CE before the continuation sequence. */ | |
46f4442e A |
7450 | continue; |
7451 | } | |
7452 | } | |
7453 | secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */ | |
7454 | } | |
b75a7d8f | 7455 | |
46f4442e | 7456 | while(secT == 0 && tCE >= tCEs.buf) { |
729e4ab9 | 7457 | if(tCESave == NULL) { |
46f4442e A |
7458 | secT = *(tCE--); |
7459 | if(isContinuation(secT)) { | |
7460 | while(isContinuation(secT = *(tCE--))) | |
7461 | ; | |
7462 | /* after this, secS has the start of continuation, and sCEs points before that */ | |
7463 | tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */ | |
7464 | tCE+=2; /* need to point to the first continuation CP */ | |
7465 | /* However, now you can just continue doing stuff */ | |
7466 | } | |
7467 | } else { | |
7468 | secT = *(tCE++); | |
7469 | if(!isContinuation(secT)) { /* This means we have finished with this cont */ | |
7470 | tCE = tCESave; /* reset the pointer to before continuation */ | |
729e4ab9 A |
7471 | tCESave = NULL; |
7472 | secT = 0; /* Fetch a fresh CE before the continuation sequence. */ | |
46f4442e A |
7473 | continue; |
7474 | } | |
7475 | } | |
7476 | secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */ | |
7477 | } | |
b75a7d8f | 7478 | |
46f4442e A |
7479 | if(secS == secT) { |
7480 | if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) { | |
7481 | break; | |
7482 | } else { | |
7483 | secS = 0; secT = 0; | |
7484 | continue; | |
7485 | } | |
7486 | } else { | |
7487 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7488 | goto commonReturn; | |
7489 | } | |
b75a7d8f | 7490 | } |
b75a7d8f | 7491 | } |
b75a7d8f A |
7492 | } |
7493 | ||
7494 | /* doing the case bit */ | |
7495 | if(checkCase) { | |
46f4442e A |
7496 | sCE = sCEs.buf; |
7497 | tCE = tCEs.buf; | |
7498 | for(;;) { | |
7499 | while((secS & UCOL_REMOVE_CASE) == 0) { | |
7500 | if(!isContinuation(*sCE++)) { | |
7501 | secS =*(sCE-1); | |
7502 | if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { | |
7503 | // primary ignorables should not be considered on the case level when the strength is primary | |
7504 | // otherwise, the CEs stop being well-formed | |
7505 | secS &= UCOL_TERT_CASE_MASK; | |
7506 | secS ^= caseSwitch; | |
7507 | } else { | |
7508 | secS = 0; | |
7509 | } | |
7510 | } else { | |
7511 | secS = 0; | |
7512 | } | |
73c04bcf | 7513 | } |
b75a7d8f | 7514 | |
46f4442e A |
7515 | while((secT & UCOL_REMOVE_CASE) == 0) { |
7516 | if(!isContinuation(*tCE++)) { | |
7517 | secT = *(tCE-1); | |
7518 | if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { | |
7519 | // primary ignorables should not be considered on the case level when the strength is primary | |
7520 | // otherwise, the CEs stop being well-formed | |
7521 | secT &= UCOL_TERT_CASE_MASK; | |
7522 | secT ^= caseSwitch; | |
7523 | } else { | |
7524 | secT = 0; | |
7525 | } | |
7526 | } else { | |
7527 | secT = 0; | |
7528 | } | |
73c04bcf | 7529 | } |
b75a7d8f | 7530 | |
46f4442e A |
7531 | if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) { |
7532 | result = UCOL_LESS; | |
7533 | goto commonReturn; | |
7534 | } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) { | |
7535 | result = UCOL_GREATER; | |
7536 | goto commonReturn; | |
7537 | } | |
b75a7d8f | 7538 | |
46f4442e A |
7539 | if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) { |
7540 | break; | |
7541 | } else { | |
7542 | secS = 0; | |
7543 | secT = 0; | |
7544 | } | |
b75a7d8f | 7545 | } |
b75a7d8f A |
7546 | } |
7547 | ||
7548 | /* Tertiary level */ | |
7549 | if(checkTertiary) { | |
46f4442e A |
7550 | secS = 0; |
7551 | secT = 0; | |
7552 | sCE = sCEs.buf; | |
7553 | tCE = tCEs.buf; | |
7554 | for(;;) { | |
7555 | while((secS & UCOL_REMOVE_CASE) == 0) { | |
7556 | secS = *(sCE++) & tertiaryMask; | |
7557 | if(!isContinuation(secS)) { | |
7558 | secS ^= caseSwitch; | |
7559 | } else { | |
7560 | secS &= UCOL_REMOVE_CASE; | |
7561 | } | |
7562 | } | |
b75a7d8f | 7563 | |
46f4442e A |
7564 | while((secT & UCOL_REMOVE_CASE) == 0) { |
7565 | secT = *(tCE++) & tertiaryMask; | |
7566 | if(!isContinuation(secT)) { | |
7567 | secT ^= caseSwitch; | |
7568 | } else { | |
7569 | secT &= UCOL_REMOVE_CASE; | |
7570 | } | |
7571 | } | |
b75a7d8f | 7572 | |
46f4442e A |
7573 | if(secS == secT) { |
7574 | if((secS & UCOL_REMOVE_CASE) == 1) { | |
7575 | break; | |
7576 | } else { | |
7577 | secS = 0; secT = 0; | |
7578 | continue; | |
7579 | } | |
7580 | } else { | |
7581 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7582 | goto commonReturn; | |
7583 | } | |
b75a7d8f | 7584 | } |
b75a7d8f A |
7585 | } |
7586 | ||
7587 | ||
7588 | if(qShifted /*checkQuad*/) { | |
46f4442e A |
7589 | UBool sInShifted = TRUE; |
7590 | UBool tInShifted = TRUE; | |
7591 | secS = 0; | |
7592 | secT = 0; | |
7593 | sCE = sCEs.buf; | |
7594 | tCE = tCEs.buf; | |
7595 | for(;;) { | |
729e4ab9 | 7596 | while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) { |
46f4442e A |
7597 | secS = *(sCE++); |
7598 | if(isContinuation(secS)) { | |
7599 | if(!sInShifted) { | |
7600 | continue; | |
7601 | } | |
7602 | } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */ | |
7603 | secS = UCOL_PRIMARYMASK; | |
7604 | sInShifted = FALSE; | |
7605 | } else { | |
7606 | sInShifted = TRUE; | |
7607 | } | |
7608 | } | |
7609 | secS &= UCOL_PRIMARYMASK; | |
b75a7d8f A |
7610 | |
7611 | ||
729e4ab9 | 7612 | while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) { |
46f4442e A |
7613 | secT = *(tCE++); |
7614 | if(isContinuation(secT)) { | |
7615 | if(!tInShifted) { | |
7616 | continue; | |
7617 | } | |
7618 | } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) { | |
7619 | secT = UCOL_PRIMARYMASK; | |
7620 | tInShifted = FALSE; | |
7621 | } else { | |
7622 | tInShifted = TRUE; | |
7623 | } | |
b75a7d8f | 7624 | } |
46f4442e | 7625 | secT &= UCOL_PRIMARYMASK; |
b75a7d8f | 7626 | |
46f4442e A |
7627 | if(secS == secT) { |
7628 | if(secS == UCOL_NO_MORE_CES_PRIMARY) { | |
7629 | break; | |
7630 | } else { | |
7631 | secS = 0; secT = 0; | |
7632 | continue; | |
7633 | } | |
7634 | } else { | |
7635 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7636 | goto commonReturn; | |
7637 | } | |
b75a7d8f | 7638 | } |
b75a7d8f | 7639 | } else if(doHiragana && hirResult != UCOL_EQUAL) { |
46f4442e A |
7640 | // If we're fine on quaternaries, we might be different |
7641 | // on Hiragana. This, however, might fail us in shifted. | |
7642 | result = hirResult; | |
7643 | goto commonReturn; | |
b75a7d8f A |
7644 | } |
7645 | ||
7646 | /* For IDENTICAL comparisons, we use a bitwise character comparison */ | |
7647 | /* as a tiebreaker if all else is equal. */ | |
7648 | /* Getting here should be quite rare - strings are not identical - */ | |
7649 | /* that is checked first, but compared == through all other checks. */ | |
7650 | if(checkIdent) | |
7651 | { | |
7652 | //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON); | |
7653 | result = ucol_checkIdent(sColl, tColl, TRUE, status); | |
7654 | } | |
7655 | ||
7656 | commonReturn: | |
7657 | if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) { | |
b75a7d8f A |
7658 | if (sCEs.buf != sCEs.localArray ) { |
7659 | uprv_free(sCEs.buf); | |
7660 | } | |
7661 | if (tCEs.buf != tCEs.localArray ) { | |
7662 | uprv_free(tCEs.buf); | |
7663 | } | |
7664 | } | |
7665 | ||
7666 | return result; | |
7667 | } | |
7668 | ||
729e4ab9 A |
7669 | static UCollationResult |
7670 | ucol_strcollRegular(const UCollator *coll, | |
7671 | const UChar *source, int32_t sourceLength, | |
7672 | const UChar *target, int32_t targetLength, | |
7673 | UErrorCode *status) { | |
7674 | collIterate sColl, tColl; | |
7675 | // Preparing the context objects for iterating over strings | |
7676 | IInit_collIterate(coll, source, sourceLength, &sColl, status); | |
7677 | IInit_collIterate(coll, target, targetLength, &tColl, status); | |
7678 | if(U_FAILURE(*status)) { | |
7679 | return UCOL_LESS; | |
7680 | } | |
7681 | return ucol_strcollRegular(&sColl, &tColl, status); | |
7682 | } | |
b75a7d8f | 7683 | |
374ca955 A |
7684 | static inline uint32_t |
7685 | ucol_getLatinOneContraction(const UCollator *coll, int32_t strength, | |
46f4442e A |
7686 | uint32_t CE, const UChar *s, int32_t *index, int32_t len) |
7687 | { | |
7688 | const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); | |
7689 | int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; | |
7690 | int32_t offset = 1; | |
7691 | UChar schar = 0, tchar = 0; | |
b75a7d8f | 7692 | |
46f4442e A |
7693 | for(;;) { |
7694 | if(len == -1) { | |
7695 | if(s[*index] == 0) { // end of string | |
7696 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
7697 | } else { | |
7698 | schar = s[*index]; | |
7699 | } | |
7700 | } else { | |
7701 | if(*index == len) { | |
7702 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
7703 | } else { | |
7704 | schar = s[*index]; | |
7705 | } | |
7706 | } | |
b75a7d8f | 7707 | |
46f4442e A |
7708 | while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
7709 | offset++; | |
7710 | } | |
b75a7d8f | 7711 | |
46f4442e A |
7712 | if (schar == tchar) { |
7713 | (*index)++; | |
7714 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); | |
7715 | } | |
7716 | else | |
7717 | { | |
7718 | if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { | |
7719 | return UCOL_BAIL_OUT_CE; | |
7720 | } | |
7721 | // skip completely ignorables | |
7722 | uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); | |
7723 | if(isZeroCE == 0) { // we have to ignore completely ignorables | |
7724 | (*index)++; | |
7725 | continue; | |
7726 | } | |
b75a7d8f | 7727 | |
46f4442e A |
7728 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
7729 | } | |
b75a7d8f | 7730 | } |
b75a7d8f A |
7731 | } |
7732 | ||
7733 | ||
374ca955 A |
7734 | /** |
7735 | * This is a fast strcoll, geared towards text in Latin-1. | |
b75a7d8f A |
7736 | * It supports contractions of size two, French secondaries |
7737 | * and case switching. You can use it with strengths primary | |
7738 | * to tertiary. It does not support shifted and case level. | |
7739 | * It relies on the table build by setupLatin1Table. If it | |
7740 | * doesn't understand something, it will go to the regular | |
374ca955 | 7741 | * strcoll. |
b75a7d8f | 7742 | */ |
729e4ab9 | 7743 | static UCollationResult |
b75a7d8f A |
7744 | ucol_strcollUseLatin1( const UCollator *coll, |
7745 | const UChar *source, | |
7746 | int32_t sLen, | |
7747 | const UChar *target, | |
7748 | int32_t tLen, | |
374ca955 | 7749 | UErrorCode *status) |
b75a7d8f A |
7750 | { |
7751 | U_ALIGN_CODE(16); | |
7752 | int32_t strength = coll->strength; | |
7753 | ||
7754 | int32_t sIndex = 0, tIndex = 0; | |
7755 | UChar sChar = 0, tChar = 0; | |
7756 | uint32_t sOrder=0, tOrder=0; | |
7757 | ||
73c04bcf | 7758 | UBool endOfSource = FALSE; |
b75a7d8f A |
7759 | |
7760 | uint32_t *elements = coll->latinOneCEs; | |
7761 | ||
7762 | UBool haveContractions = FALSE; // if we have contractions in our string | |
7763 | // we cannot do French secondary | |
7764 | ||
7765 | // Do the primary level | |
7766 | for(;;) { | |
46f4442e A |
7767 | while(sOrder==0) { // this loop skips primary ignorables |
7768 | // sOrder=getNextlatinOneCE(source); | |
7769 | if(sLen==-1) { // handling zero terminated strings | |
7770 | sChar=source[sIndex++]; | |
7771 | if(sChar==0) { | |
7772 | endOfSource = TRUE; | |
7773 | break; | |
7774 | } | |
7775 | } else { // handling strings with known length | |
7776 | if(sIndex==sLen) { | |
7777 | endOfSource = TRUE; | |
7778 | break; | |
7779 | } | |
7780 | sChar=source[sIndex++]; | |
b75a7d8f | 7781 | } |
46f4442e A |
7782 | if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
7783 | //fprintf(stderr, "R"); | |
729e4ab9 | 7784 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
b75a7d8f | 7785 | } |
b75a7d8f | 7786 | sOrder = elements[sChar]; |
46f4442e A |
7787 | if(sOrder >= UCOL_NOT_FOUND) { // if we got a special |
7788 | // specials can basically be either contractions or bail-out signs. If we get anything | |
7789 | // else, we'll bail out anywasy | |
7790 | if(getCETag(sOrder) == CONTRACTION_TAG) { | |
7791 | sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); | |
7792 | haveContractions = TRUE; // if there are contractions, we cannot do French secondary | |
7793 | // However, if there are contractions in the table, but we always use just one char, | |
7794 | // we might be able to do French. This should be checked out. | |
7795 | } | |
7796 | if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { | |
7797 | //fprintf(stderr, "S"); | |
729e4ab9 | 7798 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
46f4442e | 7799 | } |
b75a7d8f | 7800 | } |
46f4442e | 7801 | } |
b75a7d8f | 7802 | |
46f4442e A |
7803 | while(tOrder==0) { // this loop skips primary ignorables |
7804 | // tOrder=getNextlatinOneCE(target); | |
7805 | if(tLen==-1) { // handling zero terminated strings | |
7806 | tChar=target[tIndex++]; | |
7807 | if(tChar==0) { | |
7808 | if(endOfSource) { // this is different than source loop, | |
7809 | // as we already know that source loop is done here, | |
7810 | // so we can either finish the primary loop if both | |
7811 | // strings are done or anounce the result if only | |
7812 | // target is done. Same below. | |
7813 | goto endOfPrimLoop; | |
7814 | } else { | |
7815 | return UCOL_GREATER; | |
7816 | } | |
7817 | } | |
7818 | } else { // handling strings with known length | |
7819 | if(tIndex==tLen) { | |
7820 | if(endOfSource) { | |
7821 | goto endOfPrimLoop; | |
7822 | } else { | |
7823 | return UCOL_GREATER; | |
7824 | } | |
7825 | } | |
7826 | tChar=target[tIndex++]; | |
7827 | } | |
7828 | if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) | |
7829 | //fprintf(stderr, "R"); | |
729e4ab9 | 7830 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
b75a7d8f | 7831 | } |
b75a7d8f | 7832 | tOrder = elements[tChar]; |
46f4442e A |
7833 | if(tOrder >= UCOL_NOT_FOUND) { |
7834 | // Handling specials, see the comments for source | |
7835 | if(getCETag(tOrder) == CONTRACTION_TAG) { | |
7836 | tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); | |
7837 | haveContractions = TRUE; | |
7838 | } | |
7839 | if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { | |
7840 | //fprintf(stderr, "S"); | |
729e4ab9 | 7841 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
46f4442e | 7842 | } |
b75a7d8f | 7843 | } |
46f4442e A |
7844 | } |
7845 | if(endOfSource) { // source is finished, but target is not, say the result. | |
7846 | return UCOL_LESS; | |
7847 | } | |
b75a7d8f | 7848 | |
46f4442e | 7849 | if(sOrder == tOrder) { // if we have same CEs, we continue the loop |
b75a7d8f A |
7850 | sOrder = 0; tOrder = 0; |
7851 | continue; | |
46f4442e A |
7852 | } else { |
7853 | // compare current top bytes | |
b75a7d8f | 7854 | if(((sOrder^tOrder)&0xFF000000)!=0) { |
46f4442e A |
7855 | // top bytes differ, return difference |
7856 | if(sOrder < tOrder) { | |
7857 | return UCOL_LESS; | |
7858 | } else if(sOrder > tOrder) { | |
7859 | return UCOL_GREATER; | |
7860 | } | |
7861 | // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); | |
7862 | // since we must return enum value | |
b75a7d8f | 7863 | } |
46f4442e A |
7864 | |
7865 | // top bytes match, continue with following bytes | |
b75a7d8f A |
7866 | sOrder<<=8; |
7867 | tOrder<<=8; | |
b75a7d8f | 7868 | } |
46f4442e | 7869 | } |
b75a7d8f | 7870 | |
46f4442e A |
7871 | endOfPrimLoop: |
7872 | // after primary loop, we definitely know the sizes of strings, | |
7873 | // so we set it and use simpler loop for secondaries and tertiaries | |
7874 | sLen = sIndex; tLen = tIndex; | |
7875 | if(strength >= UCOL_SECONDARY) { | |
7876 | // adjust the table beggining | |
7877 | elements += coll->latinOneTableLen; | |
7878 | endOfSource = FALSE; | |
7879 | ||
7880 | if(coll->frenchCollation == UCOL_OFF) { // non French | |
7881 | // This loop is a simplified copy of primary loop | |
7882 | // at this point we know that whole strings are latin-1, so we don't | |
7883 | // check for that. We also know that we only have contractions as | |
7884 | // specials. | |
7885 | sIndex = 0; tIndex = 0; | |
7886 | for(;;) { | |
7887 | while(sOrder==0) { | |
7888 | if(sIndex==sLen) { | |
7889 | endOfSource = TRUE; | |
7890 | break; | |
7891 | } | |
7892 | sChar=source[sIndex++]; | |
7893 | sOrder = elements[sChar]; | |
7894 | if(sOrder > UCOL_NOT_FOUND) { | |
7895 | sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); | |
7896 | } | |
7897 | } | |
7898 | ||
7899 | while(tOrder==0) { | |
7900 | if(tIndex==tLen) { | |
7901 | if(endOfSource) { | |
7902 | goto endOfSecLoop; | |
7903 | } else { | |
7904 | return UCOL_GREATER; | |
7905 | } | |
7906 | } | |
7907 | tChar=target[tIndex++]; | |
7908 | tOrder = elements[tChar]; | |
7909 | if(tOrder > UCOL_NOT_FOUND) { | |
7910 | tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); | |
7911 | } | |
7912 | } | |
7913 | if(endOfSource) { | |
7914 | return UCOL_LESS; | |
7915 | } | |
7916 | ||
7917 | if(sOrder == tOrder) { | |
7918 | sOrder = 0; tOrder = 0; | |
7919 | continue; | |
7920 | } else { | |
7921 | // see primary loop for comments on this | |
7922 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
7923 | if(sOrder < tOrder) { | |
7924 | return UCOL_LESS; | |
7925 | } else if(sOrder > tOrder) { | |
7926 | return UCOL_GREATER; | |
7927 | } | |
7928 | } | |
7929 | sOrder<<=8; | |
7930 | tOrder<<=8; | |
7931 | } | |
b75a7d8f | 7932 | } |
46f4442e A |
7933 | } else { // French |
7934 | if(haveContractions) { // if we have contractions, we have to bail out | |
7935 | // since we don't really know how to handle them here | |
729e4ab9 | 7936 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
46f4442e A |
7937 | } |
7938 | // For French, we go backwards | |
7939 | sIndex = sLen; tIndex = tLen; | |
7940 | for(;;) { | |
7941 | while(sOrder==0) { | |
7942 | if(sIndex==0) { | |
7943 | endOfSource = TRUE; | |
7944 | break; | |
7945 | } | |
7946 | sChar=source[--sIndex]; | |
7947 | sOrder = elements[sChar]; | |
7948 | // don't even look for contractions | |
7949 | } | |
b75a7d8f | 7950 | |
46f4442e A |
7951 | while(tOrder==0) { |
7952 | if(tIndex==0) { | |
7953 | if(endOfSource) { | |
7954 | goto endOfSecLoop; | |
7955 | } else { | |
7956 | return UCOL_GREATER; | |
7957 | } | |
7958 | } | |
7959 | tChar=target[--tIndex]; | |
7960 | tOrder = elements[tChar]; | |
7961 | // don't even look for contractions | |
7962 | } | |
7963 | if(endOfSource) { | |
7964 | return UCOL_LESS; | |
7965 | } | |
7966 | ||
7967 | if(sOrder == tOrder) { | |
7968 | sOrder = 0; tOrder = 0; | |
7969 | continue; | |
7970 | } else { | |
7971 | // see the primary loop for comments | |
7972 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
7973 | if(sOrder < tOrder) { | |
7974 | return UCOL_LESS; | |
7975 | } else if(sOrder > tOrder) { | |
7976 | return UCOL_GREATER; | |
7977 | } | |
7978 | } | |
7979 | sOrder<<=8; | |
7980 | tOrder<<=8; | |
7981 | } | |
b75a7d8f | 7982 | } |
b75a7d8f | 7983 | } |
374ca955 | 7984 | } |
b75a7d8f A |
7985 | |
7986 | endOfSecLoop: | |
7987 | if(strength >= UCOL_TERTIARY) { | |
46f4442e A |
7988 | // tertiary loop is the same as secondary (except no French) |
7989 | elements += coll->latinOneTableLen; | |
7990 | sIndex = 0; tIndex = 0; | |
7991 | endOfSource = FALSE; | |
7992 | for(;;) { | |
7993 | while(sOrder==0) { | |
7994 | if(sIndex==sLen) { | |
7995 | endOfSource = TRUE; | |
7996 | break; | |
7997 | } | |
7998 | sChar=source[sIndex++]; | |
7999 | sOrder = elements[sChar]; | |
8000 | if(sOrder > UCOL_NOT_FOUND) { | |
8001 | sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); | |
8002 | } | |
8003 | } | |
8004 | while(tOrder==0) { | |
8005 | if(tIndex==tLen) { | |
8006 | if(endOfSource) { | |
8007 | return UCOL_EQUAL; // if both strings are at the end, they are equal | |
8008 | } else { | |
8009 | return UCOL_GREATER; | |
8010 | } | |
8011 | } | |
8012 | tChar=target[tIndex++]; | |
8013 | tOrder = elements[tChar]; | |
8014 | if(tOrder > UCOL_NOT_FOUND) { | |
8015 | tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); | |
8016 | } | |
8017 | } | |
b75a7d8f | 8018 | if(endOfSource) { |
46f4442e | 8019 | return UCOL_LESS; |
b75a7d8f | 8020 | } |
46f4442e A |
8021 | if(sOrder == tOrder) { |
8022 | sOrder = 0; tOrder = 0; | |
8023 | continue; | |
8024 | } else { | |
8025 | if(((sOrder^tOrder)&0xff000000)!=0) { | |
8026 | if(sOrder < tOrder) { | |
8027 | return UCOL_LESS; | |
8028 | } else if(sOrder > tOrder) { | |
8029 | return UCOL_GREATER; | |
8030 | } | |
8031 | } | |
8032 | sOrder<<=8; | |
8033 | tOrder<<=8; | |
b75a7d8f | 8034 | } |
374ca955 | 8035 | } |
374ca955 | 8036 | } |
b75a7d8f | 8037 | return UCOL_EQUAL; |
b75a7d8f A |
8038 | } |
8039 | ||
51004dcb A |
8040 | /* |
8041 | Note: ucol_strcollUTF8 supports null terminated input. Calculating length of | |
8042 | null terminated input string takes extra amount of CPU cycles. | |
8043 | */ | |
8044 | static UCollationResult | |
8045 | ucol_strcollRegularUTF8( | |
8046 | const UCollator *coll, | |
8047 | const char *source, | |
8048 | int32_t sourceLength, | |
8049 | const char *target, | |
8050 | int32_t targetLength, | |
8051 | UErrorCode *status) | |
46f4442e | 8052 | { |
51004dcb A |
8053 | UCharIterator src; |
8054 | UCharIterator tgt; | |
b75a7d8f | 8055 | |
51004dcb A |
8056 | uiter_setUTF8(&src, source, sourceLength); |
8057 | uiter_setUTF8(&tgt, target, targetLength); | |
b75a7d8f | 8058 | |
46f4442e A |
8059 | // Preparing the context objects for iterating over strings |
8060 | collIterate sColl, tColl; | |
729e4ab9 A |
8061 | IInit_collIterate(coll, NULL, -1, &sColl, status); |
8062 | IInit_collIterate(coll, NULL, -1, &tColl, status); | |
8063 | if(U_FAILURE(*status)) { | |
8064 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8065 | return UCOL_EQUAL; | |
8066 | } | |
46f4442e A |
8067 | // The division for the array length may truncate the array size to |
8068 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
8069 | // for all platforms anyway. | |
8070 | UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
8071 | UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
8072 | UNormIterator *sNormIter = NULL, *tNormIter = NULL; | |
374ca955 | 8073 | |
51004dcb | 8074 | sColl.iterator = &src; |
46f4442e | 8075 | sColl.flags |= UCOL_USE_ITERATOR; |
46f4442e | 8076 | tColl.flags |= UCOL_USE_ITERATOR; |
51004dcb | 8077 | tColl.iterator = &tgt; |
46f4442e A |
8078 | |
8079 | if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { | |
8080 | sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); | |
51004dcb | 8081 | sColl.iterator = unorm_setIter(sNormIter, &src, UNORM_FCD, status); |
46f4442e A |
8082 | sColl.flags &= ~UCOL_ITER_NORM; |
8083 | ||
8084 | tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); | |
51004dcb | 8085 | tColl.iterator = unorm_setIter(tNormIter, &tgt, UNORM_FCD, status); |
46f4442e | 8086 | tColl.flags &= ~UCOL_ITER_NORM; |
b75a7d8f | 8087 | } |
b75a7d8f | 8088 | |
51004dcb A |
8089 | return ucol_strcollRegular(&sColl, &tColl, status); |
8090 | } | |
b75a7d8f | 8091 | |
51004dcb A |
8092 | static inline uint32_t |
8093 | ucol_getLatinOneContractionUTF8(const UCollator *coll, int32_t strength, | |
8094 | uint32_t CE, const char *s, int32_t *index, int32_t len) | |
8095 | { | |
8096 | const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); | |
8097 | int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; | |
8098 | int32_t offset = 1; | |
8099 | UChar32 schar = 0, tchar = 0; | |
46f4442e | 8100 | |
51004dcb A |
8101 | for(;;) { |
8102 | if (*index == len) { | |
8103 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
8104 | } | |
8105 | U8_GET_OR_FFFD((const uint8_t*)s, 0, *index, len, schar); | |
8106 | if (len < 0 && schar == 0) { | |
8107 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
46f4442e | 8108 | } |
b75a7d8f | 8109 | |
51004dcb A |
8110 | while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
8111 | offset++; | |
8112 | } | |
46f4442e | 8113 | |
51004dcb A |
8114 | if (schar == tchar) { |
8115 | U8_FWD_1(s, *index, len); | |
8116 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); | |
8117 | } | |
8118 | else | |
8119 | { | |
8120 | if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { | |
8121 | return UCOL_BAIL_OUT_CE; | |
8122 | } | |
8123 | // skip completely ignorables | |
8124 | uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); | |
8125 | if(isZeroCE == 0) { // we have to ignore completely ignorables | |
8126 | U8_FWD_1(s, *index, len); | |
8127 | continue; | |
8128 | } | |
b75a7d8f | 8129 | |
51004dcb A |
8130 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
8131 | } | |
46f4442e | 8132 | } |
b75a7d8f A |
8133 | } |
8134 | ||
51004dcb A |
8135 | static inline UCollationResult |
8136 | ucol_strcollUseLatin1UTF8( | |
8137 | const UCollator *coll, | |
8138 | const char *source, | |
8139 | int32_t sLen, | |
8140 | const char *target, | |
8141 | int32_t tLen, | |
8142 | UErrorCode *status) | |
46f4442e | 8143 | { |
b75a7d8f | 8144 | U_ALIGN_CODE(16); |
51004dcb | 8145 | int32_t strength = coll->strength; |
374ca955 | 8146 | |
51004dcb A |
8147 | int32_t sIndex = 0, tIndex = 0; |
8148 | UChar32 sChar = 0, tChar = 0; | |
8149 | uint32_t sOrder=0, tOrder=0; | |
374ca955 | 8150 | |
51004dcb | 8151 | UBool endOfSource = FALSE; |
46f4442e | 8152 | |
51004dcb | 8153 | uint32_t *elements = coll->latinOneCEs; |
b75a7d8f | 8154 | |
51004dcb A |
8155 | UBool haveContractions = FALSE; // if we have contractions in our string |
8156 | // we cannot do French secondary | |
8157 | ||
8158 | // Do the primary level | |
8159 | for(;;) { | |
8160 | while(sOrder==0) { // this loop skips primary ignorables | |
8161 | // sOrder=getNextlatinOneCE(source); | |
8162 | if (sIndex == sLen) { | |
8163 | endOfSource = TRUE; | |
8164 | break; | |
8165 | } | |
8166 | U8_NEXT_OR_FFFD(source, sIndex, sLen ,sChar); | |
8167 | if (sLen < 0 && sChar == 0) { | |
8168 | endOfSource = TRUE; | |
8169 | sLen = sIndex; | |
8170 | break; | |
8171 | } | |
8172 | if(sChar&0xFFFFFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) | |
8173 | //fprintf(stderr, "R"); | |
8174 | return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); | |
8175 | } | |
8176 | sOrder = elements[sChar]; | |
8177 | if(sOrder >= UCOL_NOT_FOUND) { // if we got a special | |
8178 | // specials can basically be either contractions or bail-out signs. If we get anything | |
8179 | // else, we'll bail out anywasy | |
8180 | if(getCETag(sOrder) == CONTRACTION_TAG) { | |
8181 | sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); | |
8182 | haveContractions = TRUE; // if there are contractions, we cannot do French secondary | |
8183 | // However, if there are contractions in the table, but we always use just one char, | |
8184 | // we might be able to do French. This should be checked out. | |
8185 | } | |
8186 | if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { | |
8187 | //fprintf(stderr, "S"); | |
8188 | return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); | |
8189 | } | |
8190 | } | |
8191 | } | |
8192 | ||
8193 | while(tOrder==0) { // this loop skips primary ignorables | |
8194 | // tOrder=getNextlatinOneCE(target); | |
8195 | if (tIndex == tLen) { | |
8196 | if(endOfSource) { | |
8197 | goto endOfPrimLoopU8; | |
8198 | } else { | |
8199 | return UCOL_GREATER; | |
8200 | } | |
8201 | } | |
8202 | U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); | |
8203 | if (tLen < 0 && tChar == 0) { | |
8204 | if(endOfSource) { | |
8205 | tLen = tIndex; | |
8206 | goto endOfPrimLoopU8; | |
8207 | } else { | |
8208 | return UCOL_GREATER; | |
8209 | } | |
8210 | } | |
8211 | if(tChar&0xFFFFFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) | |
8212 | //fprintf(stderr, "R"); | |
8213 | return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); | |
8214 | } | |
8215 | tOrder = elements[tChar]; | |
8216 | if(tOrder >= UCOL_NOT_FOUND) { | |
8217 | // Handling specials, see the comments for source | |
8218 | if(getCETag(tOrder) == CONTRACTION_TAG) { | |
8219 | tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); | |
8220 | haveContractions = TRUE; | |
8221 | } | |
8222 | if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { | |
8223 | //fprintf(stderr, "S"); | |
8224 | return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); | |
8225 | } | |
8226 | } | |
8227 | } | |
8228 | if(endOfSource) { // source is finished, but target is not, say the result. | |
8229 | return UCOL_LESS; | |
8230 | } | |
8231 | ||
8232 | if(sOrder == tOrder) { // if we have same CEs, we continue the loop | |
8233 | sOrder = 0; tOrder = 0; | |
8234 | continue; | |
8235 | } else { | |
8236 | // compare current top bytes | |
8237 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
8238 | // top bytes differ, return difference | |
8239 | if(sOrder < tOrder) { | |
8240 | return UCOL_LESS; | |
8241 | } else if(sOrder > tOrder) { | |
8242 | return UCOL_GREATER; | |
8243 | } | |
8244 | // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); | |
8245 | // since we must return enum value | |
8246 | } | |
8247 | ||
8248 | // top bytes match, continue with following bytes | |
8249 | sOrder<<=8; | |
8250 | tOrder<<=8; | |
8251 | } | |
8252 | } | |
8253 | ||
8254 | endOfPrimLoopU8: | |
8255 | // after primary loop, we definitely know the sizes of strings, | |
8256 | // so we set it and use simpler loop for secondaries and tertiaries | |
8257 | sLen = sIndex; tLen = tIndex; | |
8258 | if(strength >= UCOL_SECONDARY) { | |
8259 | // adjust the table beggining | |
8260 | elements += coll->latinOneTableLen; | |
8261 | endOfSource = FALSE; | |
8262 | ||
8263 | if(coll->frenchCollation == UCOL_OFF) { // non French | |
8264 | // This loop is a simplified copy of primary loop | |
8265 | // at this point we know that whole strings are latin-1, so we don't | |
8266 | // check for that. We also know that we only have contractions as | |
8267 | // specials. | |
8268 | sIndex = 0; tIndex = 0; | |
8269 | for(;;) { | |
8270 | while(sOrder==0) { | |
8271 | if(sIndex==sLen) { | |
8272 | endOfSource = TRUE; | |
8273 | break; | |
8274 | } | |
8275 | U_ASSERT(sLen >= 0); | |
8276 | U8_NEXT_OR_FFFD(source, sIndex, sLen, sChar); | |
8277 | U_ASSERT(sChar >= 0 && sChar <= 0xFF); | |
8278 | sOrder = elements[sChar]; | |
8279 | if(sOrder > UCOL_NOT_FOUND) { | |
8280 | sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); | |
8281 | } | |
8282 | } | |
8283 | ||
8284 | while(tOrder==0) { | |
8285 | if(tIndex==tLen) { | |
8286 | if(endOfSource) { | |
8287 | goto endOfSecLoopU8; | |
8288 | } else { | |
8289 | return UCOL_GREATER; | |
8290 | } | |
8291 | } | |
8292 | U_ASSERT(tLen >= 0); | |
8293 | U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); | |
8294 | U_ASSERT(tChar >= 0 && tChar <= 0xFF); | |
8295 | tOrder = elements[tChar]; | |
8296 | if(tOrder > UCOL_NOT_FOUND) { | |
8297 | tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); | |
8298 | } | |
8299 | } | |
8300 | if(endOfSource) { | |
8301 | return UCOL_LESS; | |
8302 | } | |
8303 | ||
8304 | if(sOrder == tOrder) { | |
8305 | sOrder = 0; tOrder = 0; | |
8306 | continue; | |
8307 | } else { | |
8308 | // see primary loop for comments on this | |
8309 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
8310 | if(sOrder < tOrder) { | |
8311 | return UCOL_LESS; | |
8312 | } else if(sOrder > tOrder) { | |
8313 | return UCOL_GREATER; | |
8314 | } | |
8315 | } | |
8316 | sOrder<<=8; | |
8317 | tOrder<<=8; | |
8318 | } | |
8319 | } | |
8320 | } else { // French | |
8321 | if(haveContractions) { // if we have contractions, we have to bail out | |
8322 | // since we don't really know how to handle them here | |
8323 | return ucol_strcollRegularUTF8(coll, source, sLen, target, tLen, status); | |
8324 | } | |
8325 | // For French, we go backwards | |
8326 | sIndex = sLen; tIndex = tLen; | |
8327 | for(;;) { | |
8328 | while(sOrder==0) { | |
8329 | if(sIndex==0) { | |
8330 | endOfSource = TRUE; | |
8331 | break; | |
8332 | } | |
8333 | U8_PREV_OR_FFFD(source, 0, sIndex, sChar); | |
8334 | U_ASSERT(sChar >= 0 && sChar <= 0xFF); | |
8335 | sOrder = elements[sChar]; | |
8336 | // don't even look for contractions | |
8337 | } | |
8338 | ||
8339 | while(tOrder==0) { | |
8340 | if(tIndex==0) { | |
8341 | if(endOfSource) { | |
8342 | goto endOfSecLoopU8; | |
8343 | } else { | |
8344 | return UCOL_GREATER; | |
8345 | } | |
8346 | } | |
8347 | U8_PREV_OR_FFFD(target, 0, tIndex, tChar); | |
8348 | U_ASSERT(tChar >= 0 && tChar <= 0xFF); | |
8349 | tOrder = elements[tChar]; | |
8350 | // don't even look for contractions | |
8351 | } | |
8352 | if(endOfSource) { | |
8353 | return UCOL_LESS; | |
8354 | } | |
8355 | ||
8356 | if(sOrder == tOrder) { | |
8357 | sOrder = 0; tOrder = 0; | |
8358 | continue; | |
8359 | } else { | |
8360 | // see the primary loop for comments | |
8361 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
8362 | if(sOrder < tOrder) { | |
8363 | return UCOL_LESS; | |
8364 | } else if(sOrder > tOrder) { | |
8365 | return UCOL_GREATER; | |
8366 | } | |
8367 | } | |
8368 | sOrder<<=8; | |
8369 | tOrder<<=8; | |
8370 | } | |
8371 | } | |
8372 | } | |
8373 | } | |
8374 | ||
8375 | endOfSecLoopU8: | |
8376 | if(strength >= UCOL_TERTIARY) { | |
8377 | // tertiary loop is the same as secondary (except no French) | |
8378 | elements += coll->latinOneTableLen; | |
8379 | sIndex = 0; tIndex = 0; | |
8380 | endOfSource = FALSE; | |
8381 | for(;;) { | |
8382 | while(sOrder==0) { | |
8383 | if(sIndex==sLen) { | |
8384 | endOfSource = TRUE; | |
8385 | break; | |
8386 | } | |
8387 | U_ASSERT(sLen >= 0); | |
8388 | U8_NEXT_OR_FFFD(source, sIndex, sLen, sChar); | |
8389 | U_ASSERT(sChar >= 0 && sChar <= 0xFF); | |
8390 | sOrder = elements[sChar]; | |
8391 | if(sOrder > UCOL_NOT_FOUND) { | |
8392 | sOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); | |
8393 | } | |
8394 | } | |
8395 | while(tOrder==0) { | |
8396 | if(tIndex==tLen) { | |
8397 | if(endOfSource) { | |
8398 | return UCOL_EQUAL; // if both strings are at the end, they are equal | |
8399 | } else { | |
8400 | return UCOL_GREATER; | |
8401 | } | |
8402 | } | |
8403 | U_ASSERT(tLen >= 0); | |
8404 | U8_NEXT_OR_FFFD(target, tIndex, tLen, tChar); | |
8405 | U_ASSERT(tChar >= 0 && tChar <= 0xFF); | |
8406 | tOrder = elements[tChar]; | |
8407 | if(tOrder > UCOL_NOT_FOUND) { | |
8408 | tOrder = ucol_getLatinOneContractionUTF8(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); | |
8409 | } | |
8410 | } | |
8411 | if(endOfSource) { | |
8412 | return UCOL_LESS; | |
8413 | } | |
8414 | if(sOrder == tOrder) { | |
8415 | sOrder = 0; tOrder = 0; | |
8416 | continue; | |
8417 | } else { | |
8418 | if(((sOrder^tOrder)&0xff000000)!=0) { | |
8419 | if(sOrder < tOrder) { | |
8420 | return UCOL_LESS; | |
8421 | } else if(sOrder > tOrder) { | |
8422 | return UCOL_GREATER; | |
8423 | } | |
8424 | } | |
8425 | sOrder<<=8; | |
8426 | tOrder<<=8; | |
8427 | } | |
8428 | } | |
8429 | } | |
8430 | return UCOL_EQUAL; | |
8431 | } | |
8432 | ||
8433 | U_CAPI UCollationResult U_EXPORT2 | |
8434 | ucol_strcollIter( const UCollator *coll, | |
8435 | UCharIterator *sIter, | |
8436 | UCharIterator *tIter, | |
8437 | UErrorCode *status) | |
8438 | { | |
8439 | if(!status || U_FAILURE(*status)) { | |
8440 | return UCOL_EQUAL; | |
8441 | } | |
8442 | ||
8443 | UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER); | |
8444 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter); | |
8445 | ||
8446 | if (sIter == tIter) { | |
8447 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8448 | return UCOL_EQUAL; | |
8449 | } | |
8450 | if(sIter == NULL || tIter == NULL || coll == NULL) { | |
8451 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
8452 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8453 | return UCOL_EQUAL; | |
8454 | } | |
8455 | ||
8456 | UCollationResult result = UCOL_EQUAL; | |
8457 | ||
8458 | // Preparing the context objects for iterating over strings | |
8459 | collIterate sColl, tColl; | |
8460 | IInit_collIterate(coll, NULL, -1, &sColl, status); | |
8461 | IInit_collIterate(coll, NULL, -1, &tColl, status); | |
8462 | if(U_FAILURE(*status)) { | |
8463 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8464 | return UCOL_EQUAL; | |
8465 | } | |
8466 | // The division for the array length may truncate the array size to | |
8467 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
8468 | // for all platforms anyway. | |
8469 | UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
8470 | UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
8471 | UNormIterator *sNormIter = NULL, *tNormIter = NULL; | |
8472 | ||
8473 | sColl.iterator = sIter; | |
8474 | sColl.flags |= UCOL_USE_ITERATOR; | |
8475 | tColl.flags |= UCOL_USE_ITERATOR; | |
8476 | tColl.iterator = tIter; | |
8477 | ||
8478 | if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { | |
8479 | sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); | |
8480 | sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status); | |
8481 | sColl.flags &= ~UCOL_ITER_NORM; | |
8482 | ||
8483 | tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); | |
8484 | tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status); | |
8485 | tColl.flags &= ~UCOL_ITER_NORM; | |
8486 | } | |
8487 | ||
8488 | UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL; | |
8489 | ||
8490 | while((sChar = sColl.iterator->next(sColl.iterator)) == | |
8491 | (tChar = tColl.iterator->next(tColl.iterator))) { | |
8492 | if(sChar == U_SENTINEL) { | |
8493 | result = UCOL_EQUAL; | |
8494 | goto end_compare; | |
8495 | } | |
8496 | } | |
8497 | ||
8498 | if(sChar == U_SENTINEL) { | |
8499 | tChar = tColl.iterator->previous(tColl.iterator); | |
8500 | } | |
8501 | ||
8502 | if(tChar == U_SENTINEL) { | |
8503 | sChar = sColl.iterator->previous(sColl.iterator); | |
8504 | } | |
8505 | ||
8506 | sChar = sColl.iterator->previous(sColl.iterator); | |
8507 | tChar = tColl.iterator->previous(tColl.iterator); | |
8508 | ||
8509 | if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll)) | |
8510 | { | |
8511 | // We are stopped in the middle of a contraction. | |
8512 | // Scan backwards through the == part of the string looking for the start of the contraction. | |
8513 | // It doesn't matter which string we scan, since they are the same in this region. | |
8514 | do | |
8515 | { | |
8516 | sChar = sColl.iterator->previous(sColl.iterator); | |
8517 | tChar = tColl.iterator->previous(tColl.iterator); | |
8518 | } | |
8519 | while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll)); | |
8520 | } | |
8521 | ||
8522 | ||
8523 | if(U_SUCCESS(*status)) { | |
8524 | result = ucol_strcollRegular(&sColl, &tColl, status); | |
8525 | } | |
8526 | ||
8527 | end_compare: | |
8528 | if(sNormIter || tNormIter) { | |
8529 | unorm_closeIter(sNormIter); | |
8530 | unorm_closeIter(tNormIter); | |
8531 | } | |
8532 | ||
8533 | UTRACE_EXIT_VALUE_STATUS(result, *status) | |
8534 | return result; | |
8535 | } | |
8536 | ||
8537 | ||
8538 | /* */ | |
8539 | /* ucol_strcoll Main public API string comparison function */ | |
8540 | /* */ | |
8541 | U_CAPI UCollationResult U_EXPORT2 | |
8542 | ucol_strcoll( const UCollator *coll, | |
8543 | const UChar *source, | |
8544 | int32_t sourceLength, | |
8545 | const UChar *target, | |
8546 | int32_t targetLength) | |
8547 | { | |
8548 | U_ALIGN_CODE(16); | |
8549 | ||
8550 | UTRACE_ENTRY(UTRACE_UCOL_STRCOLL); | |
8551 | if (UTRACE_LEVEL(UTRACE_VERBOSE)) { | |
8552 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target); | |
8553 | UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength); | |
8554 | UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength); | |
8555 | } | |
8556 | ||
8557 | if(source == NULL || target == NULL) { | |
8558 | // do not crash, but return. Should have | |
8559 | // status argument to return error. | |
8560 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8561 | return UCOL_EQUAL; | |
8562 | } | |
8563 | ||
8564 | /* Quick check if source and target are same strings. */ | |
8565 | /* They should either both be NULL terminated or the explicit length should be set on both. */ | |
8566 | if (source==target && sourceLength==targetLength) { | |
8567 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8568 | return UCOL_EQUAL; | |
8569 | } | |
8570 | ||
8571 | if(coll->delegate != NULL) { | |
4388f060 A |
8572 | UErrorCode status = U_ZERO_ERROR; |
8573 | return ((const Collator*)coll->delegate)->compare(source,sourceLength,target,targetLength, status); | |
8574 | } | |
8575 | ||
b75a7d8f A |
8576 | /* Scan the strings. Find: */ |
8577 | /* The length of any leading portion that is equal */ | |
8578 | /* Whether they are exactly equal. (in which case we just return) */ | |
8579 | const UChar *pSrc = source; | |
8580 | const UChar *pTarg = target; | |
8581 | int32_t equalLength; | |
8582 | ||
8583 | if (sourceLength == -1 && targetLength == -1) { | |
8584 | // Both strings are null terminated. | |
46f4442e A |
8585 | // Scan through any leading equal portion. |
8586 | while (*pSrc == *pTarg && *pSrc != 0) { | |
b75a7d8f A |
8587 | pSrc++; |
8588 | pTarg++; | |
8589 | } | |
8590 | if (*pSrc == 0 && *pTarg == 0) { | |
374ca955 | 8591 | UTRACE_EXIT_VALUE(UCOL_EQUAL); |
b75a7d8f A |
8592 | return UCOL_EQUAL; |
8593 | } | |
729e4ab9 | 8594 | equalLength = (int32_t)(pSrc - source); |
b75a7d8f A |
8595 | } |
8596 | else | |
8597 | { | |
8598 | // One or both strings has an explicit length. | |
b75a7d8f A |
8599 | const UChar *pSrcEnd = source + sourceLength; |
8600 | const UChar *pTargEnd = target + targetLength; | |
8601 | ||
b75a7d8f | 8602 | // Scan while the strings are bitwise ==, or until one is exhausted. |
46f4442e A |
8603 | for (;;) { |
8604 | if (pSrc == pSrcEnd || pTarg == pTargEnd) { | |
8605 | break; | |
b75a7d8f | 8606 | } |
46f4442e A |
8607 | if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { |
8608 | break; | |
8609 | } | |
8610 | if (*pSrc != *pTarg) { | |
8611 | break; | |
b75a7d8f | 8612 | } |
46f4442e A |
8613 | pSrc++; |
8614 | pTarg++; | |
8615 | } | |
729e4ab9 | 8616 | equalLength = (int32_t)(pSrc - source); |
46f4442e A |
8617 | |
8618 | // If we made it all the way through both strings, we are done. They are == | |
8619 | if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */ | |
8620 | (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */ | |
8621 | { | |
8622 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8623 | return UCOL_EQUAL; | |
8624 | } | |
b75a7d8f A |
8625 | } |
8626 | if (equalLength > 0) { | |
8627 | /* There is an identical portion at the beginning of the two strings. */ | |
8628 | /* If the identical portion ends within a contraction or a comibining */ | |
8629 | /* character sequence, back up to the start of that sequence. */ | |
729e4ab9 | 8630 | |
46f4442e A |
8631 | // These values should already be set by the code above. |
8632 | //pSrc = source + equalLength; /* point to the first differing chars */ | |
8633 | //pTarg = target + equalLength; | |
729e4ab9 A |
8634 | if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) || |
8635 | (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))) | |
b75a7d8f A |
8636 | { |
8637 | // We are stopped in the middle of a contraction. | |
8638 | // Scan backwards through the == part of the string looking for the start of the contraction. | |
8639 | // It doesn't matter which string we scan, since they are the same in this region. | |
8640 | do | |
8641 | { | |
8642 | equalLength--; | |
8643 | pSrc--; | |
8644 | } | |
8645 | while (equalLength>0 && ucol_unsafeCP(*pSrc, coll)); | |
8646 | } | |
8647 | ||
8648 | source += equalLength; | |
8649 | target += equalLength; | |
8650 | if (sourceLength > 0) { | |
8651 | sourceLength -= equalLength; | |
8652 | } | |
8653 | if (targetLength > 0) { | |
8654 | targetLength -= equalLength; | |
8655 | } | |
8656 | } | |
8657 | ||
46f4442e A |
8658 | UErrorCode status = U_ZERO_ERROR; |
8659 | UCollationResult returnVal; | |
b75a7d8f | 8660 | if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) { |
729e4ab9 | 8661 | returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status); |
b75a7d8f | 8662 | } else { |
46f4442e | 8663 | returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status); |
b75a7d8f | 8664 | } |
374ca955 A |
8665 | UTRACE_EXIT_VALUE(returnVal); |
8666 | return returnVal; | |
b75a7d8f A |
8667 | } |
8668 | ||
51004dcb A |
8669 | U_CAPI UCollationResult U_EXPORT2 |
8670 | ucol_strcollUTF8( | |
8671 | const UCollator *coll, | |
8672 | const char *source, | |
8673 | int32_t sourceLength, | |
8674 | const char *target, | |
8675 | int32_t targetLength, | |
8676 | UErrorCode *status) | |
8677 | { | |
8678 | U_ALIGN_CODE(16); | |
8679 | ||
8680 | UTRACE_ENTRY(UTRACE_UCOL_STRCOLLUTF8); | |
8681 | if (UTRACE_LEVEL(UTRACE_VERBOSE)) { | |
8682 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target); | |
8683 | UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vb ", source, sourceLength); | |
8684 | UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vb ", target, targetLength); | |
8685 | } | |
8686 | ||
8687 | if (U_FAILURE(*status)) { | |
8688 | /* do nothing */ | |
8689 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); | |
8690 | return UCOL_EQUAL; | |
8691 | } | |
8692 | ||
8693 | if(source == NULL || target == NULL) { | |
8694 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
8695 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); | |
8696 | return UCOL_EQUAL; | |
8697 | } | |
8698 | ||
8699 | /* Quick check if source and target are same strings. */ | |
8700 | /* They should either both be NULL terminated or the explicit length should be set on both. */ | |
8701 | if (source==target && sourceLength==targetLength) { | |
8702 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); | |
8703 | return UCOL_EQUAL; | |
8704 | } | |
8705 | ||
8706 | if(coll->delegate != NULL) { | |
8707 | return ((const Collator*)coll->delegate)->compareUTF8( | |
8708 | StringPiece(source, (sourceLength < 0) ? uprv_strlen(source) : sourceLength), | |
8709 | StringPiece(target, (targetLength < 0) ? uprv_strlen(target) : targetLength), | |
8710 | *status); | |
8711 | } | |
8712 | ||
8713 | /* Scan the strings. Find: */ | |
8714 | /* The length of any leading portion that is equal */ | |
8715 | /* Whether they are exactly equal. (in which case we just return) */ | |
8716 | const char *pSrc = source; | |
8717 | const char *pTarg = target; | |
8718 | UBool bSrcLimit = FALSE; | |
8719 | UBool bTargLimit = FALSE; | |
8720 | ||
8721 | if (sourceLength == -1 && targetLength == -1) { | |
8722 | // Both strings are null terminated. | |
8723 | // Scan through any leading equal portion. | |
8724 | while (*pSrc == *pTarg && *pSrc != 0) { | |
8725 | pSrc++; | |
8726 | pTarg++; | |
8727 | } | |
8728 | if (*pSrc == 0 && *pTarg == 0) { | |
8729 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); | |
8730 | return UCOL_EQUAL; | |
8731 | } | |
8732 | bSrcLimit = (*pSrc == 0); | |
8733 | bTargLimit = (*pTarg == 0); | |
8734 | } | |
8735 | else | |
8736 | { | |
8737 | // One or both strings has an explicit length. | |
8738 | const char *pSrcEnd = source + sourceLength; | |
8739 | const char *pTargEnd = target + targetLength; | |
8740 | ||
8741 | // Scan while the strings are bitwise ==, or until one is exhausted. | |
8742 | for (;;) { | |
8743 | if (pSrc == pSrcEnd || pTarg == pTargEnd) { | |
8744 | break; | |
8745 | } | |
8746 | if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { | |
8747 | break; | |
8748 | } | |
8749 | if (*pSrc != *pTarg) { | |
8750 | break; | |
8751 | } | |
8752 | pSrc++; | |
8753 | pTarg++; | |
8754 | } | |
8755 | bSrcLimit = (pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)); | |
8756 | bTargLimit = (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0)); | |
8757 | ||
8758 | // If we made it all the way through both strings, we are done. They are == | |
8759 | if (bSrcLimit && /* At end of src string, however it was specified. */ | |
8760 | bTargLimit) /* and also at end of dest string */ | |
8761 | { | |
8762 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status); | |
8763 | return UCOL_EQUAL; | |
8764 | } | |
8765 | } | |
8766 | ||
8767 | U_ASSERT(!(bSrcLimit && bTargLimit)); | |
8768 | ||
8769 | int32_t equalLength = pSrc - source; | |
8770 | UBool bSawNonLatin1 = FALSE; | |
8771 | ||
8772 | if (equalLength > 0) { | |
8773 | // Align position to the start of UTF-8 code point. | |
8774 | if (bTargLimit) { | |
8775 | U8_SET_CP_START((const uint8_t*)source, 0, equalLength); | |
8776 | } else { | |
8777 | U8_SET_CP_START((const uint8_t*)target, 0, equalLength); | |
8778 | } | |
8779 | pSrc = source + equalLength; | |
8780 | pTarg = target + equalLength; | |
8781 | } | |
8782 | ||
8783 | if (equalLength > 0) { | |
8784 | /* There is an identical portion at the beginning of the two strings. */ | |
8785 | /* If the identical portion ends within a contraction or a comibining */ | |
8786 | /* character sequence, back up to the start of that sequence. */ | |
8787 | UBool bUnsafeCP = FALSE; | |
8788 | UChar32 uc32 = -1; | |
8789 | ||
8790 | if (!bSrcLimit) { | |
8791 | U8_GET_OR_FFFD((const uint8_t*)source, 0, equalLength, sourceLength, uc32); | |
8792 | if (uc32 >= 0x10000 || ucol_unsafeCP((UChar)uc32, coll)) { | |
8793 | bUnsafeCP = TRUE; | |
8794 | } | |
8795 | bSawNonLatin1 |= (uc32 > 0xff); | |
8796 | } | |
8797 | if (!bTargLimit) { | |
8798 | U8_GET_OR_FFFD((const uint8_t*)target, 0, equalLength, targetLength, uc32); | |
8799 | if (uc32 >= 0x10000 || ucol_unsafeCP((UChar)uc32, coll)) { | |
8800 | bUnsafeCP = TRUE; | |
8801 | } | |
8802 | bSawNonLatin1 |= (uc32 > 0xff); | |
8803 | } | |
8804 | ||
8805 | if (bUnsafeCP) { | |
8806 | while (equalLength > 0) { | |
8807 | // We are stopped in the middle of a contraction. | |
8808 | // Scan backwards through the == part of the string looking for the start of the contraction. | |
8809 | // It doesn't matter which string we scan, since they are the same in this region. | |
8810 | U8_PREV_OR_FFFD((uint8_t*)source, 0, equalLength, uc32); | |
8811 | bSawNonLatin1 |= (uc32 > 0xff); | |
8812 | if (uc32 < 0x10000 && !ucol_unsafeCP((UChar)uc32, coll)) { | |
8813 | break; | |
8814 | } | |
8815 | } | |
8816 | } | |
8817 | source += equalLength; | |
8818 | target += equalLength; | |
8819 | if (sourceLength > 0) { | |
8820 | sourceLength -= equalLength; | |
8821 | } | |
8822 | if (targetLength > 0) { | |
8823 | targetLength -= equalLength; | |
8824 | } | |
8825 | } else { | |
8826 | // Lead byte of Latin 1 character is 0x00 - 0xC3 | |
8827 | bSawNonLatin1 = (source && (sourceLength != 0) && (uint8_t)*source > 0xc3); | |
8828 | bSawNonLatin1 |= (target && (targetLength != 0) && (uint8_t)*target > 0xc3); | |
8829 | } | |
8830 | ||
8831 | UCollationResult returnVal; | |
8832 | ||
8833 | if(!coll->latinOneUse || bSawNonLatin1) { | |
8834 | returnVal = ucol_strcollRegularUTF8(coll, source, sourceLength, target, targetLength, status); | |
8835 | } else { | |
8836 | returnVal = ucol_strcollUseLatin1UTF8(coll, source, sourceLength, target, targetLength, status); | |
8837 | } | |
8838 | UTRACE_EXIT_VALUE_STATUS(returnVal, *status); | |
8839 | return returnVal; | |
8840 | } | |
8841 | ||
8842 | ||
b75a7d8f A |
8843 | /* convenience function for comparing strings */ |
8844 | U_CAPI UBool U_EXPORT2 | |
8845 | ucol_greater( const UCollator *coll, | |
8846 | const UChar *source, | |
8847 | int32_t sourceLength, | |
8848 | const UChar *target, | |
8849 | int32_t targetLength) | |
8850 | { | |
46f4442e A |
8851 | return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
8852 | == UCOL_GREATER); | |
b75a7d8f A |
8853 | } |
8854 | ||
8855 | /* convenience function for comparing strings */ | |
8856 | U_CAPI UBool U_EXPORT2 | |
8857 | ucol_greaterOrEqual( const UCollator *coll, | |
8858 | const UChar *source, | |
8859 | int32_t sourceLength, | |
8860 | const UChar *target, | |
8861 | int32_t targetLength) | |
8862 | { | |
46f4442e A |
8863 | return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
8864 | != UCOL_LESS); | |
b75a7d8f A |
8865 | } |
8866 | ||
8867 | /* convenience function for comparing strings */ | |
8868 | U_CAPI UBool U_EXPORT2 | |
8869 | ucol_equal( const UCollator *coll, | |
8870 | const UChar *source, | |
8871 | int32_t sourceLength, | |
8872 | const UChar *target, | |
8873 | int32_t targetLength) | |
8874 | { | |
46f4442e A |
8875 | return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
8876 | == UCOL_EQUAL); | |
b75a7d8f A |
8877 | } |
8878 | ||
374ca955 A |
8879 | U_CAPI void U_EXPORT2 |
8880 | ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) { | |
46f4442e A |
8881 | if(coll && coll->UCA) { |
8882 | uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo)); | |
374ca955 | 8883 | } |
374ca955 A |
8884 | } |
8885 | ||
b75a7d8f | 8886 | #endif /* #if !UCONFIG_NO_COLLATION */ |