--- /dev/null
+/*
+ * Copyright (c) 2013-2015 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+#include <sys/systm.h>
+#include <sys/kauth.h>
+#include <sys/ubc.h>
+
+#include "hfs_journal.h"
+#include <miscfs/specfs/specdev.h>
+
+#include "hfs.h"
+#include "hfs_catalog.h"
+#include "hfs_cnode.h"
+#include "hfs_endian.h"
+#include "hfs_btreeio.h"
+#include "hfs_cprotect.h"
+
+/* Enable/disable debugging code for live volume resizing */
+int hfs_resize_debug = 0;
+
+static errno_t hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit,
+ struct HFSPlusCatalogFile *filerec, bool *overlaps);
+static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context);
+static int hfs_extend_journal(struct hfsmount *hfsmp, u_int32_t sector_size, u_int64_t sector_count, vfs_context_t context);
+
+/*
+ * Extend a file system.
+ */
+int
+hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
+{
+ struct proc *p = vfs_context_proc(context);
+ kauth_cred_t cred = vfs_context_ucred(context);
+ struct vnode *vp = NULL;
+ struct vnode *devvp;
+ struct buf *bp;
+ struct filefork *fp = NULL;
+ ExtendedVCB *vcb;
+ struct cat_fork forkdata;
+ u_int64_t oldsize;
+ uint32_t newblkcnt;
+ u_int64_t prev_phys_block_count;
+ u_int32_t addblks;
+ u_int64_t sector_count;
+ u_int32_t sector_size;
+ u_int32_t phys_sector_size;
+ u_int32_t overage_blocks;
+ daddr64_t prev_fs_alt_sector;
+ daddr_t bitmapblks;
+ int lockflags = 0;
+ int error;
+ int64_t oldBitmapSize;
+
+ Boolean usedExtendFileC = false;
+ int transaction_begun = 0;
+
+ devvp = hfsmp->hfs_devvp;
+ vcb = HFSTOVCB(hfsmp);
+
+ /*
+ * - HFS Plus file systems only.
+ * - Journaling must be enabled.
+ * - No embedded volumes.
+ */
+ if ((vcb->vcbSigWord == kHFSSigWord) ||
+ (hfsmp->jnl == NULL) ||
+ (vcb->hfsPlusIOPosOffset != 0)) {
+ return (EPERM);
+ }
+ /*
+ * If extending file system by non-root, then verify
+ * ownership and check permissions.
+ */
+ if (suser(cred, NULL)) {
+ error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0, 0);
+
+ if (error)
+ return (error);
+ error = hfs_owner_rights(hfsmp, VTOC(vp)->c_uid, cred, p, 0);
+ if (error == 0) {
+ error = hfs_write_access(vp, cred, p, false);
+ }
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ if (error)
+ return (error);
+
+ error = vnode_authorize(devvp, NULL, KAUTH_VNODE_READ_DATA | KAUTH_VNODE_WRITE_DATA, context);
+ if (error)
+ return (error);
+ }
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)§or_size, 0, context)) {
+ return (ENXIO);
+ }
+ if (sector_size != hfsmp->hfs_logical_block_size) {
+ return (ENXIO);
+ }
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)§or_count, 0, context)) {
+ return (ENXIO);
+ }
+ /* Check if partition size is correct for new file system size */
+ if ((sector_size * sector_count) < newsize) {
+ printf("hfs_extendfs: not enough space on device (vol=%s)\n", hfsmp->vcbVN);
+ return (ENOSPC);
+ }
+ error = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_sector_size, 0, context);
+ if (error) {
+ if ((error != ENOTSUP) && (error != ENOTTY)) {
+ return (ENXIO);
+ }
+ /* If ioctl is not supported, force physical and logical sector size to be same */
+ phys_sector_size = sector_size;
+ }
+ oldsize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
+
+ /*
+ * Validate new size.
+ */
+ if ((newsize <= oldsize) || (newsize % sector_size) || (newsize % phys_sector_size)) {
+ printf("hfs_extendfs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
+ return (EINVAL);
+ }
+ uint64_t cnt = newsize / vcb->blockSize;
+ if (cnt > 0xFFFFFFFF) {
+ printf ("hfs_extendfs: current blockSize=%u too small for newsize=%qu\n", hfsmp->blockSize, newsize);
+ return (EOVERFLOW);
+ }
+
+ newblkcnt = (uint32_t)cnt;
+
+ addblks = newblkcnt - vcb->totalBlocks;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_extendfs: old: size=%qu, blkcnt=%u\n", oldsize, hfsmp->totalBlocks);
+ printf ("hfs_extendfs: new: size=%qu, blkcnt=%u, addblks=%u\n", newsize, newblkcnt, addblks);
+ }
+ printf("hfs_extendfs: will extend \"%s\" by %d blocks\n", vcb->vcbVN, addblks);
+
+ hfs_lock_mount (hfsmp);
+ if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
+ hfs_unlock_mount(hfsmp);
+ error = EALREADY;
+ goto out;
+ }
+ hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
+ hfs_unlock_mount (hfsmp);
+
+ /* Start with a clean journal. */
+ hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+
+ /*
+ * Enclose changes inside a transaction.
+ */
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ goto out;
+ }
+ transaction_begun = 1;
+
+
+ /* Update the hfsmp fields for the physical information about the device */
+ prev_phys_block_count = hfsmp->hfs_logical_block_count;
+ prev_fs_alt_sector = hfsmp->hfs_fs_avh_sector;
+
+ hfsmp->hfs_logical_block_count = sector_count;
+ hfsmp->hfs_logical_bytes = (uint64_t) sector_count * (uint64_t) sector_size;
+
+ /*
+ * It is possible that the new file system is smaller than the partition size.
+ * Therefore, update offsets for AVH accordingly.
+ */
+ if (hfs_resize_debug) {
+ printf ("hfs_extendfs: old: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
+ hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
+ }
+ hfsmp->hfs_partition_avh_sector = (hfsmp->hfsPlusIOPosOffset / sector_size) +
+ HFS_ALT_SECTOR(sector_size, hfsmp->hfs_logical_block_count);
+
+ hfsmp->hfs_fs_avh_sector = (hfsmp->hfsPlusIOPosOffset / sector_size) +
+ HFS_ALT_SECTOR(sector_size, (newsize/hfsmp->hfs_logical_block_size));
+ if (hfs_resize_debug) {
+ printf ("hfs_extendfs: new: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
+ hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
+ }
+
+ /*
+ * Note: we take the attributes lock in case we have an attribute data vnode
+ * which needs to change size.
+ */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+ vp = vcb->allocationsRefNum;
+ fp = VTOF(vp);
+ bcopy(&fp->ff_data, &forkdata, sizeof(forkdata));
+
+ /*
+ * Calculate additional space required (if any) by allocation bitmap.
+ */
+ oldBitmapSize = fp->ff_size;
+ bitmapblks = roundup((newblkcnt+7) / 8, vcb->vcbVBMIOSize) / vcb->blockSize;
+ if (bitmapblks > (daddr_t)fp->ff_blocks)
+ bitmapblks -= fp->ff_blocks;
+ else
+ bitmapblks = 0;
+
+ /*
+ * The allocation bitmap can contain unused bits that are beyond end of
+ * current volume's allocation blocks. Usually they are supposed to be
+ * zero'ed out but there can be cases where they might be marked as used.
+ * After extending the file system, those bits can represent valid
+ * allocation blocks, so we mark all the bits from the end of current
+ * volume to end of allocation bitmap as "free".
+ *
+ * Figure out the number of overage blocks before proceeding though,
+ * so we don't add more bytes to our I/O than necessary.
+ * First figure out the total number of blocks representable by the
+ * end of the bitmap file vs. the total number of blocks in the new FS.
+ * Then subtract away the number of blocks in the current FS. This is how much
+ * we can mark as free right now without having to grow the bitmap file.
+ */
+ overage_blocks = fp->ff_blocks * vcb->blockSize * 8;
+ overage_blocks = MIN (overage_blocks, newblkcnt);
+ overage_blocks -= vcb->totalBlocks;
+
+ BlockMarkFreeUnused(vcb, vcb->totalBlocks, overage_blocks);
+
+ if (bitmapblks > 0) {
+ daddr64_t blkno;
+ daddr_t blkcnt;
+ off_t bytesAdded;
+
+ /*
+ * Get the bitmap's current size (in allocation blocks) so we know
+ * where to start zero filling once the new space is added. We've
+ * got to do this before the bitmap is grown.
+ */
+ blkno = (daddr64_t)fp->ff_blocks;
+
+ /*
+ * Try to grow the allocation file in the normal way, using allocation
+ * blocks already existing in the file system. This way, we might be
+ * able to grow the bitmap contiguously, or at least in the metadata
+ * zone.
+ */
+ error = ExtendFileC(vcb, fp, bitmapblks * vcb->blockSize, 0,
+ kEFAllMask | kEFNoClumpMask | kEFReserveMask
+ | kEFMetadataMask | kEFContigMask, &bytesAdded);
+
+ if (error == 0) {
+ usedExtendFileC = true;
+ } else {
+ /*
+ * If the above allocation failed, fall back to allocating the new
+ * extent of the bitmap from the space we're going to add. Since those
+ * blocks don't yet belong to the file system, we have to update the
+ * extent list directly, and manually adjust the file size.
+ */
+ bytesAdded = 0;
+ error = AddFileExtent(vcb, fp, vcb->totalBlocks, bitmapblks);
+ if (error) {
+ printf("hfs_extendfs: error %d adding extents\n", error);
+ goto out;
+ }
+ fp->ff_blocks += bitmapblks;
+ VTOC(vp)->c_blocks = fp->ff_blocks;
+ VTOC(vp)->c_flag |= C_MODIFIED;
+ }
+
+ /*
+ * Update the allocation file's size to include the newly allocated
+ * blocks. Note that ExtendFileC doesn't do this, which is why this
+ * statement is outside the above "if" statement.
+ */
+ fp->ff_size += (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
+
+ /*
+ * Zero out the new bitmap blocks.
+ */
+ {
+
+ bp = NULL;
+ blkcnt = bitmapblks;
+ while (blkcnt > 0) {
+ error = (int)buf_meta_bread(vp, blkno, vcb->blockSize, NOCRED, &bp);
+ if (error) {
+ if (bp) {
+ buf_brelse(bp);
+ }
+ break;
+ }
+ bzero((char *)buf_dataptr(bp), vcb->blockSize);
+ buf_markaged(bp);
+ error = (int)buf_bwrite(bp);
+ if (error)
+ break;
+ --blkcnt;
+ ++blkno;
+ }
+ }
+ if (error) {
+ printf("hfs_extendfs: error %d clearing blocks\n", error);
+ goto out;
+ }
+ /*
+ * Mark the new bitmap space as allocated.
+ *
+ * Note that ExtendFileC will have marked any blocks it allocated, so
+ * this is only needed if we used AddFileExtent. Also note that this
+ * has to come *after* the zero filling of new blocks in the case where
+ * we used AddFileExtent (since the part of the bitmap we're touching
+ * is in those newly allocated blocks).
+ */
+ if (!usedExtendFileC) {
+ error = BlockMarkAllocated(vcb, vcb->totalBlocks, bitmapblks);
+ if (error) {
+ printf("hfs_extendfs: error %d setting bitmap\n", error);
+ goto out;
+ }
+ vcb->freeBlocks -= bitmapblks;
+ }
+ }
+
+ /*
+ * Mark the new alternate VH as allocated.
+ */
+ if (vcb->blockSize == 512)
+ error = BlockMarkAllocated(vcb, vcb->totalBlocks + addblks - 2, 2);
+ else
+ error = BlockMarkAllocated(vcb, vcb->totalBlocks + addblks - 1, 1);
+ if (error) {
+ printf("hfs_extendfs: error %d setting bitmap (VH)\n", error);
+ goto out;
+ }
+
+ /*
+ * Mark the old alternate VH as free.
+ */
+ if (vcb->blockSize == 512)
+ (void) BlockMarkFree(vcb, vcb->totalBlocks - 2, 2);
+ else
+ (void) BlockMarkFree(vcb, vcb->totalBlocks - 1, 1);
+
+ /*
+ * Adjust file system variables for new space.
+ */
+ vcb->totalBlocks += addblks;
+ vcb->freeBlocks += addblks;
+ MarkVCBDirty(vcb);
+ error = hfs_flushvolumeheader(hfsmp, HFS_FVH_WAIT | HFS_FVH_WRITE_ALT);
+ if (error) {
+ printf("hfs_extendfs: couldn't flush volume headers (%d)", error);
+ /*
+ * Restore to old state.
+ */
+ if (usedExtendFileC) {
+ (void) TruncateFileC(vcb, fp, oldBitmapSize, 0, FORK_IS_RSRC(fp),
+ FTOC(fp)->c_fileid, false);
+ } else {
+ fp->ff_blocks -= bitmapblks;
+ fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
+ /*
+ * No need to mark the excess blocks free since those bitmap blocks
+ * are no longer part of the bitmap. But we do need to undo the
+ * effect of the "vcb->freeBlocks -= bitmapblks" above.
+ */
+ vcb->freeBlocks += bitmapblks;
+ }
+ vcb->totalBlocks -= addblks;
+ vcb->freeBlocks -= addblks;
+ hfsmp->hfs_logical_block_count = prev_phys_block_count;
+ hfsmp->hfs_fs_avh_sector = prev_fs_alt_sector;
+ /* Do not revert hfs_partition_avh_sector because the
+ * partition size is larger than file system size
+ */
+ MarkVCBDirty(vcb);
+ if (vcb->blockSize == 512) {
+ if (BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2)) {
+ hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
+ }
+ } else {
+ if (BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1)) {
+ hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
+ }
+ }
+ goto out;
+ }
+ /*
+ * Invalidate the old alternate volume header. We are growing the filesystem so
+ * this sector must be returned to the FS as free space.
+ */
+ bp = NULL;
+ if (prev_fs_alt_sector) {
+ if (buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(prev_fs_alt_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp) == 0) {
+ journal_modify_block_start(hfsmp->jnl, bp);
+
+ bzero((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size), kMDBSize);
+
+ journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
+ } else if (bp) {
+ buf_brelse(bp);
+ }
+ }
+
+ /*
+ * Update the metadata zone size based on current volume size
+ */
+ hfs_metadatazone_init(hfsmp, false);
+
+ /*
+ * Adjust the size of hfsmp->hfs_attrdata_vp
+ */
+ if (hfsmp->hfs_attrdata_vp) {
+ struct cnode *attr_cp;
+ struct filefork *attr_fp;
+
+ if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
+ attr_cp = VTOC(hfsmp->hfs_attrdata_vp);
+ attr_fp = VTOF(hfsmp->hfs_attrdata_vp);
+
+ attr_cp->c_blocks = newblkcnt;
+ attr_fp->ff_blocks = newblkcnt;
+ attr_fp->ff_extents[0].blockCount = newblkcnt;
+ attr_fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
+ ubc_setsize(hfsmp->hfs_attrdata_vp, attr_fp->ff_size);
+ vnode_put(hfsmp->hfs_attrdata_vp);
+ }
+ }
+
+ /*
+ * We only update hfsmp->allocLimit if totalBlocks actually increased.
+ */
+ if (error == 0) {
+ UpdateAllocLimit(hfsmp, hfsmp->totalBlocks);
+ }
+
+ /* Release all locks and sync up journal content before
+ * checking and extending, if required, the journal
+ */
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ lockflags = 0;
+ }
+ if (transaction_begun) {
+ hfs_end_transaction(hfsmp);
+ hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+ transaction_begun = 0;
+ }
+
+ /* Increase the journal size, if required. */
+ error = hfs_extend_journal(hfsmp, sector_size, sector_count, context);
+ if (error) {
+ printf ("hfs_extendfs: Could not extend journal size\n");
+ goto out_noalloc;
+ }
+
+ /* Log successful extending */
+ printf("hfs_extendfs: extended \"%s\" to %d blocks (was %d blocks)\n",
+ hfsmp->vcbVN, hfsmp->totalBlocks, (u_int32_t)(oldsize/hfsmp->blockSize));
+
+out:
+ if (error && fp) {
+ /* Restore allocation fork. */
+ bcopy(&forkdata, &fp->ff_data, sizeof(forkdata));
+ VTOC(vp)->c_blocks = fp->ff_blocks;
+
+ }
+
+out_noalloc:
+ hfs_lock_mount (hfsmp);
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ hfs_unlock_mount (hfsmp);
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (transaction_begun) {
+ hfs_end_transaction(hfsmp);
+ /* Just to be sure, sync all data to the disk */
+ int flush_error = hfs_flush(hfsmp, HFS_FLUSH_FULL);
+ if (flush_error && !error)
+ error = flush_error;
+ }
+ if (error) {
+ printf ("hfs_extentfs: failed error=%d on vol=%s\n", MacToVFSError(error), hfsmp->vcbVN);
+ }
+
+ return MacToVFSError(error);
+}
+
+#define HFS_MIN_SIZE (32LL * 1024LL * 1024LL)
+
+/*
+ * Truncate a file system (while still mounted).
+ */
+int
+hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
+{
+ u_int64_t oldsize;
+ u_int32_t newblkcnt;
+ u_int32_t reclaimblks = 0;
+ int lockflags = 0;
+ int transaction_begun = 0;
+ Boolean updateFreeBlocks = false;
+ Boolean disable_sparse = false;
+ int error = 0;
+
+ hfs_lock_mount (hfsmp);
+ if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
+ hfs_unlock_mount (hfsmp);
+ return (EALREADY);
+ }
+ hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
+ hfsmp->hfs_resize_blocksmoved = 0;
+ hfsmp->hfs_resize_totalblocks = 0;
+ hfsmp->hfs_resize_progress = 0;
+ hfs_unlock_mount (hfsmp);
+
+ /*
+ * - Journaled HFS Plus volumes only.
+ * - No embedded volumes.
+ */
+ if ((hfsmp->jnl == NULL) ||
+ (hfsmp->hfsPlusIOPosOffset != 0)) {
+ error = EPERM;
+ goto out;
+ }
+ oldsize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
+ newblkcnt = newsize / hfsmp->blockSize;
+ reclaimblks = hfsmp->totalBlocks - newblkcnt;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_truncatefs: old: size=%qu, blkcnt=%u, freeblks=%u\n", oldsize, hfsmp->totalBlocks, hfs_freeblks(hfsmp, 1));
+ printf ("hfs_truncatefs: new: size=%qu, blkcnt=%u, reclaimblks=%u\n", newsize, newblkcnt, reclaimblks);
+ }
+
+ /* Make sure new size is valid. */
+ if ((newsize < HFS_MIN_SIZE) ||
+ (newsize >= oldsize) ||
+ (newsize % hfsmp->hfs_logical_block_size) ||
+ (newsize % hfsmp->hfs_physical_block_size)) {
+ printf ("hfs_truncatefs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
+ error = EINVAL;
+ goto out;
+ }
+
+ /*
+ * Make sure that the file system has enough free blocks reclaim.
+ *
+ * Before resize, the disk is divided into four zones -
+ * A. Allocated_Stationary - These are allocated blocks that exist
+ * before the new end of disk. These blocks will not be
+ * relocated or modified during resize.
+ * B. Free_Stationary - These are free blocks that exist before the
+ * new end of disk. These blocks can be used for any new
+ * allocations during resize, including allocation for relocating
+ * data from the area of disk being reclaimed.
+ * C. Allocated_To-Reclaim - These are allocated blocks that exist
+ * beyond the new end of disk. These blocks need to be reclaimed
+ * during resize by allocating equal number of blocks in Free
+ * Stationary zone and copying the data.
+ * D. Free_To-Reclaim - These are free blocks that exist beyond the
+ * new end of disk. Nothing special needs to be done to reclaim
+ * them.
+ *
+ * Total number of blocks on the disk before resize:
+ * ------------------------------------------------
+ * Total Blocks = Allocated_Stationary + Free_Stationary +
+ * Allocated_To-Reclaim + Free_To-Reclaim
+ *
+ * Total number of blocks that need to be reclaimed:
+ * ------------------------------------------------
+ * Blocks to Reclaim = Allocated_To-Reclaim + Free_To-Reclaim
+ *
+ * Note that the check below also makes sure that we have enough space
+ * to relocate data from Allocated_To-Reclaim to Free_Stationary.
+ * Therefore we do not need to check total number of blocks to relocate
+ * later in the code.
+ *
+ * The condition below gets converted to:
+ *
+ * Allocated To-Reclaim + Free To-Reclaim >= Free Stationary + Free To-Reclaim
+ *
+ * which is equivalent to:
+ *
+ * Allocated To-Reclaim >= Free Stationary
+ */
+ if (reclaimblks >= hfs_freeblks(hfsmp, 1)) {
+ printf("hfs_truncatefs: insufficient space (need %u blocks; have %u free blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1));
+ error = ENOSPC;
+ goto out;
+ }
+
+ /* Start with a clean journal. */
+ hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ goto out;
+ }
+ transaction_begun = 1;
+
+ /* Take the bitmap lock to update the alloc limit field */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * Prevent new allocations from using the part we're trying to truncate.
+ *
+ * NOTE: allocLimit is set to the allocation block number where the new
+ * alternate volume header will be. That way there will be no files to
+ * interfere with allocating the new alternate volume header, and no files
+ * in the allocation blocks beyond (i.e. the blocks we're trying to
+ * truncate away.
+ */
+ if (hfsmp->blockSize == 512) {
+ error = UpdateAllocLimit (hfsmp, newblkcnt - 2);
+ }
+ else {
+ error = UpdateAllocLimit (hfsmp, newblkcnt - 1);
+ }
+
+ /* Sparse devices use first fit allocation which is not ideal
+ * for volume resize which requires best fit allocation. If a
+ * sparse device is being truncated, disable the sparse device
+ * property temporarily for the duration of resize. Also reset
+ * the free extent cache so that it is rebuilt as sorted by
+ * totalBlocks instead of startBlock.
+ *
+ * Note that this will affect all allocations on the volume and
+ * ideal fix would be just to modify resize-related allocations,
+ * but it will result in complexity like handling of two free
+ * extent caches sorted differently, etc. So we stick to this
+ * solution for now.
+ */
+ hfs_lock_mount (hfsmp);
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
+ ResetVCBFreeExtCache(hfsmp);
+ disable_sparse = true;
+ }
+
+ /*
+ * Update the volume free block count to reflect the total number
+ * of free blocks that will exist after a successful resize.
+ * Relocation of extents will result in no net change in the total
+ * free space on the disk. Therefore the code that allocates
+ * space for new extent and deallocates the old extent explicitly
+ * prevents updating the volume free block count. It will also
+ * prevent false disk full error when the number of blocks in
+ * an extent being relocated is more than the free blocks that
+ * will exist after the volume is resized.
+ */
+ hfsmp->reclaimBlocks = reclaimblks;
+ hfsmp->freeBlocks -= reclaimblks;
+ updateFreeBlocks = true;
+ hfs_unlock_mount(hfsmp);
+
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ lockflags = 0;
+ }
+
+ /*
+ * Update the metadata zone size to match the new volume size,
+ * and if it too less, metadata zone might be disabled.
+ */
+ hfs_metadatazone_init(hfsmp, false);
+
+ /*
+ * If some files have blocks at or beyond the location of the
+ * new alternate volume header, recalculate free blocks and
+ * reclaim blocks. Otherwise just update free blocks count.
+ *
+ * The current allocLimit is set to the location of new alternate
+ * volume header, and reclaimblks are the total number of blocks
+ * that need to be reclaimed. So the check below is really
+ * ignoring the blocks allocated for old alternate volume header.
+ */
+ if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) {
+ /*
+ * hfs_reclaimspace will use separate transactions when
+ * relocating files (so we don't overwhelm the journal).
+ */
+ hfs_end_transaction(hfsmp);
+ transaction_begun = 0;
+
+ /* Attempt to reclaim some space. */
+ error = hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context);
+ if (error != 0) {
+ printf("hfs_truncatefs: couldn't reclaim space on %s (error=%d)\n", hfsmp->vcbVN, error);
+ error = ENOSPC;
+ goto out;
+ }
+
+ if (hfs_start_transaction(hfsmp) != 0) {
+ error = EINVAL;
+ goto out;
+ }
+ transaction_begun = 1;
+
+ /* Check if we're clear now. */
+ error = hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks);
+ if (error != 0) {
+ printf("hfs_truncatefs: didn't reclaim enough space on %s (error=%d)\n", hfsmp->vcbVN, error);
+ error = EAGAIN; /* tell client to try again */
+ goto out;
+ }
+ }
+
+ /*
+ * Note: we take the attributes lock in case we have an attribute data vnode
+ * which needs to change size.
+ */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * Allocate last 1KB for alternate volume header.
+ */
+ error = BlockMarkAllocated(hfsmp, hfsmp->allocLimit, (hfsmp->blockSize == 512) ? 2 : 1);
+ if (error) {
+ printf("hfs_truncatefs: Error %d allocating new alternate volume header\n", error);
+ goto out;
+ }
+
+ /*
+ * Mark the old alternate volume header as free.
+ * We don't bother shrinking allocation bitmap file.
+ */
+ if (hfsmp->blockSize == 512)
+ (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2);
+ else
+ (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1);
+
+ /* Don't invalidate the old AltVH yet. It is still valid until the partition size is updated ! */
+
+ /* Log successful shrinking. */
+ printf("hfs_truncatefs: shrank \"%s\" to %d blocks (was %d blocks)\n",
+ hfsmp->vcbVN, newblkcnt, hfsmp->totalBlocks);
+
+ /*
+ * Adjust file system variables and flush them to disk.
+ *
+ * Note that although the logical block size is updated here, it is only
+ * done for the benefit/convenience of the partition management software. The
+ * logical block count change has not yet actually been propagated to
+ * the disk device yet (and we won't get any notification when it does).
+ */
+ hfsmp->totalBlocks = newblkcnt;
+ hfsmp->hfs_logical_block_count = newsize / hfsmp->hfs_logical_block_size;
+ hfsmp->hfs_logical_bytes = (uint64_t) hfsmp->hfs_logical_block_count * (uint64_t) hfsmp->hfs_logical_block_size;
+ hfsmp->reclaimBlocks = 0;
+
+ /*
+ * At this point, a smaller HFS file system exists in a larger volume.
+ * As per volume format, the alternate volume header is located 1024 bytes
+ * before end of the partition. So, until the partition is also resized,
+ * a valid alternate volume header will need to be updated at 1024 bytes
+ * before end of the volume. Under normal circumstances, a file system
+ * resize is always followed by a volume resize, so we also need to
+ * write a copy of the new alternate volume header at 1024 bytes before
+ * end of the new file system.
+ */
+ if (hfs_resize_debug) {
+ printf ("hfs_truncatefs: old: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
+ hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
+ }
+ hfsmp->hfs_fs_avh_sector = HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size, hfsmp->hfs_logical_block_count);
+ /* Note hfs_partition_avh_sector stays unchanged! partition size has not yet been modified */
+ if (hfs_resize_debug) {
+ printf ("hfs_truncatefs: new: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
+ hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
+ }
+
+ MarkVCBDirty(hfsmp);
+ error = hfs_flushvolumeheader(hfsmp, HFS_FVH_WAIT | HFS_FVH_WRITE_ALT);
+ if (error) {
+ panic("hfs_truncatefs: unexpected error flushing volume header (%d)\n", error);
+ }
+
+ /*
+ * Adjust the size of hfsmp->hfs_attrdata_vp
+ */
+ if (hfsmp->hfs_attrdata_vp) {
+ struct cnode *cp;
+ struct filefork *fp;
+
+ if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
+ cp = VTOC(hfsmp->hfs_attrdata_vp);
+ fp = VTOF(hfsmp->hfs_attrdata_vp);
+
+ cp->c_blocks = newblkcnt;
+ fp->ff_blocks = newblkcnt;
+ fp->ff_extents[0].blockCount = newblkcnt;
+ fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
+ ubc_setsize(hfsmp->hfs_attrdata_vp, fp->ff_size);
+ vnode_put(hfsmp->hfs_attrdata_vp);
+ }
+ }
+
+out:
+ /*
+ * Update the allocLimit to acknowledge the last one or two blocks now.
+ * Add it to the tree as well if necessary.
+ */
+ UpdateAllocLimit (hfsmp, hfsmp->totalBlocks);
+
+ hfs_lock_mount (hfsmp);
+ if (disable_sparse == true) {
+ /* Now that resize is completed, set the volume to be sparse
+ * device again so that all further allocations will be first
+ * fit instead of best fit. Reset free extent cache so that
+ * it is rebuilt.
+ */
+ hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
+ ResetVCBFreeExtCache(hfsmp);
+ }
+
+ if (error && (updateFreeBlocks == true)) {
+ hfsmp->freeBlocks += reclaimblks;
+ }
+ hfsmp->reclaimBlocks = 0;
+
+ if (hfsmp->nextAllocation >= hfsmp->allocLimit) {
+ hfsmp->nextAllocation = hfsmp->hfs_metazone_end + 1;
+ }
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ hfs_unlock_mount (hfsmp);
+
+ /* On error, reset the metadata zone for original volume size */
+ if (error && (updateFreeBlocks == true)) {
+ hfs_metadatazone_init(hfsmp, false);
+ }
+
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (transaction_begun) {
+ hfs_end_transaction(hfsmp);
+ /* Just to be sure, sync all data to the disk */
+ int flush_error = hfs_flush(hfsmp, HFS_FLUSH_FULL);
+ if (flush_error && !error)
+ error = flush_error;
+ }
+
+ if (error) {
+ printf ("hfs_truncatefs: failed error=%d on vol=%s\n", MacToVFSError(error), hfsmp->vcbVN);
+ }
+
+ return MacToVFSError(error);
+}
+
+
+/*
+ * Invalidate the physical block numbers associated with buffer cache blocks
+ * in the given extent of the given vnode.
+ */
+struct hfs_inval_blk_no {
+ daddr64_t sectorStart;
+ daddr64_t sectorCount;
+};
+static int
+hfs_invalidate_block_numbers_callback(buf_t bp, void *args_in)
+{
+ daddr64_t blkno;
+ struct hfs_inval_blk_no *args;
+
+ blkno = buf_blkno(bp);
+ args = args_in;
+
+ if (blkno >= args->sectorStart && blkno < args->sectorStart+args->sectorCount)
+ buf_setblkno(bp, buf_lblkno(bp));
+
+ return BUF_RETURNED;
+}
+static void
+hfs_invalidate_sectors(struct vnode *vp, daddr64_t sectorStart, daddr64_t sectorCount)
+{
+ struct hfs_inval_blk_no args;
+ args.sectorStart = sectorStart;
+ args.sectorCount = sectorCount;
+
+ buf_iterate(vp, hfs_invalidate_block_numbers_callback, BUF_SCAN_DIRTY|BUF_SCAN_CLEAN, &args);
+}
+
+
+/*
+ * Copy the contents of an extent to a new location. Also invalidates the
+ * physical block number of any buffer cache block in the copied extent
+ * (so that if the block is written, it will go through VNOP_BLOCKMAP to
+ * determine the new physical block number).
+ *
+ * At this point, for regular files, we hold the truncate lock exclusive
+ * and the cnode lock exclusive.
+ */
+static int
+hfs_copy_extent(
+ struct hfsmount *hfsmp,
+ struct vnode *vp, /* The file whose extent is being copied. */
+ u_int32_t oldStart, /* The start of the source extent. */
+ u_int32_t newStart, /* The start of the destination extent. */
+ u_int32_t blockCount, /* The number of allocation blocks to copy. */
+ __unused vfs_context_t context)
+{
+ int err = 0;
+ size_t bufferSize;
+ void *buffer = NULL;
+ struct vfsioattr ioattr;
+ buf_t bp = NULL;
+ off_t resid;
+ size_t ioSize;
+ u_int32_t ioSizeSectors; /* Device sectors in this I/O */
+ daddr64_t srcSector, destSector;
+ u_int32_t sectorsPerBlock = hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+#if CONFIG_PROTECT
+ int cpenabled = 0;
+#endif
+
+ /*
+ * Sanity check that we have locked the vnode of the file we're copying.
+ *
+ * But since hfs_systemfile_lock() doesn't actually take the lock on
+ * the allocation file if a journal is active, ignore the check if the
+ * file being copied is the allocation file.
+ */
+ struct cnode *cp = VTOC(vp);
+ if (cp != hfsmp->hfs_allocation_cp && cp->c_lockowner != current_thread())
+ panic("hfs_copy_extent: vp=%p (cp=%p) not owned?\n", vp, cp);
+
+#if CONFIG_PROTECT
+ /*
+ * Prepare the CP blob and get it ready for use, if necessary.
+ *
+ * Note that we specifically *exclude* system vnodes (catalog, bitmap, extents, EAs),
+ * because they are implicitly protected via the media key on iOS. As such, they
+ * must not be relocated except with the media key. So it is OK to not pass down
+ * a special cpentry to the IOMedia/LwVM code for handling.
+ */
+ if (!vnode_issystem (vp) && vnode_isreg(vp) && cp_fs_protected (hfsmp->hfs_mp)) {
+ cpenabled = 1;
+ }
+#endif
+
+ /*
+ * Determine the I/O size to use
+ *
+ * NOTE: Many external drives will result in an ioSize of 128KB.
+ * TODO: Should we use a larger buffer, doing several consecutive
+ * reads, then several consecutive writes?
+ */
+ vfs_ioattr(hfsmp->hfs_mp, &ioattr);
+ bufferSize = MIN(ioattr.io_maxreadcnt, ioattr.io_maxwritecnt);
+ buffer = hfs_malloc(bufferSize);
+
+ /* Get a buffer for doing the I/O */
+ bp = buf_alloc(hfsmp->hfs_devvp);
+ buf_setdataptr(bp, (uintptr_t)buffer);
+
+ resid = (off_t) blockCount * (off_t) hfsmp->blockSize;
+ srcSector = (daddr64_t) oldStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+ destSector = (daddr64_t) newStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+ while (resid > 0) {
+ ioSize = MIN(bufferSize, (size_t) resid);
+ ioSizeSectors = ioSize / hfsmp->hfs_logical_block_size;
+
+ /* Prepare the buffer for reading */
+ buf_reset(bp, B_READ);
+ buf_setsize(bp, ioSize);
+ buf_setcount(bp, ioSize);
+ buf_setblkno(bp, srcSector);
+ buf_setlblkno(bp, srcSector);
+
+ /*
+ * Note that because this is an I/O to the device vp
+ * it is correct to have lblkno and blkno both point to the
+ * start sector being read from. If it were being issued against the
+ * underlying file then that would be different.
+ */
+
+ /* Attach the new CP blob to the buffer if needed */
+#if CONFIG_PROTECT
+ if (cpenabled) {
+ /* attach the RELOCATION_INFLIGHT flag for the underlying call to VNOP_STRATEGY */
+ cp->c_cpentry->cp_flags |= CP_RELOCATION_INFLIGHT;
+ bufattr_setcpx(buf_attr(bp), hfsmp->hfs_resize_cpx);
+
+ /* Initialize the content protection file offset to start at 0 */
+ bufattr_setcpoff(buf_attr(bp), 0);
+ }
+#endif
+
+ /* Do the read */
+ err = VNOP_STRATEGY(bp);
+ if (!err)
+ err = buf_biowait(bp);
+ if (err) {
+#if CONFIG_PROTECT
+ /* Turn the flag off in error cases. */
+ if (cpenabled) {
+ cp->c_cpentry->cp_flags &= ~CP_RELOCATION_INFLIGHT;
+ }
+#endif
+ printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (read)\n", err);
+ break;
+ }
+
+ /* Prepare the buffer for writing */
+ buf_reset(bp, B_WRITE);
+ buf_setsize(bp, ioSize);
+ buf_setcount(bp, ioSize);
+ buf_setblkno(bp, destSector);
+ buf_setlblkno(bp, destSector);
+ if (vnode_issystem(vp) && journal_uses_fua(hfsmp->jnl))
+ buf_markfua(bp);
+
+#if CONFIG_PROTECT
+ /* Attach the CP to the buffer if needed */
+ if (cpenabled) {
+ bufattr_setcpx(buf_attr(bp), hfsmp->hfs_resize_cpx);
+ /*
+ * The last STRATEGY call may have updated the cp file offset behind our
+ * back, so we cannot trust it. Re-initialize the content protection
+ * file offset back to 0 before initiating the write portion of this I/O.
+ */
+ bufattr_setcpoff(buf_attr(bp), 0);
+ }
+#endif
+
+ /* Do the write */
+ vnode_startwrite(hfsmp->hfs_devvp);
+ err = VNOP_STRATEGY(bp);
+ if (!err) {
+ err = buf_biowait(bp);
+ }
+#if CONFIG_PROTECT
+ /* Turn the flag off regardless once the strategy call finishes. */
+ if (cpenabled) {
+ cp->c_cpentry->cp_flags &= ~CP_RELOCATION_INFLIGHT;
+ }
+#endif
+ if (err) {
+ printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (write)\n", err);
+ break;
+ }
+
+ resid -= ioSize;
+ srcSector += ioSizeSectors;
+ destSector += ioSizeSectors;
+ }
+ if (bp)
+ buf_free(bp);
+ hfs_free(buffer, bufferSize);
+
+ /* Make sure all writes have been flushed to disk. */
+ if (vnode_issystem(vp) && !journal_uses_fua(hfsmp->jnl)) {
+
+ err = hfs_flush(hfsmp, HFS_FLUSH_CACHE);
+ if (err) {
+ printf("hfs_copy_extent: hfs_flush failed (%d)\n", err);
+ err = 0; /* Don't fail the copy. */
+ }
+ }
+
+ if (!err)
+ hfs_invalidate_sectors(vp, (daddr64_t)oldStart*sectorsPerBlock, (daddr64_t)blockCount*sectorsPerBlock);
+
+ return err;
+}
+
+
+/* Structure to store state of reclaiming extents from a
+ * given file. hfs_reclaim_file()/hfs_reclaim_xattr()
+ * initializes the values in this structure which are then
+ * used by code that reclaims and splits the extents.
+ */
+struct hfs_reclaim_extent_info {
+ struct vnode *vp;
+ u_int32_t fileID;
+ u_int8_t forkType;
+ u_int8_t is_dirlink; /* Extent belongs to directory hard link */
+ u_int8_t is_sysfile; /* Extent belongs to system file */
+ u_int8_t is_xattr; /* Extent belongs to extent-based xattr */
+ u_int8_t extent_index;
+ int lockflags; /* Locks that reclaim and split code should grab before modifying the extent record */
+ u_int32_t blocks_relocated; /* Total blocks relocated for this file till now */
+ u_int32_t recStartBlock; /* File allocation block number (FABN) for current extent record */
+ u_int32_t cur_blockCount; /* Number of allocation blocks that have been checked for reclaim */
+ struct filefork *catalog_fp; /* If non-NULL, extent is from catalog record */
+ union record {
+ HFSPlusExtentRecord overflow;/* Extent record from overflow extents btree */
+ HFSPlusAttrRecord xattr; /* Attribute record for large EAs */
+ } record;
+ HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being processed.
+ * For catalog extent record, points to the correct
+ * extent information in filefork. For overflow extent
+ * record, or xattr record, points to extent record
+ * in the structure above
+ */
+ struct cat_desc *dirlink_desc;
+ struct cat_attr *dirlink_attr;
+ struct filefork *dirlink_fork; /* For directory hard links, fp points actually to this */
+ struct BTreeIterator *iterator; /* Shared read/write iterator, hfs_reclaim_file/xattr()
+ * use it for reading and hfs_reclaim_extent()/hfs_split_extent()
+ * use it for writing updated extent record
+ */
+ struct FSBufferDescriptor btdata; /* Shared btdata for reading/writing extent record, same as iterator above */
+ u_int16_t recordlen;
+ int overflow_count; /* For debugging, counter for overflow extent record */
+ FCB *fcb; /* Pointer to the current btree being traversed */
+};
+
+/*
+ * Split the current extent into two extents, with first extent
+ * to contain given number of allocation blocks. Splitting of
+ * extent creates one new extent entry which can result in
+ * shifting of many entries through all the extent records of a
+ * file, and/or creating a new extent record in the overflow
+ * extent btree.
+ *
+ * Example:
+ * The diagram below represents two consecutive extent records,
+ * for simplicity, lets call them record X and X+1 respectively.
+ * Interesting extent entries have been denoted by letters.
+ * If the letter is unchanged before and after split, it means
+ * that the extent entry was not modified during the split.
+ * A '.' means that the entry remains unchanged after the split
+ * and is not relevant for our example. A '0' means that the
+ * extent entry is empty.
+ *
+ * If there isn't sufficient contiguous free space to relocate
+ * an extent (extent "C" below), we will have to break the one
+ * extent into multiple smaller extents, and relocate each of
+ * the smaller extents individually. The way we do this is by
+ * finding the largest contiguous free space that is currently
+ * available (N allocation blocks), and then convert extent "C"
+ * into two extents, C1 and C2, that occupy exactly the same
+ * allocation blocks as extent C. Extent C1 is the first
+ * N allocation blocks of extent C, and extent C2 is the remainder
+ * of extent C. Then we can relocate extent C1 since we know
+ * we have enough contiguous free space to relocate it in its
+ * entirety. We then repeat the process starting with extent C2.
+ *
+ * In record X, only the entries following entry C are shifted, and
+ * the original entry C is replaced with two entries C1 and C2 which
+ * are actually two extent entries for contiguous allocation blocks.
+ *
+ * Note that the entry E from record X is shifted into record X+1 as
+ * the new first entry. Since the first entry of record X+1 is updated,
+ * the FABN will also get updated with the blockCount of entry E.
+ * This also results in shifting of all extent entries in record X+1.
+ * Note that the number of empty entries after the split has been
+ * changed from 3 to 2.
+ *
+ * Before:
+ * record X record X+1
+ * ---------------------===--------- ---------------------------------
+ * | A | . | . | . | B | C | D | E | | F | . | . | . | G | 0 | 0 | 0 |
+ * ---------------------===--------- ---------------------------------
+ *
+ * After:
+ * ---------------------=======----- ---------------------------------
+ * | A | . | . | . | B | C1| C2| D | | E | F | . | . | . | G | 0 | 0 |
+ * ---------------------=======----- ---------------------------------
+ *
+ * C1.startBlock = C.startBlock
+ * C1.blockCount = N
+ *
+ * C2.startBlock = C.startBlock + N
+ * C2.blockCount = C.blockCount - N
+ *
+ * FABN = old FABN - E.blockCount
+ *
+ * Inputs:
+ * extent_info - This is the structure that contains state about
+ * the current file, extent, and extent record that
+ * is being relocated. This structure is shared
+ * among code that traverses through all the extents
+ * of the file, code that relocates extents, and
+ * code that splits the extent.
+ * newBlockCount - The blockCount of the extent to be split after
+ * successfully split operation.
+ * Output:
+ * Zero on success, non-zero on failure.
+ */
+static int
+hfs_split_extent(struct hfs_reclaim_extent_info *extent_info, uint32_t newBlockCount)
+{
+ int error = 0;
+ int index = extent_info->extent_index;
+ int i;
+ HFSPlusExtentDescriptor shift_extent; /* Extent entry that should be shifted into next extent record */
+ HFSPlusExtentDescriptor last_extent;
+ HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being manipulated */
+ HFSPlusExtentRecord *extents_rec = NULL;
+ HFSPlusExtentKey *extents_key = NULL;
+ HFSPlusAttrRecord *xattr_rec = NULL;
+ HFSPlusAttrKey *xattr_key = NULL;
+ struct BTreeIterator iterator;
+ struct FSBufferDescriptor btdata;
+ uint16_t reclen;
+ uint32_t read_recStartBlock; /* Starting allocation block number to read old extent record */
+ uint32_t write_recStartBlock; /* Starting allocation block number to insert newly updated extent record */
+ Boolean create_record = false;
+ Boolean is_xattr;
+ struct cnode *cp;
+
+ is_xattr = extent_info->is_xattr;
+ extents = extent_info->extents;
+ cp = VTOC(extent_info->vp);
+
+ if (newBlockCount == 0) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: No splitting required for newBlockCount=0\n");
+ }
+ return error;
+ }
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Split record:%u recStartBlock=%u %u:(%u,%u) for %u blocks\n", extent_info->overflow_count, extent_info->recStartBlock, index, extents[index].startBlock, extents[index].blockCount, newBlockCount);
+ }
+
+ /* Extents overflow btree can not have more than 8 extents.
+ * No split allowed if the 8th extent is already used.
+ */
+ if ((extent_info->fileID == kHFSExtentsFileID) && (extents[kHFSPlusExtentDensity - 1].blockCount != 0)) {
+ printf ("hfs_split_extent: Maximum 8 extents allowed for extents overflow btree, cannot split further.\n");
+ error = ENOSPC;
+ goto out;
+ }
+
+ /* Determine the starting allocation block number for the following
+ * overflow extent record, if any, before the current record
+ * gets modified.
+ */
+ read_recStartBlock = extent_info->recStartBlock;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extents[i].blockCount == 0) {
+ break;
+ }
+ read_recStartBlock += extents[i].blockCount;
+ }
+
+ /* Shift and split */
+ if (index == kHFSPlusExtentDensity-1) {
+ /* The new extent created after split will go into following overflow extent record */
+ shift_extent.startBlock = extents[index].startBlock + newBlockCount;
+ shift_extent.blockCount = extents[index].blockCount - newBlockCount;
+
+ /* Last extent in the record will be split, so nothing to shift */
+ } else {
+ /* Splitting of extents can result in at most of one
+ * extent entry to be shifted into following overflow extent
+ * record. So, store the last extent entry for later.
+ */
+ shift_extent = extents[kHFSPlusExtentDensity-1];
+ if ((hfs_resize_debug) && (shift_extent.blockCount != 0)) {
+ printf ("hfs_split_extent: Save 7:(%u,%u) to shift into overflow record\n", shift_extent.startBlock, shift_extent.blockCount);
+ }
+
+ /* Start shifting extent information from the end of the extent
+ * record to the index where we want to insert the new extent.
+ * Note that kHFSPlusExtentDensity-1 is already saved above, and
+ * does not need to be shifted. The extent entry that is being
+ * split does not get shifted.
+ */
+ for (i = kHFSPlusExtentDensity-2; i > index; i--) {
+ if (hfs_resize_debug) {
+ if (extents[i].blockCount) {
+ printf ("hfs_split_extent: Shift %u:(%u,%u) to %u:(%u,%u)\n", i, extents[i].startBlock, extents[i].blockCount, i+1, extents[i].startBlock, extents[i].blockCount);
+ }
+ }
+ extents[i+1] = extents[i];
+ }
+ }
+
+ if (index == kHFSPlusExtentDensity-1) {
+ /* The second half of the extent being split will be the overflow
+ * entry that will go into following overflow extent record. The
+ * value has been stored in 'shift_extent' above, so there is
+ * nothing to be done here.
+ */
+ } else {
+ /* Update the values in the second half of the extent being split
+ * before updating the first half of the split. Note that the
+ * extent to split or first half of the split is at index 'index'
+ * and a new extent or second half of the split will be inserted at
+ * 'index+1' or into following overflow extent record.
+ */
+ extents[index+1].startBlock = extents[index].startBlock + newBlockCount;
+ extents[index+1].blockCount = extents[index].blockCount - newBlockCount;
+ }
+ /* Update the extent being split, only the block count will change */
+ extents[index].blockCount = newBlockCount;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Split %u:(%u,%u) and ", index, extents[index].startBlock, extents[index].blockCount);
+ if (index != kHFSPlusExtentDensity-1) {
+ printf ("%u:(%u,%u)\n", index+1, extents[index+1].startBlock, extents[index+1].blockCount);
+ } else {
+ printf ("overflow:(%u,%u)\n", shift_extent.startBlock, shift_extent.blockCount);
+ }
+ }
+
+ /* Write out information about the newly split extent to the disk */
+ if (extent_info->catalog_fp) {
+ /* (extent_info->catalog_fp != NULL) means the newly split
+ * extent exists in the catalog record. This means that
+ * the cnode was updated. Therefore, to write out the changes,
+ * mark the cnode as modified. We cannot call hfs_update()
+ * in this function because the caller hfs_reclaim_extent()
+ * is holding the catalog lock currently.
+ */
+ cp->c_flag |= C_MODIFIED;
+ } else {
+ /* The newly split extent is for large EAs or is in overflow
+ * extent record, so update it directly in the btree using the
+ * iterator information from the shared extent_info structure
+ */
+ error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), extent_info->recordlen);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u BTReplaceRecord returned error=%d\n", extent_info->fileID, error);
+ goto out;
+ }
+ }
+
+ /* No extent entry to be shifted into another extent overflow record */
+ if (shift_extent.blockCount == 0) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: No extent entry to be shifted into overflow records\n");
+ }
+ error = 0;
+ goto out;
+ }
+
+ /* The overflow extent entry has to be shifted into an extent
+ * overflow record. This means that we might have to shift
+ * extent entries from all subsequent overflow records by one.
+ * We start iteration from the first record to the last record,
+ * and shift the extent entry from one record to another.
+ * We might have to create a new extent record for the last
+ * extent entry for the file.
+ */
+
+ /* Initialize iterator to search the next record */
+ bzero(&iterator, sizeof(iterator));
+ if (is_xattr) {
+ /* Copy the key from the iterator that was used to update the modified attribute record. */
+ xattr_key = (HFSPlusAttrKey *)&(iterator.key);
+ bcopy((HFSPlusAttrKey *)&(extent_info->iterator->key), xattr_key, sizeof(HFSPlusAttrKey));
+ /* Note: xattr_key->startBlock will be initialized later in the iteration loop */
+
+ xattr_rec = hfs_malloc(sizeof(*xattr_rec));
+
+ btdata.bufferAddress = xattr_rec;
+ btdata.itemSize = sizeof(HFSPlusAttrRecord);
+ btdata.itemCount = 1;
+ extents = xattr_rec->overflowExtents.extents;
+ } else {
+ /* Initialize the extent key for the current file */
+ extents_key = (HFSPlusExtentKey *) &(iterator.key);
+ extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extents_key->forkType = extent_info->forkType;
+ extents_key->fileID = extent_info->fileID;
+ /* Note: extents_key->startBlock will be initialized later in the iteration loop */
+
+ extents_rec = hfs_malloc(sizeof(*extents_rec));
+
+ btdata.bufferAddress = extents_rec;
+ btdata.itemSize = sizeof(HFSPlusExtentRecord);
+ btdata.itemCount = 1;
+ extents = extents_rec[0];
+ }
+
+ /* The overflow extent entry has to be shifted into an extent
+ * overflow record. This means that we might have to shift
+ * extent entries from all subsequent overflow records by one.
+ * We start iteration from the first record to the last record,
+ * examine one extent record in each iteration and shift one
+ * extent entry from one record to another. We might have to
+ * create a new extent record for the last extent entry for the
+ * file.
+ *
+ * If shift_extent.blockCount is non-zero, it means that there is
+ * an extent entry that needs to be shifted into the next
+ * overflow extent record. We keep on going till there are no such
+ * entries left to be shifted. This will also change the starting
+ * allocation block number of the extent record which is part of
+ * the key for the extent record in each iteration. Note that
+ * because the extent record key is changing while we are searching,
+ * the record can not be updated directly, instead it has to be
+ * deleted and inserted again.
+ */
+ while (shift_extent.blockCount) {
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Will shift (%u,%u) into overflow record with startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, read_recStartBlock);
+ }
+
+ /* Search if there is any existing overflow extent record
+ * that matches the current file and the logical start block
+ * number.
+ *
+ * For this, the logical start block number in the key is
+ * the value calculated based on the logical start block
+ * number of the current extent record and the total number
+ * of blocks existing in the current extent record.
+ */
+ if (is_xattr) {
+ xattr_key->startBlock = read_recStartBlock;
+ } else {
+ extents_key->startBlock = read_recStartBlock;
+ }
+ error = BTSearchRecord(extent_info->fcb, &iterator, &btdata, &reclen, &iterator);
+ if (error) {
+ if (error != btNotFound) {
+ printf ("hfs_split_extent: fileID=%u startBlock=%u BTSearchRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
+ goto out;
+ }
+ /* No matching record was found, so create a new extent record.
+ * Note: Since no record was found, we can't rely on the
+ * btree key in the iterator any longer. This will be initialized
+ * later before we insert the record.
+ */
+ create_record = true;
+ }
+
+ /* The extra extent entry from the previous record is being inserted
+ * as the first entry in the current extent record. This will change
+ * the file allocation block number (FABN) of the current extent
+ * record, which is the startBlock value from the extent record key.
+ * Since one extra entry is being inserted in the record, the new
+ * FABN for the record will less than old FABN by the number of blocks
+ * in the new extent entry being inserted at the start. We have to
+ * do this before we update read_recStartBlock to point at the
+ * startBlock of the following record.
+ */
+ write_recStartBlock = read_recStartBlock - shift_extent.blockCount;
+ if (hfs_resize_debug) {
+ if (create_record) {
+ printf ("hfs_split_extent: No records found for startBlock=%u, will create new with startBlock=%u\n", read_recStartBlock, write_recStartBlock);
+ }
+ }
+
+ /* Now update the read_recStartBlock to account for total number
+ * of blocks in this extent record. It will now point to the
+ * starting allocation block number for the next extent record.
+ */
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extents[i].blockCount == 0) {
+ break;
+ }
+ read_recStartBlock += extents[i].blockCount;
+ }
+
+ if (create_record == true) {
+ /* Initialize new record content with only one extent entry */
+ bzero(extents, sizeof(HFSPlusExtentRecord));
+ /* The new record will contain only one extent entry */
+ extents[0] = shift_extent;
+ /* There are no more overflow extents to be shifted */
+ shift_extent.startBlock = shift_extent.blockCount = 0;
+
+ if (is_xattr) {
+ /* BTSearchRecord above returned btNotFound,
+ * but since the attribute btree is never empty
+ * if we are trying to insert new overflow
+ * record for the xattrs, the extents_key will
+ * contain correct data. So we don't need to
+ * re-initialize it again like below.
+ */
+
+ /* Initialize the new xattr record */
+ xattr_rec->recordType = kHFSPlusAttrExtents;
+ xattr_rec->overflowExtents.reserved = 0;
+ reclen = sizeof(HFSPlusAttrExtents);
+ } else {
+ /* BTSearchRecord above returned btNotFound,
+ * which means that extents_key content might
+ * not correspond to the record that we are
+ * trying to create, especially when the extents
+ * overflow btree is empty. So we reinitialize
+ * the extents_key again always.
+ */
+ extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extents_key->forkType = extent_info->forkType;
+ extents_key->fileID = extent_info->fileID;
+
+ /* Initialize the new extent record */
+ reclen = sizeof(HFSPlusExtentRecord);
+ }
+ } else {
+ /* The overflow extent entry from previous record will be
+ * the first entry in this extent record. If the last
+ * extent entry in this record is valid, it will be shifted
+ * into the following extent record as its first entry. So
+ * save the last entry before shifting entries in current
+ * record.
+ */
+ last_extent = extents[kHFSPlusExtentDensity-1];
+
+ /* Shift all entries by one index towards the end */
+ for (i = kHFSPlusExtentDensity-2; i >= 0; i--) {
+ extents[i+1] = extents[i];
+ }
+
+ /* Overflow extent entry saved from previous record
+ * is now the first entry in the current record.
+ */
+ extents[0] = shift_extent;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Shift overflow=(%u,%u) to record with updated startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, write_recStartBlock);
+ }
+
+ /* The last entry from current record will be the
+ * overflow entry which will be the first entry for
+ * the following extent record.
+ */
+ shift_extent = last_extent;
+
+ /* Since the key->startBlock is being changed for this record,
+ * it should be deleted and inserted with the new key.
+ */
+ error = BTDeleteRecord(extent_info->fcb, &iterator);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u startBlock=%u BTDeleteRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
+ goto out;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Deleted extent record with startBlock=%u\n", (is_xattr ? xattr_key->startBlock : extents_key->startBlock));
+ }
+ }
+
+ /* Insert the newly created or modified extent record */
+ bzero(&iterator.hint, sizeof(iterator.hint));
+ if (is_xattr) {
+ xattr_key->startBlock = write_recStartBlock;
+ } else {
+ extents_key->startBlock = write_recStartBlock;
+ }
+ error = BTInsertRecord(extent_info->fcb, &iterator, &btdata, reclen);
+ if (error) {
+ printf ("hfs_split_extent: fileID=%u, startBlock=%u BTInsertRecord error=%d\n", extent_info->fileID, write_recStartBlock, error);
+ goto out;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_split_extent: Inserted extent record with startBlock=%u\n", write_recStartBlock);
+ }
+ }
+
+out:
+ /*
+ * Extents overflow btree or attributes btree headers might have
+ * been modified during the split/shift operation, so flush the
+ * changes to the disk while we are inside journal transaction.
+ * We should only be able to generate I/O that modifies the B-Tree
+ * header nodes while we're in the middle of a journal transaction.
+ * Otherwise it might result in panic during unmount.
+ */
+ BTFlushPath(extent_info->fcb);
+
+ hfs_free(extents_rec, sizeof(*extents_rec));
+ hfs_free(xattr_rec, sizeof(*xattr_rec));
+ return error;
+}
+
+
+/*
+ * Relocate an extent if it lies beyond the expected end of volume.
+ *
+ * This function is called for every extent of the file being relocated.
+ * It allocates space for relocation, copies the data, deallocates
+ * the old extent, and update corresponding on-disk extent. If the function
+ * does not find contiguous space to relocate an extent, it splits the
+ * extent in smaller size to be able to relocate it out of the area of
+ * disk being reclaimed. As an optimization, if an extent lies partially
+ * in the area of the disk being reclaimed, it is split so that we only
+ * have to relocate the area that was overlapping with the area of disk
+ * being reclaimed.
+ *
+ * Note that every extent is relocated in its own transaction so that
+ * they do not overwhelm the journal. This function handles the extent
+ * record that exists in the catalog record, extent record from overflow
+ * extents btree, and extents for large EAs.
+ *
+ * Inputs:
+ * extent_info - This is the structure that contains state about
+ * the current file, extent, and extent record that
+ * is being relocated. This structure is shared
+ * among code that traverses through all the extents
+ * of the file, code that relocates extents, and
+ * code that splits the extent.
+ */
+static int
+hfs_reclaim_extent(struct hfsmount *hfsmp, const u_long allocLimit, struct hfs_reclaim_extent_info *extent_info, vfs_context_t context)
+{
+ int error = 0;
+ int index;
+ struct cnode *cp;
+ u_int32_t oldStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newStartBlock = 0;
+ u_int32_t newBlockCount;
+ u_int32_t roundedBlockCount;
+ uint16_t node_size;
+ uint32_t remainder_blocks;
+ u_int32_t alloc_flags;
+ int blocks_allocated = false;
+
+ index = extent_info->extent_index;
+ cp = VTOC(extent_info->vp);
+
+ oldStartBlock = extent_info->extents[index].startBlock;
+ oldBlockCount = extent_info->extents[index].blockCount;
+
+ if (0 && hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Examine record:%u recStartBlock=%u, %u:(%u,%u)\n", extent_info->overflow_count, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount);
+ }
+
+ /* If the current extent lies completely within allocLimit,
+ * it does not require any relocation.
+ */
+ if ((oldStartBlock + oldBlockCount) <= allocLimit) {
+ extent_info->cur_blockCount += oldBlockCount;
+ return error;
+ }
+
+ /* Every extent should be relocated in its own transaction
+ * to make sure that we don't overflow the journal buffer.
+ */
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ return error;
+ }
+ extent_info->lockflags = hfs_systemfile_lock(hfsmp, extent_info->lockflags, HFS_EXCLUSIVE_LOCK);
+
+ /* Check if the extent lies partially in the area to reclaim,
+ * i.e. it starts before allocLimit and ends beyond allocLimit.
+ * We have already skipped extents that lie completely within
+ * allocLimit in the check above, so we only check for the
+ * startBlock. If it lies partially, split it so that we
+ * only relocate part of the extent.
+ */
+ if (oldStartBlock < allocLimit) {
+ newBlockCount = allocLimit - oldStartBlock;
+
+ if (hfs_resize_debug) {
+ int idx = extent_info->extent_index;
+ printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount);
+ }
+
+ /* If the extent belongs to a btree, check and trim
+ * it to be multiple of the node size.
+ */
+ if (extent_info->is_sysfile) {
+ node_size = get_btree_nodesize(extent_info->vp);
+ /* If the btree node size is less than the block size,
+ * splitting this extent will not split a node across
+ * different extents. So we only check and trim if
+ * node size is more than the allocation block size.
+ */
+ if (node_size > hfsmp->blockSize) {
+ remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
+ if (remainder_blocks) {
+ newBlockCount -= remainder_blocks;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Round-down newBlockCount to be multiple of nodeSize, node_allocblks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
+ }
+ }
+ }
+ /* The newBlockCount is zero because of rounding-down so that
+ * btree nodes are not split across extents. Therefore this
+ * straddling extent across resize-boundary does not require
+ * splitting. Skip over to relocating of complete extent.
+ */
+ if (newBlockCount == 0) {
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: After round-down newBlockCount=0, skip split, relocate full extent\n");
+ }
+ goto relocate_full_extent;
+ }
+ }
+
+ /* Split the extents into two parts --- the first extent lies
+ * completely within allocLimit and therefore does not require
+ * relocation. The second extent will require relocation which
+ * will be handled when the caller calls this function again
+ * for the next extent.
+ */
+ error = hfs_split_extent(extent_info, newBlockCount);
+ if (error == 0) {
+ /* Split success, no relocation required */
+ goto out;
+ }
+ /* Split failed, so try to relocate entire extent */
+ if (hfs_resize_debug) {
+ int idx = extent_info->extent_index;
+ printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks failed, relocate full extent\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount);
+ }
+ }
+
+relocate_full_extent:
+ /* At this point, the current extent requires relocation.
+ * We will try to allocate space equal to the size of the extent
+ * being relocated first to try to relocate it without splitting.
+ * If the allocation fails, we will try to allocate contiguous
+ * blocks out of metadata zone. If that allocation also fails,
+ * then we will take a whatever contiguous block run is returned
+ * by the allocation, split the extent into two parts, and then
+ * relocate the first splitted extent.
+ */
+ alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS;
+ if (extent_info->is_sysfile) {
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ }
+
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags,
+ &newStartBlock, &newBlockCount);
+ if ((extent_info->is_sysfile == false) &&
+ ((error == dskFulErr) || (error == ENOSPC))) {
+ /* For non-system files, try reallocating space in metadata zone */
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ alloc_flags, &newStartBlock, &newBlockCount);
+ }
+ if ((error == dskFulErr) || (error == ENOSPC)) {
+ /*
+ * We did not find desired contiguous space for this
+ * extent, when we asked for it, including the metazone allocations.
+ * At this point we are not worrying about getting contiguity anymore.
+ *
+ * HOWEVER, if we now allow blocks to be used which were recently
+ * de-allocated, we may find a contiguous range (though this seems
+ * unlikely). As a result, assume that we will have to split the
+ * current extent into two pieces, but if we are able to satisfy
+ * the request with a single extent, detect that as well.
+ */
+ alloc_flags &= ~HFS_ALLOC_FORCECONTIG;
+ alloc_flags |= HFS_ALLOC_FLUSHTXN;
+
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ alloc_flags, &newStartBlock, &newBlockCount);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+
+ /*
+ * Allowing recently deleted extents may now allow us to find
+ * a single contiguous extent in the amount & size desired. If so,
+ * do NOT split this extent into two pieces. This is technically a
+ * check for "< oldBlockCount", but we use != to highlight the point
+ * that the special case is when they're equal. The allocator should
+ * never vend back more blocks than were requested.
+ */
+ if (newBlockCount != oldBlockCount) {
+ blocks_allocated = true;
+
+ /* The number of blocks allocated is less than the requested
+ * number of blocks. For btree extents, check and trim the
+ * extent to be multiple of the node size.
+ */
+ if (extent_info->is_sysfile) {
+ node_size = get_btree_nodesize(extent_info->vp);
+ if (node_size > hfsmp->blockSize) {
+ remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
+ if (remainder_blocks) {
+ roundedBlockCount = newBlockCount - remainder_blocks;
+ /* Free tail-end blocks of the newly allocated extent */
+ BlockDeallocate(hfsmp, newStartBlock + roundedBlockCount,
+ newBlockCount - roundedBlockCount,
+ HFS_ALLOC_SKIPFREEBLKS);
+ newBlockCount = roundedBlockCount;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
+ }
+ if (newBlockCount == 0) {
+ printf ("hfs_reclaim_extent: Not enough contiguous blocks available to relocate fileID=%d\n", extent_info->fileID);
+ error = ENOSPC;
+ goto out;
+ }
+ }
+ }
+ }
+
+ /* The number of blocks allocated is less than the number of
+ * blocks requested, so split this extent --- the first extent
+ * will be relocated as part of this function call and the caller
+ * will handle relocating the second extent by calling this
+ * function again for the second extent.
+ */
+ error = hfs_split_extent(extent_info, newBlockCount);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) split error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ oldBlockCount = newBlockCount;
+ } /* end oldBlockCount != newBlockCount */
+ } /* end allocation request for any available free space */
+
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) contig BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ blocks_allocated = true;
+
+ /* Copy data from old location to new location */
+ error = hfs_copy_extent(hfsmp, extent_info->vp, oldStartBlock,
+ newStartBlock, newBlockCount, context);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u)=>(%u,%u) hfs_copy_extent error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount, error);
+ goto out;
+ }
+
+ /* Update the extent record with the new start block information */
+ extent_info->extents[index].startBlock = newStartBlock;
+
+ /* Sync the content back to the disk */
+ if (extent_info->catalog_fp) {
+ /* Update the extents in catalog record */
+ if (extent_info->is_dirlink) {
+ error = cat_update_dirlink(hfsmp, extent_info->forkType,
+ extent_info->dirlink_desc, extent_info->dirlink_attr,
+ &(extent_info->dirlink_fork->ff_data));
+ } else {
+ cp->c_flag |= C_MODIFIED;
+ /* If this is a system file, sync volume headers on disk */
+ if (extent_info->is_sysfile) {
+ error = hfs_flushvolumeheader(hfsmp, HFS_FVH_WAIT | HFS_FVH_WRITE_ALT);
+ }
+ }
+ } else {
+ /* Replace record for extents overflow or extents-based xattrs */
+ error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), extent_info->recordlen);
+ }
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u, update record error=%u\n", extent_info->fileID, error);
+ goto out;
+ }
+
+ /* Deallocate the old extent */
+ error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockDeallocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
+ goto out;
+ }
+ extent_info->blocks_relocated += newBlockCount;
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_extent: Relocated record:%u %u:(%u,%u) to (%u,%u)\n", extent_info->overflow_count, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+
+out:
+ if (error != 0) {
+ if (blocks_allocated == true) {
+ BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ }
+ } else {
+ /* On success, increment the total allocation blocks processed */
+ extent_info->cur_blockCount += newBlockCount;
+ }
+
+ hfs_systemfile_unlock(hfsmp, extent_info->lockflags);
+
+ /* For a non-system file, if an extent entry from catalog record
+ * was modified, sync the in-memory changes to the catalog record
+ * on disk before ending the transaction.
+ */
+ if ((extent_info->catalog_fp) &&
+ (extent_info->is_sysfile == false)) {
+ hfs_update(extent_info->vp, 0);
+ }
+
+ hfs_end_transaction(hfsmp);
+
+ return error;
+}
+
+/* Report intermediate progress during volume resize */
+static void
+hfs_truncatefs_progress(struct hfsmount *hfsmp)
+{
+ u_int32_t cur_progress = 0;
+
+ hfs_resize_progress(hfsmp, &cur_progress);
+ if (cur_progress > (hfsmp->hfs_resize_progress + 9)) {
+ printf("hfs_truncatefs: %d%% done...\n", cur_progress);
+ hfsmp->hfs_resize_progress = cur_progress;
+ }
+ return;
+}
+
+/*
+ * Reclaim space at the end of a volume for given file and forktype.
+ *
+ * This routine attempts to move any extent which contains allocation blocks
+ * at or after "allocLimit." A separate transaction is used for every extent
+ * that needs to be moved. If there is not contiguous space available for
+ * moving an extent, it can be split into smaller extents. The contents of
+ * any moved extents are read and written via the volume's device vnode --
+ * NOT via "vp." During the move, moved blocks which are part of a transaction
+ * have their physical block numbers invalidated so they will eventually be
+ * written to their new locations.
+ *
+ * This function is also called for directory hard links. Directory hard links
+ * are regular files with no data fork and resource fork that contains alias
+ * information for backward compatibility with pre-Leopard systems. However
+ * non-Mac OS X implementation can add/modify data fork or resource fork
+ * information to directory hard links, so we check, and if required, relocate
+ * both data fork and resource fork.
+ *
+ * Inputs:
+ * hfsmp The volume being resized.
+ * vp The vnode for the system file.
+ * fileID ID of the catalog record that needs to be relocated
+ * forktype The type of fork that needs relocated,
+ * kHFSResourceForkType for resource fork,
+ * kHFSDataForkType for data fork
+ * allocLimit Allocation limit for the new volume size,
+ * do not use this block or beyond. All extents
+ * that use this block or any blocks beyond this limit
+ * will be relocated.
+ *
+ * Side Effects:
+ * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
+ * blocks that were relocated.
+ */
+static int
+hfs_reclaim_file(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID,
+ u_int8_t forktype, u_long allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ struct hfs_reclaim_extent_info *extent_info;
+ int i;
+ int lockflags = 0;
+ struct cnode *cp;
+ struct filefork *fp;
+ int took_truncate_lock = false;
+ int release_desc = false;
+ HFSPlusExtentKey *key;
+
+ /* If there is no vnode for this file, then there's nothing to do. */
+ if (vp == NULL) {
+ return 0;
+ }
+
+ cp = VTOC(vp);
+
+ if (hfs_resize_debug) {
+ const char *filename = (const char *) cp->c_desc.cd_nameptr;
+ int namelen = cp->c_desc.cd_namelen;
+
+ if (filename == NULL) {
+ filename = "";
+ namelen = 0;
+ }
+ printf("hfs_reclaim_file: reclaiming '%.*s'\n", namelen, filename);
+ }
+
+ extent_info = hfs_mallocz(sizeof(struct hfs_reclaim_extent_info));
+
+ extent_info->vp = vp;
+ extent_info->fileID = fileID;
+ extent_info->forkType = forktype;
+ extent_info->is_sysfile = vnode_issystem(vp);
+ if (vnode_isdir(vp) && (cp->c_flag & C_HARDLINK)) {
+ extent_info->is_dirlink = true;
+ }
+ /* We always need allocation bitmap and extent btree lock */
+ lockflags = SFL_BITMAP | SFL_EXTENTS;
+ if ((fileID == kHFSCatalogFileID) || (extent_info->is_dirlink == true)) {
+ lockflags |= SFL_CATALOG;
+ } else if (fileID == kHFSAttributesFileID) {
+ lockflags |= SFL_ATTRIBUTE;
+ } else if (fileID == kHFSStartupFileID) {
+ lockflags |= SFL_STARTUP;
+ }
+ extent_info->lockflags = lockflags;
+ extent_info->fcb = VTOF(hfsmp->hfs_extents_vp);
+
+ /* Flush data associated with current file on disk.
+ *
+ * If the current vnode is directory hard link, no flushing of
+ * journal or vnode is required. The current kernel does not
+ * modify data/resource fork of directory hard links, so nothing
+ * will be in the cache. If a directory hard link is newly created,
+ * the resource fork data is written directly using devvp and
+ * the code that actually relocates data (hfs_copy_extent()) also
+ * uses devvp for its I/O --- so they will see a consistent copy.
+ */
+ if (extent_info->is_sysfile) {
+ /* If the current vnode is system vnode, flush journal
+ * to make sure that all data is written to the disk.
+ */
+ error = hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+ if (error) {
+ printf ("hfs_reclaim_file: journal_flush returned %d\n", error);
+ goto out;
+ }
+ } else if (extent_info->is_dirlink == false) {
+ /* Flush all blocks associated with this regular file vnode.
+ * Normally there should not be buffer cache blocks for regular
+ * files, but for objects like symlinks, we can have buffer cache
+ * blocks associated with the vnode. Therefore we call
+ * buf_flushdirtyblks() also.
+ */
+ buf_flushdirtyblks(vp, 0, BUF_SKIP_LOCKED, "hfs_reclaim_file");
+
+ hfs_unlock(cp);
+ hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ took_truncate_lock = true;
+ (void) cluster_push(vp, 0);
+ error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
+ if (error) {
+ goto out;
+ }
+
+ /* If the file no longer exists, nothing left to do */
+ if (cp->c_flag & C_NOEXISTS) {
+ error = 0;
+ goto out;
+ }
+
+ /* Wait for any in-progress writes to this vnode to complete, so that we'll
+ * be copying consistent bits. (Otherwise, it's possible that an async
+ * write will complete to the old extent after we read from it. That
+ * could lead to corruption.)
+ */
+ error = vnode_waitforwrites(vp, 0, 0, 0, "hfs_reclaim_file");
+ if (error) {
+ goto out;
+ }
+ }
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: === Start reclaiming %sfork for %sid=%u ===\n", (forktype ? "rsrc" : "data"), (extent_info->is_dirlink ? "dirlink" : "file"), fileID);
+ }
+
+ if (extent_info->is_dirlink) {
+ extent_info->dirlink_desc = hfs_malloc(sizeof(struct cat_desc));
+ extent_info->dirlink_attr = hfs_malloc(sizeof(struct cat_attr));
+ extent_info->dirlink_fork = hfs_mallocz(sizeof(struct filefork));
+
+ /* Lookup catalog record for directory hard link and
+ * create a fake filefork for the value looked up from
+ * the disk.
+ */
+ fp = extent_info->dirlink_fork;
+ extent_info->dirlink_fork->ff_cp = cp;
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = cat_lookup_dirlink(hfsmp, fileID, forktype,
+ extent_info->dirlink_desc, extent_info->dirlink_attr,
+ &(extent_info->dirlink_fork->ff_data));
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ printf ("hfs_reclaim_file: cat_lookup_dirlink for fileID=%u returned error=%u\n", fileID, error);
+ goto out;
+ }
+ release_desc = true;
+ } else {
+ fp = VTOF(vp);
+ }
+
+ extent_info->catalog_fp = fp;
+ extent_info->recStartBlock = 0;
+ extent_info->extents = extent_info->catalog_fp->ff_extents;
+ /* Relocate extents from the catalog record */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (fp->ff_extents[i].blockCount == 0) {
+ break;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, fp->ff_extents[i].startBlock, fp->ff_extents[i].blockCount, error);
+ goto out;
+ }
+ }
+
+ /* If the number of allocation blocks processed for reclaiming
+ * are less than total number of blocks for the file, continuing
+ * working on overflow extents record.
+ */
+ if (fp->ff_blocks <= extent_info->cur_blockCount) {
+ if (0 && hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Nothing more to relocate, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
+ }
+ goto out;
+ }
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Will check overflow records, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
+ }
+
+ extent_info->iterator = hfs_mallocz(sizeof(struct BTreeIterator));
+ key = (HFSPlusExtentKey *) &(extent_info->iterator->key);
+ key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ key->forkType = forktype;
+ key->fileID = fileID;
+ key->startBlock = extent_info->cur_blockCount;
+
+ extent_info->btdata.bufferAddress = extent_info->record.overflow;
+ extent_info->btdata.itemSize = sizeof(HFSPlusExtentRecord);
+ extent_info->btdata.itemCount = 1;
+
+ extent_info->catalog_fp = NULL;
+
+ /* Search the first overflow extent with expected startBlock as 'cur_blockCount' */
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), &(extent_info->recordlen),
+ extent_info->iterator);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ while (error == 0) {
+ extent_info->overflow_count++;
+ extent_info->recStartBlock = key->startBlock;
+ extent_info->extents = extent_info->record.overflow;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extent_info->record.overflow[i].blockCount == 0) {
+ goto out;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, extent_info->record.overflow[i].startBlock, extent_info->record.overflow[i].blockCount, error);
+ goto out;
+ }
+ }
+
+ /* Look for more overflow records */
+ lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
+ extent_info->iterator, &(extent_info->btdata),
+ &(extent_info->recordlen));
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ break;
+ }
+ /* Stop when we encounter a different file or fork. */
+ if ((key->fileID != fileID) || (key->forkType != forktype)) {
+ break;
+ }
+ }
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+
+out:
+ /* If any blocks were relocated, account them and report progress */
+ if (extent_info->blocks_relocated) {
+ hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
+ hfs_truncatefs_progress(hfsmp);
+ if (fileID < kHFSFirstUserCatalogNodeID) {
+ printf ("hfs_reclaim_file: Relocated %u blocks from fileID=%u on \"%s\"\n",
+ extent_info->blocks_relocated, fileID, hfsmp->vcbVN);
+ }
+ }
+ if (extent_info->iterator) {
+ hfs_free(extent_info->iterator, sizeof(*extent_info->iterator));
+ }
+ if (release_desc == true) {
+ cat_releasedesc(extent_info->dirlink_desc);
+ }
+ if (extent_info->dirlink_desc) {
+ hfs_free(extent_info->dirlink_desc, sizeof(*extent_info->dirlink_desc));
+ }
+ if (extent_info->dirlink_attr) {
+ hfs_free(extent_info->dirlink_attr, sizeof(*extent_info->dirlink_attr));
+ }
+ if (extent_info->dirlink_fork) {
+ hfs_free(extent_info->dirlink_fork, sizeof(*extent_info->dirlink_fork));
+ }
+ if ((extent_info->blocks_relocated != 0) && (extent_info->is_sysfile == false)) {
+ hfs_update(vp, 0);
+ }
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ }
+ if (extent_info) {
+ hfs_free(extent_info, sizeof(*extent_info));
+ }
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: === Finished relocating %sfork for fileid=%u (error=%d) ===\n", (forktype ? "rsrc" : "data"), fileID, error);
+ }
+
+ return error;
+}
+
+
+/*
+ * This journal_relocate callback updates the journal info block to point
+ * at the new journal location. This write must NOT be done using the
+ * transaction. We must write the block immediately. We must also force
+ * it to get to the media so that the new journal location will be seen by
+ * the replay code before we can safely let journaled blocks be written
+ * to their normal locations.
+ *
+ * The tests for journal_uses_fua below are mildly hacky. Since the journal
+ * and the file system are both on the same device, I'm leveraging what
+ * the journal has decided about FUA.
+ */
+struct hfs_journal_relocate_args {
+ struct hfsmount *hfsmp;
+ vfs_context_t context;
+ u_int32_t newStartBlock;
+ u_int32_t newBlockCount;
+};
+
+static errno_t
+hfs_journal_relocate_callback(void *_args)
+{
+ int error;
+ struct hfs_journal_relocate_args *args = _args;
+ struct hfsmount *hfsmp = args->hfsmp;
+ buf_t bp;
+ JournalInfoBlock *jibp;
+
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ (uint64_t)hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, vfs_context_ucred(args->context), &bp);
+ if (error) {
+ printf("hfs_journal_relocate_callback: failed to read JIB (%d)\n", error);
+ if (bp) {
+ buf_brelse(bp);
+ }
+ return error;
+ }
+ jibp = (JournalInfoBlock*) buf_dataptr(bp);
+ jibp->offset = SWAP_BE64((u_int64_t)args->newStartBlock * hfsmp->blockSize);
+ jibp->size = SWAP_BE64((u_int64_t)args->newBlockCount * hfsmp->blockSize);
+ if (journal_uses_fua(hfsmp->jnl))
+ buf_markfua(bp);
+ error = buf_bwrite(bp);
+ if (error) {
+ printf("hfs_journal_relocate_callback: failed to write JIB (%d)\n", error);
+ return error;
+ }
+ if (!journal_uses_fua(hfsmp->jnl)) {
+ error = hfs_flush(hfsmp, HFS_FLUSH_CACHE);
+ if (error) {
+ printf("hfs_journal_relocate_callback: hfs_flush failed (%d)\n", error);
+ error = 0; /* Don't fail the operation. */
+ }
+ }
+
+ return error;
+}
+
+
+/* Type of resize operation in progress */
+#define HFS_RESIZE_TRUNCATE 1
+#define HFS_RESIZE_EXTEND 2
+
+/*
+ * Core function to relocate the journal file. This function takes the
+ * journal size of the newly relocated journal --- the caller can
+ * provide a new journal size if they want to change the size of
+ * the journal. The function takes care of updating the journal info
+ * block and all other data structures correctly.
+ *
+ * Note: This function starts a transaction and grabs the btree locks.
+ */
+static int
+hfs_relocate_journal_file(struct hfsmount *hfsmp, u_int32_t jnl_size, int resize_type, vfs_context_t context)
+{
+ int error;
+ int journal_err;
+ int lockflags;
+ u_int32_t oldStartBlock;
+ u_int32_t newStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newBlockCount;
+ u_int32_t jnlBlockCount;
+ u_int32_t alloc_skipfreeblks;
+ struct cat_desc journal_desc;
+ struct cat_attr journal_attr;
+ struct cat_fork journal_fork;
+ struct hfs_journal_relocate_args callback_args;
+
+ /* Calculate the number of allocation blocks required for the journal */
+ jnlBlockCount = howmany(jnl_size, hfsmp->blockSize);
+
+ /*
+ * During truncatefs(), the volume free block count is updated
+ * before relocating data and reflects the total number of free
+ * blocks that will exist on volume after the resize is successful.
+ * This means that the allocation blocks required for relocation
+ * have already been reserved and accounted for in the free block
+ * count. Therefore, block allocation and deallocation routines
+ * can skip the free block check by passing HFS_ALLOC_SKIPFREEBLKS
+ * flag.
+ *
+ * This special handling is not required when the file system
+ * is being extended as we want all the allocated and deallocated
+ * blocks to be accounted for correctly.
+ */
+ if (resize_type == HFS_RESIZE_TRUNCATE) {
+ alloc_skipfreeblks = HFS_ALLOC_SKIPFREEBLKS;
+ } else {
+ alloc_skipfreeblks = 0;
+ }
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_relocate_journal_file: hfs_start_transaction returned %d\n", error);
+ return error;
+ }
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ error = BlockAllocate(hfsmp, 1, jnlBlockCount, jnlBlockCount,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_FLUSHTXN | alloc_skipfreeblks,
+ &newStartBlock, &newBlockCount);
+ if (error) {
+ printf("hfs_relocate_journal_file: BlockAllocate returned %d\n", error);
+ goto fail;
+ }
+ if (newBlockCount != jnlBlockCount) {
+ printf("hfs_relocate_journal_file: newBlockCount != jnlBlockCount (%u, %u)\n", newBlockCount, jnlBlockCount);
+ goto free_fail;
+ }
+
+ error = cat_idlookup(hfsmp, hfsmp->hfs_jnlfileid, 1, 0, &journal_desc, &journal_attr, &journal_fork);
+ if (error) {
+ printf("hfs_relocate_journal_file: cat_idlookup returned %d\n", error);
+ goto free_fail;
+ }
+
+ oldStartBlock = journal_fork.cf_extents[0].startBlock;
+ oldBlockCount = journal_fork.cf_extents[0].blockCount;
+ error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, alloc_skipfreeblks);
+ if (error) {
+ printf("hfs_relocate_journal_file: BlockDeallocate returned %d\n", error);
+ goto free_fail;
+ }
+
+ /* Update the catalog record for .journal */
+ journal_fork.cf_size = hfs_blk_to_bytes(newBlockCount, hfsmp->blockSize);
+ journal_fork.cf_extents[0].startBlock = newStartBlock;
+ journal_fork.cf_extents[0].blockCount = newBlockCount;
+ journal_fork.cf_blocks = newBlockCount;
+ error = cat_update(hfsmp, &journal_desc, &journal_attr, &journal_fork, NULL);
+ cat_releasedesc(&journal_desc); /* all done with cat descriptor */
+ if (error) {
+ printf("hfs_relocate_journal_file: cat_update returned %d\n", error);
+ goto free_fail;
+ }
+
+ /*
+ * If the journal is part of the file system, then tell the journal
+ * code about the new location. If the journal is on an external
+ * device, then just keep using it as-is.
+ */
+ if (hfsmp->jvp == hfsmp->hfs_devvp) {
+ callback_args.hfsmp = hfsmp;
+ callback_args.context = context;
+ callback_args.newStartBlock = newStartBlock;
+ callback_args.newBlockCount = newBlockCount;
+
+ error = journal_relocate(hfsmp->jnl, (off_t)newStartBlock*hfsmp->blockSize,
+ (off_t)newBlockCount*hfsmp->blockSize, 0,
+ hfs_journal_relocate_callback, &callback_args);
+ if (error) {
+ /* NOTE: journal_relocate will mark the journal invalid. */
+ printf("hfs_relocate_journal_file: journal_relocate returned %d\n", error);
+ goto fail;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_relocate_journal_file: Successfully relocated journal from (%u,%u) to (%u,%u)\n", oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+ hfsmp->jnl_start = newStartBlock;
+ hfsmp->jnl_size = (off_t)newBlockCount * hfsmp->blockSize;
+ }
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ error = hfs_end_transaction(hfsmp);
+ if (error) {
+ printf("hfs_relocate_journal_file: hfs_end_transaction returned %d\n", error);
+ }
+
+ return error;
+
+free_fail:
+ journal_err = BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (journal_err) {
+ printf("hfs_relocate_journal_file: BlockDeallocate returned %d\n", error);
+ hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
+ }
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_relocate_journal_file: Error relocating journal file (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+/*
+ * Relocate the journal file when the file system is being truncated.
+ * We do not down-size the journal when the file system size is
+ * reduced, so we always provide the current journal size to the
+ * relocate code.
+ */
+static int
+hfs_reclaim_journal_file(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ u_int32_t startBlock;
+ u_int32_t blockCount = hfsmp->jnl_size / hfsmp->blockSize;
+
+ /*
+ * Figure out the location of the .journal file. When the journal
+ * is on an external device, we need to look up the .journal file.
+ */
+ if (hfsmp->jvp == hfsmp->hfs_devvp) {
+ startBlock = hfsmp->jnl_start;
+ blockCount = hfsmp->jnl_size / hfsmp->blockSize;
+ } else {
+ u_int32_t fileid;
+ u_int32_t old_jnlfileid;
+ struct cat_attr attr;
+ struct cat_fork fork;
+
+ /*
+ * The cat_lookup inside GetFileInfo will fail because hfs_jnlfileid
+ * is set, and it is trying to hide the .journal file. So temporarily
+ * unset the field while calling GetFileInfo.
+ */
+ old_jnlfileid = hfsmp->hfs_jnlfileid;
+ hfsmp->hfs_jnlfileid = 0;
+ fileid = GetFileInfo(hfsmp, kHFSRootFolderID, ".journal", &attr, &fork);
+ hfsmp->hfs_jnlfileid = old_jnlfileid;
+ if (fileid != old_jnlfileid) {
+ printf("hfs_reclaim_journal_file: cannot find .journal file!\n");
+ return EIO;
+ }
+
+ startBlock = fork.cf_extents[0].startBlock;
+ blockCount = fork.cf_extents[0].blockCount;
+ }
+
+ if (startBlock + blockCount <= allocLimit) {
+ /* The journal file does not require relocation */
+ return 0;
+ }
+
+ error = hfs_relocate_journal_file(hfsmp, hfs_blk_to_bytes(blockCount, hfsmp->blockSize),
+ HFS_RESIZE_TRUNCATE, context);
+ if (error == 0) {
+ hfsmp->hfs_resize_blocksmoved += blockCount;
+ hfs_truncatefs_progress(hfsmp);
+ printf ("hfs_reclaim_journal_file: Relocated %u blocks from journal on \"%s\"\n",
+ blockCount, hfsmp->vcbVN);
+ }
+
+ return error;
+}
+
+
+/*
+ * Move the journal info block to a new location. We have to make sure the
+ * new copy of the journal info block gets to the media first, then change
+ * the field in the volume header and the catalog record.
+ */
+static int
+hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error;
+ int journal_err;
+ int lockflags;
+ u_int32_t oldBlock;
+ u_int32_t newBlock;
+ u_int32_t blockCount;
+ struct cat_desc jib_desc;
+ struct cat_attr jib_attr;
+ struct cat_fork jib_fork;
+ buf_t old_bp, new_bp;
+
+ if (hfsmp->vcbJinfoBlock <= allocLimit) {
+ /* The journal info block does not require relocation */
+ return 0;
+ }
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_start_transaction returned %d\n", error);
+ return error;
+ }
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ error = BlockAllocate(hfsmp, 1, 1, 1,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS | HFS_ALLOC_FLUSHTXN,
+ &newBlock, &blockCount);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: BlockAllocate returned %d\n", error);
+ goto fail;
+ }
+ if (blockCount != 1) {
+ printf("hfs_reclaim_journal_info_block: blockCount != 1 (%u)\n", blockCount);
+ goto free_fail;
+ }
+
+ /* Copy the old journal info block content to the new location */
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ (uint64_t)hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, vfs_context_ucred(context), &old_bp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: failed to read JIB (%d)\n", error);
+ if (old_bp) {
+ buf_brelse(old_bp);
+ }
+ goto free_fail;
+ }
+ new_bp = buf_getblk(hfsmp->hfs_devvp,
+ (uint64_t)newBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, 0, 0, BLK_META);
+ bcopy((char*)buf_dataptr(old_bp), (char*)buf_dataptr(new_bp), hfsmp->blockSize);
+ buf_brelse(old_bp);
+ if (journal_uses_fua(hfsmp->jnl))
+ buf_markfua(new_bp);
+ error = buf_bwrite(new_bp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: failed to write new JIB (%d)\n", error);
+ goto free_fail;
+ }
+ if (!journal_uses_fua(hfsmp->jnl)) {
+ error = hfs_flush(hfsmp, HFS_FLUSH_CACHE);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_flush failed (%d)\n", error);
+ /* Don't fail the operation. */
+ }
+ }
+
+ /* Deallocate the old block once the new one has the new valid content */
+ error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
+ goto free_fail;
+ }
+
+
+ /* Update the catalog record for .journal_info_block */
+ error = cat_idlookup(hfsmp, hfsmp->hfs_jnlinfoblkid, 1, 0, &jib_desc, &jib_attr, &jib_fork);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: cat_idlookup returned %d\n", error);
+ goto fail;
+ }
+ oldBlock = jib_fork.cf_extents[0].startBlock;
+ jib_fork.cf_size = hfsmp->blockSize;
+ jib_fork.cf_extents[0].startBlock = newBlock;
+ jib_fork.cf_extents[0].blockCount = 1;
+ jib_fork.cf_blocks = 1;
+ error = cat_update(hfsmp, &jib_desc, &jib_attr, &jib_fork, NULL);
+ cat_releasedesc(&jib_desc); /* all done with cat descriptor */
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: cat_update returned %d\n", error);
+ goto fail;
+ }
+
+ /* Update the pointer to the journal info block in the volume header. */
+ hfsmp->vcbJinfoBlock = newBlock;
+ error = hfs_flushvolumeheader(hfsmp, HFS_FVH_WAIT | HFS_FVH_WRITE_ALT);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_flushvolumeheader returned %d\n", error);
+ goto fail;
+ }
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ error = hfs_end_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_end_transaction returned %d\n", error);
+ }
+ error = hfs_flush(hfsmp, HFS_FLUSH_JOURNAL);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error);
+ }
+
+ /* Account for the block relocated and print progress */
+ hfsmp->hfs_resize_blocksmoved += 1;
+ hfs_truncatefs_progress(hfsmp);
+ if (!error) {
+ printf ("hfs_reclaim_journal_info: Relocated 1 block from journal info on \"%s\"\n",
+ hfsmp->vcbVN);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Successfully relocated journal info block from (%u,%u) to (%u,%u)\n", oldBlock, blockCount, newBlock, blockCount);
+ }
+ }
+ return error;
+
+free_fail:
+ journal_err = BlockDeallocate(hfsmp, newBlock, blockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (journal_err) {
+ printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
+ hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
+ }
+
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Error relocating journal info block (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+static u_int64_t
+calculate_journal_size(struct hfsmount *hfsmp, u_int32_t sector_size, u_int64_t sector_count)
+{
+ u_int64_t journal_size;
+ u_int32_t journal_scale;
+
+#define DEFAULT_JOURNAL_SIZE (8*1024*1024)
+#define MAX_JOURNAL_SIZE (512*1024*1024)
+
+ /* Calculate the journal size for this volume. We want
+ * at least 8 MB of journal for each 100 GB of disk space.
+ * We cap the size at 512 MB, unless the allocation block
+ * size is larger, in which case, we use one allocation
+ * block.
+ */
+ journal_scale = (sector_size * sector_count) / ((u_int64_t)100 * 1024 * 1024 * 1024);
+ journal_size = DEFAULT_JOURNAL_SIZE * (journal_scale + 1);
+ if (journal_size > MAX_JOURNAL_SIZE) {
+ journal_size = MAX_JOURNAL_SIZE;
+ }
+ if (journal_size < hfsmp->blockSize) {
+ journal_size = hfsmp->blockSize;
+ }
+ return journal_size;
+}
+
+
+/*
+ * Calculate the expected journal size based on current partition size.
+ * If the size of the current journal is less than the calculated size,
+ * force journal relocation with the new journal size.
+ */
+static int
+hfs_extend_journal(struct hfsmount *hfsmp, u_int32_t sector_size, u_int64_t sector_count, vfs_context_t context)
+{
+ int error = 0;
+ u_int64_t calc_journal_size;
+
+ if (hfsmp->jvp != hfsmp->hfs_devvp) {
+ if (hfs_resize_debug) {
+ printf("hfs_extend_journal: not resizing the journal because it is on an external device.\n");
+ }
+ return 0;
+ }
+
+ calc_journal_size = calculate_journal_size(hfsmp, sector_size, sector_count);
+ if (calc_journal_size <= hfsmp->jnl_size) {
+ /* The journal size requires no modification */
+ goto out;
+ }
+
+ if (hfs_resize_debug) {
+ printf ("hfs_extend_journal: journal old=%u, new=%qd\n", hfsmp->jnl_size, calc_journal_size);
+ }
+
+ /* Extend the journal to the new calculated size */
+ error = hfs_relocate_journal_file(hfsmp, calc_journal_size, HFS_RESIZE_EXTEND, context);
+ if (error == 0) {
+ printf ("hfs_extend_journal: Extended journal size to %u bytes on \"%s\"\n",
+ hfsmp->jnl_size, hfsmp->vcbVN);
+ }
+out:
+ return error;
+}
+
+
+/*
+ * This function traverses through all extended attribute records for a given
+ * fileID, and calls function that reclaims data blocks that exist in the
+ * area of the disk being reclaimed which in turn is responsible for allocating
+ * new space, copying extent data, deallocating new space, and if required,
+ * splitting the extent.
+ *
+ * Note: The caller has already acquired the cnode lock on the file. Therefore
+ * we are assured that no other thread would be creating/deleting/modifying
+ * extended attributes for this file.
+ *
+ * Side Effects:
+ * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
+ * blocks that were relocated.
+ *
+ * Returns:
+ * 0 on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_xattr(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ struct hfs_reclaim_extent_info *extent_info;
+ int i;
+ HFSPlusAttrKey *key;
+ int *lockflags;
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_xattr: === Start reclaiming xattr for id=%u ===\n", fileID);
+ }
+
+ extent_info = hfs_mallocz(sizeof(struct hfs_reclaim_extent_info));
+ extent_info->vp = vp;
+ extent_info->fileID = fileID;
+ extent_info->is_xattr = true;
+ extent_info->is_sysfile = vnode_issystem(vp);
+ extent_info->fcb = VTOF(hfsmp->hfs_attribute_vp);
+ lockflags = &(extent_info->lockflags);
+ *lockflags = SFL_ATTRIBUTE | SFL_BITMAP;
+
+ /* Initialize iterator from the extent_info structure */
+ extent_info->iterator = hfs_mallocz(sizeof(struct BTreeIterator));
+
+ /* Build attribute key */
+ key = (HFSPlusAttrKey *)&(extent_info->iterator->key);
+ error = hfs_buildattrkey(fileID, NULL, key);
+ if (error) {
+ goto out;
+ }
+
+ /* Initialize btdata from extent_info structure. Note that the
+ * buffer pointer actually points to the xattr record from the
+ * extent_info structure itself.
+ */
+ extent_info->btdata.bufferAddress = &(extent_info->record.xattr);
+ extent_info->btdata.itemSize = sizeof(HFSPlusAttrRecord);
+ extent_info->btdata.itemCount = 1;
+
+ /*
+ * Sync all extent-based attribute data to the disk.
+ *
+ * All extent-based attribute data I/O is performed via cluster
+ * I/O using a virtual file that spans across entire file system
+ * space.
+ */
+ hfs_lock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ (void)cluster_push(hfsmp->hfs_attrdata_vp, 0);
+ error = vnode_waitforwrites(hfsmp->hfs_attrdata_vp, 0, 0, 0, "hfs_reclaim_xattr");
+ hfs_unlock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_LOCK_DEFAULT);
+ if (error) {
+ goto out;
+ }
+
+ /* Search for extended attribute for current file. This
+ * will place the iterator before the first matching record.
+ */
+ *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
+ &(extent_info->btdata), &(extent_info->recordlen),
+ extent_info->iterator);
+ hfs_systemfile_unlock(hfsmp, *lockflags);
+ if (error) {
+ if (error != btNotFound) {
+ goto out;
+ }
+ /* btNotFound is expected here, so just mask it */
+ error = 0;
+ }
+
+ while (1) {
+ /* Iterate to the next record */
+ *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
+ error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
+ extent_info->iterator, &(extent_info->btdata),
+ &(extent_info->recordlen));
+ hfs_systemfile_unlock(hfsmp, *lockflags);
+
+ /* Stop the iteration if we encounter end of btree or xattr with different fileID */
+ if (error || key->fileID != fileID) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+ break;
+ }
+
+ /* We only care about extent-based EAs */
+ if ((extent_info->record.xattr.recordType != kHFSPlusAttrForkData) &&
+ (extent_info->record.xattr.recordType != kHFSPlusAttrExtents)) {
+ continue;
+ }
+
+ if (extent_info->record.xattr.recordType == kHFSPlusAttrForkData) {
+ extent_info->overflow_count = 0;
+ extent_info->extents = extent_info->record.xattr.forkData.theFork.extents;
+ } else if (extent_info->record.xattr.recordType == kHFSPlusAttrExtents) {
+ extent_info->overflow_count++;
+ extent_info->extents = extent_info->record.xattr.overflowExtents.extents;
+ }
+
+ extent_info->recStartBlock = key->startBlock;
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (extent_info->extents[i].blockCount == 0) {
+ break;
+ }
+ extent_info->extent_index = i;
+ error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
+ if (error) {
+ printf ("hfs_reclaim_xattr: fileID=%u hfs_reclaim_extent error=%d\n", fileID, error);
+ goto out;
+ }
+ }
+ }
+
+out:
+ /* If any blocks were relocated, account them and report progress */
+ if (extent_info->blocks_relocated) {
+ hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
+ hfs_truncatefs_progress(hfsmp);
+ }
+ if (extent_info->iterator) {
+ hfs_free(extent_info->iterator, sizeof(*extent_info->iterator));
+ }
+ if (extent_info) {
+ hfs_free(extent_info, sizeof(*extent_info));
+ }
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_xattr: === Finished relocating xattr for fileid=%u (error=%d) ===\n", fileID, error);
+ }
+ return error;
+}
+
+/*
+ * Reclaim any extent-based extended attributes allocation blocks from
+ * the area of the disk that is being truncated.
+ *
+ * The function traverses the attribute btree to find out the fileIDs
+ * of the extended attributes that need to be relocated. For every
+ * file whose large EA requires relocation, it looks up the cnode and
+ * calls hfs_reclaim_xattr() to do all the work for allocating
+ * new space, copying data, deallocating old space, and if required,
+ * splitting the extents.
+ *
+ * Inputs:
+ * allocLimit - starting block of the area being reclaimed
+ *
+ * Returns:
+ * returns 0 on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_xattrspace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error = 0;
+ FCB *fcb;
+ struct BTreeIterator *iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ HFSPlusAttrKey *key;
+ HFSPlusAttrRecord rec;
+ int lockflags = 0;
+ cnid_t prev_fileid = 0;
+ struct vnode *vp;
+ int need_relocate;
+ int btree_operation;
+ u_int32_t files_moved = 0;
+ u_int32_t prev_blocksmoved;
+ int i;
+
+ fcb = VTOF(hfsmp->hfs_attribute_vp);
+ /* Store the value to print total blocks moved by this function in end */
+ prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
+
+ iterator = hfs_mallocz(sizeof(*iterator));
+ key = (HFSPlusAttrKey *)&iterator->key;
+ btdata.bufferAddress = &rec;
+ btdata.itemSize = sizeof(rec);
+ btdata.itemCount = 1;
+
+ need_relocate = false;
+ btree_operation = kBTreeFirstRecord;
+ /* Traverse the attribute btree to find extent-based EAs to reclaim */
+ while (1) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK);
+ error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+ break;
+ }
+ btree_operation = kBTreeNextRecord;
+
+ /* If the extents of current fileID were already relocated, skip it */
+ if (prev_fileid == key->fileID) {
+ continue;
+ }
+
+ /* Check if any of the extents in the current record need to be relocated */
+ need_relocate = false;
+ switch(rec.recordType) {
+ case kHFSPlusAttrForkData:
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (rec.forkData.theFork.extents[i].blockCount == 0) {
+ break;
+ }
+ if ((rec.forkData.theFork.extents[i].startBlock +
+ rec.forkData.theFork.extents[i].blockCount) > allocLimit) {
+ need_relocate = true;
+ break;
+ }
+ }
+ break;
+
+ case kHFSPlusAttrExtents:
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ if (rec.overflowExtents.extents[i].blockCount == 0) {
+ break;
+ }
+ if ((rec.overflowExtents.extents[i].startBlock +
+ rec.overflowExtents.extents[i].blockCount) > allocLimit) {
+ need_relocate = true;
+ break;
+ }
+ }
+ break;
+ };
+
+ /* Continue iterating to next attribute record */
+ if (need_relocate == false) {
+ continue;
+ }
+
+ /* Look up the vnode for corresponding file. The cnode
+ * will be locked which will ensure that no one modifies
+ * the xattrs when we are relocating them.
+ *
+ * We want to allow open-unlinked files to be moved,
+ * so provide allow_deleted == 1 for hfs_vget().
+ */
+ if (hfs_vget(hfsmp, key->fileID, &vp, 0, 1) != 0) {
+ continue;
+ }
+
+ error = hfs_reclaim_xattr(hfsmp, vp, key->fileID, allocLimit, context);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ if (error) {
+ printf ("hfs_reclaim_xattrspace: Error relocating xattrs for fileid=%u (error=%d)\n", key->fileID, error);
+ break;
+ }
+ prev_fileid = key->fileID;
+ files_moved++;
+ }
+
+ if (files_moved) {
+ printf("hfs_reclaim_xattrspace: Relocated %u xattr blocks from %u files on \"%s\"\n",
+ (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
+ files_moved, hfsmp->vcbVN);
+ }
+
+ hfs_free(iterator, sizeof(*iterator));
+ return error;
+}
+
+/*
+ * Reclaim blocks from regular files.
+ *
+ * This function iterates over all the record in catalog btree looking
+ * for files with extents that overlap into the space we're trying to
+ * free up. If a file extent requires relocation, it looks up the vnode
+ * and calls function to relocate the data.
+ *
+ * Returns:
+ * Zero on success, non-zero on failure.
+ */
+static int
+hfs_reclaim_filespace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
+{
+ int error;
+ FCB *fcb;
+ struct BTreeIterator *iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ int btree_operation;
+ int lockflags;
+ struct HFSPlusCatalogFile filerec;
+ struct vnode *vp;
+ struct vnode *rvp;
+ struct filefork *datafork;
+ u_int32_t files_moved = 0;
+ u_int32_t prev_blocksmoved;
+
+#if CONFIG_PROTECT
+ int keys_generated = 0;
+#endif
+
+ fcb = VTOF(hfsmp->hfs_catalog_vp);
+ /* Store the value to print total blocks moved by this function at the end */
+ prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
+
+#if CONFIG_PROTECT
+ /*
+ * For content-protected filesystems, we may need to relocate files that
+ * are encrypted. If they use the new-style offset-based IVs, then
+ * we can move them regardless of the lock state. We create a temporary
+ * key here that we use to read/write the data, then we discard it at the
+ * end of the function.
+ */
+ if (cp_fs_protected (hfsmp->hfs_mp)) {
+ error = cpx_gentempkeys(&hfsmp->hfs_resize_cpx, hfsmp);
+ if (error == 0) {
+ keys_generated = 1;
+ }
+
+ if (error) {
+ printf("hfs_reclaimspace: Error generating temporary keys for resize (%d)\n", error);
+ goto reclaim_filespace_done;
+ }
+ }
+
+#endif
+
+ iterator = hfs_mallocz(sizeof(*iterator));
+
+ btdata.bufferAddress = &filerec;
+ btdata.itemSize = sizeof(filerec);
+ btdata.itemCount = 1;
+
+ btree_operation = kBTreeFirstRecord;
+ while (1) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
+ error = 0;
+ }
+ break;
+ }
+ btree_operation = kBTreeNextRecord;
+
+ if (filerec.recordType != kHFSPlusFileRecord) {
+ continue;
+ }
+
+ /* Check if any of the extents require relocation */
+ bool overlaps;
+ error = hfs_file_extent_overlaps(hfsmp, allocLimit, &filerec, &overlaps);
+ if (error)
+ break;
+
+ if (!overlaps)
+ continue;
+
+ /* We want to allow open-unlinked files to be moved, so allow_deleted == 1 */
+ if (hfs_vget(hfsmp, filerec.fileID, &vp, 0, 1) != 0) {
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_filespace: hfs_vget(%u) failed.\n", filerec.fileID);
+ }
+ continue;
+ }
+
+ /* If data fork exists or item is a directory hard link, relocate blocks */
+ datafork = VTOF(vp);
+ if ((datafork && datafork->ff_blocks > 0) || vnode_isdir(vp)) {
+ error = hfs_reclaim_file(hfsmp, vp, filerec.fileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming datafork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ break;
+ }
+ }
+
+ /* If resource fork exists or item is a directory hard link, relocate blocks */
+ if (((VTOC(vp)->c_blocks - (datafork ? datafork->ff_blocks : 0)) > 0) || vnode_isdir(vp)) {
+ if (vnode_isdir(vp)) {
+ /* Resource fork vnode lookup is invalid for directory hard link.
+ * So we fake data fork vnode as resource fork vnode.
+ */
+ rvp = vp;
+ } else {
+ error = hfs_vgetrsrc(hfsmp, vp, &rvp);
+ if (error) {
+ printf ("hfs_reclaimspace: Error looking up rvp for fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ break;
+ }
+ VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT;
+ }
+
+ error = hfs_reclaim_file(hfsmp, rvp, filerec.fileID,
+ kHFSResourceForkType, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming rsrcfork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ break;
+ }
+ }
+
+ /* The file forks were relocated successfully, now drop the
+ * cnode lock and vnode reference, and continue iterating to
+ * next catalog record.
+ */
+ hfs_unlock(VTOC(vp));
+ vnode_put(vp);
+ files_moved++;
+ }
+
+ if (files_moved) {
+ printf("hfs_reclaim_filespace: Relocated %u blocks from %u files on \"%s\"\n",
+ (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
+ files_moved, hfsmp->vcbVN);
+ }
+
+#if CONFIG_PROTECT
+reclaim_filespace_done:
+
+ if (keys_generated) {
+ cpx_free(hfsmp->hfs_resize_cpx);
+ hfsmp->hfs_resize_cpx = NULL;
+ }
+#endif
+
+ hfs_free(iterator, sizeof(*iterator));
+
+ return error;
+}
+
+/*
+ * Reclaim space at the end of a file system.
+ *
+ * Inputs -
+ * allocLimit - start block of the space being reclaimed
+ * reclaimblks - number of allocation blocks to reclaim
+ */
+static int
+hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context)
+{
+ int error = 0;
+
+ /*
+ * Preflight the bitmap to find out total number of blocks that need
+ * relocation.
+ *
+ * Note: Since allocLimit is set to the location of new alternate volume
+ * header, the check below does not account for blocks allocated for old
+ * alternate volume header.
+ */
+ error = hfs_count_allocated(hfsmp, allocLimit, reclaimblks, &(hfsmp->hfs_resize_totalblocks));
+ if (error) {
+ printf ("hfs_reclaimspace: Unable to determine total blocks to reclaim error=%d\n", error);
+ return error;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaimspace: Total number of blocks to reclaim = %u\n", hfsmp->hfs_resize_totalblocks);
+ }
+
+ /* Just to be safe, sync the content of the journal to the disk before we proceed */
+ hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+
+ /* First, relocate journal file blocks if they're in the way.
+ * Doing this first will make sure that journal relocate code
+ * gets access to contiguous blocks on disk first. The journal
+ * file has to be contiguous on the disk, otherwise resize will
+ * fail.
+ */
+ error = hfs_reclaim_journal_file(hfsmp, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error);
+ return error;
+ }
+
+ /* Relocate journal info block blocks if they're in the way. */
+ error = hfs_reclaim_journal_info_block(hfsmp, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Extents B-tree if they're in the way.
+ * Relocating extents btree before other btrees is important as
+ * this will provide access to largest contiguous block range on
+ * the disk for relocating extents btree. Note that extents btree
+ * can only have maximum of 8 extents.
+ */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_extents_vp, kHFSExtentsFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Allocation file if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_allocation_vp, kHFSAllocationFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Catalog B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_catalog_vp, kHFSCatalogFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Attributes B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_attribute_vp, kHFSAttributesFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error);
+ return error;
+ }
+
+ /* Relocate extents of the Startup File if there is one and they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_startup_vp, kHFSStartupFileID,
+ kHFSDataForkType, allocLimit, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim startup file returned %d\n", error);
+ return error;
+ }
+
+ /*
+ * We need to make sure the alternate volume header gets flushed if we moved
+ * any extents in the volume header. But we need to do that before
+ * shrinking the size of the volume, or else the journal code will panic
+ * with an invalid (too large) block number.
+ *
+ * Note that blks_moved will be set if ANY extent was moved, even
+ * if it was just an overflow extent. In this case, the journal_flush isn't
+ * strictly required, but shouldn't hurt.
+ */
+ if (hfsmp->hfs_resize_blocksmoved) {
+ hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+ }
+
+ /* Reclaim extents from catalog file records */
+ error = hfs_reclaim_filespace(hfsmp, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: hfs_reclaim_filespace returned error=%d\n", error);
+ return error;
+ }
+
+ /* Reclaim extents from extent-based extended attributes, if any */
+ error = hfs_reclaim_xattrspace(hfsmp, allocLimit, context);
+ if (error) {
+ printf ("hfs_reclaimspace: hfs_reclaim_xattrspace returned error=%d\n", error);
+ return error;
+ }
+
+ /*
+ * Make sure reserved ranges in the region we're to allocate don't
+ * overlap.
+ */
+ struct rl_entry *range;
+again:;
+ int lockf = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_SHARED_LOCK);
+ TAILQ_FOREACH(range, &hfsmp->hfs_reserved_ranges[HFS_LOCKED_BLOCKS], rl_link) {
+ if (rl_overlap(range, hfsmp->allocLimit, RL_INFINITY) != RL_NOOVERLAP) {
+ // Wait 100ms
+ hfs_systemfile_unlock(hfsmp, lockf);
+ msleep(hfs_reclaimspace, NULL, PINOD, "waiting on reserved blocks",
+ &(struct timespec){ 0, 100 * 1000000 });
+ goto again;
+ }
+ }
+ hfs_systemfile_unlock(hfsmp, lockf);
+
+ return error;
+}
+
+
+/*
+ * Check if there are any extents (including overflow extents) that overlap
+ * into the disk space that is being reclaimed.
+ *
+ * Output -
+ * true - One of the extents need to be relocated
+ * false - No overflow extents need to be relocated, or there was an error
+ */
+static errno_t
+hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit,
+ struct HFSPlusCatalogFile *filerec, bool *overlaps)
+{
+ struct BTreeIterator * iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ HFSPlusExtentRecord extrec;
+ HFSPlusExtentKey *extkeyptr;
+ FCB *fcb;
+ int i, j;
+ int error;
+ int lockflags = 0;
+ u_int32_t endblock;
+ errno_t ret = 0;
+
+ /* Check if data fork overlaps the target space */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (filerec->dataFork.extents[i].blockCount == 0) {
+ break;
+ }
+ endblock = filerec->dataFork.extents[i].startBlock +
+ filerec->dataFork.extents[i].blockCount;
+ if (endblock > allocLimit) {
+ *overlaps = true;
+ goto out;
+ }
+ }
+
+ /* Check if resource fork overlaps the target space */
+ for (j = 0; j < kHFSPlusExtentDensity; ++j) {
+ if (filerec->resourceFork.extents[j].blockCount == 0) {
+ break;
+ }
+ endblock = filerec->resourceFork.extents[j].startBlock +
+ filerec->resourceFork.extents[j].blockCount;
+ if (endblock > allocLimit) {
+ *overlaps = true;
+ goto out;
+ }
+ }
+
+ /* Return back if there are no overflow extents for this file */
+ if ((i < kHFSPlusExtentDensity) && (j < kHFSPlusExtentDensity)) {
+ *overlaps = false;
+ goto out;
+ }
+
+ iterator = hfs_malloc(sizeof(*iterator));
+
+ bzero(iterator, sizeof(*iterator));
+ extkeyptr = (HFSPlusExtentKey *)&iterator->key;
+ extkeyptr->keyLength = kHFSPlusExtentKeyMaximumLength;
+ extkeyptr->forkType = 0;
+ extkeyptr->fileID = filerec->fileID;
+ extkeyptr->startBlock = 0;
+
+ btdata.bufferAddress = &extrec;
+ btdata.itemSize = sizeof(extrec);
+ btdata.itemCount = 1;
+
+ fcb = VTOF(hfsmp->hfs_extents_vp);
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_SHARED_LOCK);
+
+ /* This will position the iterator just before the first overflow
+ * extent record for given fileID. It will always return btNotFound,
+ * so we special case the error code.
+ */
+ error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
+ if (error && (error != btNotFound)) {
+ ret = MacToVFSError(error);
+ goto out;
+ }
+
+ /* BTIterateRecord() might return error if the btree is empty, and
+ * therefore we return that the extent does not overflow to the caller
+ */
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+ while (error == 0) {
+ /* Stop when we encounter a different file. */
+ if (extkeyptr->fileID != filerec->fileID) {
+ break;
+ }
+ /* Check if any of the forks exist in the target space. */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (extrec[i].blockCount == 0) {
+ break;
+ }
+ endblock = extrec[i].startBlock + extrec[i].blockCount;
+ if (endblock > allocLimit) {
+ *overlaps = true;
+ goto out;
+ }
+ }
+ /* Look for more records. */
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+ }
+
+ if (error && error != btNotFound) {
+ ret = MacToVFSError(error);
+ goto out;
+ }
+
+ *overlaps = false;
+
+out:
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+
+ hfs_free(iterator, sizeof(*iterator));
+
+ return ret;
+}
+
+
+/*
+ * Calculate the progress of a file system resize operation.
+ */
+int
+hfs_resize_progress(struct hfsmount *hfsmp, u_int32_t *progress)
+{
+ if ((hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) == 0) {
+ return (ENXIO);
+ }
+
+ if (hfsmp->hfs_resize_totalblocks > 0) {
+ *progress = (u_int32_t)((hfsmp->hfs_resize_blocksmoved * 100ULL) / hfsmp->hfs_resize_totalblocks);
+ } else {
+ *progress = 0;
+ }
+
+ return (0);
+}