]> git.saurik.com Git - apple/hfs.git/blobdiff - core/hfs_vfsutils.c
hfs-522.100.5.tar.gz
[apple/hfs.git] / core / hfs_vfsutils.c
diff --git a/core/hfs_vfsutils.c b/core/hfs_vfsutils.c
new file mode 100644 (file)
index 0000000..fa2d856
--- /dev/null
@@ -0,0 +1,4462 @@
+/*
+ * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ * 
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ * 
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ * 
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ * 
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+/*     @(#)hfs_vfsutils.c      4.0
+*
+*      (c) 1997-2002 Apple Inc.  All Rights Reserved
+*
+*      hfs_vfsutils.c -- Routines that go between the HFS layer and the VFS.
+*
+*/
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/malloc.h>
+#include <sys/stat.h>
+#include <sys/mount.h>
+#include <sys/vm.h>
+#include <sys/buf.h>
+#include <sys/ubc.h>
+#include <sys/unistd.h>
+#include <sys/utfconv.h>
+#include <sys/kauth.h>
+#include <sys/fcntl.h>
+#include <sys/fsctl.h>
+#include <sys/mount.h>
+#include <sys/sysctl.h>
+#include <kern/clock.h>
+#include <stdbool.h>
+#include <miscfs/specfs/specdev.h>
+#include <libkern/OSAtomic.h>
+#include <IOKit/IOLib.h>
+
+/* for parsing boot-args */
+#include <pexpert/pexpert.h>
+#include <kern/kalloc.h>
+#include <kern/zalloc.h>
+
+#include "hfs_iokit.h"
+#include "hfs.h"
+#include "hfs_catalog.h"
+#include "hfs_dbg.h"
+#include "hfs_mount.h"
+#include "hfs_endian.h"
+#include "hfs_cnode.h"
+#include "hfs_fsctl.h"
+#include "hfs_cprotect.h"
+
+#include "FileMgrInternal.h"
+#include "BTreesInternal.h"
+#include "HFSUnicodeWrappers.h"
+
+/* Enable/disable debugging code for live volume resizing, defined in hfs_resize.c */
+extern int hfs_resize_debug;
+
+static void ReleaseMetaFileVNode(struct vnode *vp);
+static int  hfs_late_journal_init(struct hfsmount *hfsmp, HFSPlusVolumeHeader *vhp, void *_args);
+
+static u_int32_t hfs_hotfile_freeblocks(struct hfsmount *);
+static void hfs_thaw_locked(struct hfsmount *hfsmp);
+
+#define HFS_MOUNT_DEBUG 1
+
+
+//*******************************************************************************
+// Note: Finder information in the HFS/HFS+ metadata are considered opaque and
+//       hence are not in the right byte order on little endian machines. It is
+//       the responsibility of the finder and other clients to swap the data.
+//*******************************************************************************
+
+//*******************************************************************************
+//     Routine:        hfs_MountHFSVolume
+//
+//
+//*******************************************************************************
+unsigned char hfs_catname[] = "Catalog B-tree";
+unsigned char hfs_extname[] = "Extents B-tree";
+unsigned char hfs_vbmname[] = "Volume Bitmap";
+unsigned char hfs_attrname[] = "Attribute B-tree";
+unsigned char hfs_startupname[] = "Startup File";
+
+#if CONFIG_HFS_STD
+OSErr hfs_MountHFSVolume(struct hfsmount *hfsmp, HFSMasterDirectoryBlock *mdb,
+               __unused struct proc *p)
+{
+       ExtendedVCB *vcb = HFSTOVCB(hfsmp);
+       int error;
+       ByteCount utf8chars;
+       struct cat_desc cndesc;
+       struct cat_attr cnattr;
+       struct cat_fork fork;
+       int newvnode_flags = 0;
+
+       /* Block size must be a multiple of 512 */
+       if (SWAP_BE32(mdb->drAlBlkSiz) == 0 ||
+           (SWAP_BE32(mdb->drAlBlkSiz) & 0x01FF) != 0)
+               return (EINVAL);
+
+       /* don't mount a writeable volume if its dirty, it must be cleaned by fsck_hfs */
+       if (((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) &&
+           ((SWAP_BE16(mdb->drAtrb) & kHFSVolumeUnmountedMask) == 0)) {
+               return (EINVAL);
+       }
+       hfsmp->hfs_flags |= HFS_STANDARD;
+       /*
+        * The MDB seems OK: transfer info from it into VCB
+        * Note - the VCB starts out clear (all zeros)
+        *
+        */
+       vcb->vcbSigWord         = SWAP_BE16 (mdb->drSigWord);
+       vcb->hfs_itime          = to_bsd_time(LocalToUTC(SWAP_BE32(mdb->drCrDate)));
+       vcb->localCreateDate    = SWAP_BE32 (mdb->drCrDate);
+       vcb->vcbLsMod           = to_bsd_time(LocalToUTC(SWAP_BE32(mdb->drLsMod)));
+       vcb->vcbAtrb            = SWAP_BE16 (mdb->drAtrb);
+       vcb->vcbNmFls           = SWAP_BE16 (mdb->drNmFls);
+       vcb->vcbVBMSt           = SWAP_BE16 (mdb->drVBMSt);
+       vcb->nextAllocation     = SWAP_BE16 (mdb->drAllocPtr);
+       vcb->totalBlocks        = SWAP_BE16 (mdb->drNmAlBlks);
+       vcb->allocLimit         = vcb->totalBlocks;
+       vcb->blockSize          = SWAP_BE32 (mdb->drAlBlkSiz);
+       vcb->vcbClpSiz          = SWAP_BE32 (mdb->drClpSiz);
+       vcb->vcbAlBlSt          = SWAP_BE16 (mdb->drAlBlSt);
+       vcb->vcbNxtCNID         = SWAP_BE32 (mdb->drNxtCNID);
+       vcb->freeBlocks         = SWAP_BE16 (mdb->drFreeBks);
+       vcb->vcbVolBkUp         = to_bsd_time(LocalToUTC(SWAP_BE32(mdb->drVolBkUp)));
+       vcb->vcbWrCnt           = SWAP_BE32 (mdb->drWrCnt);
+       vcb->vcbNmRtDirs        = SWAP_BE16 (mdb->drNmRtDirs);
+       vcb->vcbFilCnt          = SWAP_BE32 (mdb->drFilCnt);
+       vcb->vcbDirCnt          = SWAP_BE32 (mdb->drDirCnt);
+       bcopy(mdb->drFndrInfo, vcb->vcbFndrInfo, sizeof(vcb->vcbFndrInfo));
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0)
+               vcb->vcbWrCnt++;        /* Compensate for write of MDB on last flush */
+
+       /* convert hfs encoded name into UTF-8 string */
+       error = hfs_to_utf8(vcb, mdb->drVN, NAME_MAX, &utf8chars, vcb->vcbVN);
+       /*
+        * When an HFS name cannot be encoded with the current
+        * volume encoding we use MacRoman as a fallback.
+        */
+       if (error || (utf8chars == 0)) {
+               error = mac_roman_to_utf8(mdb->drVN, NAME_MAX, &utf8chars, vcb->vcbVN);
+               /* If we fail to encode to UTF8 from Mac Roman, the name is bad.  Deny the mount */
+               if (error) {
+                       goto MtVolErr;
+               }
+       }
+
+       hfsmp->hfs_logBlockSize = BestBlockSizeFit(vcb->blockSize, MAXBSIZE, hfsmp->hfs_logical_block_size);
+       vcb->vcbVBMIOSize = kHFSBlockSize;
+
+       /* Generate the partition-based AVH location */
+       hfsmp->hfs_partition_avh_sector = HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size,
+                                                 hfsmp->hfs_logical_block_count);
+       
+       /* HFS standard is read-only, so just stuff the FS location in here, too */
+       hfsmp->hfs_fs_avh_sector = hfsmp->hfs_partition_avh_sector;     
+
+       bzero(&cndesc, sizeof(cndesc));
+       cndesc.cd_parentcnid = kHFSRootParentID;
+       cndesc.cd_flags |= CD_ISMETA;
+       bzero(&cnattr, sizeof(cnattr));
+       cnattr.ca_linkcount = 1;
+       cnattr.ca_mode = S_IFREG;
+       bzero(&fork, sizeof(fork));
+
+       /*
+        * Set up Extents B-tree vnode
+        */
+       cndesc.cd_nameptr = hfs_extname;
+       cndesc.cd_namelen = strlen((char *)hfs_extname);
+       cndesc.cd_cnid = cnattr.ca_fileid = kHFSExtentsFileID;
+       fork.cf_size = SWAP_BE32(mdb->drXTFlSize);
+       fork.cf_blocks = fork.cf_size / vcb->blockSize;
+       fork.cf_clump = SWAP_BE32(mdb->drXTClpSiz);
+       fork.cf_vblocks = 0;
+       fork.cf_extents[0].startBlock = SWAP_BE16(mdb->drXTExtRec[0].startBlock);
+       fork.cf_extents[0].blockCount = SWAP_BE16(mdb->drXTExtRec[0].blockCount);
+       fork.cf_extents[1].startBlock = SWAP_BE16(mdb->drXTExtRec[1].startBlock);
+       fork.cf_extents[1].blockCount = SWAP_BE16(mdb->drXTExtRec[1].blockCount);
+       fork.cf_extents[2].startBlock = SWAP_BE16(mdb->drXTExtRec[2].startBlock);
+       fork.cf_extents[2].blockCount = SWAP_BE16(mdb->drXTExtRec[2].blockCount);
+       cnattr.ca_blocks = fork.cf_blocks;
+
+       error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &fork,
+                               &hfsmp->hfs_extents_vp, &newvnode_flags);
+       if (error) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfs (std): error creating Ext Vnode (%d) \n", error);
+               }
+               goto MtVolErr;
+       }
+       error = MacToVFSError(BTOpenPath(VTOF(hfsmp->hfs_extents_vp),
+                                        (KeyCompareProcPtr)CompareExtentKeys));
+       if (error) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfs (std): error opening Ext Vnode (%d) \n", error);
+               }
+               hfs_unlock(VTOC(hfsmp->hfs_extents_vp));
+               goto MtVolErr;
+       }
+       hfsmp->hfs_extents_cp = VTOC(hfsmp->hfs_extents_vp);
+
+       /*
+        * Set up Catalog B-tree vnode...
+        */ 
+       cndesc.cd_nameptr = hfs_catname;
+       cndesc.cd_namelen = strlen((char *)hfs_catname);
+       cndesc.cd_cnid = cnattr.ca_fileid = kHFSCatalogFileID;
+       fork.cf_size = SWAP_BE32(mdb->drCTFlSize);
+       fork.cf_blocks = fork.cf_size / vcb->blockSize;
+       fork.cf_clump = SWAP_BE32(mdb->drCTClpSiz);
+       fork.cf_vblocks = 0;
+       fork.cf_extents[0].startBlock = SWAP_BE16(mdb->drCTExtRec[0].startBlock);
+       fork.cf_extents[0].blockCount = SWAP_BE16(mdb->drCTExtRec[0].blockCount);
+       fork.cf_extents[1].startBlock = SWAP_BE16(mdb->drCTExtRec[1].startBlock);
+       fork.cf_extents[1].blockCount = SWAP_BE16(mdb->drCTExtRec[1].blockCount);
+       fork.cf_extents[2].startBlock = SWAP_BE16(mdb->drCTExtRec[2].startBlock);
+       fork.cf_extents[2].blockCount = SWAP_BE16(mdb->drCTExtRec[2].blockCount);
+       cnattr.ca_blocks = fork.cf_blocks;
+
+       error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &fork,
+                               &hfsmp->hfs_catalog_vp, &newvnode_flags);
+       if (error) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfs (std): error creating catalog Vnode (%d) \n", error);
+               }
+               hfs_unlock(VTOC(hfsmp->hfs_extents_vp));
+               goto MtVolErr;
+       }
+       error = MacToVFSError(BTOpenPath(VTOF(hfsmp->hfs_catalog_vp),
+                                        (KeyCompareProcPtr)CompareCatalogKeys));
+       if (error) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfs (std): error opening catalog Vnode (%d) \n", error);
+               }
+               hfs_unlock(VTOC(hfsmp->hfs_catalog_vp));
+               hfs_unlock(VTOC(hfsmp->hfs_extents_vp));
+               goto MtVolErr;
+       }
+       hfsmp->hfs_catalog_cp = VTOC(hfsmp->hfs_catalog_vp);
+
+       /*
+        * Set up dummy Allocation file vnode (used only for locking bitmap)
+        */  
+       cndesc.cd_nameptr = hfs_vbmname;
+       cndesc.cd_namelen = strlen((char *)hfs_vbmname);
+       cndesc.cd_cnid = cnattr.ca_fileid = kHFSAllocationFileID;
+       bzero(&fork, sizeof(fork));
+       cnattr.ca_blocks = 0;
+
+       error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &fork,
+                                &hfsmp->hfs_allocation_vp, &newvnode_flags);
+       if (error) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfs (std): error creating bitmap Vnode (%d) \n", error);
+               }
+               hfs_unlock(VTOC(hfsmp->hfs_catalog_vp));
+               hfs_unlock(VTOC(hfsmp->hfs_extents_vp));
+               goto MtVolErr;
+       }
+       hfsmp->hfs_allocation_cp = VTOC(hfsmp->hfs_allocation_vp);
+
+       /* mark the volume dirty (clear clean unmount bit) */
+       vcb->vcbAtrb &= ~kHFSVolumeUnmountedMask;
+
+    if (error == noErr) {
+               error = cat_idlookup(hfsmp, kHFSRootFolderID, 0, 0, NULL, NULL, NULL);
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfs (std): error looking up root folder (%d) \n", error);
+               }
+       }
+       
+    if (error == noErr) {
+               /* If the disk isn't write protected.. */
+        if ( !(vcb->vcbAtrb & kHFSVolumeHardwareLockMask)) {
+            MarkVCBDirty (vcb); //     mark VCB dirty so it will be written
+               }
+       }
+       
+       /*
+        * all done with system files so we can unlock now...
+        */
+       hfs_unlock(VTOC(hfsmp->hfs_allocation_vp));
+       hfs_unlock(VTOC(hfsmp->hfs_catalog_vp));
+       hfs_unlock(VTOC(hfsmp->hfs_extents_vp));
+       
+       if (error == noErr) {
+               /* If successful, then we can just return once we've unlocked the cnodes */
+               return error;
+       }
+
+    //--       Release any resources allocated so far before exiting with an error:
+MtVolErr:
+       hfsUnmount(hfsmp, NULL);
+
+    return (error);
+}
+
+#endif
+
+//*******************************************************************************
+//
+// Sanity check Volume Header Block:
+//             Input argument *vhp is a pointer to a HFSPlusVolumeHeader block that has
+//             not been endian-swapped and represents the on-disk contents of this sector.
+//             This routine will not change the endianness of vhp block.
+//
+//*******************************************************************************
+OSErr hfs_ValidateHFSPlusVolumeHeader(struct hfsmount *hfsmp, HFSPlusVolumeHeader *vhp)
+{
+       u_int16_t signature;
+       u_int16_t hfs_version;
+       u_int32_t blockSize;
+
+       signature = SWAP_BE16(vhp->signature);
+       hfs_version = SWAP_BE16(vhp->version);
+
+       if (signature == kHFSPlusSigWord) {
+               if (hfs_version != kHFSPlusVersion) {
+                       printf("hfs_ValidateHFSPlusVolumeHeader: invalid HFS+ version: %x\n", hfs_version);
+                       return (EINVAL);
+               }
+       } else if (signature == kHFSXSigWord) {
+               if (hfs_version != kHFSXVersion) {
+                       printf("hfs_ValidateHFSPlusVolumeHeader: invalid HFSX version: %x\n", hfs_version);
+                       return (EINVAL);
+               }
+       } else {
+               /* Removed printf for invalid HFS+ signature because it gives
+                * false error for UFS root volume
+                */
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_ValidateHFSPlusVolumeHeader: unknown Volume Signature : %x\n", signature);
+               }
+               return (EINVAL);
+       }
+
+       /* Block size must be at least 512 and a power of 2 */
+       blockSize = SWAP_BE32(vhp->blockSize);
+       if (blockSize < 512 || !powerof2(blockSize)) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_ValidateHFSPlusVolumeHeader: invalid blocksize (%d) \n", blockSize);
+               }
+               return (EINVAL);
+       }
+
+       if (blockSize < hfsmp->hfs_logical_block_size) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_ValidateHFSPlusVolumeHeader: invalid physical blocksize (%d), hfs_logical_blocksize (%d) \n",
+                                       blockSize, hfsmp->hfs_logical_block_size);
+               }
+               return (EINVAL);
+       }
+       return 0;
+}
+
+//*******************************************************************************
+//     Routine:        hfs_MountHFSPlusVolume
+//
+//
+//*******************************************************************************
+
+OSErr hfs_MountHFSPlusVolume(struct hfsmount *hfsmp, HFSPlusVolumeHeader *vhp,
+       off_t embeddedOffset, u_int64_t disksize, __unused struct proc *p, void *args, kauth_cred_t cred)
+{
+       register ExtendedVCB *vcb;
+       struct cat_desc cndesc;
+       struct cat_attr cnattr;
+       struct cat_fork cfork;
+       u_int32_t blockSize;
+       daddr64_t spare_sectors;
+       struct BTreeInfoRec btinfo;
+       u_int16_t  signature;
+       u_int16_t  hfs_version;
+       int newvnode_flags = 0;
+       int  i;
+       OSErr retval;
+       char converted_volname[256];
+       size_t volname_length = 0;
+       size_t conv_volname_length = 0;
+       bool async_bitmap_scan;
+
+       signature = SWAP_BE16(vhp->signature);
+       hfs_version = SWAP_BE16(vhp->version);
+
+       retval = hfs_ValidateHFSPlusVolumeHeader(hfsmp, vhp);
+       if (retval)
+               return retval;
+
+       if (signature == kHFSXSigWord) {
+               /* The in-memory signature is always 'H+'. */
+               signature = kHFSPlusSigWord;
+               hfsmp->hfs_flags |= HFS_X;
+       }
+
+       blockSize = SWAP_BE32(vhp->blockSize);
+       /* don't mount a writable volume if its dirty, it must be cleaned by fsck_hfs */
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0 && hfsmp->jnl == NULL &&
+           (SWAP_BE32(vhp->attributes) & kHFSVolumeUnmountedMask) == 0) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: cannot mount dirty non-journaled volumes\n");
+               }
+               return (EINVAL);
+       }
+
+       /* Make sure we can live with the physical block size. */
+       if ((disksize & (hfsmp->hfs_logical_block_size - 1)) ||
+           (embeddedOffset & (hfsmp->hfs_logical_block_size - 1))) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: hfs_logical_blocksize (%d) \n",
+                                       hfsmp->hfs_logical_block_size);
+               }
+               return (ENXIO);
+       }
+
+       /*
+        * If allocation block size is less than the physical block size,
+        * same data could be cached in two places and leads to corruption.
+        *
+        * HFS Plus reserves one allocation block for the Volume Header.
+        * If the physical size is larger, then when we read the volume header,
+        * we will also end up reading in the next allocation block(s).
+        * If those other allocation block(s) is/are modified, and then the volume
+        * header is modified, the write of the volume header's buffer will write
+        * out the old contents of the other allocation blocks.
+        *
+        * We assume that the physical block size is same as logical block size.
+        * The physical block size value is used to round down the offsets for
+        * reading and writing the primary and alternate volume headers.
+        *
+        * The same logic to ensure good hfs_physical_block_size is also in
+        * hfs_mountfs so that hfs_mountfs, hfs_MountHFSPlusVolume and
+        * later are doing the I/Os using same block size.
+        */
+       if (blockSize < hfsmp->hfs_physical_block_size) {
+               hfsmp->hfs_physical_block_size = hfsmp->hfs_logical_block_size;
+               hfsmp->hfs_log_per_phys = 1;
+       }
+
+       /*
+        * The VolumeHeader seems OK: transfer info from it into VCB
+        * Note - the VCB starts out clear (all zeros)
+        */
+       vcb = HFSTOVCB(hfsmp);
+
+       vcb->vcbSigWord = signature;
+       vcb->vcbJinfoBlock = SWAP_BE32(vhp->journalInfoBlock);
+       vcb->vcbLsMod   = to_bsd_time(SWAP_BE32(vhp->modifyDate));
+       vcb->vcbAtrb    = SWAP_BE32(vhp->attributes);
+       vcb->vcbClpSiz  = SWAP_BE32(vhp->rsrcClumpSize);
+       vcb->vcbNxtCNID = SWAP_BE32(vhp->nextCatalogID);
+       vcb->vcbVolBkUp = to_bsd_time(SWAP_BE32(vhp->backupDate));
+       vcb->vcbWrCnt   = SWAP_BE32(vhp->writeCount);
+       vcb->vcbFilCnt  = SWAP_BE32(vhp->fileCount);
+       vcb->vcbDirCnt  = SWAP_BE32(vhp->folderCount);
+       
+       /* copy 32 bytes of Finder info */
+       bcopy(vhp->finderInfo, vcb->vcbFndrInfo, sizeof(vhp->finderInfo));    
+
+       vcb->vcbAlBlSt = 0;             /* hfs+ allocation blocks start at first block of volume */
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0)
+               vcb->vcbWrCnt++;        /* compensate for write of Volume Header on last flush */
+
+       /* Now fill in the Extended VCB info */
+       vcb->nextAllocation     = SWAP_BE32(vhp->nextAllocation);
+       vcb->totalBlocks        = SWAP_BE32(vhp->totalBlocks);
+       vcb->allocLimit         = vcb->totalBlocks;
+       vcb->freeBlocks         = SWAP_BE32(vhp->freeBlocks);
+       vcb->blockSize          = blockSize;
+       vcb->encodingsBitmap    = SWAP_BE64(vhp->encodingsBitmap);
+       vcb->localCreateDate    = SWAP_BE32(vhp->createDate);
+       
+       vcb->hfsPlusIOPosOffset = embeddedOffset;
+
+       /* Default to no free block reserve */
+       vcb->reserveBlocks = 0;
+
+       /*
+        * Update the logical block size in the mount struct
+        * (currently set up from the wrapper MDB) using the
+        * new blocksize value:
+        */
+       hfsmp->hfs_logBlockSize = BestBlockSizeFit(vcb->blockSize, MAXBSIZE, hfsmp->hfs_logical_block_size);
+       vcb->vcbVBMIOSize = min(vcb->blockSize, MAXPHYSIO);
+
+       /*
+        * Validate and initialize the location of the alternate volume header.
+        *
+        * Note that there may be spare sectors beyond the end of the filesystem that still 
+        * belong to our partition. 
+        */
+
+       spare_sectors = hfsmp->hfs_logical_block_count -
+                       (((daddr64_t)vcb->totalBlocks * blockSize) /
+                          hfsmp->hfs_logical_block_size);
+
+       /*
+        * Differentiate between "innocuous" spare sectors and the more unusual
+        * degenerate case:
+        * 
+        * *** Innocuous spare sectors exist if:
+        * 
+        * A) the number of bytes assigned to the partition (by multiplying logical 
+        * block size * logical block count) is greater than the filesystem size 
+        * (by multiplying allocation block count and allocation block size)
+        * 
+        * and
+        * 
+        * B) the remainder is less than the size of a full allocation block's worth of bytes.
+        * 
+        * This handles the normal case where there may be a few extra sectors, but the two
+        * are fundamentally in sync.
+        *
+        * *** Degenerate spare sectors exist if:
+        * A) The number of bytes assigned to the partition (by multiplying logical
+        * block size * logical block count) is greater than the filesystem size 
+        * (by multiplying allocation block count and block size).
+        * 
+        * and
+        *
+        * B) the remainder is greater than a full allocation's block worth of bytes.
+        * In this case,  a smaller file system exists in a larger partition.  
+        * This can happen in various ways, including when volume is resized but the 
+        * partition is yet to be resized.  Under this condition, we have to assume that
+        * a partition management software may resize the partition to match 
+        * the file system size in the future.  Therefore we should update 
+        * alternate volume header at two locations on the disk, 
+        *   a. 1024 bytes before end of the partition
+        *   b. 1024 bytes before end of the file system 
+        */
+
+       if (spare_sectors > (daddr64_t)(blockSize / hfsmp->hfs_logical_block_size)) {
+               /* 
+                * Handle the degenerate case above. FS < partition size.
+                * AVH located at 1024 bytes from the end of the partition
+                */
+               hfsmp->hfs_partition_avh_sector = (hfsmp->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+                                          HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size, hfsmp->hfs_logical_block_count);
+
+               /* AVH located at 1024 bytes from the end of the filesystem */
+               hfsmp->hfs_fs_avh_sector = (hfsmp->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+                                          HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size,
+                                               (((daddr64_t)vcb->totalBlocks * blockSize) / hfsmp->hfs_logical_block_size));
+       } 
+       else {
+               /* Innocuous spare sectors; Partition & FS notion are in sync */
+               hfsmp->hfs_partition_avh_sector = (hfsmp->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+                                          HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size, hfsmp->hfs_logical_block_count);
+
+               hfsmp->hfs_fs_avh_sector = hfsmp->hfs_partition_avh_sector;
+       }
+       if (hfs_resize_debug) {
+               printf ("hfs_MountHFSPlusVolume: partition_avh_sector=%qu, fs_avh_sector=%qu\n", 
+                               hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
+       }
+
+       bzero(&cndesc, sizeof(cndesc));
+       cndesc.cd_parentcnid = kHFSRootParentID;
+       cndesc.cd_flags |= CD_ISMETA;
+       bzero(&cnattr, sizeof(cnattr));
+       cnattr.ca_linkcount = 1;
+       cnattr.ca_mode = S_IFREG;
+
+       /*
+        * Set up Extents B-tree vnode
+        */
+       cndesc.cd_nameptr = hfs_extname;
+       cndesc.cd_namelen = strlen((char *)hfs_extname);
+       cndesc.cd_cnid = cnattr.ca_fileid = kHFSExtentsFileID;
+
+       cfork.cf_size    = SWAP_BE64 (vhp->extentsFile.logicalSize);
+       cfork.cf_new_size= 0;
+       cfork.cf_clump   = SWAP_BE32 (vhp->extentsFile.clumpSize);
+       cfork.cf_blocks  = SWAP_BE32 (vhp->extentsFile.totalBlocks);
+       cfork.cf_vblocks = 0;
+       cnattr.ca_blocks = cfork.cf_blocks;
+       for (i = 0; i < kHFSPlusExtentDensity; i++) {
+               cfork.cf_extents[i].startBlock =
+                               SWAP_BE32 (vhp->extentsFile.extents[i].startBlock);
+               cfork.cf_extents[i].blockCount =
+                               SWAP_BE32 (vhp->extentsFile.extents[i].blockCount);
+       }
+       retval = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cfork,
+                                &hfsmp->hfs_extents_vp, &newvnode_flags);
+       if (retval)
+       {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: hfs_getnewvnode returned (%d) getting extentoverflow BT\n", retval);
+               }
+               goto ErrorExit;
+       }
+
+       hfsmp->hfs_extents_cp = VTOC(hfsmp->hfs_extents_vp);
+
+       retval = MacToVFSError(BTOpenPath(VTOF(hfsmp->hfs_extents_vp),
+                                         (KeyCompareProcPtr) CompareExtentKeysPlus));
+
+       hfs_unlock(hfsmp->hfs_extents_cp);
+
+       if (retval)
+       {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: BTOpenPath returned (%d) getting extentoverflow BT\n", retval);
+               }
+               goto ErrorExit;
+       }
+       /*
+        * Set up Catalog B-tree vnode
+        */ 
+       cndesc.cd_nameptr = hfs_catname;
+       cndesc.cd_namelen = strlen((char *)hfs_catname);
+       cndesc.cd_cnid = cnattr.ca_fileid = kHFSCatalogFileID;
+
+       cfork.cf_size    = SWAP_BE64 (vhp->catalogFile.logicalSize);
+       cfork.cf_clump   = SWAP_BE32 (vhp->catalogFile.clumpSize);
+       cfork.cf_blocks  = SWAP_BE32 (vhp->catalogFile.totalBlocks);
+       cfork.cf_vblocks = 0;
+       cnattr.ca_blocks = cfork.cf_blocks;
+       for (i = 0; i < kHFSPlusExtentDensity; i++) {
+               cfork.cf_extents[i].startBlock =
+                               SWAP_BE32 (vhp->catalogFile.extents[i].startBlock);
+               cfork.cf_extents[i].blockCount =
+                               SWAP_BE32 (vhp->catalogFile.extents[i].blockCount);
+       }
+       retval = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cfork,
+                                &hfsmp->hfs_catalog_vp, &newvnode_flags);
+       if (retval) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: hfs_getnewvnode returned (%d) getting catalog BT\n", retval);
+               }
+               goto ErrorExit;
+       }
+       hfsmp->hfs_catalog_cp = VTOC(hfsmp->hfs_catalog_vp);
+
+       retval = MacToVFSError(BTOpenPath(VTOF(hfsmp->hfs_catalog_vp),
+                                         (KeyCompareProcPtr) CompareExtendedCatalogKeys));
+
+       if (retval) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: BTOpenPath returned (%d) getting catalog BT\n", retval);
+               }
+               hfs_unlock(hfsmp->hfs_catalog_cp);
+               goto ErrorExit;
+       }
+       if ((hfsmp->hfs_flags & HFS_X) &&
+           BTGetInformation(VTOF(hfsmp->hfs_catalog_vp), 0, &btinfo) == 0) {
+               if (btinfo.keyCompareType == kHFSBinaryCompare) {
+                       hfsmp->hfs_flags |= HFS_CASE_SENSITIVE;
+                       /* Install a case-sensitive key compare */
+                       (void) BTOpenPath(VTOF(hfsmp->hfs_catalog_vp),
+                                         (KeyCompareProcPtr)cat_binarykeycompare);
+               }
+       }
+
+       hfs_unlock(hfsmp->hfs_catalog_cp);
+
+       /*
+        * Set up Allocation file vnode
+        */  
+       cndesc.cd_nameptr = hfs_vbmname;
+       cndesc.cd_namelen = strlen((char *)hfs_vbmname);
+       cndesc.cd_cnid = cnattr.ca_fileid = kHFSAllocationFileID;
+
+       cfork.cf_size    = SWAP_BE64 (vhp->allocationFile.logicalSize);
+       cfork.cf_clump   = SWAP_BE32 (vhp->allocationFile.clumpSize);
+       cfork.cf_blocks  = SWAP_BE32 (vhp->allocationFile.totalBlocks);
+       cfork.cf_vblocks = 0;
+       cnattr.ca_blocks = cfork.cf_blocks;
+       for (i = 0; i < kHFSPlusExtentDensity; i++) {
+               cfork.cf_extents[i].startBlock =
+                               SWAP_BE32 (vhp->allocationFile.extents[i].startBlock);
+               cfork.cf_extents[i].blockCount =
+                               SWAP_BE32 (vhp->allocationFile.extents[i].blockCount);
+       }
+       retval = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cfork,
+                                &hfsmp->hfs_allocation_vp, &newvnode_flags);
+       if (retval) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: hfs_getnewvnode returned (%d) getting bitmap\n", retval);
+               }
+               goto ErrorExit;
+       }
+       hfsmp->hfs_allocation_cp = VTOC(hfsmp->hfs_allocation_vp);
+       hfs_unlock(hfsmp->hfs_allocation_cp);
+
+       /*
+        * Set up Attribute B-tree vnode
+        */
+       if (vhp->attributesFile.totalBlocks != 0) {
+               cndesc.cd_nameptr = hfs_attrname;
+               cndesc.cd_namelen = strlen((char *)hfs_attrname);
+               cndesc.cd_cnid = cnattr.ca_fileid = kHFSAttributesFileID;
+       
+               cfork.cf_size    = SWAP_BE64 (vhp->attributesFile.logicalSize);
+               cfork.cf_clump   = SWAP_BE32 (vhp->attributesFile.clumpSize);
+               cfork.cf_blocks  = SWAP_BE32 (vhp->attributesFile.totalBlocks);
+               cfork.cf_vblocks = 0;
+               cnattr.ca_blocks = cfork.cf_blocks;
+               for (i = 0; i < kHFSPlusExtentDensity; i++) {
+                       cfork.cf_extents[i].startBlock =
+                                       SWAP_BE32 (vhp->attributesFile.extents[i].startBlock);
+                       cfork.cf_extents[i].blockCount =
+                                       SWAP_BE32 (vhp->attributesFile.extents[i].blockCount);
+               }
+               retval = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cfork,
+                                        &hfsmp->hfs_attribute_vp, &newvnode_flags);
+               if (retval) {
+                       if (HFS_MOUNT_DEBUG) {
+                               printf("hfs_mounthfsplus: hfs_getnewvnode returned (%d) getting EA BT\n", retval);
+                       }
+                       goto ErrorExit;
+               }
+               hfsmp->hfs_attribute_cp = VTOC(hfsmp->hfs_attribute_vp);
+               retval = MacToVFSError(BTOpenPath(VTOF(hfsmp->hfs_attribute_vp),
+                                                 (KeyCompareProcPtr) hfs_attrkeycompare));
+               hfs_unlock(hfsmp->hfs_attribute_cp);
+               if (retval) {
+                       if (HFS_MOUNT_DEBUG) {
+                               printf("hfs_mounthfsplus: BTOpenPath returned (%d) getting EA BT\n", retval);
+                       }
+                       goto ErrorExit;
+               }
+
+               /* Initialize vnode for virtual attribute data file that spans the 
+                * entire file system space for performing I/O to attribute btree
+                * We hold iocount on the attrdata vnode for the entire duration 
+                * of mount (similar to btree vnodes)
+                */
+               retval = init_attrdata_vnode(hfsmp);
+               if (retval) {
+                       if (HFS_MOUNT_DEBUG) {
+                               printf("hfs_mounthfsplus: init_attrdata_vnode returned (%d) for virtual EA file\n", retval);
+                       }
+                       goto ErrorExit;
+               }
+       }
+
+       /*
+        * Set up Startup file vnode
+        */
+       if (vhp->startupFile.totalBlocks != 0) {
+               cndesc.cd_nameptr = hfs_startupname;
+               cndesc.cd_namelen = strlen((char *)hfs_startupname);
+               cndesc.cd_cnid = cnattr.ca_fileid = kHFSStartupFileID;
+       
+               cfork.cf_size    = SWAP_BE64 (vhp->startupFile.logicalSize);
+               cfork.cf_clump   = SWAP_BE32 (vhp->startupFile.clumpSize);
+               cfork.cf_blocks  = SWAP_BE32 (vhp->startupFile.totalBlocks);
+               cfork.cf_vblocks = 0;
+               cnattr.ca_blocks = cfork.cf_blocks;
+               for (i = 0; i < kHFSPlusExtentDensity; i++) {
+                       cfork.cf_extents[i].startBlock =
+                                       SWAP_BE32 (vhp->startupFile.extents[i].startBlock);
+                       cfork.cf_extents[i].blockCount =
+                                       SWAP_BE32 (vhp->startupFile.extents[i].blockCount);
+               }
+               retval = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cfork,
+                                        &hfsmp->hfs_startup_vp, &newvnode_flags);
+               if (retval) {
+                       if (HFS_MOUNT_DEBUG) {
+                               printf("hfs_mounthfsplus: hfs_getnewvnode returned (%d) getting startup file\n", retval);
+                       }
+                       goto ErrorExit;
+               }
+               hfsmp->hfs_startup_cp = VTOC(hfsmp->hfs_startup_vp);
+               hfs_unlock(hfsmp->hfs_startup_cp);
+       }
+       
+       /* 
+        * Pick up volume name and create date 
+        *
+        * Acquiring the volume name should not manipulate the bitmap, only the catalog
+        * btree and possibly the extents overflow b-tree.
+        */
+       retval = cat_idlookup(hfsmp, kHFSRootFolderID, 0, 0, &cndesc, &cnattr, NULL);
+       if (retval) {
+               if (HFS_MOUNT_DEBUG) {
+                       printf("hfs_mounthfsplus: cat_idlookup returned (%d) getting rootfolder \n", retval);
+               }
+               goto ErrorExit;
+       }
+       vcb->hfs_itime = cnattr.ca_itime;
+       vcb->volumeNameEncodingHint = cndesc.cd_encoding;
+       bcopy(cndesc.cd_nameptr, vcb->vcbVN, min(255, cndesc.cd_namelen));
+       volname_length = strlen ((const char*)vcb->vcbVN);
+       cat_releasedesc(&cndesc);
+       
+       /* Send the volume name down to CoreStorage if necessary */     
+       retval = utf8_normalizestr(vcb->vcbVN, volname_length, (u_int8_t*)converted_volname, &conv_volname_length, 256, UTF_PRECOMPOSED);
+       if (retval == 0) {
+               (void) VNOP_IOCTL (hfsmp->hfs_devvp, _DKIOCCSSETLVNAME, converted_volname, 0, vfs_context_current());
+       }       
+       
+       /* reset retval == 0. we don't care about errors in volname conversion */
+       retval = 0;
+
+       /* 
+        * pull in the volume UUID while we are still single-threaded.
+        * This brings the volume UUID into the cached one dangling off of the HFSMP
+        * Otherwise it would have to be computed on first access.
+        */
+       uuid_t throwaway;
+       hfs_getvoluuid (hfsmp, throwaway); 
+
+       /* 
+        * We now always initiate a full bitmap scan even if the volume is read-only because this is 
+        * our only shot to do I/Os of dramaticallly different sizes than what the buffer cache ordinarily
+        * expects. TRIMs will not be delivered to the underlying media if the volume is not 
+        * read-write though.  
+        */
+       hfsmp->scan_var = 0;
+
+       /*
+        * We have to ensure if we can proceed to scan the bitmap allocation
+        * file asynchronously. If the catalog file is fragmented such that it
+        * has overflow extents and the volume needs journal transaction we
+        * cannot scan the bitmap asynchronously. Doing so will cause the mount
+        * thread to block at journal transaction on bitmap lock, while scan
+        * thread which hold the bitmap lock exclusively performs disk I/O to
+        * issue TRIMS to unallocated ranges and build summary table. The
+        * amount of time the mount thread is blocked depends on the size of
+        * the volume, type of disk, etc. This blocking can cause the watchdog
+        * timer to timeout resulting in panic. Thus to ensure we don't timeout
+        * watchdog in such cases we scan the bitmap synchronously.
+        *
+        * Please NOTE: Currently this timeout only seem to happen for non SSD
+        * drives. Possibly reading a big fragmented allocation file to
+        * construct the summary table takes enough time to timeout watchdog.
+        * Thus we check if we need to scan the bitmap synchronously only if
+        * the disk is not SSD.
+        */
+       async_bitmap_scan = true;
+       if (!ISSET(hfsmp->hfs_flags, HFS_SSD) && hfsmp->hfs_catalog_cp) {
+               bool catalog_has_overflow_extents;
+               bool journal_transaction_needed;
+
+               catalog_has_overflow_extents = false;
+               if ((hfsmp->hfs_catalog_vp != NULL) &&
+                               (overflow_extents(VTOF(hfsmp->hfs_catalog_vp)))) {
+                       catalog_has_overflow_extents = true;
+               }
+
+               journal_transaction_needed = false;
+               if (hfsmp->jnl || ((vcb->vcbAtrb & kHFSVolumeJournaledMask) &&
+                                       (hfsmp->hfs_flags & HFS_READ_ONLY))) {
+                       journal_transaction_needed = true;
+               }
+
+               if (catalog_has_overflow_extents && journal_transaction_needed)
+                       async_bitmap_scan = false;
+       }
+
+       if (async_bitmap_scan) {
+               thread_t allocator_scanner;
+
+               /* Take the HFS mount mutex and wait on scan_var */
+               hfs_lock_mount (hfsmp);
+
+
+               /*
+                * Scan the bitmap asynchronously.
+                */
+               kernel_thread_start ((thread_continue_t)hfs_scan_blocks, hfsmp,
+                               &allocator_scanner);
+
+               /*
+                * Wait until it registers that it's got the appropriate locks
+                * (or that it is finished).
+                */
+               while ((hfsmp->scan_var & (HFS_ALLOCATOR_SCAN_INFLIGHT|
+                                               HFS_ALLOCATOR_SCAN_COMPLETED)) == 0) {
+                       msleep (&hfsmp->scan_var, &hfsmp->hfs_mutex, PINOD,
+                                       "hfs_scan_blocks", 0);
+               }
+
+               hfs_unlock_mount(hfsmp);
+
+               thread_deallocate (allocator_scanner);
+       } else {
+
+               /*
+                * Initialize the summary table and then scan the bitmap
+                * synchronously. Since we are scanning the bitmap
+                * synchronously we don't need to hold the bitmap lock.
+                */
+               if (hfs_init_summary (hfsmp)) {
+                       printf ("hfs: could not initialize summary table for "
+                                       "%s\n", hfsmp->vcbVN);
+               }
+
+               (void)ScanUnmapBlocks (hfsmp);
+
+               /*
+                * We need to set that the allocator scan is completed because
+                * hot file clustering waits for this condition later.
+                */
+               hfsmp->scan_var |= HFS_ALLOCATOR_SCAN_COMPLETED;
+               buf_invalidateblks (hfsmp->hfs_allocation_vp, 0, 0, 0);
+       }
+
+       /* mark the volume dirty (clear clean unmount bit) */
+       vcb->vcbAtrb &= ~kHFSVolumeUnmountedMask;
+       if (hfsmp->jnl && (hfsmp->hfs_flags & HFS_READ_ONLY) == 0) {
+               hfs_flushvolumeheader(hfsmp, HFS_FVH_WAIT);
+       }
+
+       /* kHFSHasFolderCount is only supported/updated on HFSX volumes */
+       if ((hfsmp->hfs_flags & HFS_X) != 0) {
+               hfsmp->hfs_flags |= HFS_FOLDERCOUNT;
+       }
+
+       //
+       // Check if we need to do late journal initialization.  This only
+       // happens if a previous version of MacOS X (or 9) touched the disk.
+       // In that case hfs_late_journal_init() will go re-locate the journal 
+       // and journal_info_block files and validate that they're still kosher.
+       //
+       if (   (vcb->vcbAtrb & kHFSVolumeJournaledMask)
+               && (SWAP_BE32(vhp->lastMountedVersion) != kHFSJMountVersion)
+               && (hfsmp->jnl == NULL)) {
+
+               retval = hfs_late_journal_init(hfsmp, vhp, args);
+               if (retval != 0) {
+                       if (retval == EROFS) {
+                               // EROFS is a special error code that means the volume has an external
+                               // journal which we couldn't find.  in that case we do not want to
+                               // rewrite the volume header - we'll just refuse to mount the volume.
+                               if (HFS_MOUNT_DEBUG) {
+                                       printf("hfs_mounthfsplus: hfs_late_journal_init returned (%d), maybe an external jnl?\n", retval);
+                               }
+                               retval = EINVAL;
+                               goto ErrorExit;
+                       }
+
+                       hfsmp->jnl = NULL;
+                       
+                       // if the journal failed to open, then set the lastMountedVersion
+                       // to be "FSK!" which fsck_hfs will see and force the fsck instead
+                       // of just bailing out because the volume is journaled.
+                       if (!(hfsmp->hfs_flags & HFS_READ_ONLY)) {
+                               HFSPlusVolumeHeader *jvhp;
+                               daddr64_t mdb_offset;
+                               struct buf *bp = NULL;
+                               
+                               hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
+                                   
+                               mdb_offset = (daddr64_t)((embeddedOffset / blockSize) + HFS_PRI_SECTOR(blockSize));
+
+                               bp = NULL;
+                               retval = (int)buf_meta_bread(hfsmp->hfs_devvp, 
+                                               HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+                                               hfsmp->hfs_physical_block_size, cred, &bp);
+                               if (retval == 0) {
+                                       jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
+                                           
+                                       if (SWAP_BE16(jvhp->signature) == kHFSPlusSigWord || SWAP_BE16(jvhp->signature) == kHFSXSigWord) {
+                                               printf ("hfs(3): Journal replay fail.  Writing lastMountVersion as FSK!\n");
+                                               jvhp->lastMountedVersion = SWAP_BE32(kFSKMountVersion);
+                                               buf_bwrite(bp);
+                                       } else {
+                                               buf_brelse(bp);
+                                       }
+                                       bp = NULL;
+                               } else if (bp) {
+                                       buf_brelse(bp);
+                                       // clear this so the error exit path won't try to use it
+                                       bp = NULL;
+                           }
+                       }
+                       
+                       if (HFS_MOUNT_DEBUG) {
+                               printf("hfs_mounthfsplus: hfs_late_journal_init returned (%d)\n", retval);
+                       }
+                       retval = EINVAL;
+                       goto ErrorExit;
+               } else if (hfsmp->jnl) {
+                       vfs_setflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
+               }
+       } else if (hfsmp->jnl || ((vcb->vcbAtrb & kHFSVolumeJournaledMask) && (hfsmp->hfs_flags & HFS_READ_ONLY))) {
+               struct cat_attr jinfo_attr, jnl_attr;
+               
+               if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+                   vcb->vcbAtrb &= ~kHFSVolumeJournaledMask;
+               }
+
+               // if we're here we need to fill in the fileid's for the
+               // journal and journal_info_block.
+               hfsmp->hfs_jnlinfoblkid = GetFileInfo(vcb, kRootDirID, ".journal_info_block", &jinfo_attr, NULL);
+               hfsmp->hfs_jnlfileid    = GetFileInfo(vcb, kRootDirID, ".journal", &jnl_attr, NULL);
+               if (hfsmp->hfs_jnlinfoblkid == 0 || hfsmp->hfs_jnlfileid == 0) {
+                       printf("hfs: danger! couldn't find the file-id's for the journal or journal_info_block\n");
+                       printf("hfs: jnlfileid %d, jnlinfoblkid %d\n", hfsmp->hfs_jnlfileid, hfsmp->hfs_jnlinfoblkid);
+               }
+
+               if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+                   vcb->vcbAtrb |= kHFSVolumeJournaledMask;
+               }
+
+               if (hfsmp->jnl == NULL) {
+                   vfs_clearflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
+               }
+       }
+
+       if ( !(vcb->vcbAtrb & kHFSVolumeHardwareLockMask) )     // if the disk is not write protected
+       {
+               MarkVCBDirty( vcb );    // mark VCB dirty so it will be written
+       }
+
+       if (hfsmp->hfs_flags & HFS_CS_METADATA_PIN) {
+               hfs_pin_fs_metadata(hfsmp);
+       }
+       /*
+        * Distinguish 3 potential cases involving content protection:
+        * 1. mount point bit set; vcbAtrb does not support it. Fail.
+        * 2. mount point bit set; vcbattrb supports it. we're good.
+        * 3. mount point bit not set; vcbatrb supports it, turn bit on, then good.
+        */
+       if (vfs_flags(hfsmp->hfs_mp) & MNT_CPROTECT) {
+               /* Does the mount point support it ? */
+               if ((vcb->vcbAtrb & kHFSContentProtectionMask) == 0) {
+                       /* Case 1 above */
+                       retval = EINVAL;
+                       goto ErrorExit;
+               }
+       }
+       else {
+               /* not requested in the mount point. Is it in FS? */
+               if (vcb->vcbAtrb & kHFSContentProtectionMask) {
+                       /* Case 3 above */
+                       vfs_setflags (hfsmp->hfs_mp, MNT_CPROTECT);
+               }
+       }
+
+       /* At this point, if the mount point flag is set, we can enable it. */
+       if (vfs_flags(hfsmp->hfs_mp) & MNT_CPROTECT) {
+               /* Cases 2+3 above */
+#if CONFIG_PROTECT
+               /* Get the EAs as needed. */
+               int cperr = 0;
+               struct cp_root_xattr *xattr = NULL;
+               xattr = hfs_malloc(sizeof(*xattr));
+
+               /* go get the EA to get the version information */
+               cperr = cp_getrootxattr (hfsmp, xattr);
+               /* 
+                * If there was no EA there, then write one out. 
+                * Assuming EA is not present on the root means 
+                * this is an erase install or a very old FS
+                */
+
+               if (cperr == 0) {
+                       /* Have to run a valid CP version. */
+                       if (!cp_is_supported_version(xattr->major_version)) {
+                               cperr = EINVAL;
+                       }
+               }
+               else if (cperr == ENOATTR) {
+                       printf("No root EA set, creating new EA with new version: %d\n", CP_CURRENT_VERS);
+                       bzero(xattr, sizeof(struct cp_root_xattr));
+                       xattr->major_version = CP_CURRENT_VERS;
+                       xattr->minor_version = CP_MINOR_VERS;
+                       cperr = cp_setrootxattr (hfsmp, xattr);
+               }
+
+               if (cperr) {
+                       hfs_free(xattr, sizeof(*xattr));
+                       retval = EPERM;
+                       goto ErrorExit;
+               }
+
+               /* If we got here, then the CP version is valid. Set it in the mount point */
+               hfsmp->hfs_running_cp_major_vers = xattr->major_version;
+               printf("Running with CP root xattr: %d.%d\n", xattr->major_version, xattr->minor_version);
+               hfsmp->cproot_flags = xattr->flags;
+               hfsmp->cp_crypto_generation = ISSET(xattr->flags, CP_ROOT_CRYPTOG1) ? 1 : 0;
+#if HFS_CONFIG_KEY_ROLL
+               hfsmp->hfs_auto_roll_min_key_os_version = xattr->auto_roll_min_version;
+               hfsmp->hfs_auto_roll_max_key_os_version = xattr->auto_roll_max_version;
+#endif
+
+               hfs_free(xattr, sizeof(*xattr));
+
+               /*
+                * Acquire the boot-arg for the AKS default key; if invalid, obtain from the device tree.
+                * Ensure that the boot-arg's value is valid for FILES (not directories),
+                * since only files are actually protected for now.
+                */
+
+               PE_parse_boot_argn("aks_default_class", &hfsmp->default_cp_class, sizeof(hfsmp->default_cp_class));
+
+               if (cp_is_valid_class(0, hfsmp->default_cp_class) == 0) {
+                       PE_get_default("kern.default_cp_class", &hfsmp->default_cp_class, sizeof(hfsmp->default_cp_class));
+               }
+
+#if HFS_TMPDBG
+#if !SECURE_KERNEL
+               PE_parse_boot_argn("aks_verbose", &hfsmp->hfs_cp_verbose, sizeof(hfsmp->hfs_cp_verbose));
+#endif
+#endif
+
+               if (cp_is_valid_class(0, hfsmp->default_cp_class) == 0) {
+                       hfsmp->default_cp_class = PROTECTION_CLASS_C;
+               }
+
+#else
+               /* If CONFIG_PROTECT not built, ignore CP */
+               vfs_clearflags(hfsmp->hfs_mp, MNT_CPROTECT);    
+#endif
+       }
+
+       /*
+        * Establish a metadata allocation zone.
+        */
+       hfs_metadatazone_init(hfsmp, false);
+
+       /*
+        * Make any metadata zone adjustments.
+        */
+       if (hfsmp->hfs_flags & HFS_METADATA_ZONE) {
+               /* Keep the roving allocator out of the metadata zone. */
+               if (vcb->nextAllocation >= hfsmp->hfs_metazone_start &&
+                   vcb->nextAllocation <= hfsmp->hfs_metazone_end) {       
+                       HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1);
+               }
+       } else {
+               if (vcb->nextAllocation <= 1) {
+                       vcb->nextAllocation = hfsmp->hfs_min_alloc_start;
+               }
+       }
+       vcb->sparseAllocation = hfsmp->hfs_min_alloc_start;
+
+       /* Setup private/hidden directories for hardlinks. */
+       hfs_privatedir_init(hfsmp, FILE_HARDLINKS);
+       hfs_privatedir_init(hfsmp, DIR_HARDLINKS);
+
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) 
+               hfs_remove_orphans(hfsmp);
+
+       /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0)
+       {
+               retval = hfs_erase_unused_nodes(hfsmp);
+               if (retval) {
+                       if (HFS_MOUNT_DEBUG) {
+                               printf("hfs_mounthfsplus: hfs_erase_unused_nodes returned (%d) for %s \n", retval, hfsmp->vcbVN);
+                       }
+
+                       goto ErrorExit;
+               }
+       }
+               
+       /*
+        * Allow hot file clustering if conditions allow.
+        */
+       if ((hfsmp->hfs_flags & HFS_METADATA_ZONE)  && !(hfsmp->hfs_flags & HFS_READ_ONLY) &&
+           ((hfsmp->hfs_flags & HFS_SSD) == 0 || (hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN))) {
+               //
+               // Wait until the bitmap scan completes before we initializes the
+               // hotfile area so that we do not run into any issues with the
+               // bitmap being read while hotfiles is initializing itself.  On
+               // some older/slower machines, without this interlock, the bitmap
+               // would sometimes get corrupted at boot time.
+               //
+               hfs_lock_mount(hfsmp);
+               while(!(hfsmp->scan_var & HFS_ALLOCATOR_SCAN_COMPLETED)) {
+                       (void) msleep (&hfsmp->scan_var, &hfsmp->hfs_mutex, PINOD, "hfs_hotfile_bitmap_interlock", 0);
+               }
+               hfs_unlock_mount(hfsmp);
+               
+               /*
+                * Note: at this point we are not allowed to fail the
+                *       mount operation because the HotFile init code
+                *       in hfs_recording_init() will lookup vnodes with
+                *       VNOP_LOOKUP() which hangs vnodes off the mount
+                *       (and if we were to fail, VFS is not prepared to
+                *       clean that up at this point.  Since HotFiles are
+                *       optional, this is not a big deal.
+                */
+               (void) hfs_recording_init(hfsmp);
+       }
+
+       /* Force ACLs on HFS+ file systems. */
+       vfs_setextendedsecurity(HFSTOVFS(hfsmp));
+
+       /* Enable extent-based extended attributes by default */
+       hfsmp->hfs_flags |= HFS_XATTR_EXTENTS;
+
+       return (0);
+
+ErrorExit:
+       /*
+        * A fatal error occurred and the volume cannot be mounted, so 
+        * release any resources that we acquired...
+        */
+       hfsUnmount(hfsmp, NULL);
+               
+       if (HFS_MOUNT_DEBUG) {
+               printf("hfs_mounthfsplus: encountered error (%d)\n", retval);
+       }
+       return (retval);
+}
+
+static int
+_pin_metafile(struct hfsmount *hfsmp, vnode_t vp)
+{
+       int err;
+
+       err = hfs_lock(VTOC(vp), HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
+       if (err == 0) {
+               err = hfs_pin_vnode(hfsmp, vp, HFS_PIN_IT, NULL);
+               hfs_unlock(VTOC(vp));
+       }
+
+       return err;
+}
+
+void
+hfs_pin_fs_metadata(struct hfsmount *hfsmp)
+{
+       ExtendedVCB *vcb;
+       int err;
+       
+       vcb = HFSTOVCB(hfsmp);
+
+       err = _pin_metafile(hfsmp, hfsmp->hfs_extents_vp);
+       if (err != 0) {
+               printf("hfs: failed to pin extents overflow file %d\n", err);
+       }                               
+       err = _pin_metafile(hfsmp, hfsmp->hfs_catalog_vp);
+       if (err != 0) {
+               printf("hfs: failed to pin catalog file %d\n", err);
+       }                               
+       err = _pin_metafile(hfsmp, hfsmp->hfs_allocation_vp);
+       if (err != 0) {
+               printf("hfs: failed to pin bitmap file %d\n", err);
+       }                               
+       err = _pin_metafile(hfsmp, hfsmp->hfs_attribute_vp);
+       if (err != 0) {
+               printf("hfs: failed to pin extended attr file %d\n", err);
+       }                               
+       
+       hfs_pin_block_range(hfsmp, HFS_PIN_IT, 0, 1);
+       hfs_pin_block_range(hfsmp, HFS_PIN_IT, vcb->totalBlocks-1, 1);
+                       
+       if (vfs_flags(hfsmp->hfs_mp) & MNT_JOURNALED) {
+               // and hey, if we've got a journal, let's pin that too!
+               hfs_pin_block_range(hfsmp, HFS_PIN_IT, hfsmp->jnl_start, howmany(hfsmp->jnl_size, vcb->blockSize));
+       }
+}
+
+/*
+ * ReleaseMetaFileVNode
+ *
+ * vp  L - -
+ */
+static void ReleaseMetaFileVNode(struct vnode *vp)
+{
+       struct filefork *fp;
+
+       if (vp && (fp = VTOF(vp))) {
+               if (fp->fcbBTCBPtr != NULL) {
+                       (void)hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+                       (void) BTClosePath(fp);
+                       hfs_unlock(VTOC(vp));
+               }
+
+               /* release the node even if BTClosePath fails */
+               vnode_recycle(vp);
+               vnode_put(vp);
+       }
+}
+
+
+/*************************************************************
+*
+* Unmounts a hfs volume.
+*      At this point vflush() has been called (to dump all non-metadata files)
+*
+*************************************************************/
+
+int
+hfsUnmount( register struct hfsmount *hfsmp, __unused struct proc *p)
+{
+       /* Get rid of our attribute data vnode (if any).  This is done 
+        * after the vflush() during mount, so we don't need to worry 
+        * about any locks.
+        */
+       if (hfsmp->hfs_attrdata_vp) {
+               ReleaseMetaFileVNode(hfsmp->hfs_attrdata_vp);
+               hfsmp->hfs_attrdata_vp = NULLVP;
+       }
+
+       if (hfsmp->hfs_startup_vp) {
+               ReleaseMetaFileVNode(hfsmp->hfs_startup_vp);
+               hfsmp->hfs_startup_cp = NULL;
+               hfsmp->hfs_startup_vp = NULL;
+       }
+       
+       if (hfsmp->hfs_attribute_vp) {
+               ReleaseMetaFileVNode(hfsmp->hfs_attribute_vp);
+               hfsmp->hfs_attribute_cp = NULL;
+               hfsmp->hfs_attribute_vp = NULL;
+       }
+
+       if (hfsmp->hfs_catalog_vp) {
+               ReleaseMetaFileVNode(hfsmp->hfs_catalog_vp);
+               hfsmp->hfs_catalog_cp = NULL;
+               hfsmp->hfs_catalog_vp = NULL;
+       }
+
+       if (hfsmp->hfs_extents_vp) {
+               ReleaseMetaFileVNode(hfsmp->hfs_extents_vp);
+               hfsmp->hfs_extents_cp = NULL;
+               hfsmp->hfs_extents_vp = NULL;
+       }
+
+       if (hfsmp->hfs_allocation_vp) {
+               ReleaseMetaFileVNode(hfsmp->hfs_allocation_vp);
+               hfsmp->hfs_allocation_cp = NULL;
+               hfsmp->hfs_allocation_vp = NULL;
+       }
+
+       return (0);
+}
+
+
+/*
+ * Test if fork has overflow extents.
+ *
+ * Returns: 
+ *     non-zero - overflow extents exist
+ *     zero     - overflow extents do not exist 
+ */
+bool overflow_extents(struct filefork *fp)
+{
+       u_int32_t blocks;
+
+       //
+       // If the vnode pointer is NULL then we're being called
+       // from hfs_remove_orphans() with a faked-up filefork
+       // and therefore it has to be an HFS+ volume.  Otherwise
+       // we check through the volume header to see what type
+       // of volume we're on.
+       //
+
+#if CONFIG_HFS_STD
+       if (FTOV(fp) && VTOVCB(FTOV(fp))->vcbSigWord == kHFSSigWord) {
+               if (fp->ff_extents[2].blockCount == 0)
+                       return false;
+
+               blocks = fp->ff_extents[0].blockCount +
+                       fp->ff_extents[1].blockCount +
+                       fp->ff_extents[2].blockCount;   
+
+               return fp->ff_blocks > blocks;
+       }
+#endif
+
+       if (fp->ff_extents[7].blockCount == 0)
+               return false;
+
+       blocks = fp->ff_extents[0].blockCount +
+               fp->ff_extents[1].blockCount +
+               fp->ff_extents[2].blockCount +
+               fp->ff_extents[3].blockCount +
+               fp->ff_extents[4].blockCount +
+               fp->ff_extents[5].blockCount +
+               fp->ff_extents[6].blockCount +
+               fp->ff_extents[7].blockCount;   
+
+       return fp->ff_blocks > blocks;
+}
+
+static __attribute__((pure))
+boolean_t hfs_is_frozen(struct hfsmount *hfsmp)
+{
+       return (hfsmp->hfs_freeze_state == HFS_FROZEN
+                       || (hfsmp->hfs_freeze_state == HFS_FREEZING
+                               && current_thread() != hfsmp->hfs_freezing_thread));
+}
+
+/*
+ * Lock the HFS global journal lock 
+ */
+int 
+hfs_lock_global (struct hfsmount *hfsmp, enum hfs_locktype locktype) 
+{
+       thread_t thread = current_thread();
+
+       if (hfsmp->hfs_global_lockowner == thread) {
+               panic ("hfs_lock_global: locking against myself!");
+       }
+
+       /*
+        * This check isn't really necessary but this stops us taking
+        * the mount lock in most cases.  The essential check is below.
+        */
+       if (hfs_is_frozen(hfsmp)) {
+               /*
+                * Unfortunately, there is no easy way of getting a notification
+                * for when a process is exiting and it's possible for the exiting 
+                * process to get blocked somewhere else.  To catch this, we
+                * periodically monitor the frozen process here and thaw if
+                * we spot that it's exiting.
+                */
+frozen:
+               hfs_lock_mount(hfsmp);
+
+               struct timespec ts = { 0, 500 * NSEC_PER_MSEC };
+
+               while (hfs_is_frozen(hfsmp)) {
+                       if (hfsmp->hfs_freeze_state == HFS_FROZEN
+                               && proc_exiting(hfsmp->hfs_freezing_proc)) {
+                               hfs_thaw_locked(hfsmp);
+                               break;
+                       }
+
+                       msleep(&hfsmp->hfs_freeze_state, &hfsmp->hfs_mutex,
+                              PWAIT, "hfs_lock_global (frozen)", &ts);
+               }
+               hfs_unlock_mount(hfsmp);
+       }
+
+       /* HFS_SHARED_LOCK */
+       if (locktype == HFS_SHARED_LOCK) {
+               lck_rw_lock_shared (&hfsmp->hfs_global_lock);
+               hfsmp->hfs_global_lockowner = HFS_SHARED_OWNER;
+       }
+       /* HFS_EXCLUSIVE_LOCK */
+       else {
+               lck_rw_lock_exclusive (&hfsmp->hfs_global_lock);
+               hfsmp->hfs_global_lockowner = thread;
+       }
+
+       /* 
+        * We have to check if we're frozen again because of the time
+        * between when we checked and when we took the global lock.
+        */
+       if (hfs_is_frozen(hfsmp)) {
+               hfs_unlock_global(hfsmp);
+               goto frozen;
+       }
+
+       return 0;
+}
+
+
+/*
+ * Unlock the HFS global journal lock
+ */
+void 
+hfs_unlock_global (struct hfsmount *hfsmp) 
+{      
+       thread_t thread = current_thread();
+
+       /* HFS_LOCK_EXCLUSIVE */
+       if (hfsmp->hfs_global_lockowner == thread) {
+               hfsmp->hfs_global_lockowner = NULL;
+               lck_rw_unlock_exclusive (&hfsmp->hfs_global_lock);
+       }
+       /* HFS_LOCK_SHARED */
+       else {
+               lck_rw_unlock_shared (&hfsmp->hfs_global_lock);
+       }
+}
+
+/*
+ * Lock the HFS mount lock
+ * 
+ * Note: this is a mutex, not a rw lock! 
+ */
+inline 
+void hfs_lock_mount (struct hfsmount *hfsmp) {
+       lck_mtx_lock (&(hfsmp->hfs_mutex)); 
+}
+
+/*
+ * Unlock the HFS mount lock
+ *
+ * Note: this is a mutex, not a rw lock! 
+ */
+inline
+void hfs_unlock_mount (struct hfsmount *hfsmp) {
+       lck_mtx_unlock (&(hfsmp->hfs_mutex));
+}
+
+/*
+ * Lock HFS system file(s).
+ *
+ * This function accepts a @flags parameter which indicates which
+ * system file locks are required.  The value it returns should be
+ * used in a subsequent call to hfs_systemfile_unlock.  The caller
+ * should treat this value as opaque; it may or may not have a
+ * relation to the @flags field that is passed in.  The *only*
+ * guarantee that we make is that a value of zero means that no locks
+ * were taken and that there is no need to call hfs_systemfile_unlock
+ * (although it is harmless to do so).  Recursion is supported but
+ * care must still be taken to ensure correct lock ordering.  Note
+ * that requests for certain locks may cause other locks to also be
+ * taken, including locks that are not possible to ask for via the
+ * @flags parameter.
+ */
+int
+hfs_systemfile_lock(struct hfsmount *hfsmp, int flags, enum hfs_locktype locktype)
+{
+       /*
+        * Locking order is Catalog file, Attributes file, Startup file, Bitmap file, Extents file
+        */
+       if (flags & SFL_CATALOG) {
+               if (hfsmp->hfs_catalog_cp
+                       && hfsmp->hfs_catalog_cp->c_lockowner != current_thread()) {
+#ifdef HFS_CHECK_LOCK_ORDER
+                       if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == current_thread()) {
+                               panic("hfs_systemfile_lock: bad lock order (Attributes before Catalog)");
+                       }
+                       if (hfsmp->hfs_startup_cp && hfsmp->hfs_startup_cp->c_lockowner == current_thread()) {
+                               panic("hfs_systemfile_lock: bad lock order (Startup before Catalog)");
+                       }
+                       if (hfsmp-> hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == current_thread()) {
+                               panic("hfs_systemfile_lock: bad lock order (Extents before Catalog)");
+                       }
+#endif /* HFS_CHECK_LOCK_ORDER */
+
+                       (void) hfs_lock(hfsmp->hfs_catalog_cp, locktype, HFS_LOCK_DEFAULT);
+                       /*
+                        * When the catalog file has overflow extents then
+                        * also acquire the extents b-tree lock if its not
+                        * already requested.
+                        */
+                       if (((flags & SFL_EXTENTS) == 0) &&
+                           (hfsmp->hfs_catalog_vp != NULL) && 
+                           (overflow_extents(VTOF(hfsmp->hfs_catalog_vp)))) {
+                               flags |= SFL_EXTENTS;
+                       }
+               } else {
+                       flags &= ~SFL_CATALOG;
+               }
+       }
+
+       if (flags & SFL_ATTRIBUTE) {
+               if (hfsmp->hfs_attribute_cp
+                       && hfsmp->hfs_attribute_cp->c_lockowner != current_thread()) {
+#ifdef HFS_CHECK_LOCK_ORDER
+                       if (hfsmp->hfs_startup_cp && hfsmp->hfs_startup_cp->c_lockowner == current_thread()) {
+                               panic("hfs_systemfile_lock: bad lock order (Startup before Attributes)");
+                       }
+                       if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == current_thread()) {
+                               panic("hfs_systemfile_lock: bad lock order (Extents before Attributes)");
+                       }
+#endif /* HFS_CHECK_LOCK_ORDER */
+                       
+                       (void) hfs_lock(hfsmp->hfs_attribute_cp, locktype, HFS_LOCK_DEFAULT);
+                       /*
+                        * When the attribute file has overflow extents then
+                        * also acquire the extents b-tree lock if its not
+                        * already requested.
+                        */
+                       if (((flags & SFL_EXTENTS) == 0) &&
+                           (hfsmp->hfs_attribute_vp != NULL) &&
+                           (overflow_extents(VTOF(hfsmp->hfs_attribute_vp)))) {
+                               flags |= SFL_EXTENTS;
+                       }
+               } else {
+                       flags &= ~SFL_ATTRIBUTE;
+               }
+       }
+
+       if (flags & SFL_STARTUP) {
+               if (hfsmp->hfs_startup_cp
+                       && hfsmp->hfs_startup_cp->c_lockowner != current_thread()) {
+#ifdef HFS_CHECK_LOCK_ORDER
+                       if (hfsmp-> hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == current_thread()) {
+                               panic("hfs_systemfile_lock: bad lock order (Extents before Startup)");
+                       }
+#endif /* HFS_CHECK_LOCK_ORDER */
+
+                       (void) hfs_lock(hfsmp->hfs_startup_cp, locktype, HFS_LOCK_DEFAULT);
+                       /*
+                        * When the startup file has overflow extents then
+                        * also acquire the extents b-tree lock if its not
+                        * already requested.
+                        */
+                       if (((flags & SFL_EXTENTS) == 0) &&
+                           (hfsmp->hfs_startup_vp != NULL) &&
+                           (overflow_extents(VTOF(hfsmp->hfs_startup_vp)))) {
+                               flags |= SFL_EXTENTS;
+                       }
+               } else {
+                       flags &= ~SFL_STARTUP;
+               }
+       }
+
+       /* 
+        * To prevent locks being taken in the wrong order, the extent lock
+        * gets a bitmap lock as well.
+        */
+       if (flags & (SFL_BITMAP | SFL_EXTENTS)) {
+               if (hfsmp->hfs_allocation_cp) {
+                       (void) hfs_lock(hfsmp->hfs_allocation_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+                       /* 
+                        * The bitmap lock is also grabbed when only extent lock 
+                        * was requested. Set the bitmap lock bit in the lock
+                        * flags which callers will use during unlock.
+                        */
+                       flags |= SFL_BITMAP;
+               } else {
+                       flags &= ~SFL_BITMAP;
+               }
+       }
+
+       if (flags & SFL_EXTENTS) {
+               /*
+                * Since the extents btree lock is recursive we always
+                * need exclusive access.
+                */
+               if (hfsmp->hfs_extents_cp) {
+                       (void) hfs_lock(hfsmp->hfs_extents_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+                       if (vfs_isswapmount(hfsmp->hfs_mp)) {
+                               /*
+                                * because we may need this lock on the pageout path (if a swapfile allocation
+                                * spills into the extents overflow tree), we will grant the holder of this
+                                * lock the privilege of dipping into the reserve free pool in order to prevent
+                                * a deadlock from occurring if we need those pageouts to complete before we
+                                * will make any new pages available on the free list... the deadlock can occur
+                                * if this thread needs to allocate memory while this lock is held
+                                */
+                               if (set_vm_privilege(TRUE) == FALSE) {
+                                       /*
+                                        * indicate that we need to drop vm_privilege 
+                                        * when we unlock
+                                        */
+                                       flags |= SFL_VM_PRIV;
+                               }
+                       }
+               } else {
+                       flags &= ~SFL_EXTENTS;
+               }
+       }
+
+       return (flags);
+}
+
+/*
+ * unlock HFS system file(s).
+ */
+void
+hfs_systemfile_unlock(struct hfsmount *hfsmp, int flags)
+{
+       if (!flags)
+               return;
+
+       struct timeval tv;
+       u_int32_t lastfsync;
+       int numOfLockedBuffs;
+
+       if (hfsmp->jnl == NULL) {
+               microuptime(&tv);
+               lastfsync = tv.tv_sec;
+       }
+       if (flags & SFL_STARTUP && hfsmp->hfs_startup_cp) {
+               hfs_unlock(hfsmp->hfs_startup_cp);
+       }
+       if (flags & SFL_ATTRIBUTE && hfsmp->hfs_attribute_cp) {
+               if (hfsmp->jnl == NULL) {
+                       BTGetLastSync((FCB*)VTOF(hfsmp->hfs_attribute_vp), &lastfsync);
+                       numOfLockedBuffs = count_lock_queue();
+                       if ((numOfLockedBuffs > kMaxLockedMetaBuffers) ||
+                           ((numOfLockedBuffs > 1) && ((tv.tv_sec - lastfsync) >
+                             kMaxSecsForFsync))) {
+                               hfs_btsync(hfsmp->hfs_attribute_vp, HFS_SYNCTRANS);
+                       }
+               }
+               hfs_unlock(hfsmp->hfs_attribute_cp);
+       }
+       if (flags & SFL_CATALOG && hfsmp->hfs_catalog_cp) {
+               if (hfsmp->jnl == NULL) {
+                       BTGetLastSync((FCB*)VTOF(hfsmp->hfs_catalog_vp), &lastfsync);
+                       numOfLockedBuffs = count_lock_queue();
+                       if ((numOfLockedBuffs > kMaxLockedMetaBuffers) ||
+                           ((numOfLockedBuffs > 1) && ((tv.tv_sec - lastfsync) >
+                             kMaxSecsForFsync))) {
+                               hfs_btsync(hfsmp->hfs_catalog_vp, HFS_SYNCTRANS);
+                       }
+               }
+               hfs_unlock(hfsmp->hfs_catalog_cp);
+       }
+       if (flags & SFL_BITMAP && hfsmp->hfs_allocation_cp) {
+               hfs_unlock(hfsmp->hfs_allocation_cp);
+       }
+       if (flags & SFL_EXTENTS && hfsmp->hfs_extents_cp) {
+               if (hfsmp->jnl == NULL) {
+                       BTGetLastSync((FCB*)VTOF(hfsmp->hfs_extents_vp), &lastfsync);
+                       numOfLockedBuffs = count_lock_queue();
+                       if ((numOfLockedBuffs > kMaxLockedMetaBuffers) ||
+                           ((numOfLockedBuffs > 1) && ((tv.tv_sec - lastfsync) >
+                             kMaxSecsForFsync))) {
+                               hfs_btsync(hfsmp->hfs_extents_vp, HFS_SYNCTRANS);
+                       }
+               }
+               hfs_unlock(hfsmp->hfs_extents_cp);
+
+               if (flags & SFL_VM_PRIV) {
+                       /*
+                        * revoke the vm_privilege we granted this thread
+                        * now that we have unlocked the overflow extents
+                        */
+                       set_vm_privilege(FALSE);
+               }
+       }
+}
+
+
+/*
+ * RequireFileLock
+ *
+ * Check to see if a vnode is locked in the current context
+ * This is to be used for debugging purposes only!!
+ */
+#if DEBUG
+void RequireFileLock(FileReference vp, int shareable)
+{
+       int locked;
+
+       /* The extents btree and allocation bitmap are always exclusive. */
+       if (VTOC(vp)->c_fileid == kHFSExtentsFileID ||
+           VTOC(vp)->c_fileid == kHFSAllocationFileID) {
+               shareable = 0;
+       }
+       
+       locked = VTOC(vp)->c_lockowner == current_thread();
+       
+       if (!locked && !shareable) {
+               switch (VTOC(vp)->c_fileid) {
+               case kHFSExtentsFileID:
+                       panic("hfs: extents btree not locked! v: 0x%08X\n #\n", (u_int)vp);
+                       break;
+               case kHFSCatalogFileID:
+                       panic("hfs: catalog btree not locked! v: 0x%08X\n #\n", (u_int)vp);
+                       break;
+               case kHFSAllocationFileID:
+                       /* The allocation file can hide behind the jornal lock. */
+                       if (VTOHFS(vp)->jnl == NULL)
+                               panic("hfs: allocation file not locked! v: 0x%08X\n #\n", (u_int)vp);
+                       break;
+               case kHFSStartupFileID:
+                       panic("hfs: startup file not locked! v: 0x%08X\n #\n", (u_int)vp);
+               case kHFSAttributesFileID:
+                       panic("hfs: attributes btree not locked! v: 0x%08X\n #\n", (u_int)vp);
+                       break;
+               }
+       }
+}
+#endif // DEBUG
+
+
+/*
+ * There are three ways to qualify for ownership rights on an object:
+ *
+ * 1. (a) Your UID matches the cnode's UID.
+ *    (b) The object in question is owned by "unknown"
+ * 2. (a) Permissions on the filesystem are being ignored and
+ *        your UID matches the replacement UID.
+ *    (b) Permissions on the filesystem are being ignored and
+ *        the replacement UID is "unknown".
+ * 3. You are root.
+ *
+ */
+int
+hfs_owner_rights(struct hfsmount *hfsmp, uid_t cnode_uid, kauth_cred_t cred,
+               __unused struct proc *p, int invokesuperuserstatus)
+{
+       if ((kauth_cred_getuid(cred) == cnode_uid) ||                                    /* [1a] */
+           (cnode_uid == UNKNOWNUID) ||                                                                          /* [1b] */
+           ((((unsigned int)vfs_flags(HFSTOVFS(hfsmp))) & MNT_UNKNOWNPERMISSIONS) &&          /* [2] */
+             ((kauth_cred_getuid(cred) == hfsmp->hfs_uid) ||                            /* [2a] */
+               (hfsmp->hfs_uid == UNKNOWNUID))) ||                           /* [2b] */
+           (invokesuperuserstatus && (suser(cred, 0) == 0))) {    /* [3] */
+               return (0);
+       } else {        
+               return (EPERM);
+       }
+}
+
+
+u_int32_t BestBlockSizeFit(u_int32_t allocationBlockSize,
+                               u_int32_t blockSizeLimit,
+                               u_int32_t baseMultiple) {
+    /*
+       Compute the optimal (largest) block size (no larger than allocationBlockSize) that is less than the
+       specified limit but still an even multiple of the baseMultiple.
+     */
+    int baseBlockCount, blockCount;
+    u_int32_t trialBlockSize;
+
+    if (allocationBlockSize % baseMultiple != 0) {
+        /*
+           Whoops: the allocation blocks aren't even multiples of the specified base:
+           no amount of dividing them into even parts will be a multiple, either then!
+        */
+        return 512;            /* Hope for the best */
+    };
+
+    /* Try the obvious winner first, to prevent 12K allocation blocks, for instance,
+       from being handled as two 6K logical blocks instead of 3 4K logical blocks.
+       Even though the former (the result of the loop below) is the larger allocation
+       block size, the latter is more efficient: */
+    if (allocationBlockSize % PAGE_SIZE == 0) return PAGE_SIZE;
+
+    /* No clear winner exists: pick the largest even fraction <= MAXBSIZE: */
+    baseBlockCount = allocationBlockSize / baseMultiple;                               /* Now guaranteed to be an even multiple */
+
+    for (blockCount = baseBlockCount; blockCount > 0; --blockCount) {
+        trialBlockSize = blockCount * baseMultiple;
+        if (allocationBlockSize % trialBlockSize == 0) {                               /* An even multiple? */
+            if ((trialBlockSize <= blockSizeLimit) &&
+                (trialBlockSize % baseMultiple == 0)) {
+                return trialBlockSize;
+            };
+        };
+    };
+
+    /* Note: we should never get here, since blockCount = 1 should always work,
+       but this is nice and safe and makes the compiler happy, too ... */
+    return 512;
+}
+
+
+u_int32_t
+GetFileInfo(ExtendedVCB *vcb, __unused u_int32_t dirid, const char *name,
+                       struct cat_attr *fattr, struct cat_fork *forkinfo)
+{
+       struct hfsmount * hfsmp;
+       struct cat_desc jdesc;
+       int lockflags;
+       int error;
+       
+       if (vcb->vcbSigWord != kHFSPlusSigWord)
+               return (0);
+
+       hfsmp = VCBTOHFS(vcb);
+
+       memset(&jdesc, 0, sizeof(struct cat_desc));
+       jdesc.cd_parentcnid = kRootDirID;
+       jdesc.cd_nameptr = (const u_int8_t *)name;
+       jdesc.cd_namelen = strlen(name);
+
+       lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+       error = cat_lookup(hfsmp, &jdesc, 0, 0, NULL, fattr, forkinfo, NULL);
+       hfs_systemfile_unlock(hfsmp, lockflags);
+
+       if (error == 0) {
+               return (fattr->ca_fileid);
+       } else if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+               return (0);
+       }
+
+       return (0);     /* XXX what callers expect on an error */
+}
+
+
+/*
+ * On HFS Plus Volumes, there can be orphaned files or directories
+ * These are files or directories that were unlinked while busy. 
+ * If the volume was not cleanly unmounted then some of these may
+ * have persisted and need to be removed.
+ */
+void
+hfs_remove_orphans(struct hfsmount * hfsmp)
+{
+       struct BTreeIterator * iterator = NULL;
+       struct FSBufferDescriptor btdata;
+       struct HFSPlusCatalogFile filerec;
+       struct HFSPlusCatalogKey * keyp;
+       struct proc *p = current_proc();
+       FCB *fcb;
+       ExtendedVCB *vcb;
+       char filename[32];
+       char tempname[32];
+       size_t namelen;
+       cat_cookie_t cookie;
+       int catlock = 0;
+       int catreserve = 0;
+       bool started_tr = false;
+       int lockflags;
+       int result;
+       int orphaned_files = 0;
+       int orphaned_dirs = 0;
+
+       bzero(&cookie, sizeof(cookie));
+
+       if (hfsmp->hfs_flags & HFS_CLEANED_ORPHANS)
+               return;
+
+       vcb = HFSTOVCB(hfsmp);
+       fcb = VTOF(hfsmp->hfs_catalog_vp);
+
+       btdata.bufferAddress = &filerec;
+       btdata.itemSize = sizeof(filerec);
+       btdata.itemCount = 1;
+
+       iterator = hfs_mallocz(sizeof(*iterator));
+
+       /* Build a key to "temp" */
+       keyp = (HFSPlusCatalogKey*)&iterator->key;
+       keyp->parentID = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
+       keyp->nodeName.length = 4;  /* "temp" */
+       keyp->keyLength = kHFSPlusCatalogKeyMinimumLength + keyp->nodeName.length * 2;
+       keyp->nodeName.unicode[0] = 't';
+       keyp->nodeName.unicode[1] = 'e';
+       keyp->nodeName.unicode[2] = 'm';
+       keyp->nodeName.unicode[3] = 'p';
+
+       /*
+        * Position the iterator just before the first real temp file/dir.
+        */
+       lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+       (void) BTSearchRecord(fcb, iterator, NULL, NULL, iterator);
+       hfs_systemfile_unlock(hfsmp, lockflags);
+
+       /* Visit all the temp files/dirs in the HFS+ private directory. */
+       for (;;) {
+               lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+               result = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+               hfs_systemfile_unlock(hfsmp, lockflags);
+               if (result)
+                       break;
+               if (keyp->parentID != hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid)
+                       break;
+               
+               (void) utf8_encodestr(keyp->nodeName.unicode, keyp->nodeName.length * 2,
+                                     (u_int8_t *)filename, &namelen, sizeof(filename), 0, 0);
+               
+               (void) snprintf(tempname, sizeof(tempname), "%s%d",
+                               HFS_DELETE_PREFIX, filerec.fileID);
+               
+               /*
+                * Delete all files (and directories) named "tempxxx", 
+                * where xxx is the file's cnid in decimal.
+                *
+                */
+               if (bcmp(tempname, filename, namelen + 1) != 0)
+                       continue;
+
+               struct filefork dfork;
+               struct filefork rfork;
+               struct cnode cnode;
+               int mode = 0;
+
+               bzero(&dfork, sizeof(dfork));
+               bzero(&rfork, sizeof(rfork));
+               bzero(&cnode, sizeof(cnode));
+                       
+               if (hfs_start_transaction(hfsmp) != 0) {
+                       printf("hfs_remove_orphans: failed to start transaction\n");
+                       goto exit;
+               }
+               started_tr = true;
+               
+               /*
+                * Reserve some space in the Catalog file.
+                */
+               if (cat_preflight(hfsmp, CAT_DELETE, &cookie, p) != 0) {
+                       printf("hfs_remove_orphans: cat_preflight failed\n");
+                       goto exit;
+               }
+               catreserve = 1;
+
+               lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+               catlock = 1;
+
+               /* Build a fake cnode */
+               cat_convertattr(hfsmp, (CatalogRecord *)&filerec, &cnode.c_attr,
+                                               &dfork.ff_data, &rfork.ff_data);
+               cnode.c_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
+               cnode.c_desc.cd_nameptr = (const u_int8_t *)filename;
+               cnode.c_desc.cd_namelen = namelen;
+               cnode.c_desc.cd_cnid = cnode.c_attr.ca_fileid;
+               cnode.c_blocks = dfork.ff_blocks + rfork.ff_blocks;
+
+               /* Position iterator at previous entry */
+               if (BTIterateRecord(fcb, kBTreePrevRecord, iterator,
+                                                       NULL, NULL) != 0) {
+                       break;
+               }
+
+               /* Truncate the file to zero (both forks) */
+               if (dfork.ff_blocks > 0) {
+                       u_int64_t fsize;
+                               
+                       dfork.ff_cp = &cnode;
+                       cnode.c_datafork = &dfork;
+                       cnode.c_rsrcfork = NULL;
+                       fsize = (u_int64_t)dfork.ff_blocks * (u_int64_t)HFSTOVCB(hfsmp)->blockSize;
+                       while (fsize > 0) {
+                               if (fsize > HFS_BIGFILE_SIZE) {
+                                       fsize -= HFS_BIGFILE_SIZE;
+                               } else {
+                                       fsize = 0;
+                               }
+
+                               if (TruncateFileC(vcb, (FCB*)&dfork, fsize, 1, 0, 
+                                                                 cnode.c_attr.ca_fileid, false) != 0) {
+                                       printf("hfs: error truncating data fork!\n");
+                                       break;
+                               }
+
+                               //
+                               // if we're iteratively truncating this file down,
+                               // then end the transaction and start a new one so
+                               // that no one transaction gets too big.
+                               //
+                               if (fsize > 0) {
+                                       /* Drop system file locks before starting 
+                                        * another transaction to preserve lock order.
+                                        */
+                                       hfs_systemfile_unlock(hfsmp, lockflags);
+                                       catlock = 0;
+                                       hfs_end_transaction(hfsmp);
+
+                                       if (hfs_start_transaction(hfsmp) != 0) {
+                                               started_tr = false;
+                                               goto exit;
+                                       }
+                                       lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+                                       catlock = 1;
+                               }
+                       }
+               }
+
+               if (rfork.ff_blocks > 0) {
+                       rfork.ff_cp = &cnode;
+                       cnode.c_datafork = NULL;
+                       cnode.c_rsrcfork = &rfork;
+                       if (TruncateFileC(vcb, (FCB*)&rfork, 0, 1, 1, cnode.c_attr.ca_fileid, false) != 0) {
+                               printf("hfs: error truncating rsrc fork!\n");
+                               break;
+                       }
+               }
+
+               // Deal with extended attributes
+               if (ISSET(cnode.c_attr.ca_recflags, kHFSHasAttributesMask)) {
+                       // hfs_removeallattr uses its own transactions
+                       hfs_systemfile_unlock(hfsmp, lockflags);
+                       catlock = false;
+                       hfs_end_transaction(hfsmp);
+
+                       hfs_removeallattr(hfsmp, cnode.c_attr.ca_fileid, &started_tr);
+
+                       if (!started_tr) {
+                               if (hfs_start_transaction(hfsmp) != 0) {
+                                       printf("hfs_remove_orphans: failed to start transaction\n");
+                                       goto exit;
+                               }
+                               started_tr = true;
+                       }
+
+                       lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+                       catlock = 1;
+               }
+
+               /* Remove the file or folder record from the Catalog */ 
+               if (cat_delete(hfsmp, &cnode.c_desc, &cnode.c_attr) != 0) {
+                       printf("hfs_remove_orphans: error deleting cat rec for id %d!\n", cnode.c_desc.cd_cnid);
+                       hfs_systemfile_unlock(hfsmp, lockflags);
+                       catlock = 0;
+                       hfs_volupdate(hfsmp, VOL_UPDATE, 0);
+                       break;
+               }
+
+               mode = cnode.c_attr.ca_mode & S_IFMT;
+
+               if (mode == S_IFDIR) {
+                       orphaned_dirs++;
+               }
+               else {
+                       orphaned_files++;
+               }
+
+               /* Update parent and volume counts */   
+               hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
+               if (mode == S_IFDIR) {
+                       DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
+               }
+
+               (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
+                                                &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
+
+               /* Drop locks and end the transaction */
+               hfs_systemfile_unlock(hfsmp, lockflags);
+               cat_postflight(hfsmp, &cookie, p);
+               catlock = catreserve = 0;
+
+               /* 
+                  Now that Catalog is unlocked, update the volume info, making
+                  sure to differentiate between files and directories
+               */
+               if (mode == S_IFDIR) {
+                       hfs_volupdate(hfsmp, VOL_RMDIR, 0);
+               }
+               else{
+                       hfs_volupdate(hfsmp, VOL_RMFILE, 0);
+               }
+
+               hfs_end_transaction(hfsmp);
+               started_tr = false;
+       } /* end for */
+
+exit:
+
+       if (orphaned_files > 0 || orphaned_dirs > 0)
+               printf("hfs: Removed %d orphaned / unlinked files and %d directories \n", orphaned_files, orphaned_dirs);
+       if (catlock) {
+               hfs_systemfile_unlock(hfsmp, lockflags);
+       }
+       if (catreserve) {
+               cat_postflight(hfsmp, &cookie, p);
+       }
+       if (started_tr) {
+               hfs_end_transaction(hfsmp);
+       }
+
+       hfs_free(iterator, sizeof(*iterator));
+       hfsmp->hfs_flags |= HFS_CLEANED_ORPHANS;
+}
+
+
+/*
+ * This will return the correct logical block size for a given vnode.
+ * For most files, it is the allocation block size, for meta data like
+ * BTrees, this is kept as part of the BTree private nodeSize
+ */
+u_int32_t
+GetLogicalBlockSize(struct vnode *vp)
+{
+u_int32_t logBlockSize;
+       
+       hfs_assert(vp != NULL);
+
+       /* start with default */
+       logBlockSize = VTOHFS(vp)->hfs_logBlockSize;
+
+       if (vnode_issystem(vp)) {
+               if (VTOF(vp)->fcbBTCBPtr != NULL) {
+                       BTreeInfoRec                    bTreeInfo;
+       
+                       /*
+                        * We do not lock the BTrees, because if we are getting block..then the tree
+                        * should be locked in the first place.
+                        * We just want the nodeSize wich will NEVER change..so even if the world
+                        * is changing..the nodeSize should remain the same. Which argues why lock
+                        * it in the first place??
+                        */
+                       
+                       (void) BTGetInformation (VTOF(vp), kBTreeInfoVersion, &bTreeInfo);
+                                       
+                       logBlockSize = bTreeInfo.nodeSize;
+
+               } else if (VTOC(vp)->c_fileid == kHFSAllocationFileID) {
+                               logBlockSize = VTOVCB(vp)->vcbVBMIOSize;
+               }
+       }
+
+       hfs_assert(logBlockSize > 0);
+       
+       return logBlockSize;    
+}
+
+#if HFS_SPARSE_DEV
+static bool hfs_get_backing_free_blks(hfsmount_t *hfsmp, uint64_t *pfree_blks)
+{
+       struct vfsstatfs *vfsp;  /* 272 bytes */
+       uint64_t vfreeblks;
+       struct timeval now;
+
+       hfs_lock_mount(hfsmp);
+
+       vnode_t backing_vp = hfsmp->hfs_backingvp;
+       if (!backing_vp) {
+               hfs_unlock_mount(hfsmp);
+               return false;
+       }
+
+       // usecount is not enough; we need iocount
+       if (vnode_get(backing_vp)) {
+               hfs_unlock_mount(hfsmp);
+               *pfree_blks = 0;
+               return true;
+       }
+
+       uint32_t loanedblks = hfsmp->loanedBlocks + hfsmp->lockedBlocks;
+       uint32_t bandblks       = hfsmp->hfs_sparsebandblks;
+       uint64_t maxblks        = hfsmp->hfs_backingfs_maxblocks;
+
+       hfs_unlock_mount(hfsmp);
+
+       mount_t backingfs_mp = vnode_mount(backing_vp);
+
+       microtime(&now);
+       if ((now.tv_sec - hfsmp->hfs_last_backingstatfs) >= 1) {
+               vfs_update_vfsstat(backingfs_mp, vfs_context_kernel(), VFS_KERNEL_EVENT);
+               hfsmp->hfs_last_backingstatfs = now.tv_sec;
+       }
+
+       if (!(vfsp = vfs_statfs(backingfs_mp))) {
+               vnode_put(backing_vp);
+               return false;
+       }
+
+       vfreeblks = vfsp->f_bavail;
+       /* Normalize block count if needed. */
+       if (vfsp->f_bsize != hfsmp->blockSize)
+               vfreeblks = vfreeblks * vfsp->f_bsize / hfsmp->blockSize;
+       if (vfreeblks > bandblks)
+               vfreeblks -= bandblks;
+       else
+               vfreeblks = 0;
+
+       /* 
+        * Take into account any delayed allocations.  It is not
+        * certain what the original reason for the "2 *" is.  Most
+        * likely it is to allow for additional requirements in the
+        * host file system and metadata required by disk images.  The
+        * number of loaned blocks is likely to be small and we will
+        * stop using them as we get close to the limit.
+        */
+       loanedblks = 2 * loanedblks;
+       if (vfreeblks > loanedblks)
+               vfreeblks -= loanedblks;
+       else
+               vfreeblks = 0;
+
+       if (maxblks)
+               vfreeblks = MIN(vfreeblks, maxblks);
+
+       vnode_put(backing_vp);
+
+       *pfree_blks = vfreeblks;
+
+       return true;
+}
+#endif
+
+u_int32_t
+hfs_free_cnids(struct hfsmount * hfsmp)
+{
+       return HFS_MAX_FILES - hfsmp->hfs_filecount - hfsmp->hfs_dircount;
+}
+
+u_int32_t
+hfs_freeblks(struct hfsmount * hfsmp, int wantreserve)
+{
+       u_int32_t freeblks;
+       u_int32_t rsrvblks;
+       u_int32_t loanblks;
+
+       /*
+        * We don't bother taking the mount lock
+        * to look at these values since the values
+        * themselves are each updated atomically
+        * on aligned addresses.
+        */
+       freeblks = hfsmp->freeBlocks;
+       rsrvblks = hfsmp->reserveBlocks;
+       loanblks = hfsmp->loanedBlocks + hfsmp->lockedBlocks;
+       if (wantreserve) {
+               if (freeblks > rsrvblks)
+                       freeblks -= rsrvblks;
+               else
+                       freeblks = 0;
+       }
+       if (freeblks > loanblks)
+               freeblks -= loanblks;
+       else
+               freeblks = 0;
+
+#if HFS_SPARSE_DEV
+       /* 
+        * When the underlying device is sparse, check the
+        * available space on the backing store volume.
+        */
+       uint64_t vfreeblks;
+       if (hfs_get_backing_free_blks(hfsmp, &vfreeblks))
+               freeblks = MIN(freeblks, vfreeblks);
+#endif /* HFS_SPARSE_DEV */
+
+       return (freeblks);
+}
+
+/*
+ * Map HFS Common errors (negative) to BSD error codes (positive).
+ * Positive errors (ie BSD errors) are passed through unchanged.
+ */
+short MacToVFSError(OSErr err)
+{
+       if (err >= 0)
+               return err;
+
+       /* BSD/VFS internal errnos */
+       switch (err) {
+               case HFS_ERESERVEDNAME: /* -8 */
+                       return err;
+       }
+
+       switch (err) {
+       case dskFulErr:                 /*    -34 */
+       case btNoSpaceAvail:            /* -32733 */
+               return ENOSPC;
+       case fxOvFlErr:                 /* -32750 */
+               return EOVERFLOW;
+       
+       case btBadNode:                 /* -32731 */
+               return EIO;
+       
+       case memFullErr:                /*  -108 */
+               return ENOMEM;          /*   +12 */
+       
+       case cmExists:                  /* -32718 */
+       case btExists:                  /* -32734 */
+               return EEXIST;          /*    +17 */
+       
+       case cmNotFound:                /* -32719 */
+       case btNotFound:                /* -32735 */    
+               return ENOENT;          /*     28 */
+       
+       case cmNotEmpty:                /* -32717 */
+               return ENOTEMPTY;       /*     66 */
+       
+       case cmFThdDirErr:              /* -32714 */
+               return EISDIR;          /*     21 */
+       
+       case fxRangeErr:                /* -32751 */
+               return ERANGE;
+       
+       case bdNamErr:                  /*   -37 */
+               return ENAMETOOLONG;    /*    63 */
+       
+       case paramErr:                  /*   -50 */
+       case fileBoundsErr:             /* -1309 */
+               return EINVAL;          /*   +22 */
+       
+       case fsBTBadNodeSize:
+               return ENXIO;
+
+       default:
+               return EIO;             /*   +5 */
+       }
+}
+
+
+/*
+ * Find the current thread's directory hint for a given index.
+ *
+ * Requires an exclusive lock on directory cnode.
+ *
+ * Use detach if the cnode lock must be dropped while the hint is still active.
+ */
+directoryhint_t *
+hfs_getdirhint(struct cnode *dcp, int index, int detach)
+{
+       struct timeval tv;
+       directoryhint_t *hint;
+       boolean_t need_remove, need_init;
+       const u_int8_t * name;
+
+       microuptime(&tv);
+
+       /*
+        *  Look for an existing hint first.  If not found, create a new one (when
+        *  the list is not full) or recycle the oldest hint.  Since new hints are
+        *  always added to the head of the list, the last hint is always the
+        *  oldest.
+        */
+       TAILQ_FOREACH(hint, &dcp->c_hintlist, dh_link) {
+               if (hint->dh_index == index)
+                       break;
+       }
+       if (hint != NULL) { /* found an existing hint */
+               need_init = false;
+               need_remove = true;
+       } else { /* cannot find an existing hint */
+               need_init = true;
+               if (dcp->c_dirhintcnt < HFS_MAXDIRHINTS) { /* we don't need recycling */
+                       /* Create a default directory hint */
+                       hint = hfs_zalloc(HFS_DIRHINT_ZONE);
+                       ++dcp->c_dirhintcnt;
+                       need_remove = false;
+               } else {                                /* recycle the last (i.e., the oldest) hint */
+                       hint = TAILQ_LAST(&dcp->c_hintlist, hfs_hinthead);
+                       if ((hint->dh_desc.cd_flags & CD_HASBUF) &&
+                           (name = hint->dh_desc.cd_nameptr)) {
+                               hint->dh_desc.cd_nameptr = NULL;
+                               hint->dh_desc.cd_namelen = 0;
+                               hint->dh_desc.cd_flags &= ~CD_HASBUF;                           
+                               vfs_removename((const char *)name);
+                       }
+                       need_remove = true;
+               }
+       }
+
+       if (need_remove)
+               TAILQ_REMOVE(&dcp->c_hintlist, hint, dh_link);
+
+       if (detach)
+               --dcp->c_dirhintcnt;
+       else
+               TAILQ_INSERT_HEAD(&dcp->c_hintlist, hint, dh_link);
+
+       if (need_init) {
+               hint->dh_index = index;
+               hint->dh_desc.cd_flags = 0;
+               hint->dh_desc.cd_encoding = 0;
+               hint->dh_desc.cd_namelen = 0;
+               hint->dh_desc.cd_nameptr = NULL;
+               hint->dh_desc.cd_parentcnid = dcp->c_fileid;
+               hint->dh_desc.cd_hint = dcp->c_childhint;
+               hint->dh_desc.cd_cnid = 0;
+       }
+       hint->dh_time = tv.tv_sec;
+       return (hint);
+}
+
+/*
+ * Release a single directory hint.
+ *
+ * Requires an exclusive lock on directory cnode.
+ */
+void
+hfs_reldirhint(struct cnode *dcp, directoryhint_t * relhint)
+{
+       const u_int8_t * name;
+       directoryhint_t *hint;
+
+       /* Check if item is on list (could be detached) */
+       TAILQ_FOREACH(hint, &dcp->c_hintlist, dh_link) {
+               if (hint == relhint) {
+                       TAILQ_REMOVE(&dcp->c_hintlist, relhint, dh_link);
+                       --dcp->c_dirhintcnt;
+                       break;
+               }
+       }
+       name = relhint->dh_desc.cd_nameptr;
+       if ((relhint->dh_desc.cd_flags & CD_HASBUF) && (name != NULL)) {
+               relhint->dh_desc.cd_nameptr = NULL;
+               relhint->dh_desc.cd_namelen = 0;
+               relhint->dh_desc.cd_flags &= ~CD_HASBUF;
+               vfs_removename((const char *)name);
+       }
+       hfs_zfree(relhint, HFS_DIRHINT_ZONE);
+}
+
+/*
+ * Release directory hints for given directory
+ *
+ * Requires an exclusive lock on directory cnode.
+ */
+void
+hfs_reldirhints(struct cnode *dcp, int stale_hints_only)
+{
+       struct timeval tv;
+       directoryhint_t *hint, *prev;
+       const u_int8_t * name;
+
+       if (stale_hints_only)
+               microuptime(&tv);
+
+       /* searching from the oldest to the newest, so we can stop early when releasing stale hints only */
+       for (hint = TAILQ_LAST(&dcp->c_hintlist, hfs_hinthead); hint != NULL; hint = prev) {
+               if (stale_hints_only && (tv.tv_sec - hint->dh_time) < HFS_DIRHINT_TTL)
+                       break;  /* stop here if this entry is too new */
+               name = hint->dh_desc.cd_nameptr;
+               if ((hint->dh_desc.cd_flags & CD_HASBUF) && (name != NULL)) {
+                       hint->dh_desc.cd_nameptr = NULL;
+                       hint->dh_desc.cd_namelen = 0;
+                       hint->dh_desc.cd_flags &= ~CD_HASBUF;
+                       vfs_removename((const char *)name);
+               }
+               prev = TAILQ_PREV(hint, hfs_hinthead, dh_link); /* must save this pointer before calling FREE_ZONE on this node */
+               TAILQ_REMOVE(&dcp->c_hintlist, hint, dh_link);
+               hfs_zfree(hint, HFS_DIRHINT_ZONE);
+               --dcp->c_dirhintcnt;
+       }
+}
+
+/*
+ * Insert a detached directory hint back into the list of dirhints.
+ *
+ * Requires an exclusive lock on directory cnode.
+ */
+void
+hfs_insertdirhint(struct cnode *dcp, directoryhint_t * hint)
+{
+       directoryhint_t *test;
+
+       TAILQ_FOREACH(test, &dcp->c_hintlist, dh_link) {
+               if (test == hint)
+                       panic("hfs_insertdirhint: hint %p already on list!", hint);
+       }
+
+       TAILQ_INSERT_HEAD(&dcp->c_hintlist, hint, dh_link);
+       ++dcp->c_dirhintcnt;
+}
+
+/*
+ * Perform a case-insensitive compare of two UTF-8 filenames.
+ *
+ * Returns 0 if the strings match.
+ */
+int
+hfs_namecmp(const u_int8_t *str1, size_t len1, const u_int8_t *str2, size_t len2)
+{
+       u_int16_t *ustr1, *ustr2;
+       size_t ulen1, ulen2;
+       size_t maxbytes;
+       int cmp = -1;
+
+       if (len1 != len2)
+               return (cmp);
+
+       maxbytes = kHFSPlusMaxFileNameChars << 1;
+       ustr1 = hfs_malloc(maxbytes << 1);
+       ustr2 = ustr1 + (maxbytes >> 1);
+
+       if (utf8_decodestr(str1, len1, ustr1, &ulen1, maxbytes, ':', 0) != 0)
+               goto out;
+       if (utf8_decodestr(str2, len2, ustr2, &ulen2, maxbytes, ':', 0) != 0)
+               goto out;
+       
+       cmp = FastUnicodeCompare(ustr1, ulen1>>1, ustr2, ulen2>>1);
+out:
+       hfs_free(ustr1, maxbytes << 1);
+       return (cmp);
+}
+
+typedef struct jopen_cb_info {
+       mount_t mp;
+       off_t   jsize;
+       char   *desired_uuid;
+       struct  vnode *jvp;
+       size_t  blksize;
+       int     need_clean;
+       int     need_init;
+} jopen_cb_info;
+
+static int
+journal_open_cb(const char *bsd_dev_name, const char *uuid_str, void *arg)
+{
+       jopen_cb_info *ji = (jopen_cb_info *)arg;
+       char bsd_name[256];
+       int error;
+
+       strlcpy(&bsd_name[0], "/dev/", sizeof(bsd_name));
+       strlcpy(&bsd_name[5], bsd_dev_name, sizeof(bsd_name)-5);
+
+       if ((error = vnode_lookup(bsd_name, VNODE_LOOKUP_NOFOLLOW, &ji->jvp,
+                                                         vfs_context_kernel()))) {
+               printf("hfs: journal open cb: error %d looking up device %s (dev uuid %s)\n", error, bsd_name, uuid_str);
+               return 1;   // keep iterating
+       }
+
+       struct vnop_open_args oargs = {
+               .a_vp           = ji->jvp,
+               .a_mode         = FREAD | FWRITE,
+               .a_context      = vfs_context_kernel(),
+       };
+
+       if (spec_open(&oargs)) {
+               vnode_put(ji->jvp);
+               ji->jvp = NULL;
+               return 1;
+       }
+
+       // if the journal is dirty and we didn't specify a desired
+       // journal device uuid, then do not use the journal.  but
+       // if the journal is just invalid (e.g. it hasn't been
+       // initialized) then just set the need_init flag.
+       if (ji->need_clean && ji->desired_uuid && ji->desired_uuid[0] == '\0') {
+               error = journal_is_clean(ji->jvp, 0, ji->jsize,
+                                                                (void *)1, ji->blksize);
+               if (error == EBUSY) {
+                       struct vnop_close_args cargs = {
+                               .a_vp           = ji->jvp,
+                               .a_fflag        = FREAD | FWRITE,
+                               .a_context      = vfs_context_kernel()
+                       };
+                       spec_close(&cargs);
+                       vnode_put(ji->jvp);
+                       ji->jvp = NULL;
+                       return 1;    // keep iterating
+               } else if (error == EINVAL) {
+                       ji->need_init = 1;
+               }
+       }
+
+       if (ji->desired_uuid && ji->desired_uuid[0] == '\0') {
+               strlcpy(ji->desired_uuid, uuid_str, 128);
+       }
+       vnode_setmountedon(ji->jvp);
+       return 0;   // stop iterating
+}
+
+static vnode_t
+open_journal_dev(mount_t mp,
+                                const char *vol_device,
+                                int need_clean,
+                                char *uuid_str,
+                                char *machine_serial_num,
+                                off_t jsize,
+                                size_t blksize,
+                                int *need_init)
+{
+    int retry_counter=0;
+    jopen_cb_info ji;
+
+       ji.mp                   = mp;
+    ji.jsize        = jsize;
+    ji.desired_uuid = uuid_str;
+    ji.jvp          = NULL;
+    ji.blksize      = blksize;
+    ji.need_clean   = need_clean;
+    ji.need_init    = 0;
+
+//    if (uuid_str[0] == '\0') {
+//         printf("hfs: open journal dev: %s: locating any available non-dirty external journal partition\n", vol_device);
+//    } else {
+//         printf("hfs: open journal dev: %s: trying to find the external journal partition w/uuid %s\n", vol_device, uuid_str);
+//    }
+    while (ji.jvp == NULL && retry_counter++ < 4) {
+           if (retry_counter > 1) {
+                   if (uuid_str[0]) {
+                           printf("hfs: open_journal_dev: uuid %s not found.  waiting 10sec.\n", uuid_str);
+                   } else {
+                           printf("hfs: open_journal_dev: no available external journal partition found.  waiting 10sec.\n");
+                   }
+                   delay_for_interval(10* 1000000, NSEC_PER_USEC);    // wait for ten seconds and then try again
+           }
+
+           hfs_iterate_media_with_content(EXTJNL_CONTENT_TYPE_UUID,
+                                                                          journal_open_cb, &ji);
+    }
+
+    if (ji.jvp == NULL) {
+           printf("hfs: volume: %s: did not find jnl device uuid: %s from machine serial number: %s\n",
+                  vol_device, uuid_str, machine_serial_num);
+    }
+
+    *need_init = ji.need_init;
+
+    return ji.jvp;
+}
+
+void hfs_close_jvp(hfsmount_t *hfsmp)
+{
+       if (!hfsmp || !hfsmp->jvp || hfsmp->jvp == hfsmp->hfs_devvp)
+               return;
+
+       vnode_clearmountedon(hfsmp->jvp);
+       struct vnop_close_args cargs = {
+               .a_vp           = hfsmp->jvp,
+               .a_fflag        = FREAD | FWRITE,
+               .a_context      = vfs_context_kernel()
+       };
+       spec_close(&cargs);
+       vnode_put(hfsmp->jvp);
+       hfsmp->jvp = NULL;
+}
+
+int
+hfs_early_journal_init(struct hfsmount *hfsmp, HFSPlusVolumeHeader *vhp,
+                                          void *_args, off_t embeddedOffset, daddr64_t mdb_offset,
+                                          HFSMasterDirectoryBlock *mdbp, kauth_cred_t cred)
+{
+       JournalInfoBlock *jibp;
+       struct buf       *jinfo_bp, *bp;
+       int               sectors_per_fsblock, arg_flags=0, arg_tbufsz=0;
+       int               retval, write_jibp = 0;
+       uint32_t                  blksize = hfsmp->hfs_logical_block_size;
+       struct vnode     *devvp;
+       struct hfs_mount_args *args = _args;
+       u_int32_t         jib_flags;
+       u_int64_t         jib_offset;
+       u_int64_t         jib_size;
+       const char *dev_name;
+       
+       devvp = hfsmp->hfs_devvp;
+       dev_name = vnode_getname_printable(devvp);
+
+       if (args != NULL && (args->flags & HFSFSMNT_EXTENDED_ARGS)) {
+               arg_flags  = args->journal_flags;
+               arg_tbufsz = args->journal_tbuffer_size;
+       }
+
+       sectors_per_fsblock = SWAP_BE32(vhp->blockSize) / blksize;
+                               
+       jinfo_bp = NULL;
+       retval = (int)buf_meta_bread(devvp,
+                                               (daddr64_t)((embeddedOffset/blksize) + 
+                                               ((u_int64_t)SWAP_BE32(vhp->journalInfoBlock)*sectors_per_fsblock)),
+                                               hfsmp->hfs_physical_block_size, cred, &jinfo_bp);
+       if (retval) {
+               if (jinfo_bp) {
+                       buf_brelse(jinfo_bp);
+               }
+               goto cleanup_dev_name;
+       }
+       
+       jibp = (JournalInfoBlock *)buf_dataptr(jinfo_bp);
+       jib_flags  = SWAP_BE32(jibp->flags);
+       jib_size   = SWAP_BE64(jibp->size);
+
+       if (jib_flags & kJIJournalInFSMask) {
+               hfsmp->jvp = hfsmp->hfs_devvp;
+               jib_offset = SWAP_BE64(jibp->offset);
+       } else {
+           int need_init=0;
+       
+           // if the volume was unmounted cleanly then we'll pick any
+           // available external journal partition
+           //
+           if (SWAP_BE32(vhp->attributes) & kHFSVolumeUnmountedMask) {
+                   *((char *)&jibp->ext_jnl_uuid[0]) = '\0';
+           }
+
+           hfsmp->jvp = open_journal_dev(hfsmp->hfs_mp,
+                                                                         dev_name,
+                                                                         !(jib_flags & kJIJournalNeedInitMask),
+                                                                         (char *)&jibp->ext_jnl_uuid[0],
+                                                                         (char *)&jibp->machine_serial_num[0],
+                                                                         jib_size,
+                                                                         hfsmp->hfs_logical_block_size,
+                                                                         &need_init);
+           if (hfsmp->jvp == NULL) {
+                   buf_brelse(jinfo_bp);
+                   retval = EROFS;
+                   goto cleanup_dev_name;
+           } else {
+                   if (hfs_get_platform_serial_number(&jibp->machine_serial_num[0], sizeof(jibp->machine_serial_num)) != KERN_SUCCESS) {
+                           strlcpy(&jibp->machine_serial_num[0], "unknown-machine-uuid", sizeof(jibp->machine_serial_num));
+                   }
+           }
+
+           jib_offset = 0;
+           write_jibp = 1;
+           if (need_init) {
+                   jib_flags |= kJIJournalNeedInitMask;
+           }
+       }
+
+       // save this off for the hack-y check in hfs_remove()
+       hfsmp->jnl_start = jib_offset / SWAP_BE32(vhp->blockSize);
+       hfsmp->jnl_size  = jib_size;
+
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) && (vfs_flags(hfsmp->hfs_mp) & MNT_ROOTFS) == 0) {
+           // if the file system is read-only, check if the journal is empty.
+           // if it is, then we can allow the mount.  otherwise we have to
+           // return failure.
+           retval = journal_is_clean(hfsmp->jvp,
+                                     jib_offset + embeddedOffset,
+                                     jib_size,
+                                     devvp,
+                                     hfsmp->hfs_logical_block_size);
+
+           hfsmp->jnl = NULL;
+
+           buf_brelse(jinfo_bp);
+
+           if (retval) {
+                   const char *name = vnode_getname_printable(devvp);
+                   printf("hfs: early journal init: volume on %s is read-only and journal is dirty.  Can not mount volume.\n",
+                   name);
+                   vnode_putname_printable(name);
+           }
+
+           goto cleanup_dev_name;
+       }
+
+       if (jib_flags & kJIJournalNeedInitMask) {
+               printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
+                          jib_offset + embeddedOffset, jib_size);
+               hfsmp->jnl = journal_create(hfsmp->jvp,
+                                                                       jib_offset + embeddedOffset,
+                                                                       jib_size,
+                                                                       devvp,
+                                                                       blksize,
+                                                                       arg_flags,
+                                                                       arg_tbufsz,
+                                                                       hfs_sync_metadata, hfsmp->hfs_mp,
+                                                                       hfsmp->hfs_mp);
+               if (hfsmp->jnl)
+                       journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp);
+
+               // no need to start a transaction here... if this were to fail
+               // we'd just re-init it on the next mount.
+               jib_flags &= ~kJIJournalNeedInitMask;
+               jibp->flags  = SWAP_BE32(jib_flags);
+               buf_bwrite(jinfo_bp);
+               jinfo_bp = NULL;
+               jibp     = NULL;
+       } else { 
+               //printf("hfs: Opening the journal (joffset 0x%llx sz 0x%llx vhp_blksize %d)...\n",
+               //         jib_offset + embeddedOffset,
+               //         jib_size, SWAP_BE32(vhp->blockSize));
+                               
+               hfsmp->jnl = journal_open(hfsmp->jvp,
+                                                                 jib_offset + embeddedOffset,
+                                                                 jib_size,
+                                                                 devvp,
+                                                                 blksize,
+                                                                 arg_flags,
+                                                                 arg_tbufsz,
+                                                                 hfs_sync_metadata, hfsmp->hfs_mp,
+                                                                 hfsmp->hfs_mp);
+               if (hfsmp->jnl)
+                       journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp);
+
+               if (write_jibp) {
+                       buf_bwrite(jinfo_bp);
+               } else {
+                       buf_brelse(jinfo_bp);
+               }
+               jinfo_bp = NULL;
+               jibp     = NULL;
+
+               if (hfsmp->jnl && mdbp) {
+                       // reload the mdb because it could have changed
+                       // if the journal had to be replayed.
+                       if (mdb_offset == 0) {
+                               mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
+                       }
+                       bp = NULL;
+                       retval = (int)buf_meta_bread(devvp, 
+                                       HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+                                       hfsmp->hfs_physical_block_size, cred, &bp);
+                       if (retval) {
+                               if (bp) {
+                                       buf_brelse(bp);
+                               }
+                               printf("hfs: failed to reload the mdb after opening the journal (retval %d)!\n",
+                                          retval);
+                               goto cleanup_dev_name;
+                       }
+                       bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size), mdbp, 512);
+                       buf_brelse(bp);
+                       bp = NULL;
+               }
+       }
+
+       // if we expected the journal to be there and we couldn't
+       // create it or open it then we have to bail out.
+       if (hfsmp->jnl == NULL) {
+               printf("hfs: early jnl init: failed to open/create the journal (retval %d).\n", retval);
+               retval = EINVAL;
+               goto cleanup_dev_name;
+       }
+
+       retval = 0;
+       
+cleanup_dev_name:
+       vnode_putname_printable(dev_name);
+       return retval;
+}
+
+
+//
+// This function will go and re-locate the .journal_info_block and
+// the .journal files in case they moved (which can happen if you
+// run Norton SpeedDisk).  If we fail to find either file we just
+// disable journaling for this volume and return.  We turn off the
+// journaling bit in the vcb and assume it will get written to disk
+// later (if it doesn't on the next mount we'd do the same thing
+// again which is harmless).  If we disable journaling we don't
+// return an error so that the volume is still mountable.
+//
+// If the info we find for the .journal_info_block and .journal files
+// isn't what we had stored, we re-set our cached info and proceed
+// with opening the journal normally.
+//
+static int
+hfs_late_journal_init(struct hfsmount *hfsmp, HFSPlusVolumeHeader *vhp, void *_args)
+{
+       JournalInfoBlock *jibp;
+       struct buf       *jinfo_bp;
+       int               sectors_per_fsblock, arg_flags=0, arg_tbufsz=0;
+       int               retval, write_jibp = 0, recreate_journal = 0;
+       struct vnode     *devvp;
+       struct cat_attr   jib_attr, jattr;
+       struct cat_fork   jib_fork, jfork;
+       ExtendedVCB      *vcb;
+       u_int32_t            fid;
+       struct hfs_mount_args *args = _args;
+       u_int32_t         jib_flags;
+       u_int64_t         jib_offset;
+       u_int64_t         jib_size;
+       
+       devvp = hfsmp->hfs_devvp;
+       vcb = HFSTOVCB(hfsmp);
+       
+       if (args != NULL && (args->flags & HFSFSMNT_EXTENDED_ARGS)) {
+               if (args->journal_disable) {
+                       return 0;
+               }
+
+               arg_flags  = args->journal_flags;
+               arg_tbufsz = args->journal_tbuffer_size;
+       }
+
+       fid = GetFileInfo(vcb, kRootDirID, ".journal_info_block", &jib_attr, &jib_fork);
+       if (fid == 0 || jib_fork.cf_extents[0].startBlock == 0 || jib_fork.cf_size == 0) {
+               printf("hfs: can't find the .journal_info_block! disabling journaling (start: %d).\n",
+                          fid ? jib_fork.cf_extents[0].startBlock : 0);
+               vcb->vcbAtrb &= ~kHFSVolumeJournaledMask;
+               return 0;
+       }
+       hfsmp->hfs_jnlinfoblkid = fid;
+
+       // make sure the journal_info_block begins where we think it should.
+       if (SWAP_BE32(vhp->journalInfoBlock) != jib_fork.cf_extents[0].startBlock) {
+               printf("hfs: The journal_info_block moved (was: %d; is: %d).  Fixing up\n",
+                          SWAP_BE32(vhp->journalInfoBlock), jib_fork.cf_extents[0].startBlock);
+
+               vcb->vcbJinfoBlock    = jib_fork.cf_extents[0].startBlock;
+               vhp->journalInfoBlock = SWAP_BE32(jib_fork.cf_extents[0].startBlock);
+               recreate_journal = 1;
+       }
+
+
+       sectors_per_fsblock = SWAP_BE32(vhp->blockSize) / hfsmp->hfs_logical_block_size;
+       jinfo_bp = NULL;
+       retval = (int)buf_meta_bread(devvp,
+                                               (vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size + 
+                                               ((u_int64_t)SWAP_BE32(vhp->journalInfoBlock)*sectors_per_fsblock)),
+                                               hfsmp->hfs_physical_block_size, NOCRED, &jinfo_bp);
+       if (retval) {
+               if (jinfo_bp) {
+                       buf_brelse(jinfo_bp);
+               }
+               printf("hfs: can't read journal info block. disabling journaling.\n");
+               vcb->vcbAtrb &= ~kHFSVolumeJournaledMask;
+               return 0;
+       }
+
+       jibp = (JournalInfoBlock *)buf_dataptr(jinfo_bp);
+       jib_flags  = SWAP_BE32(jibp->flags);
+       jib_offset = SWAP_BE64(jibp->offset);
+       jib_size   = SWAP_BE64(jibp->size);
+
+       fid = GetFileInfo(vcb, kRootDirID, ".journal", &jattr, &jfork);
+       if (fid == 0 || jfork.cf_extents[0].startBlock == 0 || jfork.cf_size == 0) {
+               printf("hfs: can't find the journal file! disabling journaling (start: %d)\n",
+                          fid ? jfork.cf_extents[0].startBlock : 0);
+               buf_brelse(jinfo_bp);
+               vcb->vcbAtrb &= ~kHFSVolumeJournaledMask;
+               return 0;
+       }
+       hfsmp->hfs_jnlfileid = fid;
+
+       // make sure the journal file begins where we think it should.
+       if ((jib_flags & kJIJournalInFSMask) && (jib_offset / (u_int64_t)vcb->blockSize) != jfork.cf_extents[0].startBlock) {
+               printf("hfs: The journal file moved (was: %lld; is: %d).  Fixing up\n",
+                          (jib_offset / (u_int64_t)vcb->blockSize), jfork.cf_extents[0].startBlock);
+
+               jib_offset = (u_int64_t)jfork.cf_extents[0].startBlock * (u_int64_t)vcb->blockSize;
+               write_jibp   = 1;
+               recreate_journal = 1;
+       }
+
+       // check the size of the journal file.
+       if (jib_size != (u_int64_t)jfork.cf_extents[0].blockCount*vcb->blockSize) {
+               printf("hfs: The journal file changed size! (was %lld; is %lld).  Fixing up.\n",
+                          jib_size, (u_int64_t)jfork.cf_extents[0].blockCount*vcb->blockSize);
+               
+               jib_size = (u_int64_t)jfork.cf_extents[0].blockCount * vcb->blockSize;
+               write_jibp = 1;
+               recreate_journal = 1;
+       }
+       
+       if (jib_flags & kJIJournalInFSMask) {
+               hfsmp->jvp = hfsmp->hfs_devvp;
+               jib_offset += (off_t)vcb->hfsPlusIOPosOffset;
+       } else {
+           const char *dev_name;
+           int need_init = 0;
+       
+           dev_name = vnode_getname_printable(devvp);
+
+            // since the journal is empty, just use any available external journal
+           *((char *)&jibp->ext_jnl_uuid[0]) = '\0';
+
+           // this fills in the uuid of the device we actually get
+           hfsmp->jvp = open_journal_dev(hfsmp->hfs_mp,
+                                                                         dev_name,
+                                                                         !(jib_flags & kJIJournalNeedInitMask),
+                                                                         (char *)&jibp->ext_jnl_uuid[0],
+                                                                         (char *)&jibp->machine_serial_num[0],
+                                                                         jib_size,
+                                                                         hfsmp->hfs_logical_block_size,
+                                                                         &need_init);
+           if (hfsmp->jvp == NULL) {
+                   buf_brelse(jinfo_bp);
+                   vnode_putname_printable(dev_name);
+                   return EROFS;
+           } else {
+                   if (hfs_get_platform_serial_number(&jibp->machine_serial_num[0], sizeof(jibp->machine_serial_num)) != KERN_SUCCESS) {
+                           strlcpy(&jibp->machine_serial_num[0], "unknown-machine-serial-num", sizeof(jibp->machine_serial_num));
+                   }
+           }
+           jib_offset = 0;
+           recreate_journal = 1;
+           write_jibp = 1;
+           if (need_init) {
+                   jib_flags |= kJIJournalNeedInitMask;
+           }
+           vnode_putname_printable(dev_name);
+       }
+
+       // save this off for the hack-y check in hfs_remove()
+       hfsmp->jnl_start = jib_offset / SWAP_BE32(vhp->blockSize);
+       hfsmp->jnl_size  = jib_size;
+
+       if ((hfsmp->hfs_flags & HFS_READ_ONLY) && (vfs_flags(hfsmp->hfs_mp) & MNT_ROOTFS) == 0) {
+           // if the file system is read-only, check if the journal is empty.
+           // if it is, then we can allow the mount.  otherwise we have to
+           // return failure.
+           retval = journal_is_clean(hfsmp->jvp,
+                                     jib_offset,
+                                     jib_size,
+                                     devvp,
+                                     hfsmp->hfs_logical_block_size);
+
+           hfsmp->jnl = NULL;
+
+           buf_brelse(jinfo_bp);
+
+           if (retval) {
+                   const char *name = vnode_getname_printable(devvp);
+                   printf("hfs: late journal init: volume on %s is read-only and journal is dirty.  Can not mount volume.\n", 
+                   name);
+                   vnode_putname_printable(name);
+           }
+
+           return retval;
+       }
+
+       if ((jib_flags & kJIJournalNeedInitMask) || recreate_journal) {
+               printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
+                          jib_offset, jib_size);
+               hfsmp->jnl = journal_create(hfsmp->jvp,
+                                                                       jib_offset,
+                                                                       jib_size,
+                                                                       devvp,
+                                                                       hfsmp->hfs_logical_block_size,
+                                                                       arg_flags,
+                                                                       arg_tbufsz,
+                                                                       hfs_sync_metadata, hfsmp->hfs_mp,
+                                                                       hfsmp->hfs_mp);
+               if (hfsmp->jnl)
+                       journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp);
+
+               // no need to start a transaction here... if this were to fail
+               // we'd just re-init it on the next mount.
+               jib_flags &= ~kJIJournalNeedInitMask;
+               write_jibp   = 1;
+
+       } else { 
+               //
+               // if we weren't the last person to mount this volume
+               // then we need to throw away the journal because it
+               // is likely that someone else mucked with the disk.
+               // if the journal is empty this is no big deal.  if the
+               // disk is dirty this prevents us from replaying the
+               // journal over top of changes that someone else made.
+               //
+               arg_flags |= JOURNAL_RESET;
+               
+               //printf("hfs: Opening the journal (joffset 0x%llx sz 0x%llx vhp_blksize %d)...\n",
+               //         jib_offset,
+               //         jib_size, SWAP_BE32(vhp->blockSize));
+                               
+               hfsmp->jnl = journal_open(hfsmp->jvp,
+                                                                 jib_offset,
+                                                                 jib_size,
+                                                                 devvp,
+                                                                 hfsmp->hfs_logical_block_size,
+                                                                 arg_flags,
+                                                                 arg_tbufsz,
+                                                                 hfs_sync_metadata, hfsmp->hfs_mp,
+                                                                 hfsmp->hfs_mp);
+               if (hfsmp->jnl)
+                       journal_trim_set_callback(hfsmp->jnl, hfs_trim_callback, hfsmp);
+       }
+                       
+
+       if (write_jibp) {
+               jibp->flags  = SWAP_BE32(jib_flags);
+               jibp->offset = SWAP_BE64(jib_offset);
+               jibp->size   = SWAP_BE64(jib_size);
+
+               buf_bwrite(jinfo_bp);
+       } else {
+               buf_brelse(jinfo_bp);
+       } 
+       jinfo_bp = NULL;
+       jibp     = NULL;
+
+       // if we expected the journal to be there and we couldn't
+       // create it or open it then we have to bail out.
+       if (hfsmp->jnl == NULL) {
+               printf("hfs: late jnl init: failed to open/create the journal (retval %d).\n", retval);
+               return EINVAL;
+       }
+
+       return 0;
+}
+
+/*
+ * Calculate the allocation zone for metadata.
+ *
+ * This zone includes the following:
+ *     Allocation Bitmap file
+ *     Overflow Extents file
+ *     Journal file
+ *     Quota files
+ *     Clustered Hot files
+ *     Catalog file
+ *
+ *                          METADATA ALLOCATION ZONE
+ * ____________________________________________________________________________
+ * |    |    |     |               |                              |           |
+ * | BM | JF | OEF |    CATALOG    |--->                          | HOT FILES |
+ * |____|____|_____|_______________|______________________________|___________|
+ *
+ * <------------------------------- N * 128 MB ------------------------------->
+ *
+ */
+#define GIGABYTE  (u_int64_t)(1024*1024*1024)
+
+#define HOTBAND_MINIMUM_SIZE  (10*1024*1024)
+#define HOTBAND_MAXIMUM_SIZE  (512*1024*1024)
+
+/* Initialize the metadata zone.
+ *
+ * If the size of  the volume is less than the minimum size for
+ * metadata zone, metadata zone is disabled.
+ *
+ * If disable is true, disable metadata zone unconditionally.
+ */
+void
+hfs_metadatazone_init(struct hfsmount *hfsmp, int disable)
+{
+       ExtendedVCB  *vcb;
+       u_int64_t  fs_size;
+       u_int64_t  zonesize;
+       u_int64_t  temp;
+       u_int64_t  filesize;
+       u_int32_t  blk;
+       int  items, really_do_it=1;
+
+       vcb = HFSTOVCB(hfsmp);
+       fs_size = (u_int64_t)vcb->blockSize * (u_int64_t)vcb->allocLimit;
+
+       /*
+        * For volumes less than 10 GB, don't bother.
+        */
+       if (fs_size < ((u_int64_t)10 * GIGABYTE)) {
+               really_do_it = 0;
+       }
+       
+       /*
+        * Skip non-journaled volumes as well.
+        */
+       if (hfsmp->jnl == NULL) {
+               really_do_it = 0;
+       }
+
+       /* If caller wants to disable metadata zone, do it */
+       if (disable == true) {
+               really_do_it = 0;
+       }
+
+       /*
+        * Start with space for the boot blocks and Volume Header.
+        * 1536 = byte offset from start of volume to end of volume header:
+        * 1024 bytes is the offset from the start of the volume to the
+        * start of the volume header (defined by the volume format)
+        * + 512 bytes (the size of the volume header).
+        */
+       zonesize = roundup(1536, hfsmp->blockSize);
+       
+       /*
+        * Add the on-disk size of allocation bitmap.
+        */
+       zonesize += hfsmp->hfs_allocation_cp->c_datafork->ff_blocks * hfsmp->blockSize;
+       
+       /* 
+        * Add space for the Journal Info Block and Journal (if they're in
+        * this file system).
+        */
+       if (hfsmp->jnl && hfsmp->jvp == hfsmp->hfs_devvp) {
+               zonesize += hfsmp->blockSize + hfsmp->jnl_size;
+       }
+       
+       /*
+        * Add the existing size of the Extents Overflow B-tree.
+        * (It rarely grows, so don't bother reserving additional room for it.)
+        */
+       zonesize += hfs_blk_to_bytes(hfsmp->hfs_extents_cp->c_datafork->ff_blocks, hfsmp->blockSize);
+       
+       /*
+        * If there is an Attributes B-tree, leave room for 11 clumps worth.
+        * newfs_hfs allocates one clump, and leaves a gap of 10 clumps.
+        * When installing a full OS install onto a 20GB volume, we use
+        * 7 to 8 clumps worth of space (depending on packages), so that leaves
+        * us with another 3 or 4 clumps worth before we need another extent.
+        */
+       if (hfsmp->hfs_attribute_cp) {
+               zonesize += 11 * hfsmp->hfs_attribute_cp->c_datafork->ff_clumpsize;
+       }
+       
+       /*
+        * Leave room for 11 clumps of the Catalog B-tree.
+        * Again, newfs_hfs allocates one clump plus a gap of 10 clumps.
+        * When installing a full OS install onto a 20GB volume, we use
+        * 7 to 8 clumps worth of space (depending on packages), so that leaves
+        * us with another 3 or 4 clumps worth before we need another extent.
+        */
+       zonesize += 11 * hfsmp->hfs_catalog_cp->c_datafork->ff_clumpsize;
+       
+       /*
+        * Add space for hot file region.
+        *
+        * ...for now, use 5 MB per 1 GB (0.5 %)
+        */
+       filesize = (fs_size / 1024) * 5;
+       if (filesize > HOTBAND_MAXIMUM_SIZE)
+               filesize = HOTBAND_MAXIMUM_SIZE;
+       else if (filesize < HOTBAND_MINIMUM_SIZE)
+               filesize = HOTBAND_MINIMUM_SIZE;
+       /*
+        * Calculate user quota file requirements.
+        */
+       if (hfsmp->hfs_flags & HFS_QUOTAS) {
+               items = QF_USERS_PER_GB * (fs_size / GIGABYTE);
+               if (items < QF_MIN_USERS)
+                       items = QF_MIN_USERS;
+               else if (items > QF_MAX_USERS)
+                       items = QF_MAX_USERS;
+               if (!powerof2(items)) {
+                       int x = items;
+                       items = 4;
+                       while (x>>1 != 1) {
+                               x = x >> 1;
+                               items = items << 1;
+                       }
+               }
+               filesize += (items + 1) * sizeof(struct dqblk);
+               /*
+                * Calculate group quota file requirements.
+                *
+                */
+               items = QF_GROUPS_PER_GB * (fs_size / GIGABYTE);
+               if (items < QF_MIN_GROUPS)
+                       items = QF_MIN_GROUPS;
+               else if (items > QF_MAX_GROUPS)
+                       items = QF_MAX_GROUPS;
+               if (!powerof2(items)) {
+                       int x = items;
+                       items = 4;
+                       while (x>>1 != 1) {
+                               x = x >> 1;
+                               items = items << 1;
+                       }
+               }
+               filesize += (items + 1) * sizeof(struct dqblk);
+       }
+       zonesize += filesize;
+
+       /*
+        * Round up entire zone to a bitmap block's worth.
+        * The extra space goes to the catalog file and hot file area.
+        */
+       temp = zonesize;
+       zonesize = roundup(zonesize, (u_int64_t)vcb->vcbVBMIOSize * 8 * vcb->blockSize);
+       hfsmp->hfs_min_alloc_start = zonesize / vcb->blockSize;
+       /*
+        * If doing the round up for hfs_min_alloc_start would push us past
+        * allocLimit, then just reset it back to 0.  Though using a value 
+        * bigger than allocLimit would not cause damage in the block allocator
+        * code, this value could get stored in the volume header and make it out 
+        * to disk, making the volume header technically corrupt.
+        */
+       if (hfsmp->hfs_min_alloc_start >= hfsmp->allocLimit) {
+               hfsmp->hfs_min_alloc_start = 0;
+       }
+
+       if (really_do_it == 0) {
+               /* If metadata zone needs to be disabled because the 
+                * volume was truncated, clear the bit and zero out 
+                * the values that are no longer needed.
+                */
+               if (hfsmp->hfs_flags & HFS_METADATA_ZONE) {
+                       /* Disable metadata zone */
+                       hfsmp->hfs_flags &= ~HFS_METADATA_ZONE;
+                       
+                       /* Zero out mount point values that are not required */
+                       hfsmp->hfs_catalog_maxblks = 0;
+                       hfsmp->hfs_hotfile_maxblks = 0;
+                       hfsmp->hfs_hotfile_start = 0;
+                       hfsmp->hfs_hotfile_end = 0;
+                       hfsmp->hfs_hotfile_freeblks = 0;
+                       hfsmp->hfs_metazone_start = 0;
+                       hfsmp->hfs_metazone_end = 0;
+               }
+               
+               return;
+       }
+       
+       temp = zonesize - temp;  /* temp has extra space */
+       filesize += temp / 3;
+       hfsmp->hfs_catalog_maxblks += (temp - (temp / 3)) / vcb->blockSize;
+
+       if (hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN) {
+               hfsmp->hfs_hotfile_maxblks = (uint32_t) (hfsmp->hfs_cs_hotfile_size / HFSTOVCB(hfsmp)->blockSize);
+       } else {
+               hfsmp->hfs_hotfile_maxblks = filesize / vcb->blockSize;
+       }
+
+       /* Convert to allocation blocks. */
+       blk = zonesize / vcb->blockSize;
+
+       /* The default metadata zone location is at the start of volume. */
+       hfsmp->hfs_metazone_start = 1;
+       hfsmp->hfs_metazone_end = blk - 1;
+       
+       /* The default hotfile area is at the end of the zone. */
+       if (vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) {
+               hfsmp->hfs_hotfile_start = blk - (filesize / vcb->blockSize);
+               hfsmp->hfs_hotfile_end = hfsmp->hfs_metazone_end;
+               hfsmp->hfs_hotfile_freeblks = hfs_hotfile_freeblocks(hfsmp);
+       }
+       else {
+               hfsmp->hfs_hotfile_start = 0;
+               hfsmp->hfs_hotfile_end = 0;
+               hfsmp->hfs_hotfile_freeblks = 0;
+       }
+#if DEBUG
+       printf("hfs:%s: metadata zone is %d to %d\n", hfsmp->vcbVN, hfsmp->hfs_metazone_start, hfsmp->hfs_metazone_end);
+       printf("hfs:%s: hot file band is %d to %d\n", hfsmp->vcbVN, hfsmp->hfs_hotfile_start, hfsmp->hfs_hotfile_end);
+       printf("hfs:%s: hot file band free blocks = %d\n", hfsmp->vcbVN, hfsmp->hfs_hotfile_freeblks);
+#endif
+
+       hfsmp->hfs_flags |= HFS_METADATA_ZONE;
+}
+
+
+static u_int32_t
+hfs_hotfile_freeblocks(struct hfsmount *hfsmp)
+{
+       ExtendedVCB  *vcb = HFSTOVCB(hfsmp);
+       int  lockflags;
+       int  freeblocks;
+
+       if (hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN) {
+               //
+               // This is only used at initialization time and on an ssd
+               // we'll get the real info from the hotfile btree user
+               // info
+               //
+               return 0;
+       }
+
+       lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+       freeblocks = MetaZoneFreeBlocks(vcb);
+       hfs_systemfile_unlock(hfsmp, lockflags);
+
+       /* Minus Extents overflow file reserve. */
+       if ((uint32_t)hfsmp->hfs_overflow_maxblks >= VTOF(hfsmp->hfs_extents_vp)->ff_blocks) {
+               freeblocks -= hfsmp->hfs_overflow_maxblks - VTOF(hfsmp->hfs_extents_vp)->ff_blocks;
+       }
+
+       /* Minus catalog file reserve. */
+       if ((uint32_t)hfsmp->hfs_catalog_maxblks >= VTOF(hfsmp->hfs_catalog_vp)->ff_blocks) {
+               freeblocks -= hfsmp->hfs_catalog_maxblks - VTOF(hfsmp->hfs_catalog_vp)->ff_blocks;
+       }
+       
+       if (freeblocks < 0)
+               freeblocks = 0;
+
+       // printf("hfs: hotfile_freeblocks: MIN(%d, %d) = %d\n", freeblocks, hfsmp->hfs_hotfile_maxblks, MIN(freeblocks, hfsmp->hfs_hotfile_maxblks));
+       return MIN(freeblocks, hfsmp->hfs_hotfile_maxblks);
+}
+
+/*
+ * Determine if a file is a "virtual" metadata file.
+ * This includes journal and quota files.
+ */
+int
+hfs_virtualmetafile(struct cnode *cp)
+{
+       const char * filename;
+
+
+       if (cp->c_parentcnid != kHFSRootFolderID)
+               return (0);
+
+       filename = (const char *)cp->c_desc.cd_nameptr;
+       if (filename == NULL)
+               return (0);
+
+       if ((strncmp(filename, ".journal", sizeof(".journal")) == 0) ||
+           (strncmp(filename, ".journal_info_block", sizeof(".journal_info_block")) == 0) ||
+           (strncmp(filename, ".quota.user", sizeof(".quota.user")) == 0) ||
+           (strncmp(filename, ".quota.group", sizeof(".quota.group")) == 0) ||
+           (strncmp(filename, ".hotfiles.btree", sizeof(".hotfiles.btree")) == 0))
+               return (1);
+
+       return (0);
+}
+
+void hfs_syncer_lock(struct hfsmount *hfsmp)
+{
+    hfs_lock_mount(hfsmp);
+}
+
+void hfs_syncer_unlock(struct hfsmount *hfsmp)
+{
+    hfs_unlock_mount(hfsmp);
+}
+
+void hfs_syncer_wait(struct hfsmount *hfsmp, struct timespec *ts)
+{
+    msleep(&hfsmp->hfs_syncer_thread, &hfsmp->hfs_mutex, PWAIT,
+           "hfs_syncer_wait", ts);
+}
+
+void hfs_syncer_wakeup(struct hfsmount *hfsmp)
+{
+    wakeup(&hfsmp->hfs_syncer_thread);
+}
+
+uint64_t hfs_usecs_to_deadline(uint64_t usecs)
+{
+    uint64_t deadline;
+    clock_interval_to_deadline(usecs, NSEC_PER_USEC, &deadline);
+    return deadline;
+}
+
+//
+// Fire off a timed callback to sync the disk if the
+// volume is on ejectable media.
+//
+void hfs_sync_ejectable(struct hfsmount *hfsmp)
+{
+    // If we don't have a syncer or we get called by the syncer, just return
+    if (!ISSET(hfsmp->hfs_flags, HFS_RUN_SYNCER)
+               || current_thread() == hfsmp->hfs_syncer_thread) {
+        return;
+       }
+
+    hfs_syncer_lock(hfsmp);
+
+    if (!timerisset(&hfsmp->hfs_sync_req_oldest))
+        microuptime(&hfsmp->hfs_sync_req_oldest);
+
+    /* If hfs_unmount is running, it will clear the HFS_RUN_SYNCER
+          flag. Also, we don't want to queue again if there is a sync
+          outstanding. */
+    if (!ISSET(hfsmp->hfs_flags, HFS_RUN_SYNCER)
+               || hfsmp->hfs_syncer_thread) {
+        hfs_syncer_unlock(hfsmp);
+        return;
+    }
+
+    hfsmp->hfs_syncer_thread = (void *)1;
+
+    hfs_syncer_unlock(hfsmp);
+
+       kernel_thread_start(hfs_syncer, hfsmp, &hfsmp->hfs_syncer_thread);
+       thread_deallocate(hfsmp->hfs_syncer_thread);
+}
+
+int
+hfs_start_transaction(struct hfsmount *hfsmp)
+{
+       int ret = 0, unlock_on_err = 0;
+       thread_t thread = current_thread();
+
+#ifdef HFS_CHECK_LOCK_ORDER
+       /*
+        * You cannot start a transaction while holding a system
+        * file lock. (unless the transaction is nested.)
+        */
+       if (hfsmp->jnl && journal_owner(hfsmp->jnl) != thread) {
+               if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
+                       panic("hfs_start_transaction: bad lock order (cat before jnl)\n");
+               }
+               if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
+                       panic("hfs_start_transaction: bad lock order (attr before jnl)\n");
+               }
+               if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
+                       panic("hfs_start_transaction: bad lock order (ext before jnl)\n");
+               }
+       }
+#endif /* HFS_CHECK_LOCK_ORDER */
+
+again:
+
+       if (hfsmp->jnl) {
+               if (journal_owner(hfsmp->jnl) != thread) {
+                       /*
+                        * The global lock should be held shared if journal is 
+                        * active to prevent disabling.  If we're not the owner 
+                        * of the journal lock, verify that we're not already
+                        * holding the global lock exclusive before moving on.   
+                        */
+                       if (hfsmp->hfs_global_lockowner == thread) {
+                               ret = EBUSY;
+                               goto out;
+                       }
+
+                       hfs_lock_global (hfsmp, HFS_SHARED_LOCK);
+
+                       // Things could have changed
+                       if (!hfsmp->jnl) {
+                               hfs_unlock_global(hfsmp);
+                               goto again;
+                       }
+
+                       OSAddAtomic(1, (SInt32 *)&hfsmp->hfs_active_threads);
+                       unlock_on_err = 1;
+               }
+       } else {
+               // No journal
+               if (hfsmp->hfs_global_lockowner != thread) {
+                       hfs_lock_global(hfsmp, HFS_EXCLUSIVE_LOCK);
+
+                       // Things could have changed
+                       if (hfsmp->jnl) {
+                               hfs_unlock_global(hfsmp);
+                               goto again;
+                       }
+
+                       OSAddAtomic(1, (SInt32 *)&hfsmp->hfs_active_threads);
+                       unlock_on_err = 1;
+               }
+       }
+
+       /* If a downgrade to read-only mount is in progress, no other
+        * thread than the downgrade thread is allowed to modify 
+        * the file system.
+        */
+       if ((hfsmp->hfs_flags & HFS_RDONLY_DOWNGRADE) && 
+           hfsmp->hfs_downgrading_thread != thread) {
+               ret = EROFS;
+               goto out;
+       }
+
+       if (hfsmp->jnl) {
+               ret = journal_start_transaction(hfsmp->jnl);
+       } else {
+               ret = 0;
+       }
+
+       if (ret == 0)
+               ++hfsmp->hfs_transaction_nesting;
+
+out:
+       if (ret != 0 && unlock_on_err) {
+               hfs_unlock_global (hfsmp);
+               OSAddAtomic(-1, (SInt32 *)&hfsmp->hfs_active_threads);
+       }
+
+    return ret;
+}
+
+int
+hfs_end_transaction(struct hfsmount *hfsmp)
+{
+    int ret;
+
+       hfs_assert(!hfsmp->jnl || journal_owner(hfsmp->jnl) == current_thread());
+       hfs_assert(hfsmp->hfs_transaction_nesting > 0);
+
+       if (hfsmp->jnl && hfsmp->hfs_transaction_nesting == 1)
+               hfs_flushvolumeheader(hfsmp, HFS_FVH_FLUSH_IF_DIRTY);
+
+       bool need_unlock = !--hfsmp->hfs_transaction_nesting;
+
+       if (hfsmp->jnl) {
+               ret = journal_end_transaction(hfsmp->jnl);
+       } else {
+               ret = 0;
+       }
+
+       if (need_unlock) {
+               OSAddAtomic(-1, (SInt32 *)&hfsmp->hfs_active_threads);
+               hfs_unlock_global (hfsmp);
+               hfs_sync_ejectable(hfsmp);
+       }
+
+    return ret;
+}
+
+
+void 
+hfs_journal_lock(struct hfsmount *hfsmp) 
+{
+       /* Only peek at hfsmp->jnl while holding the global lock */
+       hfs_lock_global (hfsmp, HFS_SHARED_LOCK);
+       if (hfsmp->jnl) {
+               journal_lock(hfsmp->jnl);
+       }
+       hfs_unlock_global (hfsmp);
+}
+
+void 
+hfs_journal_unlock(struct hfsmount *hfsmp) 
+{
+       /* Only peek at hfsmp->jnl while holding the global lock */
+       hfs_lock_global (hfsmp, HFS_SHARED_LOCK);
+       if (hfsmp->jnl) {
+               journal_unlock(hfsmp->jnl);
+       }
+       hfs_unlock_global (hfsmp);
+}
+
+/*
+ * Flush the contents of the journal to the disk.
+ *
+ *  - HFS_FLUSH_JOURNAL
+ *      Wait to write in-memory journal to the disk consistently.
+ *      This means that the journal still contains uncommitted
+ *      transactions and the file system metadata blocks in
+ *      the journal transactions might be written asynchronously
+ *      to the disk.  But there is no guarantee that they are
+ *      written to the disk before returning to the caller.
+ *      Note that this option is sufficient for file system
+ *      data integrity as it guarantees consistent journal
+ *      content on the disk.
+ *
+ *  - HFS_FLUSH_JOURNAL_META
+ *      Wait to write in-memory journal to the disk
+ *      consistently, and also wait to write all asynchronous
+ *      metadata blocks to its corresponding locations
+ *      consistently on the disk. This is overkill in normal
+ *      scenarios but is useful whenever the metadata blocks
+ *      are required to be consistent on-disk instead of
+ *      just the journalbeing consistent; like before live
+ *      verification and live volume resizing.  The update of the
+ *      metadata doesn't include a barrier of track cache flush.
+ *
+ *  - HFS_FLUSH_FULL
+ *      HFS_FLUSH_JOURNAL + force a track cache flush to media
+ *
+ *  - HFS_FLUSH_CACHE
+ *      Force a track cache flush to media.
+ *
+ *  - HFS_FLUSH_BARRIER
+ *      Barrier-only flush to ensure write order
+ *
+ */
+errno_t hfs_flush(struct hfsmount *hfsmp, hfs_flush_mode_t mode)
+{
+       errno_t error = 0;
+       int options = 0;
+       dk_synchronize_t sync_req = { .options = DK_SYNCHRONIZE_OPTION_BARRIER };
+
+       switch (mode) {
+               case HFS_FLUSH_JOURNAL_META:
+                       // wait for journal, metadata blocks and previous async flush to finish
+                       SET(options, JOURNAL_WAIT_FOR_IO);
+
+                       // no break
+
+               case HFS_FLUSH_JOURNAL:
+               case HFS_FLUSH_JOURNAL_BARRIER:
+               case HFS_FLUSH_FULL:
+
+                       if (mode == HFS_FLUSH_JOURNAL_BARRIER &&
+                           !(hfsmp->hfs_flags & HFS_FEATURE_BARRIER))
+                               mode = HFS_FLUSH_FULL;
+
+                       if (mode == HFS_FLUSH_FULL)
+                               SET(options, JOURNAL_FLUSH_FULL);
+
+                       /* Only peek at hfsmp->jnl while holding the global lock */
+                       hfs_lock_global (hfsmp, HFS_SHARED_LOCK);
+
+                       if (hfsmp->jnl)
+                               error = journal_flush(hfsmp->jnl, options);
+
+                       hfs_unlock_global (hfsmp);
+
+                       /*
+                        * This may result in a double barrier as
+                        * journal_flush may have issued a barrier itself
+                        */
+                       if (mode == HFS_FLUSH_JOURNAL_BARRIER)
+                               error = VNOP_IOCTL(hfsmp->hfs_devvp,
+                                   DKIOCSYNCHRONIZE, (caddr_t)&sync_req,
+                                   FWRITE, NULL);
+
+                       break;
+
+               case HFS_FLUSH_CACHE:
+                       // Do a full sync
+                       sync_req.options = 0;
+
+                       // no break
+
+               case HFS_FLUSH_BARRIER:
+                       // If barrier only flush doesn't support, fall back to use full flush.
+                       if (!(hfsmp->hfs_flags & HFS_FEATURE_BARRIER))
+                               sync_req.options = 0;
+
+                       error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZE, (caddr_t)&sync_req,
+                                          FWRITE, NULL);
+                       break;
+
+               default:
+                       error = EINVAL;
+       }
+
+       return error;
+}
+
+/*
+ * hfs_erase_unused_nodes
+ *
+ * Check wheter a volume may suffer from unused Catalog B-tree nodes that
+ * are not zeroed (due to <rdar://problem/6947811>).  If so, just write
+ * zeroes to the unused nodes.
+ *
+ * How do we detect when a volume needs this repair?  We can't always be
+ * certain.  If a volume was created after a certain date, then it may have
+ * been created with the faulty newfs_hfs.  Since newfs_hfs only created one
+ * clump, we can assume that if a Catalog B-tree is larger than its clump size,
+ * that means that the entire first clump must have been written to, which means
+ * there shouldn't be unused and unwritten nodes in that first clump, and this
+ * repair is not needed.
+ *
+ * We have defined a bit in the Volume Header's attributes to indicate when the
+ * unused nodes have been repaired.  A newer newfs_hfs will set this bit.
+ * As will fsck_hfs when it repairs the unused nodes.
+ */
+int hfs_erase_unused_nodes(struct hfsmount *hfsmp)
+{
+       int result; 
+       struct filefork *catalog;
+       int lockflags;
+       
+       if (hfsmp->vcbAtrb & kHFSUnusedNodeFixMask)
+       {
+               /* This volume has already been checked and repaired. */
+               return 0;
+       }
+
+       if ((hfsmp->localCreateDate < kHFSUnusedNodesFixDate))
+       {
+               /* This volume is too old to have had the problem. */
+               hfsmp->vcbAtrb |= kHFSUnusedNodeFixMask;
+               return 0;
+       }
+
+       catalog = hfsmp->hfs_catalog_cp->c_datafork;
+       if (catalog->ff_size > catalog->ff_clumpsize)
+       {
+               /* The entire first clump must have been in use at some point. */
+               hfsmp->vcbAtrb |= kHFSUnusedNodeFixMask;
+               return 0;
+       }
+       
+       /*
+        * If we get here, we need to zero out those unused nodes.
+        *
+        * We start a transaction and lock the catalog since we're going to be
+        * making on-disk changes.  But note that BTZeroUnusedNodes doens't actually
+        * do its writing via the journal, because that would be too much I/O
+        * to fit in a transaction, and it's a pain to break it up into multiple
+        * transactions.  (It behaves more like growing a B-tree would.)
+        */
+       printf("hfs_erase_unused_nodes: updating volume %s.\n", hfsmp->vcbVN);
+       result = hfs_start_transaction(hfsmp);
+       if (result)
+               goto done;
+       lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+       result = BTZeroUnusedNodes(catalog);
+       vnode_waitforwrites(hfsmp->hfs_catalog_vp, 0, 0, 0, "hfs_erase_unused_nodes");
+       hfs_systemfile_unlock(hfsmp, lockflags);
+       hfs_end_transaction(hfsmp);
+       if (result == 0)
+               hfsmp->vcbAtrb |= kHFSUnusedNodeFixMask;
+       printf("hfs_erase_unused_nodes: done updating volume %s.\n", hfsmp->vcbVN);
+
+done:
+       return result;
+}
+
+
+int
+check_for_dataless_file(struct vnode *vp, uint64_t op_type)
+{
+       int error;
+
+       if (vp == NULL || (VTOC(vp)->c_bsdflags & UF_COMPRESSED) == 0 || VTOCMP(vp) == NULL || decmpfs_cnode_cmp_type(VTOCMP(vp)) != DATALESS_CMPFS_TYPE) {
+               // there's nothing to do, it's not dataless
+               return 0;
+       }
+
+       /* Swap files are special; ignore them */
+       if (vnode_isswap(vp)) {
+               return 0;       
+       }
+
+       // printf("hfs: dataless: encountered a file with the dataless bit set! (vp %p)\n", vp);
+       error = resolve_nspace_item(vp, op_type | NAMESPACE_HANDLER_NSPACE_EVENT);
+       if (error == EDEADLK && op_type == NAMESPACE_HANDLER_WRITE_OP) {
+               error = 0;
+       } else if (error) {
+               if (error == EAGAIN) {
+                       printf("hfs: dataless: timed out waiting for namespace handler...\n");
+                       // XXXdbg - return the fabled ENOTPRESENT (i.e. EJUKEBOX)?
+                       return 0;                               
+               } else if (error == EINTR) {
+                       // printf("hfs: dataless: got a signal while waiting for namespace handler...\n");
+                       return EINTR;
+               }
+       } else if (VTOC(vp)->c_bsdflags & UF_COMPRESSED) {
+               //
+               // if we're here, the dataless bit is still set on the file 
+               // which means it didn't get handled.  we return an error
+               // but it's presently ignored by all callers of this function.
+               //
+               // XXXdbg - EDATANOTPRESENT is what we really need...
+               //
+               return EBADF;
+       }                               
+
+       return error;
+}
+
+
+//
+// NOTE: this function takes care of starting a transaction and
+//       acquiring the systemfile lock so that it can call
+//       cat_update().
+//
+// NOTE: do NOT hold and cnode locks while calling this function
+//       to avoid deadlocks (because we take a lock on the root
+//       cnode)
+//
+int
+hfs_generate_document_id(struct hfsmount *hfsmp, uint32_t *docid)
+{
+       struct vnode *rvp;
+       struct cnode *cp;
+       int error;
+
+       error = hfs_vfs_root(HFSTOVFS(hfsmp), &rvp, vfs_context_kernel());
+       if (error) {
+               return error;
+       }
+
+       cp = VTOC(rvp);
+       if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)) != 0) {
+               return error;
+       }
+       struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)((void *)((char *)&cp->c_attr.ca_finderinfo + 16));
+       
+       int lockflags;
+       if ((error = hfs_start_transaction(hfsmp)) != 0) {
+               return error;
+       }
+       lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+                                       
+       if (extinfo->document_id == 0) {
+               // initialize this to start at 3 (one greater than the root-dir id)
+               extinfo->document_id = 3;
+       }
+
+       *docid = extinfo->document_id++;
+
+       // mark the root cnode dirty
+       cp->c_flag |= C_MODIFIED;
+       hfs_update(cp->c_vp, 0);
+
+       hfs_systemfile_unlock (hfsmp, lockflags);
+       (void) hfs_end_transaction(hfsmp);
+               
+       (void) hfs_unlock(cp);
+
+       vnode_put(rvp);
+       rvp = NULL;
+
+       return 0;
+}
+
+
+/* 
+ * Return information about number of file system allocation blocks 
+ * taken by metadata on a volume.  
+ *  
+ * This function populates struct hfsinfo_metadata with allocation blocks 
+ * used by extents overflow btree, catalog btree, bitmap, attribute btree, 
+ * journal file, and sum of all of the above.  
+ */
+int 
+hfs_getinfo_metadata_blocks(struct hfsmount *hfsmp, struct hfsinfo_metadata *hinfo)
+{
+       int lockflags = 0;
+       int ret_lockflags = 0;
+
+       /* Zero out the output buffer */
+       bzero(hinfo, sizeof(struct hfsinfo_metadata));
+
+       /* 
+        * Getting number of allocation blocks for all btrees 
+        * should be a quick operation, so we grab locks for 
+        * all of them at the same time
+        */
+       lockflags = SFL_CATALOG | SFL_EXTENTS | SFL_BITMAP | SFL_ATTRIBUTE;
+       ret_lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+       /* 
+        * Make sure that we were able to acquire all locks requested 
+        * to protect us against conditions like unmount in progress.
+        */
+       if ((lockflags & ret_lockflags) != lockflags) {
+               /* Release any locks that were acquired */
+               hfs_systemfile_unlock(hfsmp, ret_lockflags);
+               return EPERM;
+       }
+
+       /* Get information about all the btrees */
+       hinfo->extents = hfsmp->hfs_extents_cp->c_datafork->ff_blocks;
+       hinfo->catalog = hfsmp->hfs_catalog_cp->c_datafork->ff_blocks;
+       hinfo->allocation = hfsmp->hfs_allocation_cp->c_datafork->ff_blocks;
+       hinfo->attribute = hfsmp->hfs_attribute_cp->c_datafork->ff_blocks;
+
+       /* Done with btrees, give up the locks */
+       hfs_systemfile_unlock(hfsmp, ret_lockflags);
+
+       /* Get information about journal file */
+       hinfo->journal = howmany(hfsmp->jnl_size, hfsmp->blockSize);
+
+       /* Calculate total number of metadata blocks */
+       hinfo->total = hinfo->extents + hinfo->catalog + 
+                       hinfo->allocation + hinfo->attribute +
+                       hinfo->journal;
+       
+       return 0;
+}
+
+static int
+hfs_freezewrite_callback(struct vnode *vp, __unused void *cargs)
+{
+       vnode_waitforwrites(vp, 0, 0, 0, "hfs freeze 8");
+
+       return 0;
+}
+
+int hfs_freeze(struct hfsmount *hfsmp)
+{
+       // First make sure some other process isn't freezing
+       hfs_lock_mount(hfsmp);
+       while (hfsmp->hfs_freeze_state != HFS_THAWED) {
+               if (msleep(&hfsmp->hfs_freeze_state, &hfsmp->hfs_mutex,
+                                  PWAIT | PCATCH, "hfs freeze 1", NULL) == EINTR) {
+                       hfs_unlock_mount(hfsmp);
+                       return EINTR;
+               }
+       }
+
+       // Stop new syncers from starting
+       hfsmp->hfs_freeze_state = HFS_WANT_TO_FREEZE;
+
+       // Now wait for all syncers to finish
+       while (hfsmp->hfs_syncers) {
+               if (msleep(&hfsmp->hfs_freeze_state, &hfsmp->hfs_mutex,
+                          PWAIT | PCATCH, "hfs freeze 2", NULL) == EINTR) {
+                       hfs_thaw_locked(hfsmp);
+                       hfs_unlock_mount(hfsmp);
+                       return EINTR;                           
+               }
+       }
+       hfs_unlock_mount(hfsmp);
+
+       // flush things before we get started to try and prevent
+       // dirty data from being paged out while we're frozen.
+       // note: we can't do this once we're in the freezing state because
+       // other threads will need to take the global lock
+       vnode_iterate(hfsmp->hfs_mp, 0, hfs_freezewrite_callback, NULL);
+
+       // Block everything in hfs_lock_global now
+       hfs_lock_mount(hfsmp);
+       hfsmp->hfs_freeze_state = HFS_FREEZING;
+       hfsmp->hfs_freezing_thread = current_thread();
+       hfs_unlock_mount(hfsmp);
+
+       /* Take the exclusive lock to flush out anything else that
+          might have the global lock at the moment and also so we
+          can flush the journal. */
+       hfs_lock_global(hfsmp, HFS_EXCLUSIVE_LOCK);
+       journal_flush(hfsmp->jnl, JOURNAL_WAIT_FOR_IO);
+       hfs_unlock_global(hfsmp);
+
+       // don't need to iterate on all vnodes, we just need to
+       // wait for writes to the system files and the device vnode
+       //
+       // Now that journal flush waits for all metadata blocks to 
+       // be written out, waiting for btree writes is probably no
+       // longer required.
+       if (HFSTOVCB(hfsmp)->extentsRefNum)
+               vnode_waitforwrites(HFSTOVCB(hfsmp)->extentsRefNum, 0, 0, 0, "hfs freeze 3");
+       if (HFSTOVCB(hfsmp)->catalogRefNum)
+               vnode_waitforwrites(HFSTOVCB(hfsmp)->catalogRefNum, 0, 0, 0, "hfs freeze 4");
+       if (HFSTOVCB(hfsmp)->allocationsRefNum)
+               vnode_waitforwrites(HFSTOVCB(hfsmp)->allocationsRefNum, 0, 0, 0, "hfs freeze 5");
+       if (hfsmp->hfs_attribute_vp)
+               vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs freeze 6");
+       vnode_waitforwrites(hfsmp->hfs_devvp, 0, 0, 0, "hfs freeze 7");
+
+       // We're done, mark frozen
+       hfs_lock_mount(hfsmp);
+       hfsmp->hfs_freeze_state  = HFS_FROZEN;
+       hfsmp->hfs_freezing_proc = current_proc();
+       hfs_unlock_mount(hfsmp);
+
+       return 0;
+}
+
+int hfs_thaw(struct hfsmount *hfsmp, const struct proc *process)
+{
+       hfs_lock_mount(hfsmp);
+
+       if (hfsmp->hfs_freeze_state != HFS_FROZEN) {
+               hfs_unlock_mount(hfsmp);
+               return EINVAL;
+       }
+       if (process && hfsmp->hfs_freezing_proc != process) {
+               hfs_unlock_mount(hfsmp);
+               return EPERM;
+       }
+
+       hfs_thaw_locked(hfsmp);
+
+       hfs_unlock_mount(hfsmp);
+
+       return 0;
+}
+
+static void hfs_thaw_locked(struct hfsmount *hfsmp)
+{
+       hfsmp->hfs_freezing_proc = NULL;
+       hfsmp->hfs_freeze_state = HFS_THAWED;
+
+       wakeup(&hfsmp->hfs_freeze_state);
+}
+
+uintptr_t obfuscate_addr(void *addr)
+{
+       vm_offset_t new_addr;
+       vm_kernel_addrperm_external((vm_offset_t)addr, &new_addr);
+       return new_addr;
+}
+
+#if CONFIG_HFS_STD
+/*
+ * Convert HFS encoded string into UTF-8
+ *
+ * Unicode output is fully decomposed
+ * '/' chars are converted to ':'
+ */
+int
+hfs_to_utf8(ExtendedVCB *vcb, const Str31 hfs_str, ByteCount maxDstLen, ByteCount *actualDstLen, unsigned char* dstStr)
+{
+       int error;
+       UniChar uniStr[MAX_HFS_UNICODE_CHARS];
+       ItemCount uniCount;
+       size_t utf8len;
+       hfs_to_unicode_func_t hfs_get_unicode = VCBTOHFS(vcb)->hfs_get_unicode;
+       u_int8_t pascal_length = 0;
+
+       /*
+        * Validate the length of the Pascal-style string before passing it
+        * down to the decoding engine.
+        */
+       pascal_length = *((const u_int8_t*)(hfs_str));
+       if (pascal_length > 31) {
+               /* invalid string; longer than 31 bytes */
+               error = EINVAL;
+               return error;
+       }
+
+       error = hfs_get_unicode(hfs_str, uniStr, MAX_HFS_UNICODE_CHARS, &uniCount);
+
+       if (uniCount == 0)
+               error = EINVAL;
+
+       if (error == 0) {
+               error = utf8_encodestr(uniStr, uniCount * sizeof(UniChar), dstStr, &utf8len, maxDstLen , ':', 0);
+               if (error == ENAMETOOLONG)
+                       *actualDstLen = utf8_encodelen(uniStr, uniCount * sizeof(UniChar), ':', 0);
+               else
+                       *actualDstLen = utf8len;
+       }
+
+       return error;
+}
+
+/*
+ * Convert UTF-8 string into HFS encoding
+ *
+ * ':' chars are converted to '/'
+ * Assumes input represents fully decomposed Unicode
+ */
+int
+utf8_to_hfs(ExtendedVCB *vcb, ByteCount srcLen, const unsigned char* srcStr, Str31 dstStr/*, int retry*/)
+{
+       int error;
+       UniChar uniStr[MAX_HFS_UNICODE_CHARS];
+       size_t ucslen;
+
+       error = utf8_decodestr(srcStr, srcLen, uniStr, &ucslen, sizeof(uniStr), ':', 0);
+       if (error == 0)
+               error = unicode_to_hfs(vcb, ucslen, uniStr, dstStr, 1);
+
+       return error;
+}
+
+/*
+ * Convert Unicode string into HFS encoding
+ *
+ * ':' chars are converted to '/'
+ * Assumes input represents fully decomposed Unicode
+ */
+int
+unicode_to_hfs(ExtendedVCB *vcb, ByteCount srcLen, u_int16_t* srcStr, Str31 dstStr, int retry)
+{
+       int error;
+       unicode_to_hfs_func_t hfs_get_hfsname = VCBTOHFS(vcb)->hfs_get_hfsname;
+
+       error = hfs_get_hfsname(srcStr, srcLen/sizeof(UniChar), dstStr);
+       if (error && retry) {
+               error = unicode_to_mac_roman(srcStr, srcLen/sizeof(UniChar), dstStr);
+       }
+       return error;
+}
+
+#endif // CONFIG_HFS_STD
+
+static uint64_t hfs_allocated __attribute__((aligned(8)));
+
+#if HFS_MALLOC_DEBUG
+
+#warning HFS_MALLOC_DEBUG is on
+
+#include <libkern/OSDebug.h>
+#include "hfs_alloc_trace.h"
+
+struct alloc_debug_header {
+       uint32_t magic;
+       uint32_t size;
+       uint64_t sequence;
+       LIST_ENTRY(alloc_debug_header) chain;
+       void *backtrace[HFS_ALLOC_BACKTRACE_LEN];
+};
+
+enum {
+       HFS_ALLOC_MAGIC = 0x68667361,   // "hfsa"
+       HFS_ALLOC_DEAD  = 0x68667364,   // "hfsd"
+};
+
+static LIST_HEAD(, alloc_debug_header) hfs_alloc_list;
+static lck_mtx_t *hfs_alloc_mtx;
+static int hfs_alloc_tracing;
+static uint64_t hfs_alloc_sequence;
+
+void hfs_alloc_trace_enable(void)
+{
+       if (hfs_alloc_tracing)
+               return;
+
+       // Not thread-safe, but this is debug so who cares
+       extern lck_grp_t *hfs_mutex_group;
+       extern lck_attr_t *hfs_lock_attr;
+
+       if (!hfs_alloc_mtx) {
+               hfs_alloc_mtx = lck_mtx_alloc_init(hfs_mutex_group, hfs_lock_attr);
+               LIST_INIT(&hfs_alloc_list);
+       }
+
+       // Using OSCompareAndSwap in lieu of a barrier
+       OSCompareAndSwap(hfs_alloc_tracing, true, &hfs_alloc_tracing);
+}
+
+void hfs_alloc_trace_disable(void)
+{
+       if (!hfs_alloc_tracing)
+               return;
+
+       hfs_alloc_tracing = false;
+
+       lck_mtx_lock_spin(hfs_alloc_mtx);
+
+       struct alloc_debug_header *hdr;
+       LIST_FOREACH(hdr, &hfs_alloc_list, chain) {
+               hdr->chain.le_prev = NULL;
+       }
+       LIST_INIT(&hfs_alloc_list);
+
+       lck_mtx_unlock(hfs_alloc_mtx);
+}
+
+static int hfs_handle_alloc_tracing SYSCTL_HANDLER_ARGS
+{
+       int v = hfs_alloc_tracing;
+
+       int err = sysctl_handle_int(oidp, &v, 0, req);
+       if (err || req->newptr == USER_ADDR_NULL || v == hfs_alloc_tracing)
+               return err;
+
+       if (v)
+               hfs_alloc_trace_enable();
+       else
+               hfs_alloc_trace_disable();
+
+       return 0;
+}
+
+HFS_SYSCTL(PROC, _vfs_generic_hfs, OID_AUTO, alloc_tracing,
+                  CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0,
+                  hfs_handle_alloc_tracing, "I", "Allocation tracing")
+
+static int hfs_handle_alloc_trace_info SYSCTL_HANDLER_ARGS
+{
+       if (!hfs_alloc_tracing) {
+               struct hfs_alloc_trace_info info = {};
+               return sysctl_handle_opaque(oidp, &info, sizeof(info), req);
+       }
+
+       const int size = 128 * 1024;
+       struct hfs_alloc_trace_info *info = kalloc(size);
+
+       const int max_entries = ((size - sizeof(*info))
+                                                        / sizeof(struct hfs_alloc_info_entry));
+
+       info->entry_count = 0;
+       info->more = false;
+
+       lck_mtx_lock_spin(hfs_alloc_mtx);
+
+       struct alloc_debug_header *hdr;
+       LIST_FOREACH(hdr, &hfs_alloc_list, chain) {
+               if (info->entry_count == max_entries) {
+                       info->more = true;
+                       break;
+               }
+               vm_offset_t o;
+               vm_kernel_addrperm_external((vm_offset_t)hdr, &o);
+               info->entries[info->entry_count].ptr = o;
+               info->entries[info->entry_count].size = hdr->size;
+               info->entries[info->entry_count].sequence = hdr->sequence;
+               for (int i = 0; i < HFS_ALLOC_BACKTRACE_LEN; ++i) {
+                       vm_kernel_unslide_or_perm_external((vm_offset_t)hdr->backtrace[i], &o);
+                       info->entries[info->entry_count].backtrace[i] = o;
+               }
+               ++info->entry_count;
+       }
+
+       lck_mtx_unlock(hfs_alloc_mtx);
+
+       int err = sysctl_handle_opaque(oidp, info,
+                                                                  sizeof(*info) + info->entry_count
+                                                                  * sizeof(struct hfs_alloc_info_entry),
+                                                                  req);
+
+       kfree(info, size);
+
+       return err;
+}
+
+HFS_SYSCTL(PROC, _vfs_generic_hfs, OID_AUTO, alloc_trace_info,
+                  CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_LOCKED, NULL, 0,
+                  hfs_handle_alloc_trace_info, "-", "Allocation trace info")
+
+bool hfs_dump_allocations(void)
+{
+       if (!hfs_allocated)
+               return false;
+
+       lck_mtx_lock(hfs_alloc_mtx);
+
+       struct alloc_debug_header *hdr;
+       LIST_FOREACH(hdr, &hfs_alloc_list, chain) {
+               vm_offset_t o;
+               vm_kernel_addrperm_external((vm_offset_t)hdr, &o);
+               printf(" -- 0x%lx:%llu <%u> --\n", o, hdr->sequence, hdr->size);
+               for (int j = 0; j < HFS_ALLOC_BACKTRACE_LEN && hdr->backtrace[j]; ++j) {
+                       vm_kernel_unslide_or_perm_external((vm_offset_t)hdr->backtrace[j], &o);
+                       printf("0x%lx\n", o);
+               }
+       }
+
+       lck_mtx_unlock(hfs_alloc_mtx);
+
+       return true;
+}
+
+#endif
+
+HFS_SYSCTL(QUAD, _vfs_generic_hfs, OID_AUTO, allocated,
+                  CTLFLAG_RD | CTLFLAG_LOCKED, &hfs_allocated, "Memory allocated")
+
+void *hfs_malloc(size_t size)
+{
+#if HFS_MALLOC_DEBUG
+       hfs_assert(size <= 0xffffffff);
+
+       struct alloc_debug_header *hdr;
+
+       void *ptr;
+       ptr = kalloc(size + sizeof(*hdr));
+
+       hdr = ptr + size;
+
+       hdr->magic = HFS_ALLOC_MAGIC;
+       hdr->size = size;
+
+       if (hfs_alloc_tracing) {
+               OSBacktrace(hdr->backtrace, HFS_ALLOC_BACKTRACE_LEN);
+               lck_mtx_lock_spin(hfs_alloc_mtx);
+               LIST_INSERT_HEAD(&hfs_alloc_list, hdr, chain);
+               hdr->sequence = ++hfs_alloc_sequence;
+               lck_mtx_unlock(hfs_alloc_mtx);
+       } else
+               hdr->chain.le_prev = NULL;
+#else
+       void *ptr;
+       ptr = kalloc(size);
+#endif
+
+       OSAddAtomic64(size, &hfs_allocated);
+
+       return ptr;
+}
+
+void hfs_free(void *ptr, size_t size)
+{
+       if (!ptr)
+               return;
+
+       OSAddAtomic64(-(int64_t)size, &hfs_allocated);
+
+#if HFS_MALLOC_DEBUG
+       struct alloc_debug_header *hdr = ptr + size;
+
+       hfs_assert(hdr->magic == HFS_ALLOC_MAGIC);
+       hfs_assert(hdr->size == size);
+
+       hdr->magic = HFS_ALLOC_DEAD;
+
+       if (hdr->chain.le_prev) {
+               lck_mtx_lock_spin(hfs_alloc_mtx);
+               LIST_REMOVE(hdr, chain);
+               lck_mtx_unlock(hfs_alloc_mtx);
+       }
+
+       kfree(ptr, size + sizeof(*hdr));
+#else
+       kfree(ptr, size);
+#endif
+}
+
+void *hfs_mallocz(size_t size)
+{
+       void *ptr = hfs_malloc(size);
+       bzero(ptr, size);
+       return ptr;
+}
+
+// -- Zone allocator-related structures and routines --
+
+hfs_zone_entry_t hfs_zone_entries[HFS_NUM_ZONES] = {
+       { HFS_CNODE_ZONE, sizeof(struct cnode), "HFS node", true },
+       { HFS_FILEFORK_ZONE, sizeof(struct filefork), "HFS fork", true },
+       { HFS_DIRHINT_ZONE, sizeof(struct directoryhint), "HFS dirhint", true }
+};
+
+hfs_zone_t hfs_zones[HFS_NUM_ZONES];
+
+void hfs_init_zones(void) {
+       for (int i = 0; i < HFS_NUM_ZONES; i++) {
+               hfs_zones[i].hz_zone = zinit(hfs_zone_entries[i].hze_elem_size, 1024 * 1024, PAGE_SIZE, hfs_zone_entries[i].hze_name);
+               hfs_zones[i].hz_elem_size = hfs_zone_entries[i].hze_elem_size;
+               
+               zone_change(hfs_zones[i].hz_zone, Z_CALLERACCT, false);
+               if (hfs_zone_entries[i].hze_noencrypt)
+                       zone_change(hfs_zones[i].hz_zone, Z_NOENCRYPT, true);
+       }
+}
+
+void *hfs_zalloc(hfs_zone_kind_t zone)
+{
+       OSAddAtomic64(hfs_zones[zone].hz_elem_size, &hfs_allocated);
+       
+       return zalloc(hfs_zones[zone].hz_zone);
+}
+
+void hfs_zfree(void *ptr, hfs_zone_kind_t zone)
+{
+       OSAddAtomic64(-(int64_t)hfs_zones[zone].hz_elem_size, &hfs_allocated);
+       
+       zfree(hfs_zones[zone].hz_zone, ptr);
+}
+
+struct hfs_sysctl_chain *sysctl_list;
+
+void hfs_sysctl_register(void)
+{
+       struct hfs_sysctl_chain *e = sysctl_list;
+       while (e) {
+               sysctl_register_oid(e->oid);
+               e = e->next;
+       }
+}
+
+void hfs_sysctl_unregister(void)
+{
+       struct hfs_sysctl_chain *e = sysctl_list;
+       while (e) {
+               sysctl_unregister_oid(e->oid);
+               e = e->next;
+       }
+}
+
+void hfs_assert_fail(const char *file, unsigned line, const char *expr)
+{
+       Assert(file, line, expr);
+       __builtin_unreachable();
+}