]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
729e4ab9 A |
3 | /* |
4 | ******************************************************************************* | |
5 | * | |
4388f060 | 6 | * Copyright (C) 2008-2011, International Business Machines |
729e4ab9 A |
7 | * Corporation, Google and others. All Rights Reserved. |
8 | * | |
9 | ******************************************************************************* | |
10 | */ | |
11 | // Author : eldawy@google.com (Mohamed Eldawy) | |
12 | // ucnvsel.cpp | |
13 | // | |
14 | // Purpose: To generate a list of encodings capable of handling | |
15 | // a given Unicode text | |
16 | // | |
17 | // Started 09-April-2008 | |
18 | ||
19 | /** | |
20 | * \file | |
21 | * | |
22 | * This is an implementation of an encoding selector. | |
23 | * The goal is, given a unicode string, find the encodings | |
24 | * this string can be mapped to. To make processing faster | |
25 | * a trie is built when you call ucnvsel_open() that | |
26 | * stores all encodings a codepoint can map to | |
27 | */ | |
28 | ||
29 | #include "unicode/ucnvsel.h" | |
30 | ||
4388f060 A |
31 | #if !UCONFIG_NO_CONVERSION |
32 | ||
729e4ab9 A |
33 | #include <string.h> |
34 | ||
35 | #include "unicode/uchar.h" | |
36 | #include "unicode/uniset.h" | |
37 | #include "unicode/ucnv.h" | |
38 | #include "unicode/ustring.h" | |
39 | #include "unicode/uchriter.h" | |
40 | #include "utrie2.h" | |
41 | #include "propsvec.h" | |
42 | #include "uassert.h" | |
43 | #include "ucmndata.h" | |
44 | #include "uenumimp.h" | |
45 | #include "cmemory.h" | |
46 | #include "cstring.h" | |
47 | ||
48 | U_NAMESPACE_USE | |
49 | ||
50 | struct UConverterSelector { | |
51 | UTrie2 *trie; // 16 bit trie containing offsets into pv | |
52 | uint32_t* pv; // table of bits! | |
53 | int32_t pvCount; | |
54 | char** encodings; // which encodings did user ask to use? | |
55 | int32_t encodingsCount; | |
56 | int32_t encodingStrLength; | |
57 | uint8_t* swapped; | |
58 | UBool ownPv, ownEncodingStrings; | |
59 | }; | |
60 | ||
61 | static void generateSelectorData(UConverterSelector* result, | |
62 | UPropsVectors *upvec, | |
63 | const USet* excludedCodePoints, | |
64 | const UConverterUnicodeSet whichSet, | |
65 | UErrorCode* status) { | |
66 | if (U_FAILURE(*status)) { | |
67 | return; | |
68 | } | |
69 | ||
70 | int32_t columns = (result->encodingsCount+31)/32; | |
71 | ||
72 | // set errorValue to all-ones | |
73 | for (int32_t col = 0; col < columns; col++) { | |
74 | upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, | |
75 | col, ~0, ~0, status); | |
76 | } | |
77 | ||
78 | for (int32_t i = 0; i < result->encodingsCount; ++i) { | |
79 | uint32_t mask; | |
80 | uint32_t column; | |
81 | int32_t item_count; | |
82 | int32_t j; | |
83 | UConverter* test_converter = ucnv_open(result->encodings[i], status); | |
84 | if (U_FAILURE(*status)) { | |
85 | return; | |
86 | } | |
87 | USet* unicode_point_set; | |
88 | unicode_point_set = uset_open(1, 0); // empty set | |
89 | ||
90 | ucnv_getUnicodeSet(test_converter, unicode_point_set, | |
91 | whichSet, status); | |
92 | if (U_FAILURE(*status)) { | |
93 | ucnv_close(test_converter); | |
94 | return; | |
95 | } | |
96 | ||
97 | column = i / 32; | |
98 | mask = 1 << (i%32); | |
99 | // now iterate over intervals on set i! | |
100 | item_count = uset_getItemCount(unicode_point_set); | |
101 | ||
102 | for (j = 0; j < item_count; ++j) { | |
103 | UChar32 start_char; | |
104 | UChar32 end_char; | |
105 | UErrorCode smallStatus = U_ZERO_ERROR; | |
106 | uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, | |
107 | &smallStatus); | |
108 | if (U_FAILURE(smallStatus)) { | |
109 | // this will be reached for the converters that fill the set with | |
110 | // strings. Those should be ignored by our system | |
111 | } else { | |
112 | upvec_setValue(upvec, start_char, end_char, column, ~0, mask, | |
113 | status); | |
114 | } | |
115 | } | |
116 | ucnv_close(test_converter); | |
117 | uset_close(unicode_point_set); | |
118 | if (U_FAILURE(*status)) { | |
119 | return; | |
120 | } | |
121 | } | |
122 | ||
123 | // handle excluded encodings! Simply set their values to all 1's in the upvec | |
124 | if (excludedCodePoints) { | |
125 | int32_t item_count = uset_getItemCount(excludedCodePoints); | |
126 | for (int32_t j = 0; j < item_count; ++j) { | |
127 | UChar32 start_char; | |
128 | UChar32 end_char; | |
129 | ||
130 | uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, | |
131 | status); | |
132 | for (int32_t col = 0; col < columns; col++) { | |
133 | upvec_setValue(upvec, start_char, end_char, col, ~0, ~0, | |
134 | status); | |
135 | } | |
136 | } | |
137 | } | |
138 | ||
139 | // alright. Now, let's put things in the same exact form you'd get when you | |
140 | // unserialize things. | |
141 | result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); | |
142 | result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); | |
143 | result->pvCount *= columns; // number of uint32_t = rows * columns | |
144 | result->ownPv = TRUE; | |
145 | } | |
146 | ||
147 | /* open a selector. If converterListSize is 0, build for all converters. | |
148 | If excludedCodePoints is NULL, don't exclude any codepoints */ | |
149 | U_CAPI UConverterSelector* U_EXPORT2 | |
150 | ucnvsel_open(const char* const* converterList, int32_t converterListSize, | |
151 | const USet* excludedCodePoints, | |
152 | const UConverterUnicodeSet whichSet, UErrorCode* status) { | |
153 | // check if already failed | |
154 | if (U_FAILURE(*status)) { | |
155 | return NULL; | |
156 | } | |
157 | // ensure args make sense! | |
158 | if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) { | |
159 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
160 | return NULL; | |
161 | } | |
162 | ||
163 | // allocate a new converter | |
164 | LocalUConverterSelectorPointer newSelector( | |
165 | (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); | |
166 | if (newSelector.isNull()) { | |
167 | *status = U_MEMORY_ALLOCATION_ERROR; | |
168 | return NULL; | |
169 | } | |
170 | uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); | |
171 | ||
172 | if (converterListSize == 0) { | |
173 | converterList = NULL; | |
174 | converterListSize = ucnv_countAvailable(); | |
175 | } | |
176 | newSelector->encodings = | |
177 | (char**)uprv_malloc(converterListSize * sizeof(char*)); | |
178 | if (!newSelector->encodings) { | |
179 | *status = U_MEMORY_ALLOCATION_ERROR; | |
180 | return NULL; | |
181 | } | |
182 | newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() | |
183 | ||
184 | // make a backup copy of the list of converters | |
185 | int32_t totalSize = 0; | |
186 | int32_t i; | |
187 | for (i = 0; i < converterListSize; i++) { | |
188 | totalSize += | |
189 | (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1; | |
190 | } | |
191 | // 4-align the totalSize to 4-align the size of the serialized form | |
192 | int32_t encodingStrPadding = totalSize & 3; | |
193 | if (encodingStrPadding != 0) { | |
194 | encodingStrPadding = 4 - encodingStrPadding; | |
195 | } | |
196 | newSelector->encodingStrLength = totalSize += encodingStrPadding; | |
197 | char* allStrings = (char*) uprv_malloc(totalSize); | |
198 | if (!allStrings) { | |
199 | *status = U_MEMORY_ALLOCATION_ERROR; | |
200 | return NULL; | |
201 | } | |
202 | ||
203 | for (i = 0; i < converterListSize; i++) { | |
204 | newSelector->encodings[i] = allStrings; | |
205 | uprv_strcpy(newSelector->encodings[i], | |
206 | converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)); | |
207 | allStrings += uprv_strlen(newSelector->encodings[i]) + 1; | |
208 | } | |
209 | while (encodingStrPadding > 0) { | |
210 | *allStrings++ = 0; | |
211 | --encodingStrPadding; | |
212 | } | |
213 | ||
214 | newSelector->ownEncodingStrings = TRUE; | |
215 | newSelector->encodingsCount = converterListSize; | |
216 | UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); | |
217 | generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); | |
218 | upvec_close(upvec); | |
219 | ||
220 | if (U_FAILURE(*status)) { | |
221 | return NULL; | |
222 | } | |
223 | ||
224 | return newSelector.orphan(); | |
225 | } | |
226 | ||
227 | /* close opened selector */ | |
228 | U_CAPI void U_EXPORT2 | |
229 | ucnvsel_close(UConverterSelector *sel) { | |
230 | if (!sel) { | |
231 | return; | |
232 | } | |
233 | if (sel->ownEncodingStrings) { | |
234 | uprv_free(sel->encodings[0]); | |
235 | } | |
236 | uprv_free(sel->encodings); | |
237 | if (sel->ownPv) { | |
238 | uprv_free(sel->pv); | |
239 | } | |
240 | utrie2_close(sel->trie); | |
241 | uprv_free(sel->swapped); | |
242 | uprv_free(sel); | |
243 | } | |
244 | ||
245 | static const UDataInfo dataInfo = { | |
246 | sizeof(UDataInfo), | |
247 | 0, | |
248 | ||
249 | U_IS_BIG_ENDIAN, | |
250 | U_CHARSET_FAMILY, | |
251 | U_SIZEOF_UCHAR, | |
252 | 0, | |
253 | ||
254 | { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ | |
255 | { 1, 0, 0, 0 }, /* formatVersion */ | |
256 | { 0, 0, 0, 0 } /* dataVersion */ | |
257 | }; | |
258 | ||
259 | enum { | |
260 | UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes | |
261 | UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors | |
262 | UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names | |
263 | UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding | |
264 | UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader | |
265 | UCNVSEL_INDEX_COUNT = 16 | |
266 | }; | |
267 | ||
268 | /* | |
269 | * Serialized form of a UConverterSelector, formatVersion 1: | |
270 | * | |
271 | * The serialized form begins with a standard ICU DataHeader with a UDataInfo | |
272 | * as the template above. | |
273 | * This is followed by: | |
274 | * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above | |
275 | * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes | |
276 | * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors | |
277 | * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding | |
278 | */ | |
279 | ||
280 | /* serialize a selector */ | |
281 | U_CAPI int32_t U_EXPORT2 | |
282 | ucnvsel_serialize(const UConverterSelector* sel, | |
283 | void* buffer, int32_t bufferCapacity, UErrorCode* status) { | |
284 | // check if already failed | |
285 | if (U_FAILURE(*status)) { | |
286 | return 0; | |
287 | } | |
288 | // ensure args make sense! | |
289 | uint8_t *p = (uint8_t *)buffer; | |
290 | if (bufferCapacity < 0 || | |
291 | (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) | |
292 | ) { | |
293 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
294 | return 0; | |
295 | } | |
296 | // add up the size of the serialized form | |
297 | int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); | |
298 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { | |
299 | return 0; | |
300 | } | |
301 | *status = U_ZERO_ERROR; | |
302 | ||
303 | DataHeader header; | |
304 | uprv_memset(&header, 0, sizeof(header)); | |
305 | header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); | |
306 | header.dataHeader.magic1 = 0xda; | |
307 | header.dataHeader.magic2 = 0x27; | |
308 | uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); | |
309 | ||
310 | int32_t indexes[UCNVSEL_INDEX_COUNT] = { | |
311 | serializedTrieSize, | |
312 | sel->pvCount, | |
313 | sel->encodingsCount, | |
314 | sel->encodingStrLength | |
315 | }; | |
316 | ||
317 | int32_t totalSize = | |
318 | header.dataHeader.headerSize + | |
319 | (int32_t)sizeof(indexes) + | |
320 | serializedTrieSize + | |
321 | sel->pvCount * 4 + | |
322 | sel->encodingStrLength; | |
323 | indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; | |
324 | if (totalSize > bufferCapacity) { | |
325 | *status = U_BUFFER_OVERFLOW_ERROR; | |
326 | return totalSize; | |
327 | } | |
328 | // ok, save! | |
329 | int32_t length = header.dataHeader.headerSize; | |
330 | uprv_memcpy(p, &header, sizeof(header)); | |
331 | uprv_memset(p + sizeof(header), 0, length - sizeof(header)); | |
332 | p += length; | |
333 | ||
334 | length = (int32_t)sizeof(indexes); | |
335 | uprv_memcpy(p, indexes, length); | |
336 | p += length; | |
337 | ||
338 | utrie2_serialize(sel->trie, p, serializedTrieSize, status); | |
339 | p += serializedTrieSize; | |
340 | ||
341 | length = sel->pvCount * 4; | |
342 | uprv_memcpy(p, sel->pv, length); | |
343 | p += length; | |
344 | ||
345 | uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); | |
346 | p += sel->encodingStrLength; | |
347 | ||
348 | return totalSize; | |
349 | } | |
350 | ||
351 | /** | |
352 | * swap a selector into the desired Endianness and Asciiness of | |
353 | * the system. Just as FYI, selectors are always saved in the format | |
354 | * of the system that created them. They are only converted if used | |
355 | * on another system. In other words, selectors created on different | |
356 | * system can be different even if the params are identical (endianness | |
357 | * and Asciiness differences only) | |
358 | * | |
359 | * @param ds pointer to data swapper containing swapping info | |
360 | * @param inData pointer to incoming data | |
361 | * @param length length of inData in bytes | |
362 | * @param outData pointer to output data. Capacity should | |
363 | * be at least equal to capacity of inData | |
364 | * @param status an in/out ICU UErrorCode | |
365 | * @return 0 on failure, number of bytes swapped on success | |
366 | * number of bytes swapped can be smaller than length | |
367 | */ | |
368 | static int32_t | |
369 | ucnvsel_swap(const UDataSwapper *ds, | |
370 | const void *inData, int32_t length, | |
371 | void *outData, UErrorCode *status) { | |
372 | /* udata_swapDataHeader checks the arguments */ | |
373 | int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); | |
374 | if(U_FAILURE(*status)) { | |
375 | return 0; | |
376 | } | |
377 | ||
378 | /* check data format and format version */ | |
379 | const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); | |
380 | if(!( | |
381 | pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ | |
382 | pInfo->dataFormat[1] == 0x53 && | |
383 | pInfo->dataFormat[2] == 0x65 && | |
384 | pInfo->dataFormat[3] == 0x6c | |
385 | )) { | |
386 | udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", | |
387 | pInfo->dataFormat[0], pInfo->dataFormat[1], | |
388 | pInfo->dataFormat[2], pInfo->dataFormat[3]); | |
389 | *status = U_INVALID_FORMAT_ERROR; | |
390 | return 0; | |
391 | } | |
392 | if(pInfo->formatVersion[0] != 1) { | |
393 | udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", | |
394 | pInfo->formatVersion[0]); | |
395 | *status = U_UNSUPPORTED_ERROR; | |
396 | return 0; | |
397 | } | |
398 | ||
399 | if(length >= 0) { | |
400 | length -= headerSize; | |
401 | if(length < 16*4) { | |
402 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", | |
403 | length); | |
404 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
405 | return 0; | |
406 | } | |
407 | } | |
408 | ||
409 | const uint8_t *inBytes = (const uint8_t *)inData + headerSize; | |
410 | uint8_t *outBytes = (uint8_t *)outData + headerSize; | |
411 | ||
412 | /* read the indexes */ | |
413 | const int32_t *inIndexes = (const int32_t *)inBytes; | |
414 | int32_t indexes[16]; | |
415 | int32_t i; | |
416 | for(i = 0; i < 16; ++i) { | |
417 | indexes[i] = udata_readInt32(ds, inIndexes[i]); | |
418 | } | |
419 | ||
420 | /* get the total length of the data */ | |
421 | int32_t size = indexes[UCNVSEL_INDEX_SIZE]; | |
422 | if(length >= 0) { | |
423 | if(length < size) { | |
424 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", | |
425 | length); | |
426 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
427 | return 0; | |
428 | } | |
429 | ||
430 | /* copy the data for inaccessible bytes */ | |
431 | if(inBytes != outBytes) { | |
432 | uprv_memcpy(outBytes, inBytes, size); | |
433 | } | |
434 | ||
435 | int32_t offset = 0, count; | |
436 | ||
437 | /* swap the int32_t indexes[] */ | |
438 | count = UCNVSEL_INDEX_COUNT*4; | |
439 | ds->swapArray32(ds, inBytes, count, outBytes, status); | |
440 | offset += count; | |
441 | ||
442 | /* swap the UTrie2 */ | |
443 | count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; | |
444 | utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); | |
445 | offset += count; | |
446 | ||
447 | /* swap the uint32_t pv[] */ | |
448 | count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; | |
449 | ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); | |
450 | offset += count; | |
451 | ||
452 | /* swap the encoding names */ | |
453 | count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; | |
454 | ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); | |
455 | offset += count; | |
456 | ||
457 | U_ASSERT(offset == size); | |
458 | } | |
459 | ||
460 | return headerSize + size; | |
461 | } | |
462 | ||
463 | /* unserialize a selector */ | |
464 | U_CAPI UConverterSelector* U_EXPORT2 | |
465 | ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { | |
466 | // check if already failed | |
467 | if (U_FAILURE(*status)) { | |
468 | return NULL; | |
469 | } | |
470 | // ensure args make sense! | |
471 | const uint8_t *p = (const uint8_t *)buffer; | |
472 | if (length <= 0 || | |
473 | (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) | |
474 | ) { | |
475 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
476 | return NULL; | |
477 | } | |
478 | // header | |
479 | if (length < 32) { | |
480 | // not even enough space for a minimal header | |
481 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
482 | return NULL; | |
483 | } | |
484 | const DataHeader *pHeader = (const DataHeader *)p; | |
485 | if (!( | |
486 | pHeader->dataHeader.magic1==0xda && | |
487 | pHeader->dataHeader.magic2==0x27 && | |
488 | pHeader->info.dataFormat[0] == 0x43 && | |
489 | pHeader->info.dataFormat[1] == 0x53 && | |
490 | pHeader->info.dataFormat[2] == 0x65 && | |
491 | pHeader->info.dataFormat[3] == 0x6c | |
492 | )) { | |
493 | /* header not valid or dataFormat not recognized */ | |
494 | *status = U_INVALID_FORMAT_ERROR; | |
495 | return NULL; | |
496 | } | |
497 | if (pHeader->info.formatVersion[0] != 1) { | |
498 | *status = U_UNSUPPORTED_ERROR; | |
499 | return NULL; | |
500 | } | |
501 | uint8_t* swapped = NULL; | |
502 | if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || | |
503 | pHeader->info.charsetFamily != U_CHARSET_FAMILY | |
504 | ) { | |
505 | // swap the data | |
506 | UDataSwapper *ds = | |
507 | udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); | |
508 | int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); | |
509 | if (U_FAILURE(*status)) { | |
510 | udata_closeSwapper(ds); | |
511 | return NULL; | |
512 | } | |
513 | if (length < totalSize) { | |
514 | udata_closeSwapper(ds); | |
515 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
516 | return NULL; | |
517 | } | |
518 | swapped = (uint8_t*)uprv_malloc(totalSize); | |
519 | if (swapped == NULL) { | |
520 | udata_closeSwapper(ds); | |
521 | *status = U_MEMORY_ALLOCATION_ERROR; | |
522 | return NULL; | |
523 | } | |
524 | ucnvsel_swap(ds, p, length, swapped, status); | |
525 | udata_closeSwapper(ds); | |
526 | if (U_FAILURE(*status)) { | |
527 | uprv_free(swapped); | |
528 | return NULL; | |
529 | } | |
530 | p = swapped; | |
531 | pHeader = (const DataHeader *)p; | |
532 | } | |
533 | if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { | |
534 | // not even enough space for the header and the indexes | |
535 | uprv_free(swapped); | |
536 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
537 | return NULL; | |
538 | } | |
539 | p += pHeader->dataHeader.headerSize; | |
540 | length -= pHeader->dataHeader.headerSize; | |
541 | // indexes | |
542 | const int32_t *indexes = (const int32_t *)p; | |
543 | if (length < indexes[UCNVSEL_INDEX_SIZE]) { | |
544 | uprv_free(swapped); | |
545 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
546 | return NULL; | |
547 | } | |
548 | p += UCNVSEL_INDEX_COUNT * 4; | |
549 | // create and populate the selector object | |
550 | UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); | |
551 | char **encodings = | |
552 | (char **)uprv_malloc( | |
553 | indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); | |
554 | if (sel == NULL || encodings == NULL) { | |
555 | uprv_free(swapped); | |
556 | uprv_free(sel); | |
557 | uprv_free(encodings); | |
558 | *status = U_MEMORY_ALLOCATION_ERROR; | |
559 | return NULL; | |
560 | } | |
561 | uprv_memset(sel, 0, sizeof(UConverterSelector)); | |
562 | sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; | |
563 | sel->encodings = encodings; | |
564 | sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; | |
565 | sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; | |
566 | sel->swapped = swapped; | |
567 | // trie | |
568 | sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, | |
569 | p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL, | |
570 | status); | |
571 | p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; | |
572 | if (U_FAILURE(*status)) { | |
573 | ucnvsel_close(sel); | |
574 | return NULL; | |
575 | } | |
576 | // bit vectors | |
577 | sel->pv = (uint32_t *)p; | |
578 | p += sel->pvCount * 4; | |
579 | // encoding names | |
580 | char* s = (char*)p; | |
581 | for (int32_t i = 0; i < sel->encodingsCount; ++i) { | |
582 | sel->encodings[i] = s; | |
583 | s += uprv_strlen(s) + 1; | |
584 | } | |
585 | p += sel->encodingStrLength; | |
586 | ||
587 | return sel; | |
588 | } | |
589 | ||
590 | // a bunch of functions for the enumeration thingie! Nothing fancy here. Just | |
591 | // iterate over the selected encodings | |
592 | struct Enumerator { | |
593 | int16_t* index; | |
594 | int16_t length; | |
595 | int16_t cur; | |
596 | const UConverterSelector* sel; | |
597 | }; | |
598 | ||
599 | U_CDECL_BEGIN | |
600 | ||
601 | static void U_CALLCONV | |
602 | ucnvsel_close_selector_iterator(UEnumeration *enumerator) { | |
603 | uprv_free(((Enumerator*)(enumerator->context))->index); | |
604 | uprv_free(enumerator->context); | |
605 | uprv_free(enumerator); | |
606 | } | |
607 | ||
608 | ||
609 | static int32_t U_CALLCONV | |
610 | ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { | |
611 | // check if already failed | |
612 | if (U_FAILURE(*status)) { | |
613 | return 0; | |
614 | } | |
615 | return ((Enumerator*)(enumerator->context))->length; | |
616 | } | |
617 | ||
618 | ||
619 | static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, | |
620 | int32_t* resultLength, | |
621 | UErrorCode* status) { | |
622 | // check if already failed | |
623 | if (U_FAILURE(*status)) { | |
624 | return NULL; | |
625 | } | |
626 | ||
627 | int16_t cur = ((Enumerator*)(enumerator->context))->cur; | |
628 | const UConverterSelector* sel; | |
629 | const char* result; | |
630 | if (cur >= ((Enumerator*)(enumerator->context))->length) { | |
631 | return NULL; | |
632 | } | |
633 | sel = ((Enumerator*)(enumerator->context))->sel; | |
634 | result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; | |
635 | ((Enumerator*)(enumerator->context))->cur++; | |
636 | if (resultLength) { | |
637 | *resultLength = (int32_t)uprv_strlen(result); | |
638 | } | |
639 | return result; | |
640 | } | |
641 | ||
642 | static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, | |
643 | UErrorCode* status) { | |
644 | // check if already failed | |
645 | if (U_FAILURE(*status)) { | |
646 | return ; | |
647 | } | |
648 | ((Enumerator*)(enumerator->context))->cur = 0; | |
649 | } | |
650 | ||
651 | U_CDECL_END | |
652 | ||
653 | ||
654 | static const UEnumeration defaultEncodings = { | |
655 | NULL, | |
656 | NULL, | |
657 | ucnvsel_close_selector_iterator, | |
658 | ucnvsel_count_encodings, | |
659 | uenum_unextDefault, | |
660 | ucnvsel_next_encoding, | |
661 | ucnvsel_reset_iterator | |
662 | }; | |
663 | ||
664 | ||
665 | // internal fn to intersect two sets of masks | |
666 | // returns whether the mask has reduced to all zeros | |
667 | static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { | |
668 | int32_t i; | |
669 | uint32_t oredDest = 0; | |
670 | for (i = 0 ; i < len ; ++i) { | |
671 | oredDest |= (dest[i] &= source1[i]); | |
672 | } | |
673 | return oredDest == 0; | |
674 | } | |
675 | ||
676 | // internal fn to count how many 1's are there in a mask | |
677 | // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html | |
678 | static int16_t countOnes(uint32_t* mask, int32_t len) { | |
679 | int32_t i, totalOnes = 0; | |
680 | for (i = 0 ; i < len ; ++i) { | |
681 | uint32_t ent = mask[i]; | |
682 | for (; ent; totalOnes++) | |
683 | { | |
684 | ent &= ent - 1; // clear the least significant bit set | |
685 | } | |
686 | } | |
687 | return totalOnes; | |
688 | } | |
689 | ||
690 | ||
691 | /* internal function! */ | |
692 | static UEnumeration *selectForMask(const UConverterSelector* sel, | |
693 | uint32_t *mask, UErrorCode *status) { | |
694 | // this is the context we will use. Store a table of indices to which | |
695 | // encodings are legit. | |
696 | struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator)); | |
697 | if (result == NULL) { | |
698 | uprv_free(mask); | |
699 | *status = U_MEMORY_ALLOCATION_ERROR; | |
700 | return NULL; | |
701 | } | |
702 | result->index = NULL; // this will be allocated later! | |
703 | result->length = result->cur = 0; | |
704 | result->sel = sel; | |
705 | ||
706 | UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration)); | |
707 | if (en == NULL) { | |
708 | // TODO(markus): Combine Enumerator and UEnumeration into one struct. | |
709 | uprv_free(mask); | |
710 | uprv_free(result); | |
711 | *status = U_MEMORY_ALLOCATION_ERROR; | |
712 | return NULL; | |
713 | } | |
714 | memcpy(en, &defaultEncodings, sizeof(UEnumeration)); | |
715 | en->context = result; | |
716 | ||
717 | int32_t columns = (sel->encodingsCount+31)/32; | |
718 | int16_t numOnes = countOnes(mask, columns); | |
719 | // now, we know the exact space we need for index | |
720 | if (numOnes > 0) { | |
721 | result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t)); | |
722 | ||
723 | int32_t i, j; | |
724 | int16_t k = 0; | |
725 | for (j = 0 ; j < columns; j++) { | |
726 | uint32_t v = mask[j]; | |
727 | for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { | |
728 | if ((v & 1) != 0) { | |
729 | result->index[result->length++] = k; | |
730 | } | |
731 | v >>= 1; | |
732 | } | |
733 | } | |
734 | } //otherwise, index will remain NULL (and will never be touched by | |
735 | //the enumerator code anyway) | |
736 | uprv_free(mask); | |
737 | return en; | |
738 | } | |
739 | ||
740 | /* check a string against the selector - UTF16 version */ | |
741 | U_CAPI UEnumeration * U_EXPORT2 | |
742 | ucnvsel_selectForString(const UConverterSelector* sel, | |
743 | const UChar *s, int32_t length, UErrorCode *status) { | |
744 | // check if already failed | |
745 | if (U_FAILURE(*status)) { | |
746 | return NULL; | |
747 | } | |
748 | // ensure args make sense! | |
749 | if (sel == NULL || (s == NULL && length != 0)) { | |
750 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
751 | return NULL; | |
752 | } | |
753 | ||
754 | int32_t columns = (sel->encodingsCount+31)/32; | |
755 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); | |
756 | if (mask == NULL) { | |
757 | *status = U_MEMORY_ALLOCATION_ERROR; | |
758 | return NULL; | |
759 | } | |
760 | uprv_memset(mask, ~0, columns *4); | |
761 | ||
4388f060 A |
762 | if(s!=NULL) { |
763 | const UChar *limit; | |
764 | if (length >= 0) { | |
765 | limit = s + length; | |
766 | } else { | |
767 | limit = NULL; | |
768 | } | |
769 | ||
770 | while (limit == NULL ? *s != 0 : s != limit) { | |
771 | UChar32 c; | |
772 | uint16_t pvIndex; | |
773 | UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); | |
774 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { | |
775 | break; | |
776 | } | |
729e4ab9 A |
777 | } |
778 | } | |
779 | return selectForMask(sel, mask, status); | |
780 | } | |
781 | ||
782 | /* check a string against the selector - UTF8 version */ | |
783 | U_CAPI UEnumeration * U_EXPORT2 | |
784 | ucnvsel_selectForUTF8(const UConverterSelector* sel, | |
785 | const char *s, int32_t length, UErrorCode *status) { | |
786 | // check if already failed | |
787 | if (U_FAILURE(*status)) { | |
788 | return NULL; | |
789 | } | |
790 | // ensure args make sense! | |
791 | if (sel == NULL || (s == NULL && length != 0)) { | |
792 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
793 | return NULL; | |
794 | } | |
795 | ||
796 | int32_t columns = (sel->encodingsCount+31)/32; | |
797 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); | |
798 | if (mask == NULL) { | |
799 | *status = U_MEMORY_ALLOCATION_ERROR; | |
800 | return NULL; | |
801 | } | |
802 | uprv_memset(mask, ~0, columns *4); | |
803 | ||
804 | if (length < 0) { | |
805 | length = (int32_t)uprv_strlen(s); | |
806 | } | |
729e4ab9 | 807 | |
4388f060 A |
808 | if(s!=NULL) { |
809 | const char *limit = s + length; | |
810 | ||
811 | while (s != limit) { | |
812 | uint16_t pvIndex; | |
813 | UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); | |
814 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { | |
815 | break; | |
816 | } | |
729e4ab9 A |
817 | } |
818 | } | |
819 | return selectForMask(sel, mask, status); | |
820 | } | |
4388f060 A |
821 | |
822 | #endif // !UCONFIG_NO_CONVERSION |