2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* @(#)hfs_readwrite.c 1.0
30 * (c) 1998-2001 Apple Inc. All Rights Reserved
32 * hfs_readwrite.c -- vnode operations to deal with reading and writing files.
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/fcntl.h>
43 #include <sys/kauth.h>
44 #include <sys/vnode.h>
46 #include <sys/vfs_context.h>
48 #include <sys/sysctl.h>
49 #include <sys/fsctl.h>
51 #include <sys/fsevents.h>
52 #include <uuid/uuid.h>
54 #include <libkern/OSDebug.h>
56 #include <miscfs/specfs/specdev.h>
60 #include <vm/vm_pageout.h>
61 #include <vm/vm_kern.h>
63 #include <IOKit/IOBSD.h>
65 #include <sys/kdebug.h>
68 #include "hfs_attrlist.h"
69 #include "hfs_endian.h"
70 #include "hfs_fsctl.h"
71 #include "hfs_quota.h"
72 #include "FileMgrInternal.h"
73 #include "BTreesInternal.h"
74 #include "hfs_cnode.h"
77 #if HFS_CONFIG_KEY_ROLL
78 #include "hfs_key_roll.h"
81 #define can_cluster(size) ((((size & (4096-1))) == 0) && (size <= (MAXPHYSIO/2)))
84 MAXHFSFILESIZE
= 0x7FFFFFFF /* this needs to go in the mount structure */
87 /* from bsd/hfs/hfs_vfsops.c */
88 extern int hfs_vfs_vget (struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, vfs_context_t context
);
90 /* from hfs_hotfiles.c */
91 extern int hfs_pin_overflow_extents (struct hfsmount
*hfsmp
, uint32_t fileid
,
92 uint8_t forktype
, uint32_t *pinned
);
94 static int hfs_clonefile(struct vnode
*, int, int, int);
95 static int hfs_clonesysfile(struct vnode
*, int, int, int, kauth_cred_t
, struct proc
*);
96 static int do_hfs_truncate(struct vnode
*vp
, off_t length
, int flags
, int skip
, vfs_context_t context
);
100 * Read data from a file.
103 hfs_vnop_read(struct vnop_read_args
*ap
)
106 struct vnop_read_args {
107 struct vnodeop_desc *a_desc;
111 vfs_context_t a_context;
115 uio_t uio
= ap
->a_uio
;
116 struct vnode
*vp
= ap
->a_vp
;
119 struct hfsmount
*hfsmp
;
122 off_t start_resid
= uio_resid(uio
);
123 off_t offset
= uio_offset(uio
);
125 int took_truncate_lock
= 0;
127 int throttled_count
= 0;
129 /* Preflight checks */
130 if (!vnode_isreg(vp
)) {
131 /* can only read regular files */
137 if (start_resid
== 0)
138 return (0); /* Nothing left to do */
140 return (EINVAL
); /* cant read from a negative offset */
143 if ((ap
->a_ioflag
& (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) ==
144 (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) {
145 /* Don't allow unencrypted io request from user space */
151 if (VNODE_IS_RSRC(vp
)) {
152 if (hfs_hides_rsrc(ap
->a_context
, VTOC(vp
), 1)) { /* 1 == don't take the cnode lock */
155 /* otherwise read the resource fork normally */
157 int compressed
= hfs_file_is_compressed(VTOC(vp
), 1); /* 1 == don't take the cnode lock */
159 retval
= decmpfs_read_compressed(ap
, &compressed
, VTOCMP(vp
));
160 if (retval
== 0 && !(ap
->a_ioflag
& IO_EVTONLY
) && vnode_isfastdevicecandidate(vp
)) {
161 (void) hfs_addhotfile(vp
);
165 /* successful read, update the access time */
166 VTOC(vp
)->c_touch_acctime
= TRUE
;
169 // compressed files are not traditional hot file candidates
170 // but they may be for CF (which ignores the ff_bytesread
173 if (VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) {
174 VTOF(vp
)->ff_bytesread
= 0;
179 /* otherwise the file was converted back to a regular file while we were reading it */
181 } else if ((VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
184 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
191 #endif /* HFS_COMPRESSION */
198 if ((retval
= cp_handle_vnop (vp
, CP_READ_ACCESS
, ap
->a_ioflag
)) != 0) {
202 #if HFS_CONFIG_KEY_ROLL
203 if (ISSET(ap
->a_ioflag
, IO_ENCRYPTED
)) {
204 off_rsrc_t off_rsrc
= off_rsrc_make(offset
+ start_resid
,
207 retval
= hfs_key_roll_up_to(ap
->a_context
, vp
, off_rsrc
);
211 #endif // HFS_CONFIG_KEY_ROLL
212 #endif // CONFIG_PROTECT
215 * If this read request originated from a syscall (as opposed to
216 * an in-kernel page fault or something), then set it up for
219 if (ap
->a_ioflag
& IO_SYSCALL_DISPATCH
) {
220 io_throttle
= IO_RETURN_ON_THROTTLE
;
225 /* Protect against a size change. */
226 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
227 took_truncate_lock
= 1;
229 filesize
= fp
->ff_size
;
230 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)hfsmp
->blockSize
;
233 * Check the file size. Note that per POSIX spec, we return 0 at
234 * file EOF, so attempting a read at an offset that is too big
235 * should just return 0 on HFS+. Since the return value was initialized
236 * to 0 above, we just jump to exit. HFS Standard has its own behavior.
238 if (offset
> filesize
) {
240 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) &&
241 (offset
> (off_t
)MAXHFSFILESIZE
)) {
248 KERNEL_DEBUG(HFSDBG_READ
| DBG_FUNC_START
,
249 (int)uio_offset(uio
), uio_resid(uio
), (int)filesize
, (int)filebytes
, 0);
251 retval
= cluster_read(vp
, uio
, filesize
, ap
->a_ioflag
|io_throttle
);
253 cp
->c_touch_acctime
= TRUE
;
255 KERNEL_DEBUG(HFSDBG_READ
| DBG_FUNC_END
,
256 (int)uio_offset(uio
), uio_resid(uio
), (int)filesize
, (int)filebytes
, 0);
259 * Keep track blocks read
261 if (hfsmp
->hfc_stage
== HFC_RECORDING
&& retval
== 0) {
262 int took_cnode_lock
= 0;
265 bytesread
= start_resid
- uio_resid(uio
);
267 /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
268 if ((fp
->ff_bytesread
+ bytesread
) > 0x00000000ffffffff) {
269 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
273 * If this file hasn't been seen since the start of
274 * the current sampling period then start over.
276 if (cp
->c_atime
< hfsmp
->hfc_timebase
) {
279 fp
->ff_bytesread
= bytesread
;
281 cp
->c_atime
= tv
.tv_sec
;
283 fp
->ff_bytesread
+= bytesread
;
286 if (!(ap
->a_ioflag
& IO_EVTONLY
) && vnode_isfastdevicecandidate(vp
)) {
288 // We don't add hotfiles for processes doing IO_EVTONLY I/O
289 // on the assumption that they're system processes such as
290 // mdworker which scan everything in the system (and thus
291 // do not represent user-initiated access to files)
293 (void) hfs_addhotfile(vp
);
299 if (took_truncate_lock
) {
300 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
302 if (retval
== EAGAIN
) {
303 throttle_lowpri_io(1);
310 throttle_info_reset_window(NULL
);
315 * Ideally, this wouldn't be necessary; the cluster code should be
316 * able to handle this on the read-side. See <rdar://20420068>.
318 static errno_t
hfs_zero_eof_page(vnode_t vp
, off_t zero_up_to
)
320 hfs_assert(VTOC(vp
)->c_lockowner
!= current_thread());
321 hfs_assert(VTOC(vp
)->c_truncatelockowner
== current_thread());
323 struct filefork
*fp
= VTOF(vp
);
325 if (!(fp
->ff_size
& PAGE_MASK_64
) || zero_up_to
<= fp
->ff_size
) {
330 zero_up_to
= MIN(zero_up_to
, (off_t
)round_page_64(fp
->ff_size
));
332 /* N.B. At present, @zero_up_to is not important because the cluster
333 code will always zero up to the end of the page anyway. */
334 return cluster_write(vp
, NULL
, fp
->ff_size
, zero_up_to
,
335 fp
->ff_size
, 0, IO_HEADZEROFILL
);
339 * Write data to a file.
342 hfs_vnop_write(struct vnop_write_args
*ap
)
344 uio_t uio
= ap
->a_uio
;
345 struct vnode
*vp
= ap
->a_vp
;
348 struct hfsmount
*hfsmp
;
349 kauth_cred_t cred
= NULL
;
352 off_t bytesToAdd
= 0;
353 off_t actualBytesAdded
;
358 int ioflag
= ap
->a_ioflag
;
361 int cnode_locked
= 0;
362 int partialwrite
= 0;
364 time_t orig_ctime
=VTOC(vp
)->c_ctime
;
365 int took_truncate_lock
= 0;
366 int io_return_on_throttle
= 0;
367 int throttled_count
= 0;
370 if ( hfs_file_is_compressed(VTOC(vp
), 1) ) { /* 1 == don't take the cnode lock */
371 int state
= decmpfs_cnode_get_vnode_state(VTOCMP(vp
));
373 case FILE_IS_COMPRESSED
:
375 case FILE_IS_CONVERTING
:
376 /* if FILE_IS_CONVERTING, we allow writes but do not
377 bother with snapshots or else we will deadlock.
382 printf("invalid state %d for compressed file\n", state
);
385 } else if ((VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
388 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_WRITE_OP
);
395 nspace_snapshot_event(vp
, orig_ctime
, NAMESPACE_HANDLER_WRITE_OP
, uio
);
401 if ((ioflag
& (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) ==
402 (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) {
403 /* Don't allow unencrypted io request from user space */
408 resid
= uio_resid(uio
);
409 offset
= uio_offset(uio
);
415 if (!vnode_isreg(vp
))
416 return (EPERM
); /* Can only write regular files */
423 if ((retval
= cp_handle_vnop (vp
, CP_WRITE_ACCESS
, 0)) != 0) {
428 eflags
= kEFDeferMask
; /* defer file block allocations */
431 * When the underlying device is sparse and space
432 * is low (< 8MB), stop doing delayed allocations
433 * and begin doing synchronous I/O.
435 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) &&
436 (hfs_freeblks(hfsmp
, 0) < 2048)) {
437 eflags
&= ~kEFDeferMask
;
440 #endif /* HFS_SPARSE_DEV */
442 if ((ioflag
& (IO_SINGLE_WRITER
| IO_SYSCALL_DISPATCH
)) ==
443 (IO_SINGLE_WRITER
| IO_SYSCALL_DISPATCH
)) {
444 io_return_on_throttle
= IO_RETURN_ON_THROTTLE
;
449 * Protect against a size change.
451 * Note: If took_truncate_lock is true, then we previously got the lock shared
452 * but needed to upgrade to exclusive. So try getting it exclusive from the
455 if (ioflag
& IO_APPEND
|| took_truncate_lock
) {
456 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
459 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
461 took_truncate_lock
= 1;
464 if (ioflag
& IO_APPEND
) {
465 uio_setoffset(uio
, fp
->ff_size
);
466 offset
= fp
->ff_size
;
468 if ((cp
->c_bsdflags
& APPEND
) && offset
!= fp
->ff_size
) {
473 cred
= vfs_context_ucred(ap
->a_context
);
474 if (cred
&& suser(cred
, NULL
) != 0)
475 eflags
|= kEFReserveMask
;
477 origFileSize
= fp
->ff_size
;
478 writelimit
= offset
+ resid
;
481 * We may need an exclusive truncate lock for several reasons, all
482 * of which are because we may be writing to a (portion of a) block
483 * for the first time, and we need to make sure no readers see the
484 * prior, uninitialized contents of the block. The cases are:
486 * 1. We have unallocated (delayed allocation) blocks. We may be
487 * allocating new blocks to the file and writing to them.
488 * (A more precise check would be whether the range we're writing
489 * to contains delayed allocation blocks.)
490 * 2. We need to extend the file. The bytes between the old EOF
491 * and the new EOF are not yet initialized. This is important
492 * even if we're not allocating new blocks to the file. If the
493 * old EOF and new EOF are in the same block, we still need to
494 * protect that range of bytes until they are written for the
497 * If we had a shared lock with the above cases, we need to try to upgrade
498 * to an exclusive lock. If the upgrade fails, we will lose the shared
499 * lock, and will need to take the truncate lock again; the took_truncate_lock
500 * flag will still be set, causing us to try for an exclusive lock next time.
502 if ((cp
->c_truncatelockowner
== HFS_SHARED_OWNER
) &&
503 ((fp
->ff_unallocblocks
!= 0) ||
504 (writelimit
> origFileSize
))) {
505 if (lck_rw_lock_shared_to_exclusive(&cp
->c_truncatelock
) == FALSE
) {
507 * Lock upgrade failed and we lost our shared lock, try again.
508 * Note: we do not set took_truncate_lock=0 here. Leaving it
509 * set to 1 will cause us to try to get the lock exclusive.
514 /* Store the owner in the c_truncatelockowner field if we successfully upgrade */
515 cp
->c_truncatelockowner
= current_thread();
519 if ( (retval
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
524 filebytes
= hfs_blk_to_bytes(fp
->ff_blocks
, hfsmp
->blockSize
);
526 if (offset
> filebytes
527 && (hfs_blk_to_bytes(hfs_freeblks(hfsmp
, ISSET(eflags
, kEFReserveMask
)),
528 hfsmp
->blockSize
) < offset
- filebytes
)) {
533 KERNEL_DEBUG(HFSDBG_WRITE
| DBG_FUNC_START
,
534 (int)offset
, uio_resid(uio
), (int)fp
->ff_size
,
537 /* Check if we do not need to extend the file */
538 if (writelimit
<= filebytes
) {
542 bytesToAdd
= writelimit
- filebytes
;
545 retval
= hfs_chkdq(cp
, (int64_t)(roundup(bytesToAdd
, hfsmp
->blockSize
)),
551 if (hfs_start_transaction(hfsmp
) != 0) {
556 while (writelimit
> filebytes
) {
557 bytesToAdd
= writelimit
- filebytes
;
559 /* Protect extents b-tree and allocation bitmap */
560 lockflags
= SFL_BITMAP
;
561 if (overflow_extents(fp
))
562 lockflags
|= SFL_EXTENTS
;
563 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
565 /* Files that are changing size are not hot file candidates. */
566 if (hfsmp
->hfc_stage
== HFC_RECORDING
) {
567 fp
->ff_bytesread
= 0;
569 retval
= MacToVFSError(ExtendFileC (hfsmp
, (FCB
*)fp
, bytesToAdd
,
570 0, eflags
, &actualBytesAdded
));
572 hfs_systemfile_unlock(hfsmp
, lockflags
);
574 if ((actualBytesAdded
== 0) && (retval
== E_NONE
))
576 if (retval
!= E_NONE
)
578 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)hfsmp
->blockSize
;
579 KERNEL_DEBUG(HFSDBG_WRITE
| DBG_FUNC_NONE
,
580 (int)offset
, uio_resid(uio
), (int)fp
->ff_size
, (int)filebytes
, 0);
582 (void) hfs_update(vp
, 0);
583 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
584 (void) hfs_end_transaction(hfsmp
);
587 * If we didn't grow the file enough try a partial write.
588 * POSIX expects this behavior.
590 if ((retval
== ENOSPC
) && (filebytes
> offset
)) {
593 uio_setresid(uio
, (uio_resid(uio
) - bytesToAdd
));
595 writelimit
= filebytes
;
598 if (retval
== E_NONE
) {
603 if (writelimit
> fp
->ff_size
) {
604 filesize
= writelimit
;
606 rl_add(fp
->ff_size
, writelimit
- 1 , &fp
->ff_invalidranges
);
608 cp
->c_zftimeout
= tv
.tv_sec
+ ZFTIMELIMIT
;
610 filesize
= fp
->ff_size
;
612 lflag
= ioflag
& ~(IO_TAILZEROFILL
| IO_HEADZEROFILL
| IO_NOZEROVALID
| IO_NOZERODIRTY
);
615 * We no longer use IO_HEADZEROFILL or IO_TAILZEROFILL (except
616 * for one case below). For the regions that lie before the
617 * beginning and after the end of this write that are in the
618 * same page, we let the cluster code handle zeroing that out
619 * if necessary. If those areas are not cached, the cluster
620 * code will try and read those areas in, and in the case
621 * where those regions have never been written to,
622 * hfs_vnop_blockmap will consult the invalid ranges and then
623 * indicate that. The cluster code will zero out those areas.
626 head_off
= trunc_page_64(offset
);
628 if (head_off
< offset
&& head_off
>= fp
->ff_size
) {
630 * The first page is beyond current EOF, so as an
631 * optimisation, we can pass IO_HEADZEROFILL.
633 lflag
|= IO_HEADZEROFILL
;
640 * We need to tell UBC the fork's new size BEFORE calling
641 * cluster_write, in case any of the new pages need to be
642 * paged out before cluster_write completes (which does happen
643 * in embedded systems due to extreme memory pressure).
644 * Similarly, we need to tell hfs_vnop_pageout what the new EOF
645 * will be, so that it can pass that on to cluster_pageout, and
646 * allow those pageouts.
648 * We don't update ff_size yet since we don't want pageins to
649 * be able to see uninitialized data between the old and new
650 * EOF, until cluster_write has completed and initialized that
653 * The vnode pager relies on the file size last given to UBC via
654 * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or
655 * ff_size (whichever is larger). NOTE: ff_new_size is always
656 * zero, unless we are extending the file via write.
658 if (filesize
> fp
->ff_size
) {
659 retval
= hfs_zero_eof_page(vp
, offset
);
662 fp
->ff_new_size
= filesize
;
663 ubc_setsize(vp
, filesize
);
665 retval
= cluster_write(vp
, uio
, fp
->ff_size
, filesize
, head_off
,
666 0, lflag
| IO_NOZERODIRTY
| io_return_on_throttle
);
668 fp
->ff_new_size
= 0; /* no longer extending; use ff_size */
670 if (retval
== EAGAIN
) {
672 * EAGAIN indicates that we still have I/O to do, but
673 * that we now need to be throttled
675 if (resid
!= uio_resid(uio
)) {
677 * did manage to do some I/O before returning EAGAIN
679 resid
= uio_resid(uio
);
680 offset
= uio_offset(uio
);
682 cp
->c_touch_chgtime
= TRUE
;
683 cp
->c_touch_modtime
= TRUE
;
684 hfs_incr_gencount(cp
);
686 if (filesize
> fp
->ff_size
) {
688 * we called ubc_setsize before the call to
689 * cluster_write... since we only partially
690 * completed the I/O, we need to
691 * re-adjust our idea of the filesize based
694 ubc_setsize(vp
, offset
);
696 fp
->ff_size
= offset
;
700 if (filesize
> origFileSize
) {
701 ubc_setsize(vp
, origFileSize
);
706 if (filesize
> origFileSize
) {
707 fp
->ff_size
= filesize
;
709 /* Files that are changing size are not hot file candidates. */
710 if (hfsmp
->hfc_stage
== HFC_RECORDING
) {
711 fp
->ff_bytesread
= 0;
714 fp
->ff_new_size
= 0; /* ff_size now has the correct size */
717 uio_setresid(uio
, (uio_resid(uio
) + bytesToAdd
));
721 if (vnode_should_flush_after_write(vp
, ioflag
))
722 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
726 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
730 if (resid
> uio_resid(uio
)) {
731 cp
->c_touch_chgtime
= TRUE
;
732 cp
->c_touch_modtime
= TRUE
;
733 hfs_incr_gencount(cp
);
736 * If we successfully wrote any data, and we are not the superuser
737 * we clear the setuid and setgid bits as a precaution against
740 if (cp
->c_mode
& (S_ISUID
| S_ISGID
)) {
741 cred
= vfs_context_ucred(ap
->a_context
);
742 if (cred
&& suser(cred
, NULL
)) {
743 cp
->c_mode
&= ~(S_ISUID
| S_ISGID
);
748 if (ioflag
& IO_UNIT
) {
749 (void)hfs_truncate(vp
, origFileSize
, ioflag
& IO_SYNC
,
751 uio_setoffset(uio
, (uio_offset(uio
) - (resid
- uio_resid(uio
))));
752 uio_setresid(uio
, resid
);
753 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)hfsmp
->blockSize
;
755 } else if ((ioflag
& IO_SYNC
) && (resid
> uio_resid(uio
)))
756 retval
= hfs_update(vp
, 0);
758 /* Updating vcbWrCnt doesn't need to be atomic. */
761 KERNEL_DEBUG(HFSDBG_WRITE
| DBG_FUNC_END
,
762 (int)uio_offset(uio
), uio_resid(uio
), (int)fp
->ff_size
, (int)filebytes
, 0);
764 if (retval
&& took_truncate_lock
765 && cp
->c_truncatelockowner
== current_thread()) {
767 rl_remove(fp
->ff_size
, RL_INFINITY
, &fp
->ff_invalidranges
);
773 if (took_truncate_lock
) {
774 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
776 if (retval
== EAGAIN
) {
777 throttle_lowpri_io(1);
784 throttle_info_reset_window(NULL
);
788 /* support for the "bulk-access" fcntl */
790 #define CACHE_LEVELS 16
791 #define NUM_CACHE_ENTRIES (64*16)
792 #define PARENT_IDS_FLAG 0x100
794 struct access_cache
{
796 int cachehits
; /* these two for statistics gathering */
798 unsigned int *acache
;
799 unsigned char *haveaccess
;
803 uid_t uid
; /* IN: effective user id */
804 short flags
; /* IN: access requested (i.e. R_OK) */
805 short num_groups
; /* IN: number of groups user belongs to */
806 int num_files
; /* IN: number of files to process */
807 int *file_ids
; /* IN: array of file ids */
808 gid_t
*groups
; /* IN: array of groups */
809 short *access
; /* OUT: access info for each file (0 for 'has access') */
810 } __attribute__((unavailable
)); // this structure is for reference purposes only
812 struct user32_access_t
{
813 uid_t uid
; /* IN: effective user id */
814 short flags
; /* IN: access requested (i.e. R_OK) */
815 short num_groups
; /* IN: number of groups user belongs to */
816 int num_files
; /* IN: number of files to process */
817 user32_addr_t file_ids
; /* IN: array of file ids */
818 user32_addr_t groups
; /* IN: array of groups */
819 user32_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
822 struct user64_access_t
{
823 uid_t uid
; /* IN: effective user id */
824 short flags
; /* IN: access requested (i.e. R_OK) */
825 short num_groups
; /* IN: number of groups user belongs to */
826 int num_files
; /* IN: number of files to process */
827 user64_addr_t file_ids
; /* IN: array of file ids */
828 user64_addr_t groups
; /* IN: array of groups */
829 user64_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
833 // these are the "extended" versions of the above structures
834 // note that it is crucial that they be different sized than
835 // the regular version
836 struct ext_access_t
{
837 uint32_t flags
; /* IN: access requested (i.e. R_OK) */
838 uint32_t num_files
; /* IN: number of files to process */
839 uint32_t map_size
; /* IN: size of the bit map */
840 uint32_t *file_ids
; /* IN: Array of file ids */
841 char *bitmap
; /* OUT: hash-bitmap of interesting directory ids */
842 short *access
; /* OUT: access info for each file (0 for 'has access') */
843 uint32_t num_parents
; /* future use */
844 cnid_t
*parents
; /* future use */
845 } __attribute__((unavailable
)); // this structure is for reference purposes only
847 struct user32_ext_access_t
{
848 uint32_t flags
; /* IN: access requested (i.e. R_OK) */
849 uint32_t num_files
; /* IN: number of files to process */
850 uint32_t map_size
; /* IN: size of the bit map */
851 user32_addr_t file_ids
; /* IN: Array of file ids */
852 user32_addr_t bitmap
; /* OUT: hash-bitmap of interesting directory ids */
853 user32_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
854 uint32_t num_parents
; /* future use */
855 user32_addr_t parents
; /* future use */
858 struct user64_ext_access_t
{
859 uint32_t flags
; /* IN: access requested (i.e. R_OK) */
860 uint32_t num_files
; /* IN: number of files to process */
861 uint32_t map_size
; /* IN: size of the bit map */
862 user64_addr_t file_ids
; /* IN: array of file ids */
863 user64_addr_t bitmap
; /* IN: array of groups */
864 user64_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
865 uint32_t num_parents
;/* future use */
866 user64_addr_t parents
;/* future use */
871 * Perform a binary search for the given parent_id. Return value is
872 * the index if there is a match. If no_match_indexp is non-NULL it
873 * will be assigned with the index to insert the item (even if it was
876 static int cache_binSearch(cnid_t
*array
, unsigned int hi
, cnid_t parent_id
, int *no_match_indexp
)
882 unsigned int mid
= ((hi
- lo
)/2) + lo
;
883 unsigned int this_id
= array
[mid
];
885 if (parent_id
== this_id
) {
890 if (parent_id
< this_id
) {
895 if (parent_id
> this_id
) {
901 /* check if lo and hi converged on the match */
902 if (parent_id
== array
[hi
]) {
906 if (no_match_indexp
) {
907 *no_match_indexp
= hi
;
915 lookup_bucket(struct access_cache
*cache
, int *indexp
, cnid_t parent_id
)
919 int index
, no_match_index
;
921 if (cache
->numcached
== 0) {
923 return 0; // table is empty, so insert at index=0 and report no match
926 if (cache
->numcached
> NUM_CACHE_ENTRIES
) {
927 cache
->numcached
= NUM_CACHE_ENTRIES
;
930 hi
= cache
->numcached
- 1;
932 index
= cache_binSearch(cache
->acache
, hi
, parent_id
, &no_match_index
);
934 /* if no existing entry found, find index for new one */
936 index
= no_match_index
;
947 * Add a node to the access_cache at the given index (or do a lookup first
948 * to find the index if -1 is passed in). We currently do a replace rather
949 * than an insert if the cache is full.
952 add_node(struct access_cache
*cache
, int index
, cnid_t nodeID
, int access
)
954 int lookup_index
= -1;
956 /* need to do a lookup first if -1 passed for index */
958 if (lookup_bucket(cache
, &lookup_index
, nodeID
)) {
959 if (cache
->haveaccess
[lookup_index
] != access
&& cache
->haveaccess
[lookup_index
] == ESRCH
) {
960 // only update an entry if the previous access was ESRCH (i.e. a scope checking error)
961 cache
->haveaccess
[lookup_index
] = access
;
964 /* mission accomplished */
967 index
= lookup_index
;
972 /* if the cache is full, do a replace rather than an insert */
973 if (cache
->numcached
>= NUM_CACHE_ENTRIES
) {
974 cache
->numcached
= NUM_CACHE_ENTRIES
-1;
976 if (index
> cache
->numcached
) {
977 index
= cache
->numcached
;
981 if (index
< cache
->numcached
&& index
< NUM_CACHE_ENTRIES
&& nodeID
> cache
->acache
[index
]) {
985 if (index
>= 0 && index
< cache
->numcached
) {
986 /* only do bcopy if we're inserting */
987 bcopy( cache
->acache
+index
, cache
->acache
+(index
+1), (cache
->numcached
- index
)*sizeof(int) );
988 bcopy( cache
->haveaccess
+index
, cache
->haveaccess
+(index
+1), (cache
->numcached
- index
)*sizeof(unsigned char) );
991 cache
->acache
[index
] = nodeID
;
992 cache
->haveaccess
[index
] = access
;
1006 snoop_callback(const cnode_t
*cp
, void *arg
)
1008 struct cinfo
*cip
= arg
;
1010 cip
->uid
= cp
->c_uid
;
1011 cip
->gid
= cp
->c_gid
;
1012 cip
->mode
= cp
->c_mode
;
1013 cip
->parentcnid
= cp
->c_parentcnid
;
1014 cip
->recflags
= cp
->c_attr
.ca_recflags
;
1020 * Lookup the cnid's attr info (uid, gid, and mode) as well as its parent id. If the item
1021 * isn't incore, then go to the catalog.
1024 do_attr_lookup(struct hfsmount
*hfsmp
, struct access_cache
*cache
, cnid_t cnid
,
1025 struct cnode
*skip_cp
, CatalogKey
*keyp
, struct cat_attr
*cnattrp
)
1029 /* if this id matches the one the fsctl was called with, skip the lookup */
1030 if (cnid
== skip_cp
->c_cnid
) {
1031 cnattrp
->ca_uid
= skip_cp
->c_uid
;
1032 cnattrp
->ca_gid
= skip_cp
->c_gid
;
1033 cnattrp
->ca_mode
= skip_cp
->c_mode
;
1034 cnattrp
->ca_recflags
= skip_cp
->c_attr
.ca_recflags
;
1035 keyp
->hfsPlus
.parentID
= skip_cp
->c_parentcnid
;
1037 struct cinfo c_info
;
1039 /* otherwise, check the cnode hash incase the file/dir is incore */
1040 error
= hfs_chash_snoop(hfsmp
, cnid
, 0, snoop_callback
, &c_info
);
1042 if (error
== EACCES
) {
1045 } else if (!error
) {
1046 cnattrp
->ca_uid
= c_info
.uid
;
1047 cnattrp
->ca_gid
= c_info
.gid
;
1048 cnattrp
->ca_mode
= c_info
.mode
;
1049 cnattrp
->ca_recflags
= c_info
.recflags
;
1050 keyp
->hfsPlus
.parentID
= c_info
.parentcnid
;
1054 if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp
)))
1055 throttle_lowpri_io(1);
1057 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
1059 /* lookup this cnid in the catalog */
1060 error
= cat_getkeyplusattr(hfsmp
, cnid
, keyp
, cnattrp
);
1062 hfs_systemfile_unlock(hfsmp
, lockflags
);
1073 * Compute whether we have access to the given directory (nodeID) and all its parents. Cache
1074 * up to CACHE_LEVELS as we progress towards the root.
1077 do_access_check(struct hfsmount
*hfsmp
, int *err
, struct access_cache
*cache
, HFSCatalogNodeID nodeID
,
1078 struct cnode
*skip_cp
, struct proc
*theProcPtr
, kauth_cred_t myp_ucred
,
1079 struct vfs_context
*my_context
,
1083 uint32_t num_parents
)
1087 HFSCatalogNodeID thisNodeID
;
1088 unsigned int myPerms
;
1089 struct cat_attr cnattr
;
1090 int cache_index
= -1, scope_index
= -1, scope_idx_start
= -1;
1093 int i
= 0, ids_to_cache
= 0;
1094 int parent_ids
[CACHE_LEVELS
];
1096 thisNodeID
= nodeID
;
1097 while (thisNodeID
>= kRootDirID
) {
1098 myResult
= 0; /* default to "no access" */
1100 /* check the cache before resorting to hitting the catalog */
1102 /* ASSUMPTION: access info of cached entries is "final"... i.e. no need
1103 * to look any further after hitting cached dir */
1105 if (lookup_bucket(cache
, &cache_index
, thisNodeID
)) {
1107 myErr
= cache
->haveaccess
[cache_index
];
1108 if (scope_index
!= -1) {
1109 if (myErr
== ESRCH
) {
1113 scope_index
= 0; // so we'll just use the cache result
1114 scope_idx_start
= ids_to_cache
;
1116 myResult
= (myErr
== 0) ? 1 : 0;
1117 goto ExitThisRoutine
;
1123 tmp
= cache_binSearch(parents
, num_parents
-1, thisNodeID
, NULL
);
1124 if (scope_index
== -1)
1126 if (tmp
!= -1 && scope_idx_start
== -1 && ids_to_cache
< CACHE_LEVELS
) {
1127 scope_idx_start
= ids_to_cache
;
1131 /* remember which parents we want to cache */
1132 if (ids_to_cache
< CACHE_LEVELS
) {
1133 parent_ids
[ids_to_cache
] = thisNodeID
;
1136 // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"...
1137 if (bitmap
&& map_size
) {
1138 bitmap
[(thisNodeID
/8)%(map_size
)]|=(1<<(thisNodeID
&7));
1142 /* do the lookup (checks the cnode hash, then the catalog) */
1143 myErr
= do_attr_lookup(hfsmp
, cache
, thisNodeID
, skip_cp
, &catkey
, &cnattr
);
1145 goto ExitThisRoutine
; /* no access */
1148 /* Root always gets access. */
1149 if (suser(myp_ucred
, NULL
) == 0) {
1150 thisNodeID
= catkey
.hfsPlus
.parentID
;
1155 // if the thing has acl's, do the full permission check
1156 if ((cnattr
.ca_recflags
& kHFSHasSecurityMask
) != 0) {
1159 /* get the vnode for this cnid */
1160 myErr
= hfs_vget(hfsmp
, thisNodeID
, &vp
, 0, 0);
1163 goto ExitThisRoutine
;
1166 thisNodeID
= VTOC(vp
)->c_parentcnid
;
1168 hfs_unlock(VTOC(vp
));
1170 if (vnode_vtype(vp
) == VDIR
) {
1171 myErr
= vnode_authorize(vp
, NULL
, (KAUTH_VNODE_SEARCH
| KAUTH_VNODE_LIST_DIRECTORY
), my_context
);
1173 myErr
= vnode_authorize(vp
, NULL
, KAUTH_VNODE_READ_DATA
, my_context
);
1179 goto ExitThisRoutine
;
1183 int mode
= cnattr
.ca_mode
& S_IFMT
;
1184 myPerms
= DerivePermissionSummary(cnattr
.ca_uid
, cnattr
.ca_gid
, cnattr
.ca_mode
, hfsmp
->hfs_mp
,myp_ucred
, theProcPtr
);
1186 if (mode
== S_IFDIR
) {
1187 flags
= R_OK
| X_OK
;
1191 if ( (myPerms
& flags
) != flags
) {
1194 goto ExitThisRoutine
; /* no access */
1197 /* up the hierarchy we go */
1198 thisNodeID
= catkey
.hfsPlus
.parentID
;
1202 /* if here, we have access to this node */
1206 if (parents
&& myErr
== 0 && scope_index
== -1) {
1215 /* cache the parent directory(ies) */
1216 for (i
= 0; i
< ids_to_cache
; i
++) {
1217 if (myErr
== 0 && parents
&& (scope_idx_start
== -1 || i
> scope_idx_start
)) {
1218 add_node(cache
, -1, parent_ids
[i
], ESRCH
);
1220 add_node(cache
, -1, parent_ids
[i
], myErr
);
1228 do_bulk_access_check(struct hfsmount
*hfsmp
, struct vnode
*vp
,
1229 struct vnop_ioctl_args
*ap
, int arg_size
, vfs_context_t context
)
1234 * NOTE: on entry, the vnode has an io_ref. In case this vnode
1235 * happens to be in our list of file_ids, we'll note it
1236 * avoid calling hfs_chashget_nowait() on that id as that
1237 * will cause a "locking against myself" panic.
1239 Boolean check_leaf
= true;
1241 struct user64_ext_access_t
*user_access_structp
;
1242 struct user64_ext_access_t tmp_user_access
;
1243 struct access_cache cache
;
1245 int error
= 0, prev_parent_check_ok
=1;
1249 unsigned int num_files
= 0;
1251 int num_parents
= 0;
1255 cnid_t
*parents
=NULL
;
1259 cnid_t prevParent_cnid
= 0;
1260 unsigned int myPerms
;
1262 struct cat_attr cnattr
;
1264 struct cnode
*skip_cp
= VTOC(vp
);
1265 kauth_cred_t cred
= vfs_context_ucred(context
);
1266 proc_t p
= vfs_context_proc(context
);
1268 is64bit
= proc_is64bit(p
);
1270 /* initialize the local cache and buffers */
1271 cache
.numcached
= 0;
1272 cache
.cachehits
= 0;
1274 cache
.acache
= NULL
;
1275 cache
.haveaccess
= NULL
;
1277 /* struct copyin done during dispatch... need to copy file_id array separately */
1278 if (ap
->a_data
== NULL
) {
1280 goto err_exit_bulk_access
;
1284 if (arg_size
!= sizeof(struct user64_ext_access_t
)) {
1286 goto err_exit_bulk_access
;
1289 user_access_structp
= (struct user64_ext_access_t
*)ap
->a_data
;
1291 } else if (arg_size
== sizeof(struct user32_access_t
)) {
1292 struct user32_access_t
*accessp
= (struct user32_access_t
*)ap
->a_data
;
1294 // convert an old style bulk-access struct to the new style
1295 tmp_user_access
.flags
= accessp
->flags
;
1296 tmp_user_access
.num_files
= accessp
->num_files
;
1297 tmp_user_access
.map_size
= 0;
1298 tmp_user_access
.file_ids
= CAST_USER_ADDR_T(accessp
->file_ids
);
1299 tmp_user_access
.bitmap
= USER_ADDR_NULL
;
1300 tmp_user_access
.access
= CAST_USER_ADDR_T(accessp
->access
);
1301 tmp_user_access
.num_parents
= 0;
1302 user_access_structp
= &tmp_user_access
;
1304 } else if (arg_size
== sizeof(struct user32_ext_access_t
)) {
1305 struct user32_ext_access_t
*accessp
= (struct user32_ext_access_t
*)ap
->a_data
;
1307 // up-cast from a 32-bit version of the struct
1308 tmp_user_access
.flags
= accessp
->flags
;
1309 tmp_user_access
.num_files
= accessp
->num_files
;
1310 tmp_user_access
.map_size
= accessp
->map_size
;
1311 tmp_user_access
.num_parents
= accessp
->num_parents
;
1313 tmp_user_access
.file_ids
= CAST_USER_ADDR_T(accessp
->file_ids
);
1314 tmp_user_access
.bitmap
= CAST_USER_ADDR_T(accessp
->bitmap
);
1315 tmp_user_access
.access
= CAST_USER_ADDR_T(accessp
->access
);
1316 tmp_user_access
.parents
= CAST_USER_ADDR_T(accessp
->parents
);
1318 user_access_structp
= &tmp_user_access
;
1321 goto err_exit_bulk_access
;
1324 map_size
= user_access_structp
->map_size
;
1326 num_files
= user_access_structp
->num_files
;
1328 num_parents
= user_access_structp
->num_parents
;
1330 if (num_files
< 1) {
1331 goto err_exit_bulk_access
;
1333 if (num_files
> 1024) {
1335 goto err_exit_bulk_access
;
1338 if (num_parents
> 1024) {
1340 goto err_exit_bulk_access
;
1343 file_ids
= hfs_malloc(sizeof(int) * num_files
);
1344 access
= hfs_malloc(sizeof(short) * num_files
);
1346 bitmap
= hfs_mallocz(sizeof(char) * map_size
);
1350 parents
= hfs_malloc(sizeof(cnid_t
) * num_parents
);
1353 cache
.acache
= hfs_malloc(sizeof(int) * NUM_CACHE_ENTRIES
);
1354 cache
.haveaccess
= hfs_malloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES
);
1356 if ((error
= copyin(user_access_structp
->file_ids
, (caddr_t
)file_ids
,
1357 num_files
* sizeof(int)))) {
1358 goto err_exit_bulk_access
;
1362 if ((error
= copyin(user_access_structp
->parents
, (caddr_t
)parents
,
1363 num_parents
* sizeof(cnid_t
)))) {
1364 goto err_exit_bulk_access
;
1368 flags
= user_access_structp
->flags
;
1369 if ((flags
& (F_OK
| R_OK
| W_OK
| X_OK
)) == 0) {
1373 /* check if we've been passed leaf node ids or parent ids */
1374 if (flags
& PARENT_IDS_FLAG
) {
1378 /* Check access to each file_id passed in */
1379 for (i
= 0; i
< num_files
; i
++) {
1381 cnid
= (cnid_t
) file_ids
[i
];
1383 /* root always has access */
1384 if ((!parents
) && (!suser(cred
, NULL
))) {
1390 /* do the lookup (checks the cnode hash, then the catalog) */
1391 error
= do_attr_lookup(hfsmp
, &cache
, cnid
, skip_cp
, &catkey
, &cnattr
);
1393 access
[i
] = (short) error
;
1398 // Check if the leaf matches one of the parent scopes
1399 leaf_index
= cache_binSearch(parents
, num_parents
-1, cnid
, NULL
);
1400 if (leaf_index
>= 0 && parents
[leaf_index
] == cnid
)
1401 prev_parent_check_ok
= 0;
1402 else if (leaf_index
>= 0)
1403 prev_parent_check_ok
= 1;
1406 // if the thing has acl's, do the full permission check
1407 if ((cnattr
.ca_recflags
& kHFSHasSecurityMask
) != 0) {
1410 /* get the vnode for this cnid */
1411 myErr
= hfs_vget(hfsmp
, cnid
, &cvp
, 0, 0);
1417 hfs_unlock(VTOC(cvp
));
1419 if (vnode_vtype(cvp
) == VDIR
) {
1420 myErr
= vnode_authorize(cvp
, NULL
, (KAUTH_VNODE_SEARCH
| KAUTH_VNODE_LIST_DIRECTORY
), context
);
1422 myErr
= vnode_authorize(cvp
, NULL
, KAUTH_VNODE_READ_DATA
, context
);
1431 /* before calling CheckAccess(), check the target file for read access */
1432 myPerms
= DerivePermissionSummary(cnattr
.ca_uid
, cnattr
.ca_gid
,
1433 cnattr
.ca_mode
, hfsmp
->hfs_mp
, cred
, p
);
1435 /* fail fast if no access */
1436 if ((myPerms
& flags
) == 0) {
1442 /* we were passed an array of parent ids */
1443 catkey
.hfsPlus
.parentID
= cnid
;
1446 /* if the last guy had the same parent and had access, we're done */
1447 if (i
> 0 && catkey
.hfsPlus
.parentID
== prevParent_cnid
&& access
[i
-1] == 0 && prev_parent_check_ok
) {
1453 myaccess
= do_access_check(hfsmp
, &error
, &cache
, catkey
.hfsPlus
.parentID
,
1454 skip_cp
, p
, cred
, context
,bitmap
, map_size
, parents
, num_parents
);
1456 if (myaccess
|| (error
== ESRCH
&& leaf_index
!= -1)) {
1457 access
[i
] = 0; // have access.. no errors to report
1459 access
[i
] = (error
!= 0 ? (short) error
: EACCES
);
1462 prevParent_cnid
= catkey
.hfsPlus
.parentID
;
1465 /* copyout the access array */
1466 if ((error
= copyout((caddr_t
)access
, user_access_structp
->access
,
1467 num_files
* sizeof (short)))) {
1468 goto err_exit_bulk_access
;
1470 if (map_size
&& bitmap
) {
1471 if ((error
= copyout((caddr_t
)bitmap
, user_access_structp
->bitmap
,
1472 map_size
* sizeof (char)))) {
1473 goto err_exit_bulk_access
;
1478 err_exit_bulk_access
:
1480 hfs_free(file_ids
, sizeof(int) * num_files
);
1481 hfs_free(parents
, sizeof(cnid_t
) * num_parents
);
1482 hfs_free(bitmap
, sizeof(char) * map_size
);
1483 hfs_free(access
, sizeof(short) * num_files
);
1484 hfs_free(cache
.acache
, sizeof(int) * NUM_CACHE_ENTRIES
);
1485 hfs_free(cache
.haveaccess
, sizeof(unsigned char) * NUM_CACHE_ENTRIES
);
1491 /* end "bulk-access" support */
1495 * Control filesystem operating characteristics.
1498 hfs_vnop_ioctl( struct vnop_ioctl_args
/* {
1503 vfs_context_t a_context;
1506 struct vnode
* vp
= ap
->a_vp
;
1507 struct hfsmount
*hfsmp
= VTOHFS(vp
);
1508 vfs_context_t context
= ap
->a_context
;
1509 kauth_cred_t cred
= vfs_context_ucred(context
);
1510 proc_t p
= vfs_context_proc(context
);
1511 struct vfsstatfs
*vfsp
;
1513 off_t jnl_start
, jnl_size
;
1514 struct hfs_journal_info
*jip
;
1517 off_t uncompressed_size
= -1;
1518 int decmpfs_error
= 0;
1520 if (ap
->a_command
== F_RDADVISE
) {
1521 /* we need to inspect the decmpfs state of the file as early as possible */
1522 compressed
= hfs_file_is_compressed(VTOC(vp
), 0);
1524 if (VNODE_IS_RSRC(vp
)) {
1525 /* if this is the resource fork, treat it as if it were empty */
1526 uncompressed_size
= 0;
1528 decmpfs_error
= hfs_uncompressed_size_of_compressed_file(NULL
, vp
, 0, &uncompressed_size
, 0);
1529 if (decmpfs_error
!= 0) {
1530 /* failed to get the uncompressed size, we'll check for this later */
1531 uncompressed_size
= -1;
1536 #endif /* HFS_COMPRESSION */
1538 is64bit
= proc_is64bit(p
);
1541 #if HFS_CONFIG_KEY_ROLL
1542 // The HFS_KEY_ROLL fsctl does its own access checks
1543 if (ap
->a_command
!= HFS_KEY_ROLL
)
1547 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
1551 #endif /* CONFIG_PROTECT */
1553 switch (ap
->a_command
) {
1557 struct vnode
*file_vp
;
1564 /* Caller must be owner of file system. */
1565 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1566 if (suser(cred
, NULL
) &&
1567 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1570 /* Target vnode must be file system's root. */
1571 if (!vnode_isvroot(vp
)) {
1574 bufptr
= (char *)ap
->a_data
;
1575 cnid
= strtoul(bufptr
, NULL
, 10);
1576 if (ap
->a_fflag
& HFS_GETPATH_VOLUME_RELATIVE
) {
1577 flags
|= BUILDPATH_VOLUME_RELATIVE
;
1580 /* We need to call hfs_vfs_vget to leverage the code that will
1581 * fix the origin list for us if needed, as opposed to calling
1582 * hfs_vget, since we will need the parent for build_path call.
1585 if ((error
= hfs_vfs_vget(HFSTOVFS(hfsmp
), cnid
, &file_vp
, context
))) {
1589 error
= build_path(file_vp
, bufptr
, sizeof(pathname_t
), &outlen
, flags
, context
);
1595 case HFS_SET_MAX_DEFRAG_SIZE
:
1597 int error
= 0; /* Assume success */
1598 u_int32_t maxsize
= 0;
1600 if (vnode_vfsisrdonly(vp
)) {
1603 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1604 if (!kauth_cred_issuser(cred
)) {
1605 return (EACCES
); /* must be root */
1608 maxsize
= *(u_int32_t
*)ap
->a_data
;
1610 hfs_lock_mount(hfsmp
);
1611 if (maxsize
> HFS_MAX_DEFRAG_SIZE
) {
1615 hfsmp
->hfs_defrag_max
= maxsize
;
1617 hfs_unlock_mount(hfsmp
);
1622 case HFS_FORCE_ENABLE_DEFRAG
:
1624 int error
= 0; /* Assume success */
1625 u_int32_t do_enable
= 0;
1627 if (vnode_vfsisrdonly(vp
)) {
1630 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1631 if (!kauth_cred_issuser(cred
)) {
1632 return (EACCES
); /* must be root */
1635 do_enable
= *(u_int32_t
*)ap
->a_data
;
1637 hfs_lock_mount(hfsmp
);
1638 if (do_enable
!= 0) {
1639 hfsmp
->hfs_defrag_nowait
= 1;
1645 hfs_unlock_mount(hfsmp
);
1651 case HFS_TRANSFER_DOCUMENT_ID
:
1653 struct cnode
*cp
= NULL
;
1655 u_int32_t to_fd
= *(u_int32_t
*)ap
->a_data
;
1656 struct fileproc
*to_fp
;
1657 struct vnode
*to_vp
;
1658 struct cnode
*to_cp
;
1662 if ((error
= fp_getfvp(p
, to_fd
, &to_fp
, &to_vp
)) != 0) {
1663 //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error);
1666 if ( (error
= vnode_getwithref(to_vp
)) ) {
1671 if (VTOHFS(to_vp
) != hfsmp
) {
1673 goto transfer_cleanup
;
1676 int need_unlock
= 1;
1677 to_cp
= VTOC(to_vp
);
1678 error
= hfs_lockpair(cp
, to_cp
, HFS_EXCLUSIVE_LOCK
);
1680 //printf("could not lock the pair of cnodes (error %d)\n", error);
1681 goto transfer_cleanup
;
1684 if (!(cp
->c_bsdflags
& UF_TRACKED
)) {
1686 } else if (to_cp
->c_bsdflags
& UF_TRACKED
) {
1688 // if the destination is already tracked, return an error
1689 // as otherwise it's a silent deletion of the target's
1693 } else if (S_ISDIR(cp
->c_attr
.ca_mode
) || S_ISREG(cp
->c_attr
.ca_mode
) || S_ISLNK(cp
->c_attr
.ca_mode
)) {
1695 // we can use the FndrExtendedFileInfo because the doc-id is the first
1696 // thing in both it and the ExtendedDirInfo struct which is fixed in
1697 // format and can not change layout
1699 struct FndrExtendedFileInfo
*f_extinfo
= (struct FndrExtendedFileInfo
*)((u_int8_t
*)cp
->c_finderinfo
+ 16);
1700 struct FndrExtendedFileInfo
*to_extinfo
= (struct FndrExtendedFileInfo
*)((u_int8_t
*)to_cp
->c_finderinfo
+ 16);
1702 if (f_extinfo
->document_id
== 0) {
1705 hfs_unlockpair(cp
, to_cp
); // have to unlock to be able to get a new-id
1707 if ((error
= hfs_generate_document_id(hfsmp
, &new_id
)) == 0) {
1709 // re-lock the pair now that we have the document-id
1711 hfs_lockpair(cp
, to_cp
, HFS_EXCLUSIVE_LOCK
);
1712 f_extinfo
->document_id
= new_id
;
1714 goto transfer_cleanup
;
1718 to_extinfo
->document_id
= f_extinfo
->document_id
;
1719 f_extinfo
->document_id
= 0;
1720 //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid);
1722 // make sure the destination is also UF_TRACKED
1723 to_cp
->c_bsdflags
|= UF_TRACKED
;
1724 cp
->c_bsdflags
&= ~UF_TRACKED
;
1726 // mark the cnodes dirty
1727 cp
->c_flag
|= C_MODIFIED
;
1728 to_cp
->c_flag
|= C_MODIFIED
;
1731 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
1733 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
1735 (void) cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, NULL
, NULL
);
1736 (void) cat_update(hfsmp
, &to_cp
->c_desc
, &to_cp
->c_attr
, NULL
, NULL
);
1738 hfs_systemfile_unlock (hfsmp
, lockflags
);
1739 (void) hfs_end_transaction(hfsmp
);
1742 add_fsevent(FSE_DOCID_CHANGED
, context
,
1743 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1744 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
1745 FSE_ARG_INO
, (ino64_t
)to_cp
->c_fileid
, // dst inode #
1746 FSE_ARG_INT32
, to_extinfo
->document_id
,
1749 hfs_unlockpair(cp
, to_cp
); // unlock this so we can send the fsevents
1752 if (need_fsevent(FSE_STAT_CHANGED
, vp
)) {
1753 add_fsevent(FSE_STAT_CHANGED
, context
, FSE_ARG_VNODE
, vp
, FSE_ARG_DONE
);
1755 if (need_fsevent(FSE_STAT_CHANGED
, to_vp
)) {
1756 add_fsevent(FSE_STAT_CHANGED
, context
, FSE_ARG_VNODE
, to_vp
, FSE_ARG_DONE
);
1761 hfs_unlockpair(cp
, to_cp
);
1781 /* Caller must be owner of file system. */
1782 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1783 if (suser(cred
, NULL
) &&
1784 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1787 /* Target vnode must be file system's root. */
1788 if (!vnode_isvroot(vp
)) {
1791 linkfileid
= *(cnid_t
*)ap
->a_data
;
1792 if (linkfileid
< kHFSFirstUserCatalogNodeID
) {
1795 if ((error
= hfs_lookup_siblinglinks(hfsmp
, linkfileid
, &prevlinkid
, &nextlinkid
))) {
1798 if (ap
->a_command
== HFS_NEXT_LINK
) {
1799 *(cnid_t
*)ap
->a_data
= nextlinkid
;
1801 *(cnid_t
*)ap
->a_data
= prevlinkid
;
1806 case HFS_RESIZE_PROGRESS
: {
1808 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1809 if (suser(cred
, NULL
) &&
1810 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1811 return (EACCES
); /* must be owner of file system */
1813 if (!vnode_isvroot(vp
)) {
1816 /* file system must not be mounted read-only */
1817 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1821 return hfs_resize_progress(hfsmp
, (u_int32_t
*)ap
->a_data
);
1824 case HFS_RESIZE_VOLUME
: {
1829 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1830 if (suser(cred
, NULL
) &&
1831 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1832 return (EACCES
); /* must be owner of file system */
1834 if (!vnode_isvroot(vp
)) {
1838 /* filesystem must not be mounted read only */
1839 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1842 newsize
= *(u_int64_t
*)ap
->a_data
;
1843 cursize
= (u_int64_t
)hfsmp
->totalBlocks
* (u_int64_t
)hfsmp
->blockSize
;
1845 if (newsize
== cursize
) {
1848 IOBSDMountChange(hfsmp
->hfs_mp
, kIOMountChangeWillResize
);
1849 if (newsize
> cursize
) {
1850 ret
= hfs_extendfs(hfsmp
, *(u_int64_t
*)ap
->a_data
, context
);
1852 ret
= hfs_truncatefs(hfsmp
, *(u_int64_t
*)ap
->a_data
, context
);
1854 IOBSDMountChange(hfsmp
->hfs_mp
, kIOMountChangeDidResize
);
1857 case HFS_CHANGE_NEXT_ALLOCATION
: {
1858 int error
= 0; /* Assume success */
1861 if (vnode_vfsisrdonly(vp
)) {
1864 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1865 if (suser(cred
, NULL
) &&
1866 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1867 return (EACCES
); /* must be owner of file system */
1869 if (!vnode_isvroot(vp
)) {
1872 hfs_lock_mount(hfsmp
);
1873 location
= *(u_int32_t
*)ap
->a_data
;
1874 if ((location
>= hfsmp
->allocLimit
) &&
1875 (location
!= HFS_NO_UPDATE_NEXT_ALLOCATION
)) {
1877 goto fail_change_next_allocation
;
1879 /* Return previous value. */
1880 *(u_int32_t
*)ap
->a_data
= hfsmp
->nextAllocation
;
1881 if (location
== HFS_NO_UPDATE_NEXT_ALLOCATION
) {
1882 /* On magic value for location, set nextAllocation to next block
1883 * after metadata zone and set flag in mount structure to indicate
1884 * that nextAllocation should not be updated again.
1886 if (hfsmp
->hfs_metazone_end
!= 0) {
1887 HFS_UPDATE_NEXT_ALLOCATION(hfsmp
, hfsmp
->hfs_metazone_end
+ 1);
1889 hfsmp
->hfs_flags
|= HFS_SKIP_UPDATE_NEXT_ALLOCATION
;
1891 hfsmp
->hfs_flags
&= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION
;
1892 HFS_UPDATE_NEXT_ALLOCATION(hfsmp
, location
);
1894 MarkVCBDirty(hfsmp
);
1895 fail_change_next_allocation
:
1896 hfs_unlock_mount(hfsmp
);
1901 case HFS_SETBACKINGSTOREINFO
: {
1902 struct vnode
* di_vp
;
1903 struct hfs_backingstoreinfo
*bsdata
;
1906 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1909 if (hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) {
1912 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1913 if (suser(cred
, NULL
) &&
1914 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1915 return (EACCES
); /* must be owner of file system */
1917 bsdata
= (struct hfs_backingstoreinfo
*)ap
->a_data
;
1918 if (bsdata
== NULL
) {
1921 if ((error
= file_vnode(bsdata
->backingfd
, &di_vp
))) {
1924 if ((error
= vnode_getwithref(di_vp
))) {
1925 file_drop(bsdata
->backingfd
);
1929 if (vnode_mount(vp
) == vnode_mount(di_vp
)) {
1930 (void)vnode_put(di_vp
);
1931 file_drop(bsdata
->backingfd
);
1935 // Dropped in unmount
1938 hfs_lock_mount(hfsmp
);
1939 hfsmp
->hfs_backingvp
= di_vp
;
1940 hfsmp
->hfs_flags
|= HFS_HAS_SPARSE_DEVICE
;
1941 hfsmp
->hfs_sparsebandblks
= bsdata
->bandsize
/ hfsmp
->blockSize
* 4;
1942 hfs_unlock_mount(hfsmp
);
1944 /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */
1947 * If the sparse image is on a sparse image file (as opposed to a sparse
1948 * bundle), then we may need to limit the free space to the maximum size
1949 * of a file on that volume. So we query (using pathconf), and if we get
1950 * a meaningful result, we cache the number of blocks for later use in
1953 hfsmp
->hfs_backingfs_maxblocks
= 0;
1954 if (vnode_vtype(di_vp
) == VREG
) {
1957 terr
= vn_pathconf(di_vp
, _PC_FILESIZEBITS
, &hostbits
, context
);
1958 if (terr
== 0 && hostbits
!= 0 && hostbits
< 64) {
1959 u_int64_t hostfilesizemax
= ((u_int64_t
)1) << hostbits
;
1961 hfsmp
->hfs_backingfs_maxblocks
= hostfilesizemax
/ hfsmp
->blockSize
;
1965 /* The free extent cache is managed differently for sparse devices.
1966 * There is a window between which the volume is mounted and the
1967 * device is marked as sparse, so the free extent cache for this
1968 * volume is currently initialized as normal volume (sorted by block
1969 * count). Reset the cache so that it will be rebuilt again
1970 * for sparse device (sorted by start block).
1972 ResetVCBFreeExtCache(hfsmp
);
1974 (void)vnode_put(di_vp
);
1975 file_drop(bsdata
->backingfd
);
1978 case HFS_CLRBACKINGSTOREINFO
: {
1979 struct vnode
* tmpvp
;
1981 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1982 if (suser(cred
, NULL
) &&
1983 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1984 return (EACCES
); /* must be owner of file system */
1986 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1990 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) &&
1991 hfsmp
->hfs_backingvp
) {
1993 hfs_lock_mount(hfsmp
);
1994 hfsmp
->hfs_flags
&= ~HFS_HAS_SPARSE_DEVICE
;
1995 tmpvp
= hfsmp
->hfs_backingvp
;
1996 hfsmp
->hfs_backingvp
= NULLVP
;
1997 hfsmp
->hfs_sparsebandblks
= 0;
1998 hfs_unlock_mount(hfsmp
);
2004 #endif /* HFS_SPARSE_DEV */
2006 /* Change the next CNID stored in the VH */
2007 case HFS_CHANGE_NEXTCNID
: {
2008 int error
= 0; /* Assume success */
2013 if (vnode_vfsisrdonly(vp
)) {
2016 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
2017 if (suser(cred
, NULL
) &&
2018 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
2019 return (EACCES
); /* must be owner of file system */
2022 fileid
= *(u_int32_t
*)ap
->a_data
;
2024 /* Must have catalog lock excl. to advance the CNID pointer */
2025 lockflags
= hfs_systemfile_lock (hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
2027 hfs_lock_mount(hfsmp
);
2029 /* If it is less than the current next CNID, force the wraparound bit to be set */
2030 if (fileid
< hfsmp
->vcbNxtCNID
) {
2034 /* Return previous value. */
2035 *(u_int32_t
*)ap
->a_data
= hfsmp
->vcbNxtCNID
;
2037 hfsmp
->vcbNxtCNID
= fileid
;
2040 hfsmp
->vcbAtrb
|= kHFSCatalogNodeIDsReusedMask
;
2043 MarkVCBDirty(hfsmp
);
2044 hfs_unlock_mount(hfsmp
);
2045 hfs_systemfile_unlock (hfsmp
, lockflags
);
2053 mp
= vnode_mount(vp
);
2054 hfsmp
= VFSTOHFS(mp
);
2059 vfsp
= vfs_statfs(mp
);
2061 if (kauth_cred_getuid(cred
) != vfsp
->f_owner
&&
2062 !kauth_cred_issuser(cred
))
2065 return hfs_freeze(hfsmp
);
2069 vfsp
= vfs_statfs(vnode_mount(vp
));
2070 if (kauth_cred_getuid(cred
) != vfsp
->f_owner
&&
2071 !kauth_cred_issuser(cred
))
2074 return hfs_thaw(hfsmp
, current_proc());
2077 case HFS_EXT_BULKACCESS_FSCTL
: {
2080 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
2086 size
= sizeof(struct user64_ext_access_t
);
2088 size
= sizeof(struct user32_ext_access_t
);
2091 return do_bulk_access_check(hfsmp
, vp
, ap
, size
, context
);
2094 case HFS_SET_XATTREXTENTS_STATE
: {
2097 if (ap
->a_data
== NULL
) {
2101 state
= *(int *)ap
->a_data
;
2103 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2107 /* Super-user can enable or disable extent-based extended
2108 * attribute support on a volume
2109 * Note: Starting Mac OS X 10.7, extent-based extended attributes
2110 * are enabled by default, so any change will be transient only
2111 * till the volume is remounted.
2113 if (!kauth_cred_issuser(kauth_cred_get())) {
2116 if (state
== 0 || state
== 1)
2117 return hfs_set_volxattr(hfsmp
, HFS_SET_XATTREXTENTS_STATE
, state
);
2122 case F_SETSTATICCONTENT
: {
2124 int enable_static
= 0;
2125 struct cnode
*cp
= NULL
;
2127 * lock the cnode, decorate the cnode flag, and bail out.
2128 * VFS should have already authenticated the caller for us.
2133 * Note that even though ap->a_data is of type caddr_t,
2134 * the fcntl layer at the syscall handler will pass in NULL
2135 * or 1 depending on what the argument supplied to the fcntl
2136 * was. So it is in fact correct to check the ap->a_data
2137 * argument for zero or non-zero value when deciding whether or not
2138 * to enable the static bit in the cnode.
2142 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2147 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2149 if (enable_static
) {
2150 cp
->c_flag
|= C_SSD_STATIC
;
2153 cp
->c_flag
&= ~C_SSD_STATIC
;
2160 case F_SET_GREEDY_MODE
: {
2162 int enable_greedy_mode
= 0;
2163 struct cnode
*cp
= NULL
;
2165 * lock the cnode, decorate the cnode flag, and bail out.
2166 * VFS should have already authenticated the caller for us.
2171 * Note that even though ap->a_data is of type caddr_t,
2172 * the fcntl layer at the syscall handler will pass in NULL
2173 * or 1 depending on what the argument supplied to the fcntl
2174 * was. So it is in fact correct to check the ap->a_data
2175 * argument for zero or non-zero value when deciding whether or not
2176 * to enable the greedy mode bit in the cnode.
2178 enable_greedy_mode
= 1;
2180 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2185 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2187 if (enable_greedy_mode
) {
2188 cp
->c_flag
|= C_SSD_GREEDY_MODE
;
2191 cp
->c_flag
&= ~C_SSD_GREEDY_MODE
;
2200 uint32_t iotypeflag
= 0;
2202 struct cnode
*cp
= NULL
;
2204 * lock the cnode, decorate the cnode flag, and bail out.
2205 * VFS should have already authenticated the caller for us.
2208 if (ap
->a_data
== NULL
) {
2213 * Note that even though ap->a_data is of type caddr_t, we
2214 * can only use 32 bits of flag values.
2216 iotypeflag
= (uint32_t) ap
->a_data
;
2217 switch (iotypeflag
) {
2218 case F_IOTYPE_ISOCHRONOUS
:
2225 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2230 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2232 switch (iotypeflag
) {
2233 case F_IOTYPE_ISOCHRONOUS
:
2234 cp
->c_flag
|= C_IO_ISOCHRONOUS
;
2244 case F_MAKECOMPRESSED
: {
2246 uint32_t gen_counter
;
2247 struct cnode
*cp
= NULL
;
2248 int reset_decmp
= 0;
2250 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2255 * acquire & lock the cnode.
2256 * VFS should have already authenticated the caller for us.
2261 * Cast the pointer into a uint32_t so we can extract the
2262 * supplied generation counter.
2264 gen_counter
= *((uint32_t*)ap
->a_data
);
2272 /* Grab truncate lock first; we may truncate the file */
2273 hfs_lock_truncate (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2275 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2277 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2281 /* Are there any other usecounts/FDs? */
2282 if (vnode_isinuse(vp
, 1)) {
2284 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2288 /* now we have the cnode locked down; Validate arguments */
2289 if (cp
->c_attr
.ca_flags
& (UF_IMMUTABLE
| UF_COMPRESSED
)) {
2290 /* EINVAL if you are trying to manipulate an IMMUTABLE file */
2292 hfs_unlock_truncate (cp
, HFS_LOCK_DEFAULT
);
2296 if ((hfs_get_gencount (cp
)) == gen_counter
) {
2298 * OK, the gen_counter matched. Go for it:
2299 * Toggle state bits, truncate file, and suppress mtime update
2302 cp
->c_bsdflags
|= UF_COMPRESSED
;
2304 error
= hfs_truncate(vp
, 0, IO_NDELAY
, HFS_TRUNCATE_SKIPTIMES
,
2311 /* Unlock cnode before executing decmpfs ; they may need to get an EA */
2315 * Reset the decmp state while still holding the truncate lock. We need to
2316 * serialize here against a listxattr on this node which may occur at any
2319 * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed,
2320 * that will still potentially require getting the com.apple.decmpfs EA. If the
2321 * EA is required, then we can't hold the cnode lock, because the getxattr call is
2322 * generic(through VFS), and can't pass along any info telling it that we're already
2323 * holding it (the lock). If we don't serialize, then we risk listxattr stopping
2324 * and trying to fill in the hfs_file_is_compressed info during the callback
2325 * operation, which will result in deadlock against the b-tree node.
2327 * So, to serialize against listxattr (which will grab buf_t meta references on
2328 * the b-tree blocks), we hold the truncate lock as we're manipulating the
2331 if ((reset_decmp
) && (error
== 0)) {
2332 decmpfs_cnode
*dp
= VTOCMP (vp
);
2334 decmpfs_cnode_set_vnode_state(dp
, FILE_TYPE_UNKNOWN
, 0);
2337 /* Initialize the decmpfs node as needed */
2338 (void) hfs_file_is_compressed (cp
, 0); /* ok to take lock */
2341 hfs_unlock_truncate (cp
, HFS_LOCK_DEFAULT
);
2347 case F_SETBACKINGSTORE
: {
2352 * See comment in F_SETSTATICCONTENT re: using
2353 * a null check for a_data
2356 error
= hfs_set_backingstore (vp
, 1);
2359 error
= hfs_set_backingstore (vp
, 0);
2365 case F_GETPATH_MTMINFO
: {
2368 int *data
= (int*) ap
->a_data
;
2370 /* Ask if this is a backingstore vnode */
2371 error
= hfs_is_backingstore (vp
, data
);
2379 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2382 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2384 error
= hfs_fsync(vp
, MNT_WAIT
, HFS_FSYNC_FULL
, p
);
2385 hfs_unlock(VTOC(vp
));
2391 case F_BARRIERFSYNC
: {
2394 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2397 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2399 error
= hfs_fsync(vp
, MNT_WAIT
, HFS_FSYNC_BARRIER
, p
);
2400 hfs_unlock(VTOC(vp
));
2407 register struct cnode
*cp
;
2410 if (!vnode_isreg(vp
))
2413 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2417 * used by regression test to determine if
2418 * all the dirty pages (via write) have been cleaned
2419 * after a call to 'fsysnc'.
2421 error
= is_file_clean(vp
, VTOF(vp
)->ff_size
);
2428 register struct radvisory
*ra
;
2429 struct filefork
*fp
;
2432 if (!vnode_isreg(vp
))
2435 ra
= (struct radvisory
*)(ap
->a_data
);
2438 /* Protect against a size change. */
2439 hfs_lock_truncate(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2443 if (uncompressed_size
== -1) {
2444 /* fetching the uncompressed size failed above, so return the error */
2445 error
= decmpfs_error
;
2446 } else if (ra
->ra_offset
>= uncompressed_size
) {
2449 error
= advisory_read(vp
, uncompressed_size
, ra
->ra_offset
, ra
->ra_count
);
2452 #endif /* HFS_COMPRESSION */
2453 if (ra
->ra_offset
>= fp
->ff_size
) {
2456 error
= advisory_read(vp
, fp
->ff_size
, ra
->ra_offset
, ra
->ra_count
);
2459 hfs_unlock_truncate(VTOC(vp
), HFS_LOCK_DEFAULT
);
2463 case _IOC(IOC_OUT
,'h', 4, 0): /* Create date in local time */
2466 *(user_time_t
*)(ap
->a_data
) = (user_time_t
) (to_bsd_time(VTOVCB(vp
)->localCreateDate
));
2469 *(user32_time_t
*)(ap
->a_data
) = (user32_time_t
) (to_bsd_time(VTOVCB(vp
)->localCreateDate
));
2474 case SPOTLIGHT_FSCTL_GET_MOUNT_TIME
:
2475 *(uint32_t *)ap
->a_data
= hfsmp
->hfs_mount_time
;
2478 case SPOTLIGHT_FSCTL_GET_LAST_MTIME
:
2479 *(uint32_t *)ap
->a_data
= hfsmp
->hfs_last_mounted_mtime
;
2482 case HFS_FSCTL_GET_VERY_LOW_DISK
:
2483 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_dangerlimit
;
2486 case HFS_FSCTL_SET_VERY_LOW_DISK
:
2487 if (*(uint32_t *)ap
->a_data
>= hfsmp
->hfs_freespace_notify_warninglimit
) {
2491 hfsmp
->hfs_freespace_notify_dangerlimit
= *(uint32_t *)ap
->a_data
;
2494 case HFS_FSCTL_GET_LOW_DISK
:
2495 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_warninglimit
;
2498 case HFS_FSCTL_SET_LOW_DISK
:
2499 if ( *(uint32_t *)ap
->a_data
>= hfsmp
->hfs_freespace_notify_desiredlevel
2500 || *(uint32_t *)ap
->a_data
<= hfsmp
->hfs_freespace_notify_dangerlimit
) {
2505 hfsmp
->hfs_freespace_notify_warninglimit
= *(uint32_t *)ap
->a_data
;
2508 case HFS_FSCTL_GET_DESIRED_DISK
:
2509 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_desiredlevel
;
2512 case HFS_FSCTL_SET_DESIRED_DISK
:
2513 if (*(uint32_t *)ap
->a_data
<= hfsmp
->hfs_freespace_notify_warninglimit
) {
2517 hfsmp
->hfs_freespace_notify_desiredlevel
= *(uint32_t *)ap
->a_data
;
2520 case HFS_VOLUME_STATUS
:
2521 *(uint32_t *)ap
->a_data
= hfsmp
->hfs_notification_conditions
;
2524 case HFS_SET_BOOT_INFO
:
2525 if (!vnode_isvroot(vp
))
2527 if (!kauth_cred_issuser(cred
) && (kauth_cred_getuid(cred
) != vfs_statfs(HFSTOVFS(hfsmp
))->f_owner
))
2528 return(EACCES
); /* must be superuser or owner of filesystem */
2529 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2532 hfs_lock_mount (hfsmp
);
2533 bcopy(ap
->a_data
, &hfsmp
->vcbFndrInfo
, sizeof(hfsmp
->vcbFndrInfo
));
2534 /* Null out the cached UUID, to be safe */
2535 uuid_clear (hfsmp
->hfs_full_uuid
);
2536 hfs_unlock_mount (hfsmp
);
2537 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
2540 case HFS_GET_BOOT_INFO
:
2541 if (!vnode_isvroot(vp
))
2543 hfs_lock_mount (hfsmp
);
2544 bcopy(&hfsmp
->vcbFndrInfo
, ap
->a_data
, sizeof(hfsmp
->vcbFndrInfo
));
2545 hfs_unlock_mount(hfsmp
);
2548 case HFS_MARK_BOOT_CORRUPT
:
2549 /* Mark the boot volume corrupt by setting
2550 * kHFSVolumeInconsistentBit in the volume header. This will
2551 * force fsck_hfs on next mount.
2553 if (!kauth_cred_issuser(kauth_cred_get())) {
2557 /* Allowed only on the root vnode of the boot volume */
2558 if (!(vfs_flags(HFSTOVFS(hfsmp
)) & MNT_ROOTFS
) ||
2559 !vnode_isvroot(vp
)) {
2562 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2565 printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n");
2566 hfs_mark_inconsistent(hfsmp
, HFS_FSCK_FORCED
);
2569 case HFS_FSCTL_GET_JOURNAL_INFO
:
2570 jip
= (struct hfs_journal_info
*)ap
->a_data
;
2575 if (hfsmp
->jnl
== NULL
) {
2579 jnl_start
= hfs_blk_to_bytes(hfsmp
->jnl_start
, hfsmp
->blockSize
) + hfsmp
->hfsPlusIOPosOffset
;
2580 jnl_size
= hfsmp
->jnl_size
;
2583 jip
->jstart
= jnl_start
;
2584 jip
->jsize
= jnl_size
;
2587 case HFS_SET_ALWAYS_ZEROFILL
: {
2588 struct cnode
*cp
= VTOC(vp
);
2590 if (*(int *)ap
->a_data
) {
2591 cp
->c_flag
|= C_ALWAYS_ZEROFILL
;
2593 cp
->c_flag
&= ~C_ALWAYS_ZEROFILL
;
2598 case HFS_DISABLE_METAZONE
: {
2599 /* Only root can disable metadata zone */
2600 if (!kauth_cred_issuser(kauth_cred_get())) {
2603 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2607 /* Disable metadata zone now */
2608 (void) hfs_metadatazone_init(hfsmp
, true);
2609 printf ("hfs: Disabling metadata zone on %s\n", hfsmp
->vcbVN
);
2614 case HFS_FSINFO_METADATA_BLOCKS
: {
2616 struct hfsinfo_metadata
*hinfo
;
2618 hinfo
= (struct hfsinfo_metadata
*)ap
->a_data
;
2620 /* Get information about number of metadata blocks */
2621 error
= hfs_getinfo_metadata_blocks(hfsmp
, hinfo
);
2629 case HFS_GET_FSINFO
: {
2630 hfs_fsinfo
*fsinfo
= (hfs_fsinfo
*)ap
->a_data
;
2632 /* Only root is allowed to get fsinfo */
2633 if (!kauth_cred_issuser(kauth_cred_get())) {
2638 * Make sure that the caller's version number matches with
2639 * the kernel's version number. This will make sure that
2640 * if the structures being read/written into are changed
2641 * by the kernel, the caller will not read incorrect data.
2643 * The first three fields --- request_type, version and
2644 * flags are same for all the hfs_fsinfo structures, so
2645 * we can access the version number by assuming any
2646 * structure for now.
2648 if (fsinfo
->header
.version
!= HFS_FSINFO_VERSION
) {
2652 /* Make sure that the current file system is not marked inconsistent */
2653 if (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) {
2657 return hfs_get_fsinfo(hfsmp
, ap
->a_data
);
2660 case HFS_CS_FREESPACE_TRIM
: {
2664 /* Only root allowed */
2665 if (!kauth_cred_issuser(kauth_cred_get())) {
2670 * This core functionality is similar to hfs_scan_blocks().
2671 * The main difference is that hfs_scan_blocks() is called
2672 * as part of mount where we are assured that the journal is
2673 * empty to start with. This fcntl() can be called on a
2674 * mounted volume, therefore it has to flush the content of
2675 * the journal as well as ensure the state of summary table.
2677 * This fcntl scans over the entire allocation bitmap,
2678 * creates list of all the free blocks, and issues TRIM
2679 * down to the underlying device. This can take long time
2680 * as it can generate up to 512MB of read I/O.
2683 if ((hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) == 0) {
2684 error
= hfs_init_summary(hfsmp
);
2686 printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp
->vcbVN
);
2692 * The journal maintains list of recently deallocated blocks to
2693 * issue DKIOCUNMAPs when the corresponding journal transaction is
2694 * flushed to the disk. To avoid any race conditions, we only
2695 * want one active trim list and only one thread issuing DKIOCUNMAPs.
2696 * Therefore we make sure that the journal trim list is sync'ed,
2697 * empty, and not modifiable for the duration of our scan.
2699 * Take the journal lock before flushing the journal to the disk.
2700 * We will keep on holding the journal lock till we don't get the
2701 * bitmap lock to make sure that no new journal transactions can
2702 * start. This will make sure that the journal trim list is not
2703 * modified after the journal flush and before getting bitmap lock.
2704 * We can release the journal lock after we acquire the bitmap
2705 * lock as it will prevent any further block deallocations.
2707 hfs_journal_lock(hfsmp
);
2709 /* Flush the journal and wait for all I/Os to finish up */
2710 error
= hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL_META
);
2712 hfs_journal_unlock(hfsmp
);
2716 /* Take bitmap lock to ensure it is not being modified */
2717 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
2719 /* Release the journal lock */
2720 hfs_journal_unlock(hfsmp
);
2723 * ScanUnmapBlocks reads the bitmap in large block size
2724 * (up to 1MB) unlike the runtime which reads the bitmap
2725 * in the 4K block size. This can cause buf_t collisions
2726 * and potential data corruption. To avoid this, we
2727 * invalidate all the existing buffers associated with
2728 * the bitmap vnode before scanning it.
2730 * Note: ScanUnmapBlock() cleans up all the buffers
2731 * after itself, so there won't be any large buffers left
2732 * for us to clean up after it returns.
2734 error
= buf_invalidateblks(hfsmp
->hfs_allocation_vp
, 0, 0, 0);
2736 hfs_systemfile_unlock(hfsmp
, lockflags
);
2740 /* Traverse bitmap and issue DKIOCUNMAPs */
2741 error
= ScanUnmapBlocks(hfsmp
);
2742 hfs_systemfile_unlock(hfsmp
, lockflags
);
2750 case HFS_SET_HOTFILE_STATE
: {
2752 struct cnode
*cp
= VTOC(vp
);
2753 uint32_t hf_state
= *((uint32_t*)ap
->a_data
);
2754 uint32_t num_unpinned
= 0;
2756 error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2761 // printf("hfs: setting hotfile state %d on %s\n", hf_state, vp->v_name);
2762 if (hf_state
== HFS_MARK_FASTDEVCANDIDATE
) {
2763 vnode_setfastdevicecandidate(vp
);
2765 cp
->c_attr
.ca_recflags
|= kHFSFastDevCandidateMask
;
2766 cp
->c_attr
.ca_recflags
&= ~kHFSDoNotFastDevPinMask
;
2767 cp
->c_flag
|= C_MODIFIED
;
2768 } else if (hf_state
== HFS_UNMARK_FASTDEVCANDIDATE
|| hf_state
== HFS_NEVER_FASTDEVCANDIDATE
) {
2769 vnode_clearfastdevicecandidate(vp
);
2770 hfs_removehotfile(vp
);
2772 if (cp
->c_attr
.ca_recflags
& kHFSFastDevPinnedMask
) {
2773 hfs_pin_vnode(hfsmp
, vp
, HFS_UNPIN_IT
, &num_unpinned
);
2776 if (hf_state
== HFS_NEVER_FASTDEVCANDIDATE
) {
2777 cp
->c_attr
.ca_recflags
|= kHFSDoNotFastDevPinMask
;
2779 cp
->c_attr
.ca_recflags
&= ~(kHFSFastDevCandidateMask
|kHFSFastDevPinnedMask
);
2780 cp
->c_flag
|= C_MODIFIED
;
2786 if (num_unpinned
!= 0) {
2787 lck_mtx_lock(&hfsmp
->hfc_mutex
);
2788 hfsmp
->hfs_hotfile_freeblks
+= num_unpinned
;
2789 lck_mtx_unlock(&hfsmp
->hfc_mutex
);
2796 case HFS_REPIN_HOTFILE_STATE
: {
2798 uint32_t repin_what
= *((uint32_t*)ap
->a_data
);
2800 /* Only root allowed */
2801 if (!kauth_cred_issuser(kauth_cred_get())) {
2805 if (!(hfsmp
->hfs_flags
& (HFS_CS_METADATA_PIN
| HFS_CS_HOTFILE_PIN
))) {
2806 // this system is neither regular Fusion or Cooperative Fusion
2807 // so this fsctl makes no sense.
2812 // After a converting a CoreStorage volume to be encrypted, the
2813 // extents could have moved around underneath us. This call
2814 // allows corestoraged to re-pin everything that should be
2815 // pinned (it would happen on the next reboot too but that could
2816 // be a long time away).
2818 if ((repin_what
& HFS_REPIN_METADATA
) && (hfsmp
->hfs_flags
& HFS_CS_METADATA_PIN
)) {
2819 hfs_pin_fs_metadata(hfsmp
);
2821 if ((repin_what
& HFS_REPIN_USERDATA
) && (hfsmp
->hfs_flags
& HFS_CS_HOTFILE_PIN
)) {
2822 hfs_repin_hotfiles(hfsmp
);
2824 if ((repin_what
& HFS_REPIN_USERDATA
) && (hfsmp
->hfs_flags
& HFS_CS_SWAPFILE_PIN
)) {
2825 //XXX Swapfiles (marked SWAP_PINNED) may have moved too.
2826 //XXX Do we care? They have a more transient/dynamic nature/lifetime.
2832 #if HFS_CONFIG_KEY_ROLL
2834 case HFS_KEY_ROLL
: {
2835 if (!kauth_cred_issuser(kauth_cred_get()))
2838 hfs_key_roll_args_t
*args
= (hfs_key_roll_args_t
*)ap
->a_data
;
2840 return hfs_key_roll_op(ap
->a_context
, ap
->a_vp
, args
);
2843 case HFS_GET_KEY_AUTO_ROLL
: {
2844 if (!kauth_cred_issuser(kauth_cred_get()))
2847 hfs_key_auto_roll_args_t
*args
= (hfs_key_auto_roll_args_t
*)ap
->a_data
;
2848 if (args
->api_version
!= HFS_KEY_AUTO_ROLL_API_VERSION_1
)
2850 args
->flags
= (ISSET(hfsmp
->cproot_flags
, CP_ROOT_AUTO_ROLL_OLD_CLASS_GENERATION
)
2851 ? HFS_KEY_AUTO_ROLL_OLD_CLASS_GENERATION
: 0);
2852 args
->min_key_os_version
= hfsmp
->hfs_auto_roll_min_key_os_version
;
2853 args
->max_key_os_version
= hfsmp
->hfs_auto_roll_max_key_os_version
;
2857 case HFS_SET_KEY_AUTO_ROLL
: {
2858 if (!kauth_cred_issuser(kauth_cred_get()))
2861 hfs_key_auto_roll_args_t
*args
= (hfs_key_auto_roll_args_t
*)ap
->a_data
;
2862 if (args
->api_version
!= HFS_KEY_AUTO_ROLL_API_VERSION_1
)
2864 return cp_set_auto_roll(hfsmp
, args
);
2867 #endif // HFS_CONFIG_KEY_ROLL
2870 case F_TRANSCODEKEY
:
2872 * This API is only supported when called via kernel so
2873 * a_fflag must be set to 1 (it's not possible to get here
2874 * with it set to 1 via fsctl).
2876 if (ap
->a_fflag
!= 1)
2878 return cp_vnode_transcode(vp
, (cp_key_t
*)ap
->a_data
);
2880 case F_GETPROTECTIONLEVEL
:
2881 return cp_get_root_major_vers (vp
, (uint32_t *)ap
->a_data
);
2883 case F_GETDEFAULTPROTLEVEL
:
2884 return cp_get_default_level(vp
, (uint32_t *)ap
->a_data
);
2885 #endif // CONFIG_PROTECT
2888 return hfs_pin_vnode(hfsmp
, vp
, HFS_PIN_IT
| HFS_DATALESS_PIN
,
2902 hfs_vnop_select(__unused
struct vnop_select_args
*ap
)
2904 struct vnop_select_args {
2909 vfs_context_t a_context;
2914 * We should really check to see if I/O is possible.
2920 * Converts a logical block number to a physical block, and optionally returns
2921 * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize.
2922 * The physical block number is based on the device block size, currently its 512.
2923 * The block run is returned in logical blocks, and is the REMAINING amount of blocks
2926 hfs_bmap(struct vnode
*vp
, daddr_t bn
, struct vnode
**vpp
, daddr64_t
*bnp
, unsigned int *runp
)
2928 struct filefork
*fp
= VTOF(vp
);
2929 struct hfsmount
*hfsmp
= VTOHFS(vp
);
2930 int retval
= E_NONE
;
2931 u_int32_t logBlockSize
;
2932 size_t bytesContAvail
= 0;
2933 off_t blockposition
;
2938 * Check for underlying vnode requests and ensure that logical
2939 * to physical mapping is requested.
2942 *vpp
= hfsmp
->hfs_devvp
;
2946 logBlockSize
= GetLogicalBlockSize(vp
);
2947 blockposition
= (off_t
)bn
* logBlockSize
;
2949 lockExtBtree
= overflow_extents(fp
);
2952 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_EXTENTS
, HFS_EXCLUSIVE_LOCK
);
2954 retval
= MacToVFSError(
2955 MapFileBlockC (HFSTOVCB(hfsmp
),
2963 hfs_systemfile_unlock(hfsmp
, lockflags
);
2965 if (retval
== E_NONE
) {
2966 /* Figure out how many read ahead blocks there are */
2968 if (can_cluster(logBlockSize
)) {
2969 /* Make sure this result never goes negative: */
2970 *runp
= (bytesContAvail
< logBlockSize
) ? 0 : (bytesContAvail
/ logBlockSize
) - 1;
2980 * Convert logical block number to file offset.
2983 hfs_vnop_blktooff(struct vnop_blktooff_args
*ap
)
2985 struct vnop_blktooff_args {
2992 if (ap
->a_vp
== NULL
)
2994 *ap
->a_offset
= (off_t
)ap
->a_lblkno
* (off_t
)GetLogicalBlockSize(ap
->a_vp
);
3000 * Convert file offset to logical block number.
3003 hfs_vnop_offtoblk(struct vnop_offtoblk_args
*ap
)
3005 struct vnop_offtoblk_args {
3008 daddr64_t *a_lblkno;
3012 if (ap
->a_vp
== NULL
)
3014 *ap
->a_lblkno
= (daddr64_t
)(ap
->a_offset
/ (off_t
)GetLogicalBlockSize(ap
->a_vp
));
3020 * Map file offset to physical block number.
3022 * If this function is called for write operation, and if the file
3023 * had virtual blocks allocated (delayed allocation), real blocks
3024 * are allocated by calling ExtendFileC().
3026 * If this function is called for read operation, and if the file
3027 * had virtual blocks allocated (delayed allocation), no change
3028 * to the size of file is done, and if required, rangelist is
3029 * searched for mapping.
3031 * System file cnodes are expected to be locked (shared or exclusive).
3033 * -- INVALID RANGES --
3035 * Invalid ranges are used to keep track of where we have extended a
3036 * file, but have not yet written that data to disk. In the past we
3037 * would clear up the invalid ranges as we wrote to those areas, but
3038 * before data was actually flushed to disk. The problem with that
3039 * approach is that the data can be left in the cache and is therefore
3040 * still not valid on disk. So now we clear up the ranges here, when
3041 * the flags field has VNODE_WRITE set, indicating a write is about to
3042 * occur. This isn't ideal (ideally we want to clear them up when
3043 * know the data has been successfully written), but it's the best we
3046 * For reads, we use the invalid ranges here in block map to indicate
3047 * to the caller that the data should be zeroed (a_bpn == -1). We
3048 * have to be careful about what ranges we return to the cluster code.
3049 * Currently the cluster code can only handle non-rounded values for
3050 * the EOF; it cannot handle funny sized ranges in the middle of the
3051 * file (the main problem is that it sends down odd sized I/Os to the
3052 * disk). Our code currently works because whilst the very first
3053 * offset and the last offset in the invalid ranges are not aligned,
3054 * gaps in the invalid ranges between the first and last, have to be
3055 * aligned (because we always write page sized blocks). For example,
3056 * consider this arrangement:
3058 * +-------------+-----+-------+------+
3059 * | |XXXXX| |XXXXXX|
3060 * +-------------+-----+-------+------+
3063 * This shows two invalid ranges <a, b> and <c, d>. Whilst a and d
3064 * are not necessarily aligned, b and c *must* be.
3066 * Zero-filling occurs in a number of ways:
3068 * 1. When a read occurs and we return with a_bpn == -1.
3070 * 2. When hfs_fsync or hfs_filedone calls hfs_flush_invalid_ranges
3071 * which will cause us to iterate over the ranges bringing in
3072 * pages that are not present in the cache and zeroing them. Any
3073 * pages that are already in the cache are left untouched. Note
3074 * that hfs_fsync does not always flush invalid ranges.
3076 * 3. When we extend a file we zero out from the old EOF to the end
3077 * of the page. It would be nice if we didn't have to do this if
3078 * the page wasn't present (and could defer it), but because of
3079 * the problem described above, we have to.
3081 * The invalid ranges are also used to restrict the size that we write
3082 * out on disk: see hfs_prepare_fork_for_update.
3084 * Note that invalid ranges are ignored when neither the VNODE_READ or
3085 * the VNODE_WRITE flag is specified. This is useful for the
3086 * F_LOG2PHYS* fcntls which are not interested in invalid ranges: they
3087 * just want to know whether blocks are physically allocated or not.
3090 hfs_vnop_blockmap(struct vnop_blockmap_args
*ap
)
3092 struct vnop_blockmap_args {
3100 vfs_context_t a_context;
3104 struct vnode
*vp
= ap
->a_vp
;
3106 struct filefork
*fp
;
3107 struct hfsmount
*hfsmp
;
3108 size_t bytesContAvail
= ap
->a_size
;
3109 int retval
= E_NONE
;
3112 struct rl_entry
*invalid_range
;
3113 enum rl_overlaptype overlaptype
;
3118 if (VNODE_IS_RSRC(vp
)) {
3119 /* allow blockmaps to the resource fork */
3121 if ( hfs_file_is_compressed(VTOC(vp
), 1) ) { /* 1 == don't take the cnode lock */
3122 int state
= decmpfs_cnode_get_vnode_state(VTOCMP(vp
));
3124 case FILE_IS_COMPRESSED
:
3126 case FILE_IS_CONVERTING
:
3127 /* if FILE_IS_CONVERTING, we allow blockmap */
3130 printf("invalid state %d for compressed file\n", state
);
3135 #endif /* HFS_COMPRESSION */
3137 /* Do not allow blockmap operation on a directory */
3138 if (vnode_isdir(vp
)) {
3143 * Check for underlying vnode requests and ensure that logical
3144 * to physical mapping is requested.
3146 if (ap
->a_bpn
== NULL
)
3153 if ( !vnode_issystem(vp
) && !vnode_islnk(vp
) && !vnode_isswap(vp
)) {
3154 if (cp
->c_lockowner
!= current_thread()) {
3155 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3159 // For reads, check the invalid ranges
3160 if (ISSET(ap
->a_flags
, VNODE_READ
)) {
3161 if (ap
->a_foffset
>= fp
->ff_size
) {
3166 overlaptype
= rl_scan(&fp
->ff_invalidranges
, ap
->a_foffset
,
3167 ap
->a_foffset
+ (off_t
)bytesContAvail
- 1,
3169 switch(overlaptype
) {
3170 case RL_MATCHINGOVERLAP
:
3171 case RL_OVERLAPCONTAINSRANGE
:
3172 case RL_OVERLAPSTARTSBEFORE
:
3173 /* There's no valid block for this byte offset */
3174 *ap
->a_bpn
= (daddr64_t
)-1;
3175 /* There's no point limiting the amount to be returned
3176 * if the invalid range that was hit extends all the way
3177 * to the EOF (i.e. there's no valid bytes between the
3178 * end of this range and the file's EOF):
3180 if (((off_t
)fp
->ff_size
> (invalid_range
->rl_end
+ 1)) &&
3181 ((size_t)(invalid_range
->rl_end
+ 1 - ap
->a_foffset
) < bytesContAvail
)) {
3182 bytesContAvail
= invalid_range
->rl_end
+ 1 - ap
->a_foffset
;
3188 case RL_OVERLAPISCONTAINED
:
3189 case RL_OVERLAPENDSAFTER
:
3190 /* The range of interest hits an invalid block before the end: */
3191 if (invalid_range
->rl_start
== ap
->a_foffset
) {
3192 /* There's actually no valid information to be had starting here: */
3193 *ap
->a_bpn
= (daddr64_t
)-1;
3194 if (((off_t
)fp
->ff_size
> (invalid_range
->rl_end
+ 1)) &&
3195 ((size_t)(invalid_range
->rl_end
+ 1 - ap
->a_foffset
) < bytesContAvail
)) {
3196 bytesContAvail
= invalid_range
->rl_end
+ 1 - ap
->a_foffset
;
3203 * Sadly, the lower layers don't like us to
3204 * return unaligned ranges, so we skip over
3205 * any invalid ranges here that are less than
3206 * a page: zeroing of those bits is not our
3207 * responsibility (it's dealt with elsewhere).
3210 off_t rounded_start
= round_page_64(invalid_range
->rl_start
);
3211 if ((off_t
)bytesContAvail
< rounded_start
- ap
->a_foffset
)
3213 if (rounded_start
< invalid_range
->rl_end
+ 1) {
3214 bytesContAvail
= rounded_start
- ap
->a_foffset
;
3217 } while ((invalid_range
= TAILQ_NEXT(invalid_range
,
3229 if (cp
->c_cpentry
) {
3230 const int direction
= (ISSET(ap
->a_flags
, VNODE_WRITE
)
3231 ? VNODE_WRITE
: VNODE_READ
);
3233 cp_io_params_t io_params
;
3234 cp_io_params(hfsmp
, cp
->c_cpentry
,
3235 off_rsrc_make(ap
->a_foffset
, VNODE_IS_RSRC(vp
)),
3236 direction
, &io_params
);
3238 if (io_params
.max_len
< (off_t
)bytesContAvail
)
3239 bytesContAvail
= io_params
.max_len
;
3241 if (io_params
.phys_offset
!= -1) {
3242 *ap
->a_bpn
= ((io_params
.phys_offset
+ hfsmp
->hfsPlusIOPosOffset
)
3243 / hfsmp
->hfs_logical_block_size
);
3253 /* Check virtual blocks only when performing write operation */
3254 if ((ap
->a_flags
& VNODE_WRITE
) && (fp
->ff_unallocblocks
!= 0)) {
3255 if (hfs_start_transaction(hfsmp
) != 0) {
3261 syslocks
= SFL_EXTENTS
| SFL_BITMAP
;
3263 } else if (overflow_extents(fp
)) {
3264 syslocks
= SFL_EXTENTS
;
3268 lockflags
= hfs_systemfile_lock(hfsmp
, syslocks
, HFS_EXCLUSIVE_LOCK
);
3271 * Check for any delayed allocations.
3273 if ((ap
->a_flags
& VNODE_WRITE
) && (fp
->ff_unallocblocks
!= 0)) {
3275 u_int32_t loanedBlocks
;
3278 // Make sure we have a transaction. It's possible
3279 // that we came in and fp->ff_unallocblocks was zero
3280 // but during the time we blocked acquiring the extents
3281 // btree, ff_unallocblocks became non-zero and so we
3282 // will need to start a transaction.
3284 if (started_tr
== 0) {
3286 hfs_systemfile_unlock(hfsmp
, lockflags
);
3293 * Note: ExtendFileC will Release any blocks on loan and
3294 * aquire real blocks. So we ask to extend by zero bytes
3295 * since ExtendFileC will account for the virtual blocks.
3298 loanedBlocks
= fp
->ff_unallocblocks
;
3299 retval
= ExtendFileC(hfsmp
, (FCB
*)fp
, 0, 0,
3300 kEFAllMask
| kEFNoClumpMask
, &actbytes
);
3303 fp
->ff_unallocblocks
= loanedBlocks
;
3304 cp
->c_blocks
+= loanedBlocks
;
3305 fp
->ff_blocks
+= loanedBlocks
;
3307 hfs_lock_mount (hfsmp
);
3308 hfsmp
->loanedBlocks
+= loanedBlocks
;
3309 hfs_unlock_mount (hfsmp
);
3311 hfs_systemfile_unlock(hfsmp
, lockflags
);
3312 cp
->c_flag
|= C_MODIFIED
;
3314 (void) hfs_update(vp
, 0);
3315 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3317 hfs_end_transaction(hfsmp
);
3324 retval
= MapFileBlockC(hfsmp
, (FCB
*)fp
, bytesContAvail
, ap
->a_foffset
,
3325 ap
->a_bpn
, &bytesContAvail
);
3327 hfs_systemfile_unlock(hfsmp
, lockflags
);
3332 /* On write, always return error because virtual blocks, if any,
3333 * should have been allocated in ExtendFileC(). We do not
3334 * allocate virtual blocks on read, therefore return error
3335 * only if no virtual blocks are allocated. Otherwise we search
3336 * rangelist for zero-fills
3338 if ((MacToVFSError(retval
) != ERANGE
) ||
3339 (ap
->a_flags
& VNODE_WRITE
) ||
3340 ((ap
->a_flags
& VNODE_READ
) && (fp
->ff_unallocblocks
== 0))) {
3344 /* Validate if the start offset is within logical file size */
3345 if (ap
->a_foffset
>= fp
->ff_size
) {
3350 * At this point, we have encountered a failure during
3351 * MapFileBlockC that resulted in ERANGE, and we are not
3352 * servicing a write, and there are borrowed blocks.
3354 * However, the cluster layer will not call blockmap for
3355 * blocks that are borrowed and in-cache. We have to assume
3356 * that because we observed ERANGE being emitted from
3357 * MapFileBlockC, this extent range is not valid on-disk. So
3358 * we treat this as a mapping that needs to be zero-filled
3362 if (fp
->ff_size
- ap
->a_foffset
< (off_t
)bytesContAvail
)
3363 bytesContAvail
= fp
->ff_size
- ap
->a_foffset
;
3365 *ap
->a_bpn
= (daddr64_t
) -1;
3373 if (ISSET(ap
->a_flags
, VNODE_WRITE
)) {
3374 struct rl_entry
*r
= TAILQ_FIRST(&fp
->ff_invalidranges
);
3376 // See if we might be overlapping invalid ranges...
3377 if (r
&& (ap
->a_foffset
+ (off_t
)bytesContAvail
) > r
->rl_start
) {
3379 * Mark the file as needing an update if we think the
3380 * on-disk EOF has changed.
3382 if (ap
->a_foffset
<= r
->rl_start
)
3383 SET(cp
->c_flag
, C_MODIFIED
);
3386 * This isn't the ideal place to put this. Ideally, we
3387 * should do something *after* we have successfully
3388 * written to the range, but that's difficult to do
3389 * because we cannot take locks in the callback. At
3390 * present, the cluster code will call us with VNODE_WRITE
3391 * set just before it's about to write the data so we know
3392 * that data is about to be written. If we get an I/O
3393 * error at this point then chances are the metadata
3394 * update to follow will also have an I/O error so the
3395 * risk here is small.
3397 rl_remove(ap
->a_foffset
, ap
->a_foffset
+ bytesContAvail
- 1,
3398 &fp
->ff_invalidranges
);
3400 if (!TAILQ_FIRST(&fp
->ff_invalidranges
)) {
3401 cp
->c_flag
&= ~C_ZFWANTSYNC
;
3402 cp
->c_zftimeout
= 0;
3408 *ap
->a_run
= bytesContAvail
;
3411 *(int *)ap
->a_poff
= 0;
3415 hfs_update(vp
, TRUE
);
3416 hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3417 hfs_end_transaction(hfsmp
);
3424 return (MacToVFSError(retval
));
3428 * prepare and issue the I/O
3429 * buf_strategy knows how to deal
3430 * with requests that require
3434 hfs_vnop_strategy(struct vnop_strategy_args
*ap
)
3436 buf_t bp
= ap
->a_bp
;
3437 vnode_t vp
= buf_vnode(bp
);
3440 /* Mark buffer as containing static data if cnode flag set */
3441 if (VTOC(vp
)->c_flag
& C_SSD_STATIC
) {
3445 /* Mark buffer as containing static data if cnode flag set */
3446 if (VTOC(vp
)->c_flag
& C_SSD_GREEDY_MODE
) {
3447 bufattr_markgreedymode(buf_attr(bp
));
3450 /* mark buffer as containing burst mode data if cnode flag set */
3451 if (VTOC(vp
)->c_flag
& C_IO_ISOCHRONOUS
) {
3452 bufattr_markisochronous(buf_attr(bp
));
3456 error
= cp_handle_strategy(bp
);
3462 error
= buf_strategy(VTOHFS(vp
)->hfs_devvp
, ap
);
3468 do_hfs_truncate(struct vnode
*vp
, off_t length
, int flags
, int truncateflags
, vfs_context_t context
)
3470 register struct cnode
*cp
= VTOC(vp
);
3471 struct filefork
*fp
= VTOF(vp
);
3472 kauth_cred_t cred
= vfs_context_ucred(context
);
3475 off_t actualBytesAdded
;
3477 u_int32_t fileblocks
;
3479 struct hfsmount
*hfsmp
;
3481 int suppress_times
= (truncateflags
& HFS_TRUNCATE_SKIPTIMES
);
3483 blksize
= VTOVCB(vp
)->blockSize
;
3484 fileblocks
= fp
->ff_blocks
;
3485 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
3487 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_START
,
3488 (int)length
, (int)fp
->ff_size
, (int)filebytes
, 0, 0);
3493 /* This should only happen with a corrupt filesystem */
3494 if ((off_t
)fp
->ff_size
< 0)
3497 if ((!ISHFSPLUS(VTOVCB(vp
))) && (length
> (off_t
)MAXHFSFILESIZE
))
3504 /* Files that are changing size are not hot file candidates. */
3505 if (hfsmp
->hfc_stage
== HFC_RECORDING
) {
3506 fp
->ff_bytesread
= 0;
3510 * We cannot just check if fp->ff_size == length (as an optimization)
3511 * since there may be extra physical blocks that also need truncation.
3514 if ((retval
= hfs_getinoquota(cp
)))
3519 * Lengthen the size of the file. We must ensure that the
3520 * last byte of the file is allocated. Since the smallest
3521 * value of ff_size is 0, length will be at least 1.
3523 if (length
> (off_t
)fp
->ff_size
) {
3525 retval
= hfs_chkdq(cp
, (int64_t)(roundup(length
- filebytes
, blksize
)),
3531 * If we don't have enough physical space then
3532 * we need to extend the physical size.
3534 if (length
> filebytes
) {
3536 u_int32_t blockHint
= 0;
3538 /* All or nothing and don't round up to clumpsize. */
3539 eflags
= kEFAllMask
| kEFNoClumpMask
;
3541 if (cred
&& (suser(cred
, NULL
) != 0)) {
3542 eflags
|= kEFReserveMask
; /* keep a reserve */
3546 * Allocate Journal and Quota files in metadata zone.
3548 if (filebytes
== 0 &&
3549 hfsmp
->hfs_flags
& HFS_METADATA_ZONE
&&
3550 hfs_virtualmetafile(cp
)) {
3551 eflags
|= kEFMetadataMask
;
3552 blockHint
= hfsmp
->hfs_metazone_start
;
3554 if (hfs_start_transaction(hfsmp
) != 0) {
3559 /* Protect extents b-tree and allocation bitmap */
3560 lockflags
= SFL_BITMAP
;
3561 if (overflow_extents(fp
))
3562 lockflags
|= SFL_EXTENTS
;
3563 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
3566 * Keep growing the file as long as the current EOF is
3567 * less than the desired value.
3569 while ((length
> filebytes
) && (retval
== E_NONE
)) {
3570 bytesToAdd
= length
- filebytes
;
3571 retval
= MacToVFSError(ExtendFileC(VTOVCB(vp
),
3576 &actualBytesAdded
));
3578 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)blksize
;
3579 if (actualBytesAdded
== 0 && retval
== E_NONE
) {
3580 if (length
> filebytes
)
3586 hfs_systemfile_unlock(hfsmp
, lockflags
);
3590 hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3593 hfs_end_transaction(hfsmp
);
3598 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_NONE
,
3599 (int)length
, (int)fp
->ff_size
, (int)filebytes
, 0, 0);
3602 if (ISSET(flags
, IO_NOZEROFILL
)) {
3603 // An optimisation for the hibernation file
3604 if (vnode_isswap(vp
))
3605 rl_remove_all(&fp
->ff_invalidranges
);
3607 if (!vnode_issystem(vp
) && retval
== E_NONE
) {
3608 if (length
> (off_t
)fp
->ff_size
) {
3611 /* Extending the file: time to fill out the current last page w. zeroes? */
3612 if (fp
->ff_size
& PAGE_MASK_64
) {
3613 /* There might be some valid data at the start of the (current) last page
3614 of the file, so zero out the remainder of that page to ensure the
3615 entire page contains valid data. */
3617 retval
= hfs_zero_eof_page(vp
, length
);
3618 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3619 if (retval
) goto Err_Exit
;
3622 rl_add(fp
->ff_size
, length
- 1, &fp
->ff_invalidranges
);
3623 cp
->c_zftimeout
= tv
.tv_sec
+ ZFTIMELIMIT
;
3626 panic("hfs_truncate: invoked on non-UBC object?!");
3629 if (suppress_times
== 0) {
3630 cp
->c_touch_modtime
= TRUE
;
3632 fp
->ff_size
= length
;
3634 } else { /* Shorten the size of the file */
3636 // An optimisation for the hibernation file
3637 if (ISSET(flags
, IO_NOZEROFILL
) && vnode_isswap(vp
)) {
3638 rl_remove_all(&fp
->ff_invalidranges
);
3639 } else if ((off_t
)fp
->ff_size
> length
) {
3640 /* Any space previously marked as invalid is now irrelevant: */
3641 rl_remove(length
, fp
->ff_size
- 1, &fp
->ff_invalidranges
);
3645 * Account for any unmapped blocks. Note that the new
3646 * file length can still end up with unmapped blocks.
3648 if (fp
->ff_unallocblocks
> 0) {
3649 u_int32_t finalblks
;
3650 u_int32_t loanedBlocks
;
3652 hfs_lock_mount(hfsmp
);
3653 loanedBlocks
= fp
->ff_unallocblocks
;
3654 cp
->c_blocks
-= loanedBlocks
;
3655 fp
->ff_blocks
-= loanedBlocks
;
3656 fp
->ff_unallocblocks
= 0;
3658 hfsmp
->loanedBlocks
-= loanedBlocks
;
3660 finalblks
= (length
+ blksize
- 1) / blksize
;
3661 if (finalblks
> fp
->ff_blocks
) {
3662 /* calculate required unmapped blocks */
3663 loanedBlocks
= finalblks
- fp
->ff_blocks
;
3664 hfsmp
->loanedBlocks
+= loanedBlocks
;
3666 fp
->ff_unallocblocks
= loanedBlocks
;
3667 cp
->c_blocks
+= loanedBlocks
;
3668 fp
->ff_blocks
+= loanedBlocks
;
3670 hfs_unlock_mount (hfsmp
);
3673 off_t savedbytes
= ((off_t
)fp
->ff_blocks
* (off_t
)blksize
);
3674 if (hfs_start_transaction(hfsmp
) != 0) {
3679 if (fp
->ff_unallocblocks
== 0) {
3680 /* Protect extents b-tree and allocation bitmap */
3681 lockflags
= SFL_BITMAP
;
3682 if (overflow_extents(fp
))
3683 lockflags
|= SFL_EXTENTS
;
3684 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
3686 retval
= MacToVFSError(TruncateFileC(VTOVCB(vp
), (FCB
*)fp
, length
, 0,
3687 FORK_IS_RSRC (fp
), FTOC(fp
)->c_fileid
, false));
3689 hfs_systemfile_unlock(hfsmp
, lockflags
);
3693 fp
->ff_size
= length
;
3696 hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3698 hfs_end_transaction(hfsmp
);
3700 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)blksize
;
3704 /* These are bytesreleased */
3705 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
- filebytes
), NOCRED
, 0);
3709 // Unlike when growing a file, we adjust the hotfile block count here
3710 // instead of deeper down in the block allocation code because we do
3711 // not necessarily have a vnode or "fcb" at the time we're deleting
3712 // the file and so we wouldn't know if it was hotfile cached or not
3714 hfs_hotfile_adjust_blocks(vp
, (int64_t)((savedbytes
- filebytes
) / blksize
));
3718 * Only set update flag if the logical length changes & we aren't
3719 * suppressing modtime updates.
3721 if (((off_t
)fp
->ff_size
!= length
) && (suppress_times
== 0)) {
3722 cp
->c_touch_modtime
= TRUE
;
3724 fp
->ff_size
= length
;
3726 if (cp
->c_mode
& (S_ISUID
| S_ISGID
)) {
3727 if (!vfs_context_issuser(context
))
3728 cp
->c_mode
&= ~(S_ISUID
| S_ISGID
);
3730 cp
->c_flag
|= C_MODIFIED
;
3731 cp
->c_touch_chgtime
= TRUE
; /* status changed */
3732 if (suppress_times
== 0) {
3733 cp
->c_touch_modtime
= TRUE
; /* file data was modified */
3736 * If we are not suppressing the modtime update, then
3737 * update the gen count as well.
3739 if (S_ISREG(cp
->c_attr
.ca_mode
) || S_ISLNK (cp
->c_attr
.ca_mode
)) {
3740 hfs_incr_gencount(cp
);
3744 retval
= hfs_update(vp
, 0);
3746 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_NONE
,
3747 -1, -1, -1, retval
, 0);
3752 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_END
,
3753 (int)length
, (int)fp
->ff_size
, (int)filebytes
, retval
, 0);
3759 * Preparation which must be done prior to deleting the catalog record
3760 * of a file or directory. In order to make the on-disk as safe as possible,
3761 * we remove the catalog entry before releasing the bitmap blocks and the
3762 * overflow extent records. However, some work must be done prior to deleting
3763 * the catalog record.
3765 * When calling this function, the cnode must exist both in memory and on-disk.
3766 * If there are both resource fork and data fork vnodes, this function should
3767 * be called on both.
3771 hfs_prepare_release_storage (struct hfsmount
*hfsmp
, struct vnode
*vp
) {
3773 struct filefork
*fp
= VTOF(vp
);
3774 struct cnode
*cp
= VTOC(vp
);
3779 /* Cannot truncate an HFS directory! */
3780 if (vnode_isdir(vp
)) {
3785 * See the comment below in hfs_truncate for why we need to call
3786 * setsize here. Essentially we want to avoid pending IO if we
3787 * already know that the blocks are going to be released here.
3788 * This function is only called when totally removing all storage for a file, so
3789 * we can take a shortcut and immediately setsize (0);
3793 /* This should only happen with a corrupt filesystem */
3794 if ((off_t
)fp
->ff_size
< 0)
3798 * We cannot just check if fp->ff_size == length (as an optimization)
3799 * since there may be extra physical blocks that also need truncation.
3802 if ((retval
= hfs_getinoquota(cp
))) {
3807 /* Wipe out any invalid ranges which have yet to be backed by disk */
3808 rl_remove(0, fp
->ff_size
- 1, &fp
->ff_invalidranges
);
3811 * Account for any unmapped blocks. Since we're deleting the
3812 * entire file, we don't have to worry about just shrinking
3813 * to a smaller number of borrowed blocks.
3815 if (fp
->ff_unallocblocks
> 0) {
3816 u_int32_t loanedBlocks
;
3818 hfs_lock_mount (hfsmp
);
3819 loanedBlocks
= fp
->ff_unallocblocks
;
3820 cp
->c_blocks
-= loanedBlocks
;
3821 fp
->ff_blocks
-= loanedBlocks
;
3822 fp
->ff_unallocblocks
= 0;
3824 hfsmp
->loanedBlocks
-= loanedBlocks
;
3826 hfs_unlock_mount (hfsmp
);
3834 * Special wrapper around calling TruncateFileC. This function is useable
3835 * even when the catalog record does not exist any longer, making it ideal
3836 * for use when deleting a file. The simplification here is that we know
3837 * that we are releasing all blocks.
3839 * Note that this function may be called when there is no vnode backing
3840 * the file fork in question. We may call this from hfs_vnop_inactive
3841 * to clear out resource fork data (and may not want to clear out the data
3842 * fork yet). As a result, we pointer-check both sets of inputs before
3843 * doing anything with them.
3845 * The caller is responsible for saving off a copy of the filefork(s)
3846 * embedded within the cnode prior to calling this function. The pointers
3847 * supplied as arguments must be valid even if the cnode is no longer valid.
3851 hfs_release_storage (struct hfsmount
*hfsmp
, struct filefork
*datafork
,
3852 struct filefork
*rsrcfork
, u_int32_t fileid
) {
3855 u_int32_t fileblocks
;
3860 blksize
= hfsmp
->blockSize
;
3864 off_t prev_filebytes
;
3866 datafork
->ff_size
= 0;
3868 fileblocks
= datafork
->ff_blocks
;
3869 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
3870 prev_filebytes
= filebytes
;
3872 /* We killed invalid ranges and loaned blocks before we removed the catalog entry */
3874 while (filebytes
> 0) {
3875 if (filebytes
> HFS_BIGFILE_SIZE
) {
3876 filebytes
-= HFS_BIGFILE_SIZE
;
3881 /* Start a transaction, and wipe out as many blocks as we can in this iteration */
3882 if (hfs_start_transaction(hfsmp
) != 0) {
3887 if (datafork
->ff_unallocblocks
== 0) {
3888 /* Protect extents b-tree and allocation bitmap */
3889 lockflags
= SFL_BITMAP
;
3890 if (overflow_extents(datafork
))
3891 lockflags
|= SFL_EXTENTS
;
3892 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
3894 error
= MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp
), datafork
, filebytes
, 1, 0, fileid
, false));
3896 hfs_systemfile_unlock(hfsmp
, lockflags
);
3898 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3900 struct cnode
*cp
= datafork
? FTOC(datafork
) : NULL
;
3902 vp
= cp
? CTOV(cp
, 0) : NULL
;
3903 hfs_hotfile_adjust_blocks(vp
, (int64_t)((prev_filebytes
- filebytes
) / blksize
));
3904 prev_filebytes
= filebytes
;
3906 /* Finish the transaction and start over if necessary */
3907 hfs_end_transaction(hfsmp
);
3916 if (error
== 0 && rsrcfork
) {
3917 rsrcfork
->ff_size
= 0;
3919 fileblocks
= rsrcfork
->ff_blocks
;
3920 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
3922 /* We killed invalid ranges and loaned blocks before we removed the catalog entry */
3924 while (filebytes
> 0) {
3925 if (filebytes
> HFS_BIGFILE_SIZE
) {
3926 filebytes
-= HFS_BIGFILE_SIZE
;
3931 /* Start a transaction, and wipe out as many blocks as we can in this iteration */
3932 if (hfs_start_transaction(hfsmp
) != 0) {
3937 if (rsrcfork
->ff_unallocblocks
== 0) {
3938 /* Protect extents b-tree and allocation bitmap */
3939 lockflags
= SFL_BITMAP
;
3940 if (overflow_extents(rsrcfork
))
3941 lockflags
|= SFL_EXTENTS
;
3942 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
3944 error
= MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp
), rsrcfork
, filebytes
, 1, 1, fileid
, false));
3946 hfs_systemfile_unlock(hfsmp
, lockflags
);
3948 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3950 /* Finish the transaction and start over if necessary */
3951 hfs_end_transaction(hfsmp
);
3962 errno_t
hfs_ubc_setsize(vnode_t vp
, off_t len
, bool have_cnode_lock
)
3967 * Call ubc_setsize to give the VM subsystem a chance to do
3968 * whatever it needs to with existing pages before we delete
3969 * blocks. Note that symlinks don't use the UBC so we'll
3970 * get back ENOENT in that case.
3972 if (have_cnode_lock
) {
3973 error
= ubc_setsize_ex(vp
, len
, UBC_SETSIZE_NO_FS_REENTRY
);
3974 if (error
== EAGAIN
) {
3975 cnode_t
*cp
= VTOC(vp
);
3977 if (cp
->c_truncatelockowner
!= current_thread())
3978 hfs_warn("hfs: hfs_ubc_setsize called without exclusive truncate lock!");
3981 error
= ubc_setsize_ex(vp
, len
, 0);
3982 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
3985 error
= ubc_setsize_ex(vp
, len
, 0);
3987 return error
== ENOENT
? 0 : error
;
3991 * Truncate a cnode to at most length size, freeing (or adding) the
3995 hfs_truncate(struct vnode
*vp
, off_t length
, int flags
,
3996 int truncateflags
, vfs_context_t context
)
3998 struct filefork
*fp
= VTOF(vp
);
4000 u_int32_t fileblocks
;
4003 struct cnode
*cp
= VTOC(vp
);
4004 hfsmount_t
*hfsmp
= VTOHFS(vp
);
4006 /* Cannot truncate an HFS directory! */
4007 if (vnode_isdir(vp
)) {
4010 /* A swap file cannot change size. */
4011 if (vnode_isswap(vp
) && length
&& !ISSET(flags
, IO_NOAUTH
)) {
4015 blksize
= hfsmp
->blockSize
;
4016 fileblocks
= fp
->ff_blocks
;
4017 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
4019 bool caller_has_cnode_lock
= (cp
->c_lockowner
== current_thread());
4021 error
= hfs_ubc_setsize(vp
, length
, caller_has_cnode_lock
);
4025 if (!caller_has_cnode_lock
) {
4026 error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4031 if (vnode_islnk(vp
) && cp
->c_datafork
->ff_symlinkptr
) {
4032 hfs_free(cp
->c_datafork
->ff_symlinkptr
, cp
->c_datafork
->ff_size
);
4033 cp
->c_datafork
->ff_symlinkptr
= NULL
;
4036 // have to loop truncating or growing files that are
4037 // really big because otherwise transactions can get
4038 // enormous and consume too many kernel resources.
4040 if (length
< filebytes
) {
4041 while (filebytes
> length
) {
4042 if ((filebytes
- length
) > HFS_BIGFILE_SIZE
) {
4043 filebytes
-= HFS_BIGFILE_SIZE
;
4047 error
= do_hfs_truncate(vp
, filebytes
, flags
, truncateflags
, context
);
4051 } else if (length
> filebytes
) {
4052 kauth_cred_t cred
= vfs_context_ucred(context
);
4053 const bool keep_reserve
= cred
&& suser(cred
, NULL
) != 0;
4055 if (hfs_freeblks(hfsmp
, keep_reserve
)
4056 < howmany(length
- filebytes
, blksize
)) {
4059 while (filebytes
< length
) {
4060 if ((length
- filebytes
) > HFS_BIGFILE_SIZE
) {
4061 filebytes
+= HFS_BIGFILE_SIZE
;
4065 error
= do_hfs_truncate(vp
, filebytes
, flags
, truncateflags
, context
);
4070 } else /* Same logical size */ {
4072 error
= do_hfs_truncate(vp
, length
, flags
, truncateflags
, context
);
4074 /* Files that are changing size are not hot file candidates. */
4075 if (VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) {
4076 fp
->ff_bytesread
= 0;
4079 #if HFS_CONFIG_KEY_ROLL
4080 if (!error
&& cp
->c_truncatelockowner
== current_thread()) {
4081 hfs_key_roll_check(cp
, true);
4085 if (!caller_has_cnode_lock
)
4088 // Make sure UBC's size matches up (in case we didn't completely succeed)
4089 errno_t err2
= hfs_ubc_setsize(vp
, fp
->ff_size
, caller_has_cnode_lock
);
4098 * Preallocate file storage space.
4101 hfs_vnop_allocate(struct vnop_allocate_args
/* {
4105 off_t *a_bytesallocated;
4107 vfs_context_t a_context;
4110 struct vnode
*vp
= ap
->a_vp
;
4112 struct filefork
*fp
;
4114 off_t length
= ap
->a_length
;
4116 off_t moreBytesRequested
;
4117 off_t actualBytesAdded
;
4119 u_int32_t fileblocks
;
4120 int retval
, retval2
;
4121 u_int32_t blockHint
;
4122 u_int32_t extendFlags
; /* For call to ExtendFileC */
4123 struct hfsmount
*hfsmp
;
4124 kauth_cred_t cred
= vfs_context_ucred(ap
->a_context
);
4128 *(ap
->a_bytesallocated
) = 0;
4130 if (!vnode_isreg(vp
))
4132 if (length
< (off_t
)0)
4137 orig_ctime
= VTOC(vp
)->c_ctime
;
4139 nspace_snapshot_event(vp
, orig_ctime
, ap
->a_length
== 0 ? NAMESPACE_HANDLER_TRUNCATE_OP
|NAMESPACE_HANDLER_DELETE_OP
: NAMESPACE_HANDLER_TRUNCATE_OP
, NULL
);
4141 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4143 if ((retval
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
4151 fileblocks
= fp
->ff_blocks
;
4152 filebytes
= (off_t
)fileblocks
* (off_t
)vcb
->blockSize
;
4154 if ((ap
->a_flags
& ALLOCATEFROMVOL
) && (length
< filebytes
)) {
4159 /* Fill in the flags word for the call to Extend the file */
4161 extendFlags
= kEFNoClumpMask
;
4162 if (ap
->a_flags
& ALLOCATECONTIG
)
4163 extendFlags
|= kEFContigMask
;
4164 if (ap
->a_flags
& ALLOCATEALL
)
4165 extendFlags
|= kEFAllMask
;
4166 if (cred
&& suser(cred
, NULL
) != 0)
4167 extendFlags
|= kEFReserveMask
;
4168 if (hfs_virtualmetafile(cp
))
4169 extendFlags
|= kEFMetadataMask
;
4173 startingPEOF
= filebytes
;
4175 if (ap
->a_flags
& ALLOCATEFROMPEOF
)
4176 length
+= filebytes
;
4177 else if (ap
->a_flags
& ALLOCATEFROMVOL
)
4178 blockHint
= ap
->a_offset
/ VTOVCB(vp
)->blockSize
;
4180 /* If no changes are necesary, then we're done */
4181 if (filebytes
== length
)
4185 * Lengthen the size of the file. We must ensure that the
4186 * last byte of the file is allocated. Since the smallest
4187 * value of filebytes is 0, length will be at least 1.
4189 if (length
> filebytes
) {
4190 if (ISSET(extendFlags
, kEFAllMask
)
4191 && (hfs_freeblks(hfsmp
, ISSET(extendFlags
, kEFReserveMask
))
4192 < howmany(length
- filebytes
, hfsmp
->blockSize
))) {
4197 off_t total_bytes_added
= 0, orig_request_size
;
4199 orig_request_size
= moreBytesRequested
= length
- filebytes
;
4202 retval
= hfs_chkdq(cp
,
4203 (int64_t)(roundup(moreBytesRequested
, vcb
->blockSize
)),
4210 * Metadata zone checks.
4212 if (hfsmp
->hfs_flags
& HFS_METADATA_ZONE
) {
4214 * Allocate Journal and Quota files in metadata zone.
4216 if (hfs_virtualmetafile(cp
)) {
4217 blockHint
= hfsmp
->hfs_metazone_start
;
4218 } else if ((blockHint
>= hfsmp
->hfs_metazone_start
) &&
4219 (blockHint
<= hfsmp
->hfs_metazone_end
)) {
4221 * Move blockHint outside metadata zone.
4223 blockHint
= hfsmp
->hfs_metazone_end
+ 1;
4228 while ((length
> filebytes
) && (retval
== E_NONE
)) {
4229 off_t bytesRequested
;
4231 if (hfs_start_transaction(hfsmp
) != 0) {
4236 /* Protect extents b-tree and allocation bitmap */
4237 lockflags
= SFL_BITMAP
;
4238 if (overflow_extents(fp
))
4239 lockflags
|= SFL_EXTENTS
;
4240 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
4242 if (moreBytesRequested
>= HFS_BIGFILE_SIZE
) {
4243 bytesRequested
= HFS_BIGFILE_SIZE
;
4245 bytesRequested
= moreBytesRequested
;
4248 if (extendFlags
& kEFContigMask
) {
4249 // if we're on a sparse device, this will force it to do a
4250 // full scan to find the space needed.
4251 hfsmp
->hfs_flags
&= ~HFS_DID_CONTIG_SCAN
;
4254 retval
= MacToVFSError(ExtendFileC(vcb
,
4259 &actualBytesAdded
));
4261 if (retval
== E_NONE
) {
4262 *(ap
->a_bytesallocated
) += actualBytesAdded
;
4263 total_bytes_added
+= actualBytesAdded
;
4264 moreBytesRequested
-= actualBytesAdded
;
4265 if (blockHint
!= 0) {
4266 blockHint
+= actualBytesAdded
/ vcb
->blockSize
;
4269 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)vcb
->blockSize
;
4271 hfs_systemfile_unlock(hfsmp
, lockflags
);
4274 (void) hfs_update(vp
, 0);
4275 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
4278 hfs_end_transaction(hfsmp
);
4283 * if we get an error and no changes were made then exit
4284 * otherwise we must do the hfs_update to reflect the changes
4286 if (retval
&& (startingPEOF
== filebytes
))
4290 * Adjust actualBytesAdded to be allocation block aligned, not
4291 * clump size aligned.
4292 * NOTE: So what we are reporting does not affect reality
4293 * until the file is closed, when we truncate the file to allocation
4296 if (total_bytes_added
!= 0 && orig_request_size
< total_bytes_added
)
4297 *(ap
->a_bytesallocated
) =
4298 roundup(orig_request_size
, (off_t
)vcb
->blockSize
);
4300 } else { /* Shorten the size of the file */
4303 * N.B. At present, this code is never called. If and when we
4304 * do start using it, it looks like there might be slightly
4305 * strange semantics with the file size: it's possible for the
4306 * file size to *increase* e.g. if current file size is 5,
4307 * length is 1024 and filebytes is 4096, the file size will
4308 * end up being 1024 bytes. This isn't necessarily a problem
4309 * but it's not consistent with the code above which doesn't
4310 * change the file size.
4313 retval
= hfs_truncate(vp
, length
, 0, 0, ap
->a_context
);
4314 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)vcb
->blockSize
;
4317 * if we get an error and no changes were made then exit
4318 * otherwise we must do the hfs_update to reflect the changes
4320 if (retval
&& (startingPEOF
== filebytes
)) goto Err_Exit
;
4322 /* These are bytesreleased */
4323 (void) hfs_chkdq(cp
, (int64_t)-((startingPEOF
- filebytes
)), NOCRED
,0);
4326 if (fp
->ff_size
> filebytes
) {
4327 fp
->ff_size
= filebytes
;
4329 hfs_ubc_setsize(vp
, fp
->ff_size
, true);
4334 cp
->c_flag
|= C_MODIFIED
;
4335 cp
->c_touch_chgtime
= TRUE
;
4336 cp
->c_touch_modtime
= TRUE
;
4337 retval2
= hfs_update(vp
, 0);
4342 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
4349 * Pagein for HFS filesystem
4352 hfs_vnop_pagein(struct vnop_pagein_args
*ap
)
4354 struct vnop_pagein_args {
4357 vm_offset_t a_pl_offset,
4361 vfs_context_t a_context;
4367 struct filefork
*fp
;
4370 upl_page_info_t
*pl
;
4372 off_t page_needed_f_offset
;
4377 boolean_t truncate_lock_held
= FALSE
;
4378 boolean_t file_converted
= FALSE
;
4386 if ((error
= cp_handle_vnop(vp
, CP_READ_ACCESS
| CP_WRITE_ACCESS
, 0)) != 0) {
4388 * If we errored here, then this means that one of two things occurred:
4389 * 1. there was a problem with the decryption of the key.
4390 * 2. the device is locked and we are not allowed to access this particular file.
4392 * Either way, this means that we need to shut down this upl now. As long as
4393 * the pl pointer is NULL (meaning that we're supposed to create the UPL ourselves)
4394 * then we create a upl and immediately abort it.
4396 if (ap
->a_pl
== NULL
) {
4397 /* create the upl */
4398 ubc_create_upl (vp
, ap
->a_f_offset
, ap
->a_size
, &upl
, &pl
,
4399 UPL_UBC_PAGEIN
| UPL_RET_ONLY_ABSENT
);
4400 /* mark the range as needed so it doesn't immediately get discarded upon abort */
4401 ubc_upl_range_needed (upl
, ap
->a_pl_offset
/ PAGE_SIZE
, 1);
4403 /* Abort the range */
4404 ubc_upl_abort_range (upl
, 0, ap
->a_size
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
4410 #endif /* CONFIG_PROTECT */
4412 if (ap
->a_pl
!= NULL
) {
4414 * this can only happen for swap files now that
4415 * we're asking for V2 paging behavior...
4416 * so don't need to worry about decompression, or
4417 * keeping track of blocks read or taking the truncate lock
4419 error
= cluster_pagein(vp
, ap
->a_pl
, ap
->a_pl_offset
, ap
->a_f_offset
,
4420 ap
->a_size
, (off_t
)fp
->ff_size
, ap
->a_flags
);
4424 page_needed_f_offset
= ap
->a_f_offset
+ ap
->a_pl_offset
;
4428 * take truncate lock (shared/recursive) to guard against
4429 * zero-fill thru fsync interfering, but only for v2
4431 * the HFS_RECURSE_TRUNCLOCK arg indicates that we want the
4432 * lock shared and we are allowed to recurse 1 level if this thread already
4433 * owns the lock exclusively... this can legally occur
4434 * if we are doing a shrinking ftruncate against a file
4435 * that is mapped private, and the pages being truncated
4436 * do not currently exist in the cache... in that case
4437 * we will have to page-in the missing pages in order
4438 * to provide them to the private mapping... we must
4439 * also call hfs_unlock_truncate with a postive been_recursed
4440 * arg to indicate that if we have recursed, there is no need to drop
4441 * the lock. Allowing this simple recursion is necessary
4442 * in order to avoid a certain deadlock... since the ftruncate
4443 * already holds the truncate lock exclusively, if we try
4444 * to acquire it shared to protect the pagein path, we will
4447 * NOTE: The if () block below is a workaround in order to prevent a
4448 * VM deadlock. See rdar://7853471.
4450 * If we are in a forced unmount, then launchd will still have the
4451 * dyld_shared_cache file mapped as it is trying to reboot. If we
4452 * take the truncate lock here to service a page fault, then our
4453 * thread could deadlock with the forced-unmount. The forced unmount
4454 * thread will try to reclaim the dyld_shared_cache vnode, but since it's
4455 * marked C_DELETED, it will call ubc_setsize(0). As a result, the unmount
4456 * thread will think it needs to copy all of the data out of the file
4457 * and into a VM copy object. If we hold the cnode lock here, then that
4458 * VM operation will not be able to proceed, because we'll set a busy page
4459 * before attempting to grab the lock. Note that this isn't as simple as "don't
4460 * call ubc_setsize" because doing that would just shift the problem to the
4461 * ubc_msync done before the vnode is reclaimed.
4463 * So, if a forced unmount on this volume is in flight AND the cnode is
4464 * marked C_DELETED, then just go ahead and do the page in without taking
4465 * the lock (thus suspending pagein_v2 semantics temporarily). Since it's on a file
4466 * that is not going to be available on the next mount, this seems like a
4467 * OK solution from a correctness point of view, even though it is hacky.
4469 if (vfs_isforce(vnode_mount(vp
))) {
4470 if (cp
->c_flag
& C_DELETED
) {
4471 /* If we don't get it, then just go ahead and operate without the lock */
4472 truncate_lock_held
= hfs_try_trunclock(cp
, HFS_SHARED_LOCK
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4476 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4477 truncate_lock_held
= TRUE
;
4480 kret
= ubc_create_upl(vp
, ap
->a_f_offset
, ap
->a_size
, &upl
, &pl
, UPL_UBC_PAGEIN
| UPL_RET_ONLY_ABSENT
);
4482 if ((kret
!= KERN_SUCCESS
) || (upl
== (upl_t
) NULL
)) {
4486 ubc_upl_range_needed(upl
, ap
->a_pl_offset
/ PAGE_SIZE
, 1);
4488 upl_size
= isize
= ap
->a_size
;
4491 * Scan from the back to find the last page in the UPL, so that we
4492 * aren't looking at a UPL that may have already been freed by the
4493 * preceding aborts/completions.
4495 for (pg_index
= ((isize
) / PAGE_SIZE
); pg_index
> 0;) {
4496 if (upl_page_present(pl
, --pg_index
))
4498 if (pg_index
== 0) {
4500 * no absent pages were found in the range specified
4501 * just abort the UPL to get rid of it and then we're done
4503 ubc_upl_abort_range(upl
, 0, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4508 * initialize the offset variables before we touch the UPL.
4509 * f_offset is the position into the file, in bytes
4510 * offset is the position into the UPL, in bytes
4511 * pg_index is the pg# of the UPL we're operating on
4512 * isize is the offset into the UPL of the last page that is present.
4514 isize
= ((pg_index
+ 1) * PAGE_SIZE
);
4517 f_offset
= ap
->a_f_offset
;
4523 if ( !upl_page_present(pl
, pg_index
)) {
4525 * we asked for RET_ONLY_ABSENT, so it's possible
4526 * to get back empty slots in the UPL.
4527 * just skip over them
4529 f_offset
+= PAGE_SIZE
;
4530 offset
+= PAGE_SIZE
;
4537 * We know that we have at least one absent page.
4538 * Now checking to see how many in a row we have
4541 xsize
= isize
- PAGE_SIZE
;
4544 if ( !upl_page_present(pl
, pg_index
+ num_of_pages
))
4549 xsize
= num_of_pages
* PAGE_SIZE
;
4552 if (VNODE_IS_RSRC(vp
)) {
4553 /* allow pageins of the resource fork */
4555 int compressed
= hfs_file_is_compressed(VTOC(vp
), 1); /* 1 == don't take the cnode lock */
4559 if (truncate_lock_held
) {
4561 * can't hold the truncate lock when calling into the decmpfs layer
4562 * since it calls back into this layer... even though we're only
4563 * holding the lock in shared mode, and the re-entrant path only
4564 * takes the lock shared, we can deadlock if some other thread
4565 * tries to grab the lock exclusively in between.
4567 hfs_unlock_truncate(cp
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4568 truncate_lock_held
= FALSE
;
4571 ap
->a_pl_offset
= offset
;
4572 ap
->a_f_offset
= f_offset
;
4575 error
= decmpfs_pagein_compressed(ap
, &compressed
, VTOCMP(vp
));
4577 * note that decpfs_pagein_compressed can change the state of
4578 * 'compressed'... it will set it to 0 if the file is no longer
4579 * compressed once the compression lock is successfully taken
4580 * i.e. we would block on that lock while the file is being inflated
4582 if (error
== 0 && vnode_isfastdevicecandidate(vp
)) {
4583 (void) hfs_addhotfile(vp
);
4587 /* successful page-in, update the access time */
4588 VTOC(vp
)->c_touch_acctime
= TRUE
;
4591 // compressed files are not traditional hot file candidates
4592 // but they may be for CF (which ignores the ff_bytesread
4595 if (VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) {
4596 fp
->ff_bytesread
= 0;
4598 } else if (error
== EAGAIN
) {
4600 * EAGAIN indicates someone else already holds the compression lock...
4601 * to avoid deadlocking, we'll abort this range of pages with an
4602 * indication that the pagein needs to be redriven
4604 ubc_upl_abort_range(upl
, (upl_offset_t
) offset
, xsize
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_RESTART
);
4605 } else if (error
== ENOSPC
) {
4607 if (upl_size
== PAGE_SIZE
)
4608 panic("decmpfs_pagein_compressed: couldn't ubc_upl_map a single page\n");
4610 ubc_upl_abort_range(upl
, (upl_offset_t
) offset
, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4612 ap
->a_size
= PAGE_SIZE
;
4614 ap
->a_pl_offset
= 0;
4615 ap
->a_f_offset
= page_needed_f_offset
;
4619 ubc_upl_abort(upl
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
4622 goto pagein_next_range
;
4626 * Set file_converted only if the file became decompressed while we were
4627 * paging in. If it were still compressed, we would re-start the loop using the goto
4628 * in the above block. This avoid us overloading truncate_lock_held as our retry_pagein
4629 * condition below, since we could have avoided taking the truncate lock to prevent
4630 * a deadlock in the force unmount case.
4632 file_converted
= TRUE
;
4635 if (file_converted
== TRUE
) {
4637 * the file was converted back to a regular file after we first saw it as compressed
4638 * we need to abort the upl, retake the truncate lock, recreate the UPL and start over
4639 * reset a_size so that we consider what remains of the original request
4640 * and null out a_upl and a_pl_offset.
4642 * We should only be able to get into this block if the decmpfs_pagein_compressed
4643 * successfully decompressed the range in question for this file.
4645 ubc_upl_abort_range(upl
, (upl_offset_t
) offset
, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4649 ap
->a_pl_offset
= 0;
4651 /* Reset file_converted back to false so that we don't infinite-loop. */
4652 file_converted
= FALSE
;
4657 error
= cluster_pagein(vp
, upl
, offset
, f_offset
, xsize
, (off_t
)fp
->ff_size
, ap
->a_flags
);
4660 * Keep track of blocks read.
4662 if ( !vnode_isswap(vp
) && VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
&& error
== 0) {
4664 int took_cnode_lock
= 0;
4666 if (ap
->a_f_offset
== 0 && fp
->ff_size
< PAGE_SIZE
)
4667 bytesread
= fp
->ff_size
;
4671 /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
4672 if ((fp
->ff_bytesread
+ bytesread
) > 0x00000000ffffffff && cp
->c_lockowner
!= current_thread()) {
4673 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
4674 took_cnode_lock
= 1;
4677 * If this file hasn't been seen since the start of
4678 * the current sampling period then start over.
4680 if (cp
->c_atime
< VTOHFS(vp
)->hfc_timebase
) {
4683 fp
->ff_bytesread
= bytesread
;
4685 cp
->c_atime
= tv
.tv_sec
;
4687 fp
->ff_bytesread
+= bytesread
;
4689 cp
->c_touch_acctime
= TRUE
;
4691 if (vnode_isfastdevicecandidate(vp
)) {
4692 (void) hfs_addhotfile(vp
);
4694 if (took_cnode_lock
)
4701 pg_index
+= num_of_pages
;
4707 if (truncate_lock_held
== TRUE
) {
4708 /* Note 1 is passed to hfs_unlock_truncate in been_recursed argument */
4709 hfs_unlock_truncate(cp
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4716 * Pageout for HFS filesystem.
4719 hfs_vnop_pageout(struct vnop_pageout_args
*ap
)
4721 struct vnop_pageout_args {
4724 vm_offset_t a_pl_offset,
4728 vfs_context_t a_context;
4732 vnode_t vp
= ap
->a_vp
;
4734 struct filefork
*fp
;
4738 upl_page_info_t
* pl
= NULL
;
4739 vm_offset_t a_pl_offset
;
4741 int is_pageoutv2
= 0;
4747 a_flags
= ap
->a_flags
;
4748 a_pl_offset
= ap
->a_pl_offset
;
4751 * we can tell if we're getting the new or old behavior from the UPL
4753 if ((upl
= ap
->a_pl
) == NULL
) {
4758 * we're in control of any UPL we commit
4759 * make sure someone hasn't accidentally passed in UPL_NOCOMMIT
4761 a_flags
&= ~UPL_NOCOMMIT
;
4765 * For V2 semantics, we want to take the cnode truncate lock
4766 * shared to guard against the file size changing via zero-filling.
4768 * However, we have to be careful because we may be invoked
4769 * via the ubc_msync path to write out dirty mmap'd pages
4770 * in response to a lock event on a content-protected
4771 * filesystem (e.g. to write out class A files).
4772 * As a result, we want to take the truncate lock 'SHARED' with
4773 * the mini-recursion locktype so that we don't deadlock/panic
4774 * because we may be already holding the truncate lock exclusive to force any other
4775 * IOs to have blocked behind us.
4777 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4779 if (a_flags
& UPL_MSYNC
) {
4780 request_flags
= UPL_UBC_MSYNC
| UPL_RET_ONLY_DIRTY
;
4783 request_flags
= UPL_UBC_PAGEOUT
| UPL_RET_ONLY_DIRTY
;
4786 kret
= ubc_create_upl(vp
, ap
->a_f_offset
, ap
->a_size
, &upl
, &pl
, request_flags
);
4788 if ((kret
!= KERN_SUCCESS
) || (upl
== (upl_t
) NULL
)) {
4794 * from this point forward upl points at the UPL we're working with
4795 * it was either passed in or we succesfully created it
4799 * Figure out where the file ends, for pageout purposes. If
4800 * ff_new_size > ff_size, then we're in the middle of extending the
4801 * file via a write, so it is safe (and necessary) that we be able
4802 * to pageout up to that point.
4804 filesize
= fp
->ff_size
;
4805 if (fp
->ff_new_size
> filesize
)
4806 filesize
= fp
->ff_new_size
;
4809 * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own
4810 * UPL instead of relying on the UPL passed into us. We go ahead and do that here,
4811 * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for
4812 * N dirty ranges in the UPL. Note that this is almost a direct copy of the
4813 * logic in vnode_pageout except that we need to do it after grabbing the truncate
4814 * lock in HFS so that we don't lock invert ourselves.
4816 * Note that we can still get into this function on behalf of the default pager with
4817 * non-V2 behavior (swapfiles). However in that case, we did not grab locks above
4818 * since fsync and other writing threads will grab the locks, then mark the
4819 * relevant pages as busy. But the pageout codepath marks the pages as busy,
4820 * and THEN would attempt to grab the truncate lock, which would result in deadlock. So
4821 * we do not try to grab anything for the pre-V2 case, which should only be accessed
4822 * by the paging/VM system.
4834 f_offset
= ap
->a_f_offset
;
4837 * Scan from the back to find the last page in the UPL, so that we
4838 * aren't looking at a UPL that may have already been freed by the
4839 * preceding aborts/completions.
4841 for (pg_index
= ((isize
) / PAGE_SIZE
); pg_index
> 0;) {
4842 if (upl_page_present(pl
, --pg_index
))
4844 if (pg_index
== 0) {
4845 ubc_upl_abort_range(upl
, 0, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4851 * initialize the offset variables before we touch the UPL.
4852 * a_f_offset is the position into the file, in bytes
4853 * offset is the position into the UPL, in bytes
4854 * pg_index is the pg# of the UPL we're operating on.
4855 * isize is the offset into the UPL of the last non-clean page.
4857 isize
= ((pg_index
+ 1) * PAGE_SIZE
);
4866 if ( !upl_page_present(pl
, pg_index
)) {
4868 * we asked for RET_ONLY_DIRTY, so it's possible
4869 * to get back empty slots in the UPL.
4870 * just skip over them
4872 f_offset
+= PAGE_SIZE
;
4873 offset
+= PAGE_SIZE
;
4879 if ( !upl_dirty_page(pl
, pg_index
)) {
4880 panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index
, upl
);
4884 * We know that we have at least one dirty page.
4885 * Now checking to see how many in a row we have
4888 xsize
= isize
- PAGE_SIZE
;
4891 if ( !upl_dirty_page(pl
, pg_index
+ num_of_pages
))
4896 xsize
= num_of_pages
* PAGE_SIZE
;
4898 if ((error
= cluster_pageout(vp
, upl
, offset
, f_offset
,
4899 xsize
, filesize
, a_flags
))) {
4906 pg_index
+= num_of_pages
;
4908 /* capture errnos bubbled out of cluster_pageout if they occurred */
4909 if (error_ret
!= 0) {
4912 } /* end block for v2 pageout behavior */
4915 * just call cluster_pageout for old pre-v2 behavior
4917 retval
= cluster_pageout(vp
, upl
, a_pl_offset
, ap
->a_f_offset
,
4918 ap
->a_size
, filesize
, a_flags
);
4922 * If data was written, update the modification time of the file
4923 * but only if it's mapped writable; we will have touched the
4924 * modifcation time for direct writes.
4926 if (retval
== 0 && (ubc_is_mapped_writable(vp
)
4927 || ISSET(cp
->c_flag
, C_MIGHT_BE_DIRTY_FROM_MAPPING
))) {
4928 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
4930 // Check again with lock
4931 bool mapped_writable
= ubc_is_mapped_writable(vp
);
4933 || ISSET(cp
->c_flag
, C_MIGHT_BE_DIRTY_FROM_MAPPING
)) {
4934 cp
->c_touch_modtime
= TRUE
;
4935 cp
->c_touch_chgtime
= TRUE
;
4938 * We only need to increment the generation counter if
4939 * it's currently mapped writable because we incremented
4940 * the counter in hfs_vnop_mnomap.
4942 if (mapped_writable
)
4943 hfs_incr_gencount(VTOC(vp
));
4946 * If setuid or setgid bits are set and this process is
4947 * not the superuser then clear the setuid and setgid bits
4948 * as a precaution against tampering.
4950 if ((cp
->c_mode
& (S_ISUID
| S_ISGID
)) &&
4951 (vfs_context_suser(ap
->a_context
) != 0)) {
4952 cp
->c_mode
&= ~(S_ISUID
| S_ISGID
);
4962 * Release the truncate lock. Note that because
4963 * we may have taken the lock recursively by
4964 * being invoked via ubc_msync due to lockdown,
4965 * we should release it recursively, too.
4967 hfs_unlock_truncate(cp
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4973 * Intercept B-Tree node writes to unswap them if necessary.
4976 hfs_vnop_bwrite(struct vnop_bwrite_args
*ap
)
4979 register struct buf
*bp
= ap
->a_bp
;
4980 register struct vnode
*vp
= buf_vnode(bp
);
4981 BlockDescriptor block
;
4983 /* Trap B-Tree writes */
4984 if ((VTOC(vp
)->c_fileid
== kHFSExtentsFileID
) ||
4985 (VTOC(vp
)->c_fileid
== kHFSCatalogFileID
) ||
4986 (VTOC(vp
)->c_fileid
== kHFSAttributesFileID
) ||
4987 (vp
== VTOHFS(vp
)->hfc_filevp
)) {
4990 * Swap and validate the node if it is in native byte order.
4991 * This is always be true on big endian, so we always validate
4992 * before writing here. On little endian, the node typically has
4993 * been swapped and validated when it was written to the journal,
4994 * so we won't do anything here.
4996 if (((u_int16_t
*)((char *)buf_dataptr(bp
) + buf_count(bp
) - 2))[0] == 0x000e) {
4997 /* Prepare the block pointer */
4998 block
.blockHeader
= bp
;
4999 block
.buffer
= (char *)buf_dataptr(bp
);
5000 block
.blockNum
= buf_lblkno(bp
);
5001 /* not found in cache ==> came from disk */
5002 block
.blockReadFromDisk
= (buf_fromcache(bp
) == 0);
5003 block
.blockSize
= buf_count(bp
);
5005 /* Endian un-swap B-Tree node */
5006 retval
= hfs_swap_BTNode (&block
, vp
, kSwapBTNodeHostToBig
, false);
5008 panic("hfs_vnop_bwrite: about to write corrupt node!\n");
5012 /* This buffer shouldn't be locked anymore but if it is clear it */
5013 if ((buf_flags(bp
) & B_LOCKED
)) {
5015 if (VTOHFS(vp
)->jnl
) {
5016 panic("hfs: CLEARING the lock bit on bp %p\n", bp
);
5018 buf_clearflags(bp
, B_LOCKED
);
5020 retval
= vn_bwrite (ap
);
5027 hfs_pin_block_range(struct hfsmount
*hfsmp
, int pin_state
, uint32_t start_block
, uint32_t nblocks
)
5033 memset(&pin
, 0, sizeof(pin
));
5034 pin
.cp_extent
.offset
= ((uint64_t)start_block
) * HFSTOVCB(hfsmp
)->blockSize
;
5035 pin
.cp_extent
.length
= ((uint64_t)nblocks
) * HFSTOVCB(hfsmp
)->blockSize
;
5036 switch (pin_state
) {
5038 ioc
= _DKIOCCSPINEXTENT
;
5039 pin
.cp_flags
= _DKIOCCSPINTOFASTMEDIA
;
5041 case HFS_PIN_IT
| HFS_TEMP_PIN
:
5042 ioc
= _DKIOCCSPINEXTENT
;
5043 pin
.cp_flags
= _DKIOCCSPINTOFASTMEDIA
| _DKIOCCSTEMPORARYPIN
;
5045 case HFS_PIN_IT
| HFS_DATALESS_PIN
:
5046 ioc
= _DKIOCCSPINEXTENT
;
5047 pin
.cp_flags
= _DKIOCCSPINTOFASTMEDIA
| _DKIOCCSPINFORSWAPFILE
;
5050 ioc
= _DKIOCCSUNPINEXTENT
;
5053 case HFS_UNPIN_IT
| HFS_EVICT_PIN
:
5054 ioc
= _DKIOCCSPINEXTENT
;
5055 pin
.cp_flags
= _DKIOCCSPINTOSLOWMEDIA
;
5060 err
= VNOP_IOCTL(hfsmp
->hfs_devvp
, ioc
, (caddr_t
)&pin
, 0, vfs_context_kernel());
5065 // The cnode lock should already be held on entry to this function
5068 hfs_pin_vnode(struct hfsmount
*hfsmp
, struct vnode
*vp
, int pin_state
, uint32_t *num_blocks_pinned
)
5070 struct filefork
*fp
= VTOF(vp
);
5071 int i
, err
=0, need_put
=0;
5072 struct vnode
*rsrc_vp
=NULL
;
5073 uint32_t npinned
= 0;
5076 if (num_blocks_pinned
) {
5077 *num_blocks_pinned
= 0;
5080 if (vnode_vtype(vp
) != VREG
) {
5081 /* Not allowed to pin directories or symlinks */
5082 printf("hfs: can't pin vnode of type %d\n", vnode_vtype(vp
));
5086 if (fp
->ff_unallocblocks
) {
5087 printf("hfs: can't pin a vnode w/unalloced blocks (%d)\n", fp
->ff_unallocblocks
);
5092 * It is possible that if the caller unlocked/re-locked the cnode after checking
5093 * for C_NOEXISTS|C_DELETED that the file could have been deleted while the
5094 * cnode was unlocked. So check the condition again and return ENOENT so that
5095 * the caller knows why we failed to pin the vnode.
5097 if (VTOC(vp
)->c_flag
& (C_NOEXISTS
|C_DELETED
)) {
5098 // makes no sense to pin something that's pending deletion
5102 if (fp
->ff_blocks
== 0 && (VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
5103 if (!VNODE_IS_RSRC(vp
) && hfs_vgetrsrc(hfsmp
, vp
, &rsrc_vp
) == 0) {
5104 //printf("hfs: fileid %d resource fork nblocks: %d / size: %lld\n", VTOC(vp)->c_fileid,
5105 // VTOC(rsrc_vp)->c_rsrcfork->ff_blocks,VTOC(rsrc_vp)->c_rsrcfork->ff_size);
5107 fp
= VTOC(rsrc_vp
)->c_rsrcfork
;
5111 if (fp
->ff_blocks
== 0) {
5114 // use a distinct error code for a compressed file that has no resource fork;
5115 // we return EALREADY to indicate that the data is already probably hot file
5116 // cached because it's in an EA and the attributes btree is on the ssd
5126 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
5127 if (fp
->ff_extents
[i
].startBlock
== 0) {
5131 err
= hfs_pin_block_range(hfsmp
, pin_state
, fp
->ff_extents
[i
].startBlock
, fp
->ff_extents
[i
].blockCount
);
5135 npinned
+= fp
->ff_extents
[i
].blockCount
;
5139 if (err
|| npinned
== 0) {
5143 if (fp
->ff_extents
[kHFSPlusExtentDensity
-1].startBlock
) {
5145 uint8_t forktype
= 0;
5147 if (fp
== VTOC(vp
)->c_rsrcfork
) {
5151 * The file could have overflow extents, better pin them.
5153 * We assume that since we are holding the cnode lock for this cnode,
5154 * the files extents cannot be manipulated, but the tree could, so we
5155 * need to ensure that it doesn't change behind our back as we iterate it.
5157 int lockflags
= hfs_systemfile_lock (hfsmp
, SFL_EXTENTS
, HFS_SHARED_LOCK
);
5158 err
= hfs_pin_overflow_extents(hfsmp
, VTOC(vp
)->c_fileid
, forktype
, &pblocks
);
5159 hfs_systemfile_unlock (hfsmp
, lockflags
);
5168 if (num_blocks_pinned
) {
5169 *num_blocks_pinned
= npinned
;
5172 if (need_put
&& rsrc_vp
) {
5174 // have to unlock the cnode since it's shared between the
5175 // resource fork vnode and the data fork vnode (and the
5176 // vnode_put() may need to re-acquire the cnode lock to
5177 // reclaim the resource fork vnode)
5179 hfs_unlock(VTOC(vp
));
5181 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5188 * Relocate a file to a new location on disk
5189 * cnode must be locked on entry
5191 * Relocation occurs by cloning the file's data from its
5192 * current set of blocks to a new set of blocks. During
5193 * the relocation all of the blocks (old and new) are
5194 * owned by the file.
5201 * ----------------- -----------------
5202 * |///////////////| | | STEP 1 (acquire new blocks)
5203 * ----------------- -----------------
5206 * ----------------- -----------------
5207 * |///////////////| |///////////////| STEP 2 (clone data)
5208 * ----------------- -----------------
5212 * |///////////////| STEP 3 (head truncate blocks)
5216 * During steps 2 and 3 page-outs to file offsets less
5217 * than or equal to N are suspended.
5219 * During step 3 page-ins to the file get suspended.
5222 hfs_relocate(struct vnode
*vp
, u_int32_t blockHint
, kauth_cred_t cred
,
5226 struct filefork
*fp
;
5227 struct hfsmount
*hfsmp
;
5232 u_int32_t nextallocsave
;
5233 daddr64_t sector_a
, sector_b
;
5238 int took_trunc_lock
= 0;
5240 enum vtype vnodetype
;
5242 vnodetype
= vnode_vtype(vp
);
5243 if (vnodetype
!= VREG
) {
5244 /* Not allowed to move symlinks. */
5249 if (hfsmp
->hfs_flags
& HFS_FRAGMENTED_FREESPACE
) {
5255 if (fp
->ff_unallocblocks
)
5260 * <rdar://problem/9118426>
5261 * Disable HFS file relocation on content-protected filesystems
5263 if (cp_fs_protected (hfsmp
->hfs_mp
)) {
5267 /* If it's an SSD, also disable HFS relocation */
5268 if (hfsmp
->hfs_flags
& HFS_SSD
) {
5273 blksize
= hfsmp
->blockSize
;
5275 blockHint
= hfsmp
->nextAllocation
;
5277 if (fp
->ff_size
> 0x7fffffff) {
5281 if (!vnode_issystem(vp
) && (vnodetype
!= VLNK
)) {
5283 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
5284 /* Force lock since callers expects lock to be held. */
5285 if ((retval
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
))) {
5286 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5289 /* No need to continue if file was removed. */
5290 if (cp
->c_flag
& C_NOEXISTS
) {
5291 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5294 took_trunc_lock
= 1;
5296 headblks
= fp
->ff_blocks
;
5297 datablks
= howmany(fp
->ff_size
, blksize
);
5298 growsize
= datablks
* blksize
;
5299 eflags
= kEFContigMask
| kEFAllMask
| kEFNoClumpMask
;
5300 if (blockHint
>= hfsmp
->hfs_metazone_start
&&
5301 blockHint
<= hfsmp
->hfs_metazone_end
)
5302 eflags
|= kEFMetadataMask
;
5304 if (hfs_start_transaction(hfsmp
) != 0) {
5305 if (took_trunc_lock
)
5306 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5311 * Protect the extents b-tree and the allocation bitmap
5312 * during MapFileBlockC and ExtendFileC operations.
5314 lockflags
= SFL_BITMAP
;
5315 if (overflow_extents(fp
))
5316 lockflags
|= SFL_EXTENTS
;
5317 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
5319 retval
= MapFileBlockC(hfsmp
, (FCB
*)fp
, 1, growsize
- 1, §or_a
, NULL
);
5321 retval
= MacToVFSError(retval
);
5326 * STEP 1 - acquire new allocation blocks.
5328 nextallocsave
= hfsmp
->nextAllocation
;
5329 retval
= ExtendFileC(hfsmp
, (FCB
*)fp
, growsize
, blockHint
, eflags
, &newbytes
);
5330 if (eflags
& kEFMetadataMask
) {
5331 hfs_lock_mount(hfsmp
);
5332 HFS_UPDATE_NEXT_ALLOCATION(hfsmp
, nextallocsave
);
5333 MarkVCBDirty(hfsmp
);
5334 hfs_unlock_mount(hfsmp
);
5337 retval
= MacToVFSError(retval
);
5339 cp
->c_flag
|= C_MODIFIED
;
5340 if (newbytes
< growsize
) {
5343 } else if (fp
->ff_blocks
< (headblks
+ datablks
)) {
5344 printf("hfs_relocate: allocation failed id=%u, vol=%s\n", cp
->c_cnid
, hfsmp
->vcbVN
);
5349 retval
= MapFileBlockC(hfsmp
, (FCB
*)fp
, 1, growsize
, §or_b
, NULL
);
5351 retval
= MacToVFSError(retval
);
5352 } else if ((sector_a
+ 1) == sector_b
) {
5355 } else if ((eflags
& kEFMetadataMask
) &&
5356 ((((u_int64_t
)sector_b
* hfsmp
->hfs_logical_block_size
) / blksize
) >
5357 hfsmp
->hfs_metazone_end
)) {
5359 const char * filestr
;
5360 char emptystr
= '\0';
5362 if (cp
->c_desc
.cd_nameptr
!= NULL
) {
5363 filestr
= (const char *)&cp
->c_desc
.cd_nameptr
[0];
5364 } else if (vnode_name(vp
) != NULL
) {
5365 filestr
= vnode_name(vp
);
5367 filestr
= &emptystr
;
5374 /* Done with system locks and journal for now. */
5375 hfs_systemfile_unlock(hfsmp
, lockflags
);
5377 hfs_end_transaction(hfsmp
);
5382 * Check to see if failure is due to excessive fragmentation.
5384 if ((retval
== ENOSPC
) &&
5385 (hfs_freeblks(hfsmp
, 0) > (datablks
* 2))) {
5386 hfsmp
->hfs_flags
|= HFS_FRAGMENTED_FREESPACE
;
5391 * STEP 2 - clone file data into the new allocation blocks.
5394 if (vnodetype
== VLNK
)
5396 else if (vnode_issystem(vp
))
5397 retval
= hfs_clonesysfile(vp
, headblks
, datablks
, blksize
, cred
, p
);
5399 retval
= hfs_clonefile(vp
, headblks
, datablks
, blksize
);
5401 /* Start transaction for step 3 or for a restore. */
5402 if (hfs_start_transaction(hfsmp
) != 0) {
5411 * STEP 3 - switch to cloned data and remove old blocks.
5413 lockflags
= SFL_BITMAP
;
5414 if (overflow_extents(fp
))
5415 lockflags
|= SFL_EXTENTS
;
5416 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
5418 retval
= HeadTruncateFile(hfsmp
, (FCB
*)fp
, headblks
);
5420 hfs_systemfile_unlock(hfsmp
, lockflags
);
5425 if (took_trunc_lock
)
5426 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5429 hfs_systemfile_unlock(hfsmp
, lockflags
);
5433 /* Push cnode's new extent data to disk. */
5438 if (cp
->c_cnid
< kHFSFirstUserCatalogNodeID
)
5439 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
5441 (void) hfs_flushvolumeheader(hfsmp
, 0);
5445 hfs_end_transaction(hfsmp
);
5450 if (fp
->ff_blocks
== headblks
) {
5451 if (took_trunc_lock
)
5452 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5456 * Give back any newly allocated space.
5458 if (lockflags
== 0) {
5459 lockflags
= SFL_BITMAP
;
5460 if (overflow_extents(fp
))
5461 lockflags
|= SFL_EXTENTS
;
5462 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
5465 (void) TruncateFileC(hfsmp
, (FCB
*)fp
, fp
->ff_size
, 0, FORK_IS_RSRC(fp
),
5466 FTOC(fp
)->c_fileid
, false);
5468 hfs_systemfile_unlock(hfsmp
, lockflags
);
5471 if (took_trunc_lock
)
5472 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5478 * Clone a file's data within the file.
5482 hfs_clonefile(struct vnode
*vp
, int blkstart
, int blkcnt
, int blksize
)
5493 writebase
= blkstart
* blksize
;
5494 copysize
= blkcnt
* blksize
;
5495 iosize
= bufsize
= MIN(copysize
, 128 * 1024);
5498 hfs_unlock(VTOC(vp
));
5501 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
5502 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5505 #endif /* CONFIG_PROTECT */
5507 bufp
= hfs_malloc(bufsize
);
5509 auio
= uio_create(1, 0, UIO_SYSSPACE
, UIO_READ
);
5511 while (offset
< copysize
) {
5512 iosize
= MIN(copysize
- offset
, iosize
);
5514 uio_reset(auio
, offset
, UIO_SYSSPACE
, UIO_READ
);
5515 uio_addiov(auio
, (uintptr_t)bufp
, iosize
);
5517 error
= cluster_read(vp
, auio
, copysize
, IO_NOCACHE
);
5519 printf("hfs_clonefile: cluster_read failed - %d\n", error
);
5522 if (uio_resid(auio
) != 0) {
5523 printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", (int64_t)uio_resid(auio
));
5528 uio_reset(auio
, writebase
+ offset
, UIO_SYSSPACE
, UIO_WRITE
);
5529 uio_addiov(auio
, (uintptr_t)bufp
, iosize
);
5531 error
= cluster_write(vp
, auio
, writebase
+ offset
,
5532 writebase
+ offset
+ iosize
,
5533 uio_offset(auio
), 0, IO_NOCACHE
| IO_SYNC
);
5535 printf("hfs_clonefile: cluster_write failed - %d\n", error
);
5538 if (uio_resid(auio
) != 0) {
5539 printf("hfs_clonefile: cluster_write failed - uio_resid not zero\n");
5547 if ((blksize
& PAGE_MASK
)) {
5549 * since the copy may not have started on a PAGE
5550 * boundary (or may not have ended on one), we
5551 * may have pages left in the cache since NOCACHE
5552 * will let partially written pages linger...
5553 * lets just flush the entire range to make sure
5554 * we don't have any pages left that are beyond
5555 * (or intersect) the real LEOF of this file
5557 ubc_msync(vp
, writebase
, writebase
+ offset
, NULL
, UBC_INVALIDATE
| UBC_PUSHDIRTY
);
5560 * No need to call ubc_msync or hfs_invalbuf
5561 * since the file was copied using IO_NOCACHE and
5562 * the copy was done starting and ending on a page
5563 * boundary in the file.
5566 hfs_free(bufp
, bufsize
);
5568 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5573 * Clone a system (metadata) file.
5577 hfs_clonesysfile(struct vnode
*vp
, int blkstart
, int blkcnt
, int blksize
,
5578 kauth_cred_t cred
, struct proc
*p
)
5584 struct buf
*bp
= NULL
;
5587 daddr64_t start_blk
;
5594 iosize
= GetLogicalBlockSize(vp
);
5595 bufsize
= MIN(blkcnt
* blksize
, 1024 * 1024) & ~(iosize
- 1);
5596 breadcnt
= bufsize
/ iosize
;
5598 bufp
= hfs_malloc(bufsize
);
5600 start_blk
= ((daddr64_t
)blkstart
* blksize
) / iosize
;
5601 last_blk
= ((daddr64_t
)blkcnt
* blksize
) / iosize
;
5604 while (blkno
< last_blk
) {
5606 * Read up to a megabyte
5609 for (i
= 0, blk
= blkno
; (i
< breadcnt
) && (blk
< last_blk
); ++i
, ++blk
) {
5610 error
= (int)buf_meta_bread(vp
, blk
, iosize
, cred
, &bp
);
5612 printf("hfs_clonesysfile: meta_bread error %d\n", error
);
5615 if (buf_count(bp
) != iosize
) {
5616 printf("hfs_clonesysfile: b_bcount is only %d\n", buf_count(bp
));
5619 bcopy((char *)buf_dataptr(bp
), offset
, iosize
);
5621 buf_markinvalid(bp
);
5629 * Write up to a megabyte
5632 for (i
= 0; (i
< breadcnt
) && (blkno
< last_blk
); ++i
, ++blkno
) {
5633 bp
= buf_getblk(vp
, start_blk
+ blkno
, iosize
, 0, 0, BLK_META
);
5635 printf("hfs_clonesysfile: getblk failed on blk %qd\n", start_blk
+ blkno
);
5639 bcopy(offset
, (char *)buf_dataptr(bp
), iosize
);
5640 error
= (int)buf_bwrite(bp
);
5652 hfs_free(bufp
, bufsize
);
5654 error
= hfs_fsync(vp
, MNT_WAIT
, 0, p
);
5659 errno_t
hfs_flush_invalid_ranges(vnode_t vp
)
5661 cnode_t
*cp
= VTOC(vp
);
5663 hfs_assert(cp
->c_lockowner
== current_thread());
5664 hfs_assert(cp
->c_truncatelockowner
== current_thread());
5666 if (!ISSET(cp
->c_flag
, C_ZFWANTSYNC
) && !cp
->c_zftimeout
)
5669 filefork_t
*fp
= VTOF(vp
);
5672 * We can't hold the cnode lock whilst we call cluster_write so we
5673 * need to copy the extents into a local buffer.
5678 } exts_buf
[max_exts
]; // 256 bytes
5679 struct ext
*exts
= exts_buf
;
5683 struct rl_entry
*r
= TAILQ_FIRST(&fp
->ff_invalidranges
);
5686 /* If we have more than can fit in our stack buffer, switch
5687 to a heap buffer. */
5688 if (exts
== exts_buf
&& ext_count
== max_exts
) {
5690 exts
= hfs_malloc(sizeof(struct ext
) * max_exts
);
5691 memcpy(exts
, exts_buf
, ext_count
* sizeof(struct ext
));
5694 struct rl_entry
*next
= TAILQ_NEXT(r
, rl_link
);
5696 exts
[ext_count
++] = (struct ext
){ r
->rl_start
, r
->rl_end
};
5698 if (!next
|| (ext_count
== max_exts
&& exts
!= exts_buf
)) {
5700 for (int i
= 0; i
< ext_count
; ++i
) {
5701 ret
= cluster_write(vp
, NULL
, fp
->ff_size
, exts
[i
].end
+ 1,
5703 IO_HEADZEROFILL
| IO_NOZERODIRTY
| IO_NOCACHE
);
5705 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
5711 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
5715 /* Push any existing clusters which should clean up our invalid
5716 ranges as they go through hfs_vnop_blockmap. */
5717 cluster_push(vp
, 0);
5719 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
5722 * Get back to where we were (given we dropped the lock).
5723 * This shouldn't be many because we pushed above.
5725 TAILQ_FOREACH(r
, &fp
->ff_invalidranges
, rl_link
) {
5726 if (r
->rl_end
> exts
[ext_count
- 1].end
)
5739 if (exts
!= exts_buf
)
5740 hfs_free(exts
, sizeof(struct ext
) * max_exts
);