2 * Copyright (c) 1999-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1991, 1993, 1994
30 * The Regents of the University of California. All rights reserved.
31 * (c) UNIX System Laboratories, Inc.
32 * All or some portions of this file are derived from material licensed
33 * to the University of California by American Telephone and Telegraph
34 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
35 * the permission of UNIX System Laboratories, Inc.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * derived from @(#)ufs_vfsops.c 8.8 (Berkeley) 5/20/95
68 * (c) Copyright 1997-2002 Apple Inc. All rights reserved.
70 * hfs_vfsops.c -- VFS layer for loadable HFS file system.
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kauth.h>
78 #include <sys/sysctl.h>
79 #include <sys/malloc.h>
81 #include <sys/quota.h>
83 #include <sys/paths.h>
84 #include <sys/utfconv.h>
85 #include <sys/kdebug.h>
86 #include <sys/fslog.h>
89 /* for parsing boot-args */
90 #include <pexpert/pexpert.h>
93 #include <kern/locks.h>
95 #include "hfs_journal.h"
97 #include <miscfs/specfs/specdev.h>
98 #include "hfs_mount.h"
100 #include <libkern/crypto/md5.h>
101 #include <uuid/uuid.h>
103 #include "hfs_iokit.h"
105 #include "hfs_catalog.h"
106 #include "hfs_cnode.h"
108 #include "hfs_endian.h"
109 #include "hfs_hotfiles.h"
110 #include "hfs_quota.h"
111 #include "hfs_btreeio.h"
112 #include "hfs_kdebug.h"
113 #include "hfs_cprotect.h"
115 #include "FileMgrInternal.h"
116 #include "BTreesInternal.h"
118 #define HFS_MOUNT_DEBUG 1
120 /* Enable/disable debugging code for live volume resizing, defined in hfs_resize.c */
121 extern int hfs_resize_debug
;
123 lck_grp_attr_t
* hfs_group_attr
;
124 lck_attr_t
* hfs_lock_attr
;
125 lck_grp_t
* hfs_mutex_group
;
126 lck_grp_t
* hfs_rwlock_group
;
127 lck_grp_t
* hfs_spinlock_group
;
129 extern struct vnodeopv_desc hfs_vnodeop_opv_desc
;
132 extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc
;
133 static int hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
);
136 /* not static so we can re-use in hfs_readwrite.c for build_path calls */
137 int hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, vfs_context_t context
);
139 static int hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
);
140 static int hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, vfs_context_t context
);
141 static int hfs_flushfiles(struct mount
*, int, struct proc
*);
142 static int hfs_init(struct vfsconf
*vfsp
);
143 static void hfs_locks_destroy(struct hfsmount
*hfsmp
);
144 static int hfs_quotactl(struct mount
*, int, uid_t
, caddr_t
, vfs_context_t context
);
145 static int hfs_start(struct mount
*mp
, int flags
, vfs_context_t context
);
146 static int hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, vfs_context_t context
);
147 static void hfs_syncer_free(struct hfsmount
*hfsmp
);
149 void hfs_initialize_allocator (struct hfsmount
*hfsmp
);
150 int hfs_teardown_allocator (struct hfsmount
*hfsmp
);
152 int hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
);
153 int hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
, int journal_replay_only
, vfs_context_t context
);
154 int hfs_reload(struct mount
*mp
);
155 int hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, vfs_context_t context
);
156 int hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
);
157 int hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
158 user_addr_t newp
, size_t newlen
, vfs_context_t context
);
159 int hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
);
161 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
);
165 #include <libkern/OSAtomic.h>
166 #include <IOKit/IOLib.h>
168 int hfs_active_mounts
;
179 hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
)
184 #warning HFS_LEAK_DEBUG is on
186 hfs_alloc_trace_enable();
190 struct proc
*p
= vfs_context_proc(context
);
191 struct hfsmount
*hfsmp
= NULL
;
192 struct hfs_mount_args args
;
196 if (data
&& (retval
= copyin(data
, (caddr_t
)&args
, sizeof(args
)))) {
197 if (HFS_MOUNT_DEBUG
) {
198 printf("hfs_mount: copyin returned %d for fs\n", retval
);
202 cmdflags
= (u_int32_t
)vfs_flags(mp
) & MNT_CMDFLAGS
;
203 if (cmdflags
& MNT_UPDATE
) {
206 hfsmp
= VFSTOHFS(mp
);
208 /* Reload incore data after an fsck. */
209 if (cmdflags
& MNT_RELOAD
) {
210 if (vfs_isrdonly(mp
)) {
211 int error
= hfs_reload(mp
);
212 if (error
&& HFS_MOUNT_DEBUG
) {
213 printf("hfs_mount: hfs_reload returned %d on %s \n", error
, hfsmp
->vcbVN
);
218 if (HFS_MOUNT_DEBUG
) {
219 printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp
->vcbVN
);
225 /* Change to a read-only file system. */
226 if (((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) &&
230 /* Set flag to indicate that a downgrade to read-only
231 * is in progress and therefore block any further
232 * modifications to the file system.
234 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
235 hfsmp
->hfs_flags
|= HFS_RDONLY_DOWNGRADE
;
236 hfsmp
->hfs_downgrading_thread
= current_thread();
237 hfs_unlock_global (hfsmp
);
238 hfs_syncer_free(hfsmp
);
240 /* use hfs_sync to push out System (btree) files */
241 retval
= hfs_sync(mp
, MNT_WAIT
, context
);
242 if (retval
&& ((cmdflags
& MNT_FORCE
) == 0)) {
243 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
244 hfsmp
->hfs_downgrading_thread
= NULL
;
245 if (HFS_MOUNT_DEBUG
) {
246 printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval
, hfsmp
->vcbVN
);
252 if (cmdflags
& MNT_FORCE
)
255 if ((retval
= hfs_flushfiles(mp
, flags
, p
))) {
256 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
257 hfsmp
->hfs_downgrading_thread
= NULL
;
258 if (HFS_MOUNT_DEBUG
) {
259 printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval
, hfsmp
->vcbVN
);
264 /* mark the volume cleanly unmounted */
265 hfsmp
->vcbAtrb
|= kHFSVolumeUnmountedMask
;
266 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
267 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
270 * Close down the journal.
272 * NOTE: It is critically important to close down the journal
273 * and have it issue all pending I/O prior to calling VNOP_FSYNC below.
274 * In a journaled environment it is expected that the journal be
275 * the only actor permitted to issue I/O for metadata blocks in HFS.
276 * If we were to call VNOP_FSYNC prior to closing down the journal,
277 * we would inadvertantly issue (and wait for) the I/O we just
278 * initiated above as part of the flushvolumeheader call.
280 * To avoid this, we follow the same order of operations as in
281 * unmount and issue the journal_close prior to calling VNOP_FSYNC.
285 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
287 journal_close(hfsmp
->jnl
);
290 // Note: we explicitly don't want to shutdown
291 // access to the jvp because we may need
292 // it later if we go back to being read-write.
294 hfs_unlock_global (hfsmp
);
296 vfs_clearflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
300 * Write out any pending I/O still outstanding against the device node
301 * now that the journal has been closed.
304 vnode_get(hfsmp
->hfs_devvp
);
305 retval
= VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
306 vnode_put(hfsmp
->hfs_devvp
);
310 if (HFS_MOUNT_DEBUG
) {
311 printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
313 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
314 hfsmp
->hfs_downgrading_thread
= NULL
;
315 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
319 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
320 if (hfsmp
->hfs_summary_table
) {
323 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
325 if (hfsmp
->hfs_allocation_vp
) {
326 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
328 hfs_free(hfsmp
->hfs_summary_table
, hfsmp
->hfs_summary_bytes
);
329 hfsmp
->hfs_summary_table
= NULL
;
330 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
331 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
332 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
337 hfsmp
->hfs_downgrading_thread
= NULL
;
340 /* Change to a writable file system. */
341 if (vfs_iswriteupgrade(mp
)) {
343 * On inconsistent disks, do not allow read-write mount
344 * unless it is the boot volume being mounted.
346 if (!(vfs_flags(mp
) & MNT_ROOTFS
) &&
347 (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
)) {
348 if (HFS_MOUNT_DEBUG
) {
349 printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp
->vcbVN
));
355 // If the journal was shut-down previously because we were
356 // asked to be read-only, let's start it back up again now
358 if ( (HFSTOVCB(hfsmp
)->vcbAtrb
& kHFSVolumeJournaledMask
)
359 && hfsmp
->jnl
== NULL
360 && hfsmp
->jvp
!= NULL
) {
363 if (hfsmp
->hfs_flags
& HFS_NEED_JNL_RESET
) {
364 jflags
= JOURNAL_RESET
;
369 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
371 /* We provide the mount point twice here: The first is used as
372 * an opaque argument to be passed back when hfs_sync_metadata
373 * is called. The second is provided to the throttling code to
374 * indicate which mount's device should be used when accounting
375 * for metadata writes.
377 hfsmp
->jnl
= journal_open(hfsmp
->jvp
,
378 hfs_blk_to_bytes(hfsmp
->jnl_start
, HFSTOVCB(hfsmp
)->blockSize
) + (off_t
)HFSTOVCB(hfsmp
)->hfsPlusIOPosOffset
,
381 hfsmp
->hfs_logical_block_size
,
384 hfs_sync_metadata
, hfsmp
->hfs_mp
,
388 * Set up the trim callback function so that we can add
389 * recently freed extents to the free extent cache once
390 * the transaction that freed them is written to the
394 journal_trim_set_callback(hfsmp
->jnl
, hfs_trim_callback
, hfsmp
);
396 hfs_unlock_global (hfsmp
);
398 if (hfsmp
->jnl
== NULL
) {
399 if (HFS_MOUNT_DEBUG
) {
400 printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp
->vcbVN
));
405 hfsmp
->hfs_flags
&= ~HFS_NEED_JNL_RESET
;
406 vfs_setflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
410 /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
411 retval
= hfs_erase_unused_nodes(hfsmp
);
412 if (retval
!= E_NONE
) {
413 if (HFS_MOUNT_DEBUG
) {
414 printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
419 /* If this mount point was downgraded from read-write
420 * to read-only, clear that information as we are now
421 * moving back to read-write.
423 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
424 hfsmp
->hfs_downgrading_thread
= NULL
;
426 /* mark the volume dirty (clear clean unmount bit) */
427 hfsmp
->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
429 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
430 if (retval
!= E_NONE
) {
431 if (HFS_MOUNT_DEBUG
) {
432 printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
437 /* Only clear HFS_READ_ONLY after a successful write */
438 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
441 if (!(hfsmp
->hfs_flags
& (HFS_READ_ONLY
| HFS_STANDARD
))) {
442 /* Setup private/hidden directories for hardlinks. */
443 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
444 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
446 hfs_remove_orphans(hfsmp
);
449 * Since we're upgrading to a read-write mount, allow
450 * hot file clustering if conditions allow.
452 * Note: this normally only would happen if you booted
453 * single-user and upgraded the mount to read-write
455 * Note: at this point we are not allowed to fail the
456 * mount operation because the HotFile init code
457 * in hfs_recording_init() will lookup vnodes with
458 * VNOP_LOOKUP() which hangs vnodes off the mount
459 * (and if we were to fail, VFS is not prepared to
460 * clean that up at this point. Since HotFiles are
461 * optional, this is not a big deal.
463 if (ISSET(hfsmp
->hfs_flags
, HFS_METADATA_ZONE
)
464 && (!ISSET(hfsmp
->hfs_flags
, HFS_SSD
)
465 || ISSET(hfsmp
->hfs_flags
, HFS_CS_HOTFILE_PIN
))) {
466 hfs_recording_init(hfsmp
);
468 /* Force ACLs on HFS+ file systems. */
469 if (vfs_extendedsecurity(HFSTOVFS(hfsmp
)) == 0) {
470 vfs_setextendedsecurity(HFSTOVFS(hfsmp
));
475 /* Update file system parameters. */
476 retval
= hfs_changefs(mp
, &args
);
477 if (retval
&& HFS_MOUNT_DEBUG
) {
478 printf("hfs_mount: hfs_changefs returned %d for %s\n", retval
, hfsmp
->vcbVN
);
481 } else /* not an update request */ {
486 /* Set the mount flag to indicate that we support volfs */
487 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_DOVOLFS
));
489 retval
= hfs_mountfs(devvp
, mp
, data
? &args
: NULL
, 0, context
);
491 const char *name
= vnode_getname(devvp
);
492 printf("hfs_mount: hfs_mountfs returned error=%d for device %s\n", retval
, (name
? name
: "unknown-dev"));
499 /* After hfs_mountfs succeeds, we should have valid hfsmp */
500 hfsmp
= VFSTOHFS(mp
);
502 /* Set up the maximum defrag file size */
503 hfsmp
->hfs_defrag_max
= HFS_INITIAL_DEFRAG_SIZE
;
509 hfsmp
->hfs_uid
= UNKNOWNUID
;
510 hfsmp
->hfs_gid
= UNKNOWNGID
;
511 hfsmp
->hfs_dir_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
512 hfsmp
->hfs_file_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
514 /* Establish the free block reserve. */
515 hfsmp
->reserveBlocks
= ((u_int64_t
)hfsmp
->totalBlocks
* HFS_MINFREE
) / 100;
516 hfsmp
->reserveBlocks
= MIN(hfsmp
->reserveBlocks
, HFS_MAXRESERVE
/ hfsmp
->blockSize
);
520 OSIncrementAtomic(&hfs_active_mounts
);
526 (void)hfs_statfs(mp
, vfs_statfs(mp
), context
);
532 struct hfs_changefs_cargs
{
533 struct hfsmount
*hfsmp
;
540 hfs_changefs_callback(struct vnode
*vp
, void *cargs
)
544 struct cat_desc cndesc
;
545 struct cat_attr cnattr
;
546 struct hfs_changefs_cargs
*args
;
550 args
= (struct hfs_changefs_cargs
*)cargs
;
553 vcb
= HFSTOVCB(args
->hfsmp
);
555 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
556 error
= cat_lookup(args
->hfsmp
, &cp
->c_desc
, 0, 0, &cndesc
, &cnattr
, NULL
, NULL
);
557 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
560 * If we couldn't find this guy skip to the next one
565 return (VNODE_RETURNED
);
568 * Get the real uid/gid and perm mask from disk.
570 if (args
->permswitch
|| args
->permfix
) {
571 cp
->c_uid
= cnattr
.ca_uid
;
572 cp
->c_gid
= cnattr
.ca_gid
;
573 cp
->c_mode
= cnattr
.ca_mode
;
576 * If we're switching name converters then...
577 * Remove the existing entry from the namei cache.
578 * Update name to one based on new encoder.
582 replace_desc(cp
, &cndesc
);
584 if (cndesc
.cd_cnid
== kHFSRootFolderID
) {
585 strlcpy((char *)vcb
->vcbVN
, (const char *)cp
->c_desc
.cd_nameptr
, NAME_MAX
+1);
586 cp
->c_desc
.cd_encoding
= args
->hfsmp
->hfs_encoding
;
589 cat_releasedesc(&cndesc
);
591 return (VNODE_RETURNED
);
594 /* Change fs mount parameters */
596 hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
)
599 int namefix
, permfix
, permswitch
;
600 struct hfsmount
*hfsmp
;
602 struct hfs_changefs_cargs cargs
;
603 u_int32_t mount_flags
;
606 u_int32_t old_encoding
= 0;
607 hfs_to_unicode_func_t get_unicode_func
;
608 unicode_to_hfs_func_t get_hfsname_func
= NULL
;
611 hfsmp
= VFSTOHFS(mp
);
612 vcb
= HFSTOVCB(hfsmp
);
613 mount_flags
= (unsigned int)vfs_flags(mp
);
615 hfsmp
->hfs_flags
|= HFS_IN_CHANGEFS
;
617 permswitch
= (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) &&
618 ((mount_flags
& MNT_UNKNOWNPERMISSIONS
) == 0)) ||
619 (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) == 0) &&
620 (mount_flags
& MNT_UNKNOWNPERMISSIONS
)));
622 /* The root filesystem must operate with actual permissions: */
623 if (permswitch
&& (mount_flags
& MNT_ROOTFS
) && (mount_flags
& MNT_UNKNOWNPERMISSIONS
)) {
624 vfs_clearflags(mp
, (u_int64_t
)((unsigned int)MNT_UNKNOWNPERMISSIONS
)); /* Just say "No". */
628 if (mount_flags
& MNT_UNKNOWNPERMISSIONS
)
629 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
631 hfsmp
->hfs_flags
&= ~HFS_UNKNOWN_PERMS
;
633 namefix
= permfix
= 0;
636 * Tracking of hot files requires up-to-date access times. So if
637 * access time updates are disabled, we must also disable hot files.
639 if (mount_flags
& MNT_NOATIME
) {
640 (void) hfs_recording_suspend(hfsmp
);
643 /* Change the timezone (Note: this affects all hfs volumes and hfs+ volume create dates) */
644 if (args
->hfs_timezone
.tz_minuteswest
!= VNOVAL
) {
645 gTimeZone
= args
->hfs_timezone
;
648 /* Change the default uid, gid and/or mask */
649 if ((args
->hfs_uid
!= (uid_t
)VNOVAL
) && (hfsmp
->hfs_uid
!= args
->hfs_uid
)) {
650 hfsmp
->hfs_uid
= args
->hfs_uid
;
651 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
654 if ((args
->hfs_gid
!= (gid_t
)VNOVAL
) && (hfsmp
->hfs_gid
!= args
->hfs_gid
)) {
655 hfsmp
->hfs_gid
= args
->hfs_gid
;
656 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
659 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
660 if (hfsmp
->hfs_dir_mask
!= (args
->hfs_mask
& ALLPERMS
)) {
661 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
662 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
663 if ((args
->flags
!= VNOVAL
) && (args
->flags
& HFSFSMNT_NOXONFILES
))
664 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
665 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
671 /* Change the hfs encoding value (hfs only) */
672 if ((vcb
->vcbSigWord
== kHFSSigWord
) &&
673 (args
->hfs_encoding
!= (u_int32_t
)VNOVAL
) &&
674 (hfsmp
->hfs_encoding
!= args
->hfs_encoding
)) {
676 retval
= hfs_getconverter(args
->hfs_encoding
, &get_unicode_func
, &get_hfsname_func
);
681 * Connect the new hfs_get_unicode converter but leave
682 * the old hfs_get_hfsname converter in place so that
683 * we can lookup existing vnodes to get their correctly
686 * When we're all finished, we can then connect the new
687 * hfs_get_hfsname converter and release our interest
688 * in the old converters.
690 hfsmp
->hfs_get_unicode
= get_unicode_func
;
691 old_encoding
= hfsmp
->hfs_encoding
;
692 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
697 if (!(namefix
|| permfix
|| permswitch
))
700 /* XXX 3762912 hack to support HFS filesystem 'owner' */
703 hfsmp
->hfs_uid
== UNKNOWNUID
? KAUTH_UID_NONE
: hfsmp
->hfs_uid
,
704 hfsmp
->hfs_gid
== UNKNOWNGID
? KAUTH_GID_NONE
: hfsmp
->hfs_gid
);
708 * For each active vnode fix things that changed
710 * Note that we can visit a vnode more than once
711 * and we can race with fsync.
713 * hfs_changefs_callback will be called for each vnode
714 * hung off of this mount point
716 * The vnode will be properly referenced and unreferenced
717 * around the callback
720 cargs
.namefix
= namefix
;
721 cargs
.permfix
= permfix
;
722 cargs
.permswitch
= permswitch
;
724 vnode_iterate(mp
, 0, hfs_changefs_callback
, (void *)&cargs
);
728 * If we're switching name converters we can now
729 * connect the new hfs_get_hfsname converter and
730 * release our interest in the old converters.
733 /* HFS standard only */
734 hfsmp
->hfs_get_hfsname
= get_hfsname_func
;
735 vcb
->volumeNameEncodingHint
= args
->hfs_encoding
;
736 (void) hfs_relconverter(old_encoding
);
741 hfsmp
->hfs_flags
&= ~HFS_IN_CHANGEFS
;
746 struct hfs_reload_cargs
{
747 struct hfsmount
*hfsmp
;
752 hfs_reload_callback(struct vnode
*vp
, void *cargs
)
755 struct hfs_reload_cargs
*args
;
758 args
= (struct hfs_reload_cargs
*)cargs
;
760 * flush all the buffers associated with this node
762 (void) buf_invalidateblks(vp
, 0, 0, 0);
766 * Remove any directory hints
769 hfs_reldirhints(cp
, 0);
772 * Re-read cnode data for all active vnodes (non-metadata files).
774 if (!vnode_issystem(vp
) && !VNODE_IS_RSRC(vp
) && (cp
->c_fileid
>= kHFSFirstUserCatalogNodeID
)) {
775 struct cat_fork
*datafork
;
776 struct cat_desc desc
;
778 datafork
= cp
->c_datafork
? &cp
->c_datafork
->ff_data
: NULL
;
780 /* lookup by fileID since name could have changed */
781 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
782 args
->error
= cat_idlookup(args
->hfsmp
, cp
->c_fileid
, 0, 0, &desc
, &cp
->c_attr
, datafork
);
783 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
785 return (VNODE_RETURNED_DONE
);
788 /* update cnode's catalog descriptor */
789 (void) replace_desc(cp
, &desc
);
791 return (VNODE_RETURNED
);
795 * Reload all incore data for a filesystem (used after running fsck on
796 * the root filesystem and finding things to fix). The filesystem must
797 * be mounted read-only.
799 * Things to do to update the mount:
800 * invalidate all cached meta-data.
801 * invalidate all inactive vnodes.
802 * invalidate all cached file data.
803 * re-read volume header from disk.
804 * re-load meta-file info (extents, file size).
805 * re-load B-tree header data.
806 * re-read cnode data for all active vnodes.
809 hfs_reload(struct mount
*mountp
)
811 register struct vnode
*devvp
;
814 struct hfsmount
*hfsmp
;
815 struct HFSPlusVolumeHeader
*vhp
;
817 struct filefork
*forkp
;
818 struct cat_desc cndesc
;
819 struct hfs_reload_cargs args
;
820 daddr64_t priIDSector
;
822 hfsmp
= VFSTOHFS(mountp
);
823 vcb
= HFSTOVCB(hfsmp
);
825 if (vcb
->vcbSigWord
== kHFSSigWord
)
826 return (EINVAL
); /* rooting from HFS is not supported! */
829 * Invalidate all cached meta-data.
831 devvp
= hfsmp
->hfs_devvp
;
832 if (buf_invalidateblks(devvp
, 0, 0, 0))
833 panic("hfs_reload: dirty1");
838 * hfs_reload_callback will be called for each vnode
839 * hung off of this mount point that can't be recycled...
840 * vnode_iterate will recycle those that it can (the VNODE_RELOAD option)
841 * the vnode will be in an 'unbusy' state (VNODE_WAIT) and
842 * properly referenced and unreferenced around the callback
844 vnode_iterate(mountp
, VNODE_RELOAD
| VNODE_WAIT
, hfs_reload_callback
, (void *)&args
);
850 * Re-read VolumeHeader from disk.
852 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
853 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
855 error
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
856 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
857 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
864 vhp
= (HFSPlusVolumeHeader
*) (buf_dataptr(bp
) + HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
866 /* Do a quick sanity check */
867 if ((SWAP_BE16(vhp
->signature
) != kHFSPlusSigWord
&&
868 SWAP_BE16(vhp
->signature
) != kHFSXSigWord
) ||
869 (SWAP_BE16(vhp
->version
) != kHFSPlusVersion
&&
870 SWAP_BE16(vhp
->version
) != kHFSXVersion
) ||
871 SWAP_BE32(vhp
->blockSize
) != vcb
->blockSize
) {
876 vcb
->vcbLsMod
= to_bsd_time(SWAP_BE32(vhp
->modifyDate
));
877 vcb
->vcbAtrb
= SWAP_BE32 (vhp
->attributes
);
878 vcb
->vcbJinfoBlock
= SWAP_BE32(vhp
->journalInfoBlock
);
879 vcb
->vcbClpSiz
= SWAP_BE32 (vhp
->rsrcClumpSize
);
880 vcb
->vcbNxtCNID
= SWAP_BE32 (vhp
->nextCatalogID
);
881 vcb
->vcbVolBkUp
= to_bsd_time(SWAP_BE32(vhp
->backupDate
));
882 vcb
->vcbWrCnt
= SWAP_BE32 (vhp
->writeCount
);
883 vcb
->vcbFilCnt
= SWAP_BE32 (vhp
->fileCount
);
884 vcb
->vcbDirCnt
= SWAP_BE32 (vhp
->folderCount
);
885 HFS_UPDATE_NEXT_ALLOCATION(vcb
, SWAP_BE32 (vhp
->nextAllocation
));
886 vcb
->totalBlocks
= SWAP_BE32 (vhp
->totalBlocks
);
887 vcb
->freeBlocks
= SWAP_BE32 (vhp
->freeBlocks
);
888 vcb
->encodingsBitmap
= SWAP_BE64 (vhp
->encodingsBitmap
);
889 bcopy(vhp
->finderInfo
, vcb
->vcbFndrInfo
, sizeof(vhp
->finderInfo
));
890 vcb
->localCreateDate
= SWAP_BE32 (vhp
->createDate
); /* hfs+ create date is in local time */
893 * Re-load meta-file vnode data (extent info, file size, etc).
895 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
896 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
897 forkp
->ff_extents
[i
].startBlock
=
898 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].startBlock
);
899 forkp
->ff_extents
[i
].blockCount
=
900 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].blockCount
);
902 forkp
->ff_size
= SWAP_BE64 (vhp
->extentsFile
.logicalSize
);
903 forkp
->ff_blocks
= SWAP_BE32 (vhp
->extentsFile
.totalBlocks
);
904 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->extentsFile
.clumpSize
);
907 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
908 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
909 forkp
->ff_extents
[i
].startBlock
=
910 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].startBlock
);
911 forkp
->ff_extents
[i
].blockCount
=
912 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].blockCount
);
914 forkp
->ff_size
= SWAP_BE64 (vhp
->catalogFile
.logicalSize
);
915 forkp
->ff_blocks
= SWAP_BE32 (vhp
->catalogFile
.totalBlocks
);
916 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->catalogFile
.clumpSize
);
918 if (hfsmp
->hfs_attribute_vp
) {
919 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
920 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
921 forkp
->ff_extents
[i
].startBlock
=
922 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].startBlock
);
923 forkp
->ff_extents
[i
].blockCount
=
924 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].blockCount
);
926 forkp
->ff_size
= SWAP_BE64 (vhp
->attributesFile
.logicalSize
);
927 forkp
->ff_blocks
= SWAP_BE32 (vhp
->attributesFile
.totalBlocks
);
928 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->attributesFile
.clumpSize
);
931 forkp
= VTOF((struct vnode
*)vcb
->allocationsRefNum
);
932 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
933 forkp
->ff_extents
[i
].startBlock
=
934 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].startBlock
);
935 forkp
->ff_extents
[i
].blockCount
=
936 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].blockCount
);
938 forkp
->ff_size
= SWAP_BE64 (vhp
->allocationFile
.logicalSize
);
939 forkp
->ff_blocks
= SWAP_BE32 (vhp
->allocationFile
.totalBlocks
);
940 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->allocationFile
.clumpSize
);
946 * Re-load B-tree header data
948 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
949 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
952 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
953 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
956 if (hfsmp
->hfs_attribute_vp
) {
957 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
958 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
962 /* Reload the volume name */
963 if ((error
= cat_idlookup(hfsmp
, kHFSRootFolderID
, 0, 0, &cndesc
, NULL
, NULL
)))
965 vcb
->volumeNameEncodingHint
= cndesc
.cd_encoding
;
966 bcopy(cndesc
.cd_nameptr
, vcb
->vcbVN
, min(255, cndesc
.cd_namelen
));
967 cat_releasedesc(&cndesc
);
969 /* Re-establish private/hidden directories. */
970 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
971 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
973 /* In case any volume information changed to trigger a notification */
974 hfs_generate_volume_notifications(hfsmp
);
980 static uint64_t tv_to_usecs(struct timeval
*tv
)
982 return tv
->tv_sec
* 1000000ULL + tv
->tv_usec
;
985 // Returns TRUE if b - a >= usecs
986 static bool hfs_has_elapsed (const struct timeval
*a
,
987 const struct timeval
*b
,
991 timersub(b
, a
, &diff
);
992 return diff
.tv_sec
* 1000000ULL + diff
.tv_usec
>= usecs
;
995 void hfs_syncer(void *arg
, __unused wait_result_t wr
)
997 struct hfsmount
*hfsmp
= arg
;
1000 KDBG(HFSDBG_SYNCER
| DBG_FUNC_START
, obfuscate_addr(hfsmp
));
1002 hfs_syncer_lock(hfsmp
);
1004 while (ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)
1005 && timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1007 hfs_syncer_wait(hfsmp
, &HFS_META_DELAY_TS
);
1009 if (!ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)
1010 || !timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1014 /* Check to see whether we should flush now: either the oldest
1015 is > HFS_MAX_META_DELAY or HFS_META_DELAY has elapsed since
1016 the request and there are no pending writes. */
1019 uint64_t idle_time
= vfs_idle_time(hfsmp
->hfs_mp
);
1021 if (!hfs_has_elapsed(&hfsmp
->hfs_sync_req_oldest
, &now
,
1023 && idle_time
< HFS_META_DELAY
) {
1027 timerclear(&hfsmp
->hfs_sync_req_oldest
);
1029 hfs_syncer_unlock(hfsmp
);
1031 KDBG(HFSDBG_SYNCER_TIMED
| DBG_FUNC_START
, obfuscate_addr(hfsmp
));
1034 * We intentionally do a synchronous flush (of the journal or entire volume) here.
1035 * For journaled volumes, this means we wait until the metadata blocks are written
1036 * to both the journal and their final locations (in the B-trees, etc.).
1038 * This tends to avoid interleaving the metadata writes with other writes (for
1039 * example, user data, or to the journal when a later transaction notices that
1040 * an earlier transaction has finished its async writes, and then updates the
1041 * journal start in the journal header). Avoiding interleaving of writes is
1042 * very good for performance on simple flash devices like SD cards, thumb drives;
1043 * and on devices like floppies. Since removable devices tend to be this kind of
1044 * simple device, doing a synchronous flush actually improves performance in
1047 * NOTE: For non-journaled volumes, the call to hfs_sync will also cause dirty
1048 * user data to be written.
1051 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL_META
);
1053 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, vfs_context_current());
1056 KDBG(HFSDBG_SYNCER_TIMED
| DBG_FUNC_END
);
1058 hfs_syncer_lock(hfsmp
);
1061 hfsmp
->hfs_syncer_thread
= NULL
;
1062 hfs_syncer_unlock(hfsmp
);
1063 hfs_syncer_wakeup(hfsmp
);
1065 /* BE CAREFUL WHAT YOU ADD HERE: at this point hfs_unmount is free
1066 to continue and therefore hfsmp might be invalid. */
1068 KDBG(HFSDBG_SYNCER
| DBG_FUNC_END
);
1072 * Call into the allocator code and perform a full scan of the bitmap file.
1074 * This allows us to TRIM unallocated ranges if needed, and also to build up
1075 * an in-memory summary table of the state of the allocated blocks.
1077 void hfs_scan_blocks (struct hfsmount
*hfsmp
) {
1079 * Take the allocation file lock. Journal transactions will block until
1083 int flags
= hfs_systemfile_lock(hfsmp
, SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
1086 * We serialize here with the HFS mount lock as we're mounting.
1088 * The mount can only proceed once this thread has acquired the bitmap
1089 * lock, since we absolutely do not want someone else racing in and
1090 * getting the bitmap lock, doing a read/write of the bitmap file,
1091 * then us getting the bitmap lock.
1093 * To prevent this, the mount thread takes the HFS mount mutex, starts us
1094 * up, then immediately msleeps on the scan_var variable in the mount
1095 * point as a condition variable. This serialization is safe since
1096 * if we race in and try to proceed while they're still holding the lock,
1097 * we'll block trying to acquire the global lock. Since the mount thread
1098 * acquires the HFS mutex before starting this function in a new thread,
1099 * any lock acquisition on our part must be linearizably AFTER the mount thread's.
1101 * Note that the HFS mount mutex is always taken last, and always for only
1102 * a short time. In this case, we just take it long enough to mark the
1103 * scan-in-flight bit.
1105 (void) hfs_lock_mount (hfsmp
);
1106 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_INFLIGHT
;
1107 wakeup((caddr_t
) &hfsmp
->scan_var
);
1108 hfs_unlock_mount (hfsmp
);
1110 /* Initialize the summary table */
1111 if (hfs_init_summary (hfsmp
)) {
1112 printf("hfs: could not initialize summary table for %s\n", hfsmp
->vcbVN
);
1116 * ScanUnmapBlocks assumes that the bitmap lock is held when you
1117 * call the function. We don't care if there were any errors issuing unmaps.
1119 * It will also attempt to build up the summary table for subsequent
1120 * allocator use, as configured.
1122 (void) ScanUnmapBlocks(hfsmp
);
1124 (void) hfs_lock_mount (hfsmp
);
1125 hfsmp
->scan_var
&= ~HFS_ALLOCATOR_SCAN_INFLIGHT
;
1126 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_COMPLETED
;
1127 wakeup((caddr_t
) &hfsmp
->scan_var
);
1128 hfs_unlock_mount (hfsmp
);
1130 buf_invalidateblks(hfsmp
->hfs_allocation_vp
, 0, 0, 0);
1132 hfs_systemfile_unlock(hfsmp
, flags
);
1137 * Common code for mount and mountroot
1140 hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
,
1141 int journal_replay_only
, vfs_context_t context
)
1143 struct proc
*p
= vfs_context_proc(context
);
1144 int retval
= E_NONE
;
1145 struct hfsmount
*hfsmp
= NULL
;
1148 HFSMasterDirectoryBlock
*mdbp
= NULL
;
1156 daddr64_t log_blkcnt
;
1157 u_int32_t log_blksize
;
1158 u_int32_t phys_blksize
;
1159 u_int32_t minblksize
;
1160 u_int32_t iswritable
;
1161 daddr64_t mdb_offset
;
1163 int isroot
= !journal_replay_only
&& args
== NULL
;
1164 u_int32_t device_features
= 0;
1167 ronly
= mp
&& vfs_isrdonly(mp
);
1168 dev
= vnode_specrdev(devvp
);
1169 cred
= p
? vfs_context_ucred(context
) : NOCRED
;
1175 minblksize
= kHFSBlockSize
;
1177 /* Advisory locking should be handled at the VFS layer */
1179 vfs_setlocklocal(mp
);
1181 /* Get the logical block size (treated as physical block size everywhere) */
1182 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKSIZE
, (caddr_t
)&log_blksize
, 0, context
)) {
1183 if (HFS_MOUNT_DEBUG
) {
1184 printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n");
1189 if (log_blksize
== 0 || log_blksize
> 1024*1024*1024) {
1190 printf("hfs: logical block size 0x%x looks bad. Not mounting.\n", log_blksize
);
1195 /* Get the physical block size. */
1196 retval
= VNOP_IOCTL(devvp
, DKIOCGETPHYSICALBLOCKSIZE
, (caddr_t
)&phys_blksize
, 0, context
);
1198 if ((retval
!= ENOTSUP
) && (retval
!= ENOTTY
)) {
1199 if (HFS_MOUNT_DEBUG
) {
1200 printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n");
1205 /* If device does not support this ioctl, assume that physical
1206 * block size is same as logical block size
1208 phys_blksize
= log_blksize
;
1210 if (phys_blksize
== 0 || phys_blksize
> MAXBSIZE
) {
1211 printf("hfs: physical block size 0x%x looks bad. Not mounting.\n", phys_blksize
);
1216 /* Switch to 512 byte sectors (temporarily) */
1217 if (log_blksize
> 512) {
1218 u_int32_t size512
= 512;
1220 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&size512
, FWRITE
, context
)) {
1221 if (HFS_MOUNT_DEBUG
) {
1222 printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n");
1228 /* Get the number of 512 byte physical blocks. */
1229 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1230 /* resetting block size may fail if getting block count did */
1231 (void)VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
);
1232 if (HFS_MOUNT_DEBUG
) {
1233 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n");
1238 /* Compute an accurate disk size (i.e. within 512 bytes) */
1239 disksize
= (u_int64_t
)log_blkcnt
* (u_int64_t
)512;
1242 * On Tiger it is not necessary to switch the device
1243 * block size to be 4k if there are more than 31-bits
1244 * worth of blocks but to insure compatibility with
1245 * pre-Tiger systems we have to do it.
1247 * If the device size is not a multiple of 4K (8 * 512), then
1248 * switching the logical block size isn't going to help because
1249 * we will be unable to write the alternate volume header.
1250 * In this case, just leave the logical block size unchanged.
1252 if (log_blkcnt
> 0x000000007fffffff && (log_blkcnt
& 7) == 0) {
1253 minblksize
= log_blksize
= 4096;
1254 if (phys_blksize
< log_blksize
)
1255 phys_blksize
= log_blksize
;
1259 * The cluster layer is not currently prepared to deal with a logical
1260 * block size larger than the system's page size. (It can handle
1261 * blocks per page, but not multiple pages per block.) So limit the
1262 * logical block size to the page size.
1264 if (log_blksize
> PAGE_SIZE
) {
1265 log_blksize
= PAGE_SIZE
;
1268 /* Now switch to our preferred physical block size. */
1269 if (log_blksize
> 512) {
1270 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1271 if (HFS_MOUNT_DEBUG
) {
1272 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n");
1277 /* Get the count of physical blocks. */
1278 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1279 if (HFS_MOUNT_DEBUG
) {
1280 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n");
1288 * minblksize is the minimum physical block size
1289 * log_blksize has our preferred physical block size
1290 * log_blkcnt has the total number of physical blocks
1293 mdb_offset
= (daddr64_t
)HFS_PRI_SECTOR(log_blksize
);
1294 if ((retval
= (int)buf_meta_bread(devvp
,
1295 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, (phys_blksize
/log_blksize
)),
1296 phys_blksize
, cred
, &bp
))) {
1297 if (HFS_MOUNT_DEBUG
) {
1298 printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval
);
1302 mdbp
= hfs_malloc(kMDBSize
);
1303 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, kMDBSize
);
1307 hfsmp
= hfs_mallocz(sizeof(struct hfsmount
));
1309 hfs_chashinit_finish(hfsmp
);
1311 /* Init the ID lookup hashtable */
1312 hfs_idhash_init (hfsmp
);
1315 * See if the disk supports unmap (trim).
1317 * NOTE: vfs_init_io_attributes has not been called yet, so we can't use the io_flags field
1318 * returned by vfs_ioattr. We need to call VNOP_IOCTL ourselves.
1320 if (VNOP_IOCTL(devvp
, DKIOCGETFEATURES
, (caddr_t
)&device_features
, 0, context
) == 0) {
1321 if (device_features
& DK_FEATURE_UNMAP
) {
1322 hfsmp
->hfs_flags
|= HFS_UNMAP
;
1325 if(device_features
& DK_FEATURE_BARRIER
)
1326 hfsmp
->hfs_flags
|= HFS_FEATURE_BARRIER
;
1330 * See if the disk is a solid state device, too. We need this to decide what to do about
1333 if (VNOP_IOCTL(devvp
, DKIOCISSOLIDSTATE
, (caddr_t
)&isssd
, 0, context
) == 0) {
1335 hfsmp
->hfs_flags
|= HFS_SSD
;
1339 /* See if the underlying device is Core Storage or not */
1340 dk_corestorage_info_t cs_info
;
1341 memset(&cs_info
, 0, sizeof(dk_corestorage_info_t
));
1342 if (VNOP_IOCTL(devvp
, DKIOCCORESTORAGE
, (caddr_t
)&cs_info
, 0, context
) == 0) {
1343 hfsmp
->hfs_flags
|= HFS_CS
;
1344 if (isroot
&& (cs_info
.flags
& DK_CORESTORAGE_PIN_YOUR_METADATA
)) {
1345 hfsmp
->hfs_flags
|= HFS_CS_METADATA_PIN
;
1347 if (isroot
&& (cs_info
.flags
& DK_CORESTORAGE_ENABLE_HOTFILES
)) {
1348 hfsmp
->hfs_flags
|= HFS_CS_HOTFILE_PIN
;
1349 hfsmp
->hfs_cs_hotfile_size
= cs_info
.hotfile_size
;
1351 if ((cs_info
.flags
& DK_CORESTORAGE_PIN_YOUR_SWAPFILE
)) {
1352 hfsmp
->hfs_flags
|= HFS_CS_SWAPFILE_PIN
;
1354 struct vfsioattr ioattr
;
1355 vfs_ioattr(mp
, &ioattr
);
1356 ioattr
.io_flags
|= VFS_IOATTR_FLAGS_SWAPPIN_SUPPORTED
;
1357 ioattr
.io_max_swappin_available
= cs_info
.swapfile_pinning
;
1358 vfs_setioattr(mp
, &ioattr
);
1363 * Init the volume information structure
1366 lck_mtx_init(&hfsmp
->hfs_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1367 lck_mtx_init(&hfsmp
->hfc_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1368 lck_rw_init(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
, hfs_lock_attr
);
1369 lck_spin_init(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
, hfs_lock_attr
);
1372 vfs_setfsprivate(mp
, hfsmp
);
1373 hfsmp
->hfs_mp
= mp
; /* Make VFSTOHFS work */
1374 hfsmp
->hfs_raw_dev
= vnode_specrdev(devvp
);
1375 hfsmp
->hfs_devvp
= devvp
;
1376 vnode_ref(devvp
); /* Hold a ref on the device, dropped when hfsmp is freed. */
1377 hfsmp
->hfs_logical_block_size
= log_blksize
;
1378 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1379 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1380 hfsmp
->hfs_physical_block_size
= phys_blksize
;
1381 hfsmp
->hfs_log_per_phys
= (phys_blksize
/ log_blksize
);
1382 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1384 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1385 if (mp
&& ((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
)
1386 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
1389 for (i
= 0; i
< MAXQUOTAS
; i
++)
1390 dqfileinit(&hfsmp
->hfs_qfiles
[i
]);
1394 hfsmp
->hfs_uid
= (args
->hfs_uid
== (uid_t
)VNOVAL
) ? UNKNOWNUID
: args
->hfs_uid
;
1395 if (hfsmp
->hfs_uid
== 0xfffffffd) hfsmp
->hfs_uid
= UNKNOWNUID
;
1396 hfsmp
->hfs_gid
= (args
->hfs_gid
== (gid_t
)VNOVAL
) ? UNKNOWNGID
: args
->hfs_gid
;
1397 if (hfsmp
->hfs_gid
== 0xfffffffd) hfsmp
->hfs_gid
= UNKNOWNGID
;
1398 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1399 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
1400 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
1401 if (args
->flags
& HFSFSMNT_NOXONFILES
) {
1402 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
1404 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
1407 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1408 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1410 if ((args
->flags
!= (int)VNOVAL
) && (args
->flags
& HFSFSMNT_WRAPPER
))
1413 /* Even w/o explicit mount arguments, MNT_UNKNOWNPERMISSIONS requires setting up uid, gid, and mask: */
1414 if (mp
&& ((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
) {
1415 hfsmp
->hfs_uid
= UNKNOWNUID
;
1416 hfsmp
->hfs_gid
= UNKNOWNGID
;
1417 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1418 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1419 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1423 /* Find out if disk media is writable. */
1424 if (VNOP_IOCTL(devvp
, DKIOCISWRITABLE
, (caddr_t
)&iswritable
, 0, context
) == 0) {
1426 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1428 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1432 rl_init(&hfsmp
->hfs_reserved_ranges
[0]);
1433 rl_init(&hfsmp
->hfs_reserved_ranges
[1]);
1435 // record the current time at which we're mounting this volume
1438 hfsmp
->hfs_mount_time
= tv
.tv_sec
;
1440 /* Mount a standard HFS disk */
1441 if ((SWAP_BE16(mdbp
->drSigWord
) == kHFSSigWord
) &&
1442 (mntwrapper
|| (SWAP_BE16(mdbp
->drEmbedSigWord
) != kHFSPlusSigWord
))) {
1444 /* If only journal replay is requested, exit immediately */
1445 if (journal_replay_only
) {
1450 /* On 10.6 and beyond, non read-only mounts for HFS standard vols get rejected */
1451 if (vfs_isrdwr(mp
)) {
1456 printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n");
1458 /* Treat it as if it's read-only and not writeable */
1459 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1460 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1462 if ((vfs_flags(mp
) & MNT_ROOTFS
)) {
1463 retval
= EINVAL
; /* Cannot root from HFS standard disks */
1466 /* HFS disks can only use 512 byte physical blocks */
1467 if (log_blksize
> kHFSBlockSize
) {
1468 log_blksize
= kHFSBlockSize
;
1469 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1473 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1477 hfsmp
->hfs_logical_block_size
= log_blksize
;
1478 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1479 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1480 hfsmp
->hfs_physical_block_size
= log_blksize
;
1481 hfsmp
->hfs_log_per_phys
= 1;
1484 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
1485 HFSTOVCB(hfsmp
)->volumeNameEncodingHint
= args
->hfs_encoding
;
1487 /* establish the timezone */
1488 gTimeZone
= args
->hfs_timezone
;
1491 retval
= hfs_getconverter(hfsmp
->hfs_encoding
, &hfsmp
->hfs_get_unicode
,
1492 &hfsmp
->hfs_get_hfsname
);
1496 retval
= hfs_MountHFSVolume(hfsmp
, mdbp
, p
);
1498 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
1500 /* On platforms where HFS Standard is not supported, deny the mount altogether */
1506 else { /* Mount an HFS Plus disk */
1507 HFSPlusVolumeHeader
*vhp
;
1508 off_t embeddedOffset
;
1509 int jnl_disable
= 0;
1511 /* Get the embedded Volume Header */
1512 if (SWAP_BE16(mdbp
->drEmbedSigWord
) == kHFSPlusSigWord
) {
1513 embeddedOffset
= SWAP_BE16(mdbp
->drAlBlSt
) * kHFSBlockSize
;
1514 embeddedOffset
+= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.startBlock
) *
1515 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1518 * Cooperative Fusion is not allowed on embedded HFS+
1519 * filesystems (HFS+ inside HFS standard wrapper)
1521 hfsmp
->hfs_flags
&= ~HFS_CS_METADATA_PIN
;
1524 * If the embedded volume doesn't start on a block
1525 * boundary, then switch the device to a 512-byte
1526 * block size so everything will line up on a block
1529 if ((embeddedOffset
% log_blksize
) != 0) {
1530 printf("hfs_mountfs: embedded volume offset not"
1531 " a multiple of physical block size (%d);"
1532 " switching to 512\n", log_blksize
);
1534 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
,
1535 (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1537 if (HFS_MOUNT_DEBUG
) {
1538 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n");
1543 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
,
1544 (caddr_t
)&log_blkcnt
, 0, context
)) {
1545 if (HFS_MOUNT_DEBUG
) {
1546 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n");
1551 /* Note: relative block count adjustment */
1552 hfsmp
->hfs_logical_block_count
*=
1553 hfsmp
->hfs_logical_block_size
/ log_blksize
;
1555 /* Update logical /physical block size */
1556 hfsmp
->hfs_logical_block_size
= log_blksize
;
1557 hfsmp
->hfs_physical_block_size
= log_blksize
;
1559 phys_blksize
= log_blksize
;
1560 hfsmp
->hfs_log_per_phys
= 1;
1563 disksize
= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.blockCount
) *
1564 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1566 hfsmp
->hfs_logical_block_count
= disksize
/ log_blksize
;
1568 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1570 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1573 buf_markinvalid(bp
);
1577 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1578 phys_blksize
, cred
, &bp
);
1580 if (HFS_MOUNT_DEBUG
) {
1581 printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval
);
1585 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, 512);
1588 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1591 else { /* pure HFS+ */
1593 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1596 retval
= hfs_ValidateHFSPlusVolumeHeader(hfsmp
, vhp
);
1601 * If allocation block size is less than the physical block size,
1602 * invalidate the buffer read in using native physical block size
1603 * to ensure data consistency.
1605 * HFS Plus reserves one allocation block for the Volume Header.
1606 * If the physical size is larger, then when we read the volume header,
1607 * we will also end up reading in the next allocation block(s).
1608 * If those other allocation block(s) is/are modified, and then the volume
1609 * header is modified, the write of the volume header's buffer will write
1610 * out the old contents of the other allocation blocks.
1612 * We assume that the physical block size is same as logical block size.
1613 * The physical block size value is used to round down the offsets for
1614 * reading and writing the primary and alternate volume headers.
1616 * The same logic is also in hfs_MountHFSPlusVolume to ensure that
1617 * hfs_mountfs, hfs_MountHFSPlusVolume and later are doing the I/Os
1618 * using same block size.
1620 if (SWAP_BE32(vhp
->blockSize
) < hfsmp
->hfs_physical_block_size
) {
1621 phys_blksize
= hfsmp
->hfs_logical_block_size
;
1622 hfsmp
->hfs_physical_block_size
= hfsmp
->hfs_logical_block_size
;
1623 hfsmp
->hfs_log_per_phys
= 1;
1624 // There should be one bp associated with devvp in buffer cache.
1625 retval
= buf_invalidateblks(devvp
, 0, 0, 0);
1630 if (isroot
&& ((SWAP_BE32(vhp
->attributes
) & kHFSVolumeUnmountedMask
) != 0)) {
1631 vfs_set_root_unmounted_cleanly();
1635 * On inconsistent disks, do not allow read-write mount
1636 * unless it is the boot volume being mounted. We also
1637 * always want to replay the journal if the journal_replay_only
1638 * flag is set because that will (most likely) get the
1639 * disk into a consistent state before fsck_hfs starts
1642 if (!journal_replay_only
1643 && !(vfs_flags(mp
) & MNT_ROOTFS
)
1644 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeInconsistentMask
)
1645 && !(hfsmp
->hfs_flags
& HFS_READ_ONLY
)) {
1647 if (HFS_MOUNT_DEBUG
) {
1648 printf("hfs_mountfs: failed to mount non-root inconsistent disk\n");
1659 if (args
!= NULL
&& (args
->flags
& HFSFSMNT_EXTENDED_ARGS
) &&
1660 args
->journal_disable
) {
1665 // We only initialize the journal here if the last person
1666 // to mount this volume was journaling aware. Otherwise
1667 // we delay journal initialization until later at the end
1668 // of hfs_MountHFSPlusVolume() because the last person who
1669 // mounted it could have messed things up behind our back
1670 // (so we need to go find the .journal file, make sure it's
1671 // the right size, re-sync up if it was moved, etc).
1673 if ( (SWAP_BE32(vhp
->lastMountedVersion
) == kHFSJMountVersion
)
1674 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeJournaledMask
)
1677 // if we're able to init the journal, mark the mount
1678 // point as journaled.
1680 if ((retval
= hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
)) == 0) {
1682 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1684 if (retval
== EROFS
) {
1685 // EROFS is a special error code that means the volume has an external
1686 // journal which we couldn't find. in that case we do not want to
1687 // rewrite the volume header - we'll just refuse to mount the volume.
1688 if (HFS_MOUNT_DEBUG
) {
1689 printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n");
1695 // if the journal failed to open, then set the lastMountedVersion
1696 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1697 // of just bailing out because the volume is journaled.
1699 if (HFS_MOUNT_DEBUG
) {
1700 printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n");
1703 HFSPlusVolumeHeader
*jvhp
;
1705 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1707 if (mdb_offset
== 0) {
1708 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1712 retval
= (int)buf_meta_bread(devvp
,
1713 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1714 phys_blksize
, cred
, &bp
);
1716 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1718 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1719 printf ("hfs(1): Journal replay fail. Writing lastMountVersion as FSK!\n");
1720 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1728 // clear this so the error exit path won't try to use it
1733 // if this isn't the root device just bail out.
1734 // If it is the root device we just continue on
1735 // in the hopes that fsck_hfs will be able to
1736 // fix any damage that exists on the volume.
1737 if (mp
&& !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1738 if (HFS_MOUNT_DEBUG
) {
1739 printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n");
1747 /* Either the journal is replayed successfully, or there
1748 * was nothing to replay, or no journal exists. In any case,
1751 if (journal_replay_only
) {
1757 (void) hfs_getconverter(0, &hfsmp
->hfs_get_unicode
, &hfsmp
->hfs_get_hfsname
);
1760 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1762 * If the backend didn't like our physical blocksize
1763 * then retry with physical blocksize of 512.
1765 if ((retval
== ENXIO
) && (log_blksize
> 512) && (log_blksize
!= minblksize
)) {
1766 printf("hfs_mountfs: could not use physical block size "
1767 "(%d) switching to 512\n", log_blksize
);
1769 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1770 if (HFS_MOUNT_DEBUG
) {
1771 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n");
1776 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1777 if (HFS_MOUNT_DEBUG
) {
1778 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n");
1783 set_fsblocksize(devvp
);
1784 /* Note: relative block count adjustment (in case this is an embedded volume). */
1785 hfsmp
->hfs_logical_block_count
*= hfsmp
->hfs_logical_block_size
/ log_blksize
;
1786 hfsmp
->hfs_logical_block_size
= log_blksize
;
1787 hfsmp
->hfs_log_per_phys
= hfsmp
->hfs_physical_block_size
/ log_blksize
;
1789 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1791 if (hfsmp
->jnl
&& hfsmp
->jvp
== devvp
) {
1792 // close and re-open this with the new block size
1793 journal_close(hfsmp
->jnl
);
1795 if (hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
) == 0) {
1796 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1798 // if the journal failed to open, then set the lastMountedVersion
1799 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1800 // of just bailing out because the volume is journaled.
1802 if (HFS_MOUNT_DEBUG
) {
1803 printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n");
1805 HFSPlusVolumeHeader
*jvhp
;
1807 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1809 if (mdb_offset
== 0) {
1810 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1814 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1815 phys_blksize
, cred
, &bp
);
1817 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1819 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1820 printf ("hfs(2): Journal replay fail. Writing lastMountVersion as FSK!\n");
1821 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1829 // clear this so the error exit path won't try to use it
1834 // if this isn't the root device just bail out.
1835 // If it is the root device we just continue on
1836 // in the hopes that fsck_hfs will be able to
1837 // fix any damage that exists on the volume.
1838 if ( !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1839 if (HFS_MOUNT_DEBUG
) {
1840 printf("hfs_mountfs: hfs_early_journal_init (2) failed \n");
1848 /* Try again with a smaller block size... */
1849 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1850 if (retval
&& HFS_MOUNT_DEBUG
) {
1851 printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval
);
1856 (void) hfs_relconverter(0);
1860 // save off a snapshot of the mtime from the previous mount
1862 hfsmp
->hfs_last_mounted_mtime
= hfsmp
->hfs_mtime
;
1865 if (HFS_MOUNT_DEBUG
) {
1866 printf("hfs_mountfs: encountered failure %d \n", retval
);
1871 struct vfsstatfs
*vsfs
= vfs_statfs(mp
);
1872 vsfs
->f_fsid
.val
[0] = dev
;
1873 vsfs
->f_fsid
.val
[1] = vfs_typenum(mp
);
1875 vfs_setmaxsymlen(mp
, 0);
1878 if (ISSET(hfsmp
->hfs_flags
, HFS_STANDARD
)) {
1879 /* HFS standard doesn't support extended readdir! */
1880 mount_set_noreaddirext (mp
);
1886 * Set the free space warning levels for a non-root volume:
1888 * Set the "danger" limit to 1% of the volume size or 150MB, whichever is less.
1889 * Set the "warning" limit to 2% of the volume size or 500MB, whichever is less.
1890 * Set the "near warning" limit to 10% of the volume size or 1GB, whichever is less.
1891 * And last, set the "desired" freespace level to to 12% of the volume size or 1.2GB,
1892 * whichever is less.
1894 hfsmp
->hfs_freespace_notify_dangerlimit
=
1895 MIN(HFS_VERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1896 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_VERYLOWDISKTRIGGERFRACTION
);
1897 hfsmp
->hfs_freespace_notify_warninglimit
=
1898 MIN(HFS_LOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1899 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKTRIGGERFRACTION
);
1900 hfsmp
->hfs_freespace_notify_nearwarninglimit
=
1901 MIN(HFS_NEARLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1902 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_NEARLOWDISKTRIGGERFRACTION
);
1903 hfsmp
->hfs_freespace_notify_desiredlevel
=
1904 MIN(HFS_LOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1905 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKSHUTOFFFRACTION
);
1908 * Set the free space warning levels for the root volume:
1910 * Set the "danger" limit to 5% of the volume size or 512MB, whichever is less.
1911 * Set the "warning" limit to 10% of the volume size or 1GB, whichever is less.
1912 * Set the "near warning" limit to 10.5% of the volume size or 1.1GB, whichever is less.
1913 * And last, set the "desired" freespace level to to 11% of the volume size or 1.25GB,
1914 * whichever is less.
1916 * NOTE: While those are the default limits, KernelEventAgent (as of 3/2016)
1917 * will unilaterally override these to the following on OSX only:
1919 * Warning: Min (2% of root volume, 10GB), with a floor of 10GB
1920 * Desired: Warning Threshold + 1.5GB
1922 hfsmp
->hfs_freespace_notify_dangerlimit
=
1923 MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1924 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTVERYLOWDISKTRIGGERFRACTION
);
1925 hfsmp
->hfs_freespace_notify_warninglimit
=
1926 MIN(HFS_ROOTLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1927 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKTRIGGERFRACTION
);
1928 hfsmp
->hfs_freespace_notify_nearwarninglimit
=
1929 MIN(HFS_ROOTNEARLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1930 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTNEARLOWDISKTRIGGERFRACTION
);
1931 hfsmp
->hfs_freespace_notify_desiredlevel
=
1932 MIN(HFS_ROOTLOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1933 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKSHUTOFFFRACTION
);
1936 /* Check if the file system exists on virtual device, like disk image */
1937 if (VNOP_IOCTL(devvp
, DKIOCISVIRTUAL
, (caddr_t
)&isvirtual
, 0, context
) == 0) {
1939 hfsmp
->hfs_flags
|= HFS_VIRTUAL_DEVICE
;
1944 && !ISSET(hfsmp
->hfs_flags
, HFS_VIRTUAL_DEVICE
)
1945 && hfs_is_ejectable(vfs_statfs(mp
)->f_mntfromname
)) {
1946 SET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
);
1949 const char *dev_name
= (hfsmp
->hfs_devvp
1950 ? vnode_getname_printable(hfsmp
->hfs_devvp
) : NULL
);
1952 printf("hfs: mounted %s on device %s\n",
1953 (hfsmp
->vcbVN
[0] ? (const char*) hfsmp
->vcbVN
: "unknown"),
1954 dev_name
?: "unknown device");
1957 vnode_putname_printable(dev_name
);
1960 * Start looking for free space to drop below this level and generate a
1961 * warning immediately if needed:
1963 hfsmp
->hfs_notification_conditions
= 0;
1964 hfs_generate_volume_notifications(hfsmp
);
1967 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
1969 hfs_free(mdbp
, kMDBSize
);
1976 hfs_free(mdbp
, kMDBSize
);
1978 hfs_close_jvp(hfsmp
);
1981 if (hfsmp
->hfs_devvp
) {
1982 vnode_rele(hfsmp
->hfs_devvp
);
1984 hfs_locks_destroy(hfsmp
);
1985 hfs_delete_chash(hfsmp
);
1986 hfs_idhash_destroy (hfsmp
);
1988 hfs_free(hfsmp
, sizeof(*hfsmp
));
1990 vfs_setfsprivate(mp
, NULL
);
1997 * Make a filesystem operational.
1998 * Nothing to do at the moment.
2002 hfs_start(__unused
struct mount
*mp
, __unused
int flags
, __unused vfs_context_t context
)
2009 * unmount system call
2012 hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
)
2014 struct proc
*p
= vfs_context_proc(context
);
2015 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2016 int retval
= E_NONE
;
2023 if (mntflags
& MNT_FORCE
) {
2024 flags
|= FORCECLOSE
;
2028 const char *dev_name
= (hfsmp
->hfs_devvp
2029 ? vnode_getname_printable(hfsmp
->hfs_devvp
) : NULL
);
2031 printf("hfs: unmount initiated on %s on device %s\n",
2032 (hfsmp
->vcbVN
[0] ? (const char*) hfsmp
->vcbVN
: "unknown"),
2033 dev_name
?: "unknown device");
2036 vnode_putname_printable(dev_name
);
2038 if ((retval
= hfs_flushfiles(mp
, flags
, p
)) && !force
)
2041 if (hfsmp
->hfs_flags
& HFS_METADATA_ZONE
)
2042 (void) hfs_recording_suspend(hfsmp
);
2044 hfs_syncer_free(hfsmp
);
2046 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
2047 if (hfsmp
->hfs_summary_table
) {
2050 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
2052 if (hfsmp
->hfs_allocation_vp
) {
2053 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2055 hfs_free(hfsmp
->hfs_summary_table
, hfsmp
->hfs_summary_bytes
);
2056 hfsmp
->hfs_summary_table
= NULL
;
2057 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
2059 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
2060 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
2067 * Flush out the b-trees, volume bitmap and Volume Header
2069 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) {
2070 retval
= hfs_start_transaction(hfsmp
);
2073 } else if (!force
) {
2077 if (hfsmp
->hfs_startup_vp
) {
2078 (void) hfs_lock(VTOC(hfsmp
->hfs_startup_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2079 retval
= hfs_fsync(hfsmp
->hfs_startup_vp
, MNT_WAIT
, 0, p
);
2080 hfs_unlock(VTOC(hfsmp
->hfs_startup_vp
));
2081 if (retval
&& !force
)
2085 if (hfsmp
->hfs_attribute_vp
) {
2086 (void) hfs_lock(VTOC(hfsmp
->hfs_attribute_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2087 retval
= hfs_fsync(hfsmp
->hfs_attribute_vp
, MNT_WAIT
, 0, p
);
2088 hfs_unlock(VTOC(hfsmp
->hfs_attribute_vp
));
2089 if (retval
&& !force
)
2093 (void) hfs_lock(VTOC(hfsmp
->hfs_catalog_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2094 retval
= hfs_fsync(hfsmp
->hfs_catalog_vp
, MNT_WAIT
, 0, p
);
2095 hfs_unlock(VTOC(hfsmp
->hfs_catalog_vp
));
2096 if (retval
&& !force
)
2099 (void) hfs_lock(VTOC(hfsmp
->hfs_extents_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2100 retval
= hfs_fsync(hfsmp
->hfs_extents_vp
, MNT_WAIT
, 0, p
);
2101 hfs_unlock(VTOC(hfsmp
->hfs_extents_vp
));
2102 if (retval
&& !force
)
2105 if (hfsmp
->hfs_allocation_vp
) {
2106 (void) hfs_lock(VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2107 retval
= hfs_fsync(hfsmp
->hfs_allocation_vp
, MNT_WAIT
, 0, p
);
2108 hfs_unlock(VTOC(hfsmp
->hfs_allocation_vp
));
2109 if (retval
&& !force
)
2113 if (hfsmp
->hfc_filevp
&& vnode_issystem(hfsmp
->hfc_filevp
)) {
2114 retval
= hfs_fsync(hfsmp
->hfc_filevp
, MNT_WAIT
, 0, p
);
2115 if (retval
&& !force
)
2119 /* If runtime corruption was detected, indicate that the volume
2120 * was not unmounted cleanly.
2122 if (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) {
2123 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2125 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeUnmountedMask
;
2128 if (hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) {
2130 u_int32_t min_start
= hfsmp
->totalBlocks
;
2132 // set the nextAllocation pointer to the smallest free block number
2133 // we've seen so on the next mount we won't rescan unnecessarily
2134 lck_spin_lock(&hfsmp
->vcbFreeExtLock
);
2135 for(i
=0; i
< (int)hfsmp
->vcbFreeExtCnt
; i
++) {
2136 if (hfsmp
->vcbFreeExt
[i
].startBlock
< min_start
) {
2137 min_start
= hfsmp
->vcbFreeExt
[i
].startBlock
;
2140 lck_spin_unlock(&hfsmp
->vcbFreeExtLock
);
2141 if (min_start
< hfsmp
->nextAllocation
) {
2142 hfsmp
->nextAllocation
= min_start
;
2146 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
2148 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2150 goto err_exit
; /* could not flush everything */
2154 hfs_end_transaction(hfsmp
);
2160 hfs_flush(hfsmp
, HFS_FLUSH_FULL
);
2164 * Invalidate our caches and release metadata vnodes
2166 (void) hfsUnmount(hfsmp
, p
);
2169 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2170 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
2176 journal_close(hfsmp
->jnl
);
2180 VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
2182 hfs_close_jvp(hfsmp
);
2185 * Last chance to dump unreferenced system files.
2187 (void) vflush(mp
, NULLVP
, FORCECLOSE
);
2190 /* Drop our reference on the backing fs (if any). */
2191 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) && hfsmp
->hfs_backingvp
) {
2192 struct vnode
* tmpvp
;
2194 hfsmp
->hfs_flags
&= ~HFS_HAS_SPARSE_DEVICE
;
2195 tmpvp
= hfsmp
->hfs_backingvp
;
2196 hfsmp
->hfs_backingvp
= NULLVP
;
2199 #endif /* HFS_SPARSE_DEV */
2201 vnode_rele(hfsmp
->hfs_devvp
);
2203 hfs_locks_destroy(hfsmp
);
2204 hfs_delete_chash(hfsmp
);
2205 hfs_idhash_destroy(hfsmp
);
2207 hfs_assert(TAILQ_EMPTY(&hfsmp
->hfs_reserved_ranges
[HFS_TENTATIVE_BLOCKS
])
2208 && TAILQ_EMPTY(&hfsmp
->hfs_reserved_ranges
[HFS_LOCKED_BLOCKS
]));
2209 hfs_assert(!hfsmp
->lockedBlocks
);
2211 hfs_free(hfsmp
, sizeof(*hfsmp
));
2214 if (OSDecrementAtomic(&hfs_active_mounts
) == 1) {
2215 if (hfs_dump_allocations())
2218 printf("hfs: last unmount and nothing was leaked!\n");
2219 msleep(hfs_unmount
, NULL
, PINOD
, "hfs_unmount",
2220 &(struct timespec
){ 5, 0 });
2229 hfs_end_transaction(hfsmp
);
2236 * Return the root of a filesystem.
2238 int hfs_vfs_root(struct mount
*mp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2240 return hfs_vget(VFSTOHFS(mp
), (cnid_t
)kHFSRootFolderID
, vpp
, 1, 0);
2245 * Do operations associated with quotas
2249 hfs_quotactl(__unused
struct mount
*mp
, __unused
int cmds
, __unused uid_t uid
, __unused caddr_t datap
, __unused vfs_context_t context
)
2255 hfs_quotactl(struct mount
*mp
, int cmds
, uid_t uid
, caddr_t datap
, vfs_context_t context
)
2257 struct proc
*p
= vfs_context_proc(context
);
2258 int cmd
, type
, error
;
2261 uid
= kauth_cred_getuid(vfs_context_ucred(context
));
2262 cmd
= cmds
>> SUBCMDSHIFT
;
2269 if (uid
== kauth_cred_getuid(vfs_context_ucred(context
)))
2273 if ( (error
= vfs_context_suser(context
)) )
2277 type
= cmds
& SUBCMDMASK
;
2278 if ((u_int
)type
>= MAXQUOTAS
)
2280 if (vfs_busy(mp
, LK_NOWAIT
))
2286 error
= hfs_quotaon(p
, mp
, type
, datap
);
2290 error
= hfs_quotaoff(p
, mp
, type
);
2294 error
= hfs_setquota(mp
, uid
, type
, datap
);
2298 error
= hfs_setuse(mp
, uid
, type
, datap
);
2302 error
= hfs_getquota(mp
, uid
, type
, datap
);
2306 error
= hfs_qsync(mp
);
2310 error
= hfs_quotastat(mp
, type
, datap
);
2323 /* Subtype is composite of bits */
2324 #define HFS_SUBTYPE_JOURNALED 0x01
2325 #define HFS_SUBTYPE_CASESENSITIVE 0x02
2326 /* bits 2 - 6 reserved */
2327 #define HFS_SUBTYPE_STANDARDHFS 0x80
2330 * Get file system statistics.
2333 hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, __unused vfs_context_t context
)
2335 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
2336 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2337 u_int16_t subtype
= 0;
2339 sbp
->f_bsize
= (u_int32_t
)vcb
->blockSize
;
2340 sbp
->f_iosize
= (size_t)cluster_max_io_size(mp
, 0);
2341 sbp
->f_blocks
= (u_int64_t
)((u_int32_t
)vcb
->totalBlocks
);
2342 sbp
->f_bfree
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 0));
2343 sbp
->f_bavail
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 1));
2344 sbp
->f_files
= (u_int64_t
)HFS_MAX_FILES
;
2345 sbp
->f_ffree
= (u_int64_t
)hfs_free_cnids(hfsmp
);
2348 * Subtypes (flavors) for HFS
2349 * 0: Mac OS Extended
2350 * 1: Mac OS Extended (Journaled)
2351 * 2: Mac OS Extended (Case Sensitive)
2352 * 3: Mac OS Extended (Case Sensitive, Journaled)
2354 * 128: Mac OS Standard
2357 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
2358 /* HFS+ & variants */
2360 subtype
|= HFS_SUBTYPE_JOURNALED
;
2362 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
2363 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
2369 subtype
= HFS_SUBTYPE_STANDARDHFS
;
2372 sbp
->f_fssubtype
= subtype
;
2379 // XXXdbg -- this is a callback to be used by the journal to
2380 // get meta data blocks flushed out to disk.
2382 // XXXdbg -- be smarter and don't flush *every* block on each
2383 // call. try to only flush some so we don't wind up
2384 // being too synchronous.
2387 hfs_sync_metadata(void *arg
)
2389 struct mount
*mp
= (struct mount
*)arg
;
2390 struct hfsmount
*hfsmp
;
2394 daddr64_t priIDSector
;
2395 hfsmp
= VFSTOHFS(mp
);
2396 vcb
= HFSTOVCB(hfsmp
);
2398 // now make sure the super block is flushed
2399 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
2400 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
2402 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2403 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
2404 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2405 if ((retval
!= 0 ) && (retval
!= ENXIO
)) {
2406 printf("hfs_sync_metadata: can't read volume header at %d! (retval 0x%x)\n",
2407 (int)priIDSector
, retval
);
2410 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2416 /* Note that these I/Os bypass the journal (no calls to journal_start_modify_block) */
2418 // the alternate super block...
2419 // XXXdbg - we probably don't need to do this each and every time.
2420 // hfs_btreeio.c:FlushAlternate() should flag when it was
2422 if (hfsmp
->hfs_partition_avh_sector
) {
2423 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2424 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
2425 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2426 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2428 * note this I/O can fail if the partition shrank behind our backs!
2429 * So failure should be OK here.
2437 /* Is the FS's idea of the AVH different than the partition ? */
2438 if ((hfsmp
->hfs_fs_avh_sector
) && (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
2439 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2440 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
2441 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2442 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2452 struct hfs_sync_cargs
{
2457 int atime_only_syncs
;
2458 time_t sync_start_time
;
2463 hfs_sync_callback(struct vnode
*vp
, void *cargs
)
2465 struct cnode
*cp
= VTOC(vp
);
2466 struct hfs_sync_cargs
*args
;
2469 args
= (struct hfs_sync_cargs
*)cargs
;
2471 if (hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0) {
2472 return (VNODE_RETURNED
);
2475 hfs_dirty_t dirty_state
= hfs_is_dirty(cp
);
2477 bool sync
= dirty_state
== HFS_DIRTY
|| vnode_hasdirtyblks(vp
);
2479 if (!sync
&& dirty_state
== HFS_DIRTY_ATIME
2480 && args
->atime_only_syncs
< 256) {
2481 // We only update if the atime changed more than 60s ago
2482 if (args
->sync_start_time
- cp
->c_attr
.ca_atime
> 60) {
2484 ++args
->atime_only_syncs
;
2489 error
= hfs_fsync(vp
, args
->waitfor
, 0, args
->p
);
2492 args
->error
= error
;
2493 } else if (cp
->c_touch_acctime
)
2494 hfs_touchtimes(VTOHFS(vp
), cp
);
2497 return (VNODE_RETURNED
);
2503 * Go through the disk queues to initiate sandbagged IO;
2504 * go through the inodes to write those that have been modified;
2505 * initiate the writing of the super block if it has been modified.
2507 * Note: we are always called with the filesystem marked `MPBUSY'.
2510 hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
)
2512 struct proc
*p
= vfs_context_proc(context
);
2514 struct hfsmount
*hfsmp
;
2516 struct vnode
*meta_vp
[4];
2518 int error
, allerror
= 0;
2519 struct hfs_sync_cargs args
;
2521 hfsmp
= VFSTOHFS(mp
);
2523 // Back off if hfs_changefs or a freeze is underway
2524 hfs_lock_mount(hfsmp
);
2525 if ((hfsmp
->hfs_flags
& HFS_IN_CHANGEFS
)
2526 || hfsmp
->hfs_freeze_state
!= HFS_THAWED
) {
2527 hfs_unlock_mount(hfsmp
);
2531 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2532 hfs_unlock_mount(hfsmp
);
2536 ++hfsmp
->hfs_syncers
;
2537 hfs_unlock_mount(hfsmp
);
2539 args
.cred
= kauth_cred_get();
2540 args
.waitfor
= waitfor
;
2543 args
.atime_only_syncs
= 0;
2548 args
.sync_start_time
= tv
.tv_sec
;
2551 * hfs_sync_callback will be called for each vnode
2552 * hung off of this mount point... the vnode will be
2553 * properly referenced and unreferenced around the callback
2555 vnode_iterate(mp
, 0, hfs_sync_callback
, (void *)&args
);
2558 allerror
= args
.error
;
2560 vcb
= HFSTOVCB(hfsmp
);
2562 meta_vp
[0] = vcb
->extentsRefNum
;
2563 meta_vp
[1] = vcb
->catalogRefNum
;
2564 meta_vp
[2] = vcb
->allocationsRefNum
; /* This is NULL for standard HFS */
2565 meta_vp
[3] = hfsmp
->hfs_attribute_vp
; /* Optional file */
2567 /* Now sync our three metadata files */
2568 for (i
= 0; i
< 4; ++i
) {
2572 if ((btvp
==0) || (vnode_mount(btvp
) != mp
))
2575 /* XXX use hfs_systemfile_lock instead ? */
2576 (void) hfs_lock(VTOC(btvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2579 if (!hfs_is_dirty(cp
) && !vnode_hasdirtyblks(btvp
)) {
2580 hfs_unlock(VTOC(btvp
));
2583 error
= vnode_get(btvp
);
2585 hfs_unlock(VTOC(btvp
));
2588 if ((error
= hfs_fsync(btvp
, waitfor
, 0, p
)))
2598 * Force stale file system control information to be flushed.
2600 if (vcb
->vcbSigWord
== kHFSSigWord
) {
2601 if ((error
= VNOP_FSYNC(hfsmp
->hfs_devvp
, waitfor
, context
))) {
2611 hfs_hotfilesync(hfsmp
, vfs_context_kernel());
2614 * Write back modified superblock.
2616 if (IsVCBDirty(vcb
)) {
2617 error
= hfs_flushvolumeheader(hfsmp
, waitfor
== MNT_WAIT
? HFS_FVH_WAIT
: 0);
2623 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL
);
2626 hfs_lock_mount(hfsmp
);
2627 boolean_t wake
= (!--hfsmp
->hfs_syncers
2628 && hfsmp
->hfs_freeze_state
== HFS_WANT_TO_FREEZE
);
2629 hfs_unlock_mount(hfsmp
);
2631 wakeup(&hfsmp
->hfs_freeze_state
);
2638 * File handle to vnode
2640 * Have to be really careful about stale file handles:
2641 * - check that the cnode id is valid
2642 * - call hfs_vget() to get the locked cnode
2643 * - check for an unallocated cnode (i_mode == 0)
2644 * - check that the given client host has export rights and return
2645 * those rights via. exflagsp and credanonp
2648 hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2650 struct hfsfid
*hfsfhp
;
2655 hfsfhp
= (struct hfsfid
*)fhp
;
2657 if (fhlen
< (int)sizeof(struct hfsfid
))
2660 result
= hfs_vget(VFSTOHFS(mp
), ntohl(hfsfhp
->hfsfid_cnid
), &nvp
, 0, 0);
2662 if (result
== ENOENT
)
2668 * We used to use the create time as the gen id of the file handle,
2669 * but it is not static enough because it can change at any point
2670 * via system calls. We still don't have another volume ID or other
2671 * unique identifier to use for a generation ID across reboots that
2672 * persists until the file is removed. Using only the CNID exposes
2673 * us to the potential wrap-around case, but as of 2/2008, it would take
2674 * over 2 months to wrap around if the machine did nothing but allocate
2675 * CNIDs. Using some kind of wrap counter would only be effective if
2676 * each file had the wrap counter associated with it. For now,
2677 * we use only the CNID to identify the file as it's good enough.
2682 hfs_unlock(VTOC(nvp
));
2688 * Vnode pointer to File handle
2692 hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, __unused vfs_context_t context
)
2695 struct hfsfid
*hfsfhp
;
2697 if (ISHFS(VTOVCB(vp
)))
2698 return (ENOTSUP
); /* hfs standard is not exportable */
2700 if (*fhlenp
< (int)sizeof(struct hfsfid
))
2704 hfsfhp
= (struct hfsfid
*)fhp
;
2705 /* only the CNID is used to identify the file now */
2706 hfsfhp
->hfsfid_cnid
= htonl(cp
->c_fileid
);
2707 hfsfhp
->hfsfid_gen
= htonl(cp
->c_fileid
);
2708 *fhlenp
= sizeof(struct hfsfid
);
2715 * Initialize HFS filesystems, done only once per boot.
2717 * HFS is not a kext-based file system. This makes it difficult to find
2718 * out when the last HFS file system was unmounted and call hfs_uninit()
2719 * to deallocate data structures allocated in hfs_init(). Therefore we
2720 * never deallocate memory allocated by lock attribute and group initializations
2724 hfs_init(__unused
struct vfsconf
*vfsp
)
2726 static int done
= 0;
2735 hfs_lock_attr
= lck_attr_alloc_init();
2736 hfs_group_attr
= lck_grp_attr_alloc_init();
2737 hfs_mutex_group
= lck_grp_alloc_init("hfs-mutex", hfs_group_attr
);
2738 hfs_rwlock_group
= lck_grp_alloc_init("hfs-rwlock", hfs_group_attr
);
2739 hfs_spinlock_group
= lck_grp_alloc_init("hfs-spinlock", hfs_group_attr
);
2752 * Destroy all locks, mutexes and spinlocks in hfsmp on unmount or failed mount
2755 hfs_locks_destroy(struct hfsmount
*hfsmp
)
2758 lck_mtx_destroy(&hfsmp
->hfs_mutex
, hfs_mutex_group
);
2759 lck_mtx_destroy(&hfsmp
->hfc_mutex
, hfs_mutex_group
);
2760 lck_rw_destroy(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
);
2761 lck_spin_destroy(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
);
2768 hfs_getmountpoint(struct vnode
*vp
, struct hfsmount
**hfsmpp
)
2770 struct hfsmount
* hfsmp
;
2771 char fstypename
[MFSNAMELEN
];
2776 if (!vnode_isvroot(vp
))
2779 vnode_vfsname(vp
, fstypename
);
2780 if (strncmp(fstypename
, "hfs", sizeof(fstypename
)) != 0)
2785 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
)
2793 // Replace user-space value
2794 static errno_t
ureplace(user_addr_t oldp
, size_t *oldlenp
,
2795 user_addr_t newp
, size_t newlen
,
2796 void *data
, size_t len
)
2801 if (oldp
&& *oldlenp
< len
)
2803 if (newp
&& newlen
!= len
)
2807 error
= copyout(data
, oldp
, len
);
2811 return newp
? copyin(newp
, data
, len
) : 0;
2814 #define UREPLACE(oldp, oldlenp, newp, newlenp, v) \
2815 ureplace(oldp, oldlenp, newp, newlenp, &v, sizeof(v))
2817 static hfsmount_t
*hfs_mount_from_cwd(vfs_context_t ctx
)
2819 vnode_t vp
= vfs_context_cwd(ctx
);
2825 * We could use vnode_tag, but it is probably more future proof to
2826 * compare fstypename.
2828 char fstypename
[MFSNAMELEN
];
2829 vnode_vfsname(vp
, fstypename
);
2831 if (strcmp(fstypename
, "hfs"))
2838 * HFS filesystem related variables.
2841 hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
2842 user_addr_t newp
, size_t newlen
, vfs_context_t context
)
2844 #if !TARGET_OS_EMBEDDED
2845 struct proc
*p
= vfs_context_proc(context
);
2848 struct hfsmount
*hfsmp
;
2850 /* all sysctl names at this level are terminal */
2852 #if !TARGET_OS_EMBEDDED
2853 if (name
[0] == HFS_ENCODINGBIAS
) {
2856 bias
= hfs_getencodingbias();
2858 error
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, bias
);
2862 hfs_setencodingbias(bias
);
2867 if (name
[0] == HFS_EXTEND_FS
) {
2868 u_int64_t newsize
= 0;
2869 vnode_t vp
= vfs_context_cwd(context
);
2871 if (newp
== USER_ADDR_NULL
|| vp
== NULLVP
2872 || newlen
!= sizeof(quad_t
) || !oldlenp
)
2874 if ((error
= hfs_getmountpoint(vp
, &hfsmp
)))
2877 /* Start with the 'size' set to the current number of bytes in the filesystem */
2878 newsize
= ((uint64_t)hfsmp
->totalBlocks
) * ((uint64_t)hfsmp
->blockSize
);
2880 error
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, newsize
);
2884 return hfs_extendfs(hfsmp
, newsize
, context
);
2885 } else if (name
[0] == HFS_ENABLE_JOURNALING
) {
2886 // make the file system journaled...
2889 struct cat_attr jnl_attr
;
2890 struct cat_attr jinfo_attr
;
2891 struct cat_fork jnl_fork
;
2892 struct cat_fork jinfo_fork
;
2896 uint64_t journal_byte_offset
;
2897 uint64_t journal_size
;
2898 vnode_t jib_vp
= NULLVP
;
2899 struct JournalInfoBlock local_jib
;
2904 /* Only root can enable journaling */
2905 if (!kauth_cred_issuser(kauth_cred_get())) {
2910 hfsmp
= hfs_mount_from_cwd(context
);
2914 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2917 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2918 printf("hfs: can't make a plain hfs volume journaled.\n");
2923 printf("hfs: volume %s is already journaled!\n", hfsmp
->vcbVN
);
2926 vcb
= HFSTOVCB(hfsmp
);
2928 /* Set up local copies of the initialization info */
2929 tmpblkno
= (uint32_t) name
[1];
2930 jib_blkno
= (uint64_t) tmpblkno
;
2931 journal_byte_offset
= (uint64_t) name
[2];
2932 journal_byte_offset
*= hfsmp
->blockSize
;
2933 journal_byte_offset
+= hfsmp
->hfsPlusIOPosOffset
;
2934 journal_size
= (uint64_t)((unsigned)name
[3]);
2936 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
, HFS_EXCLUSIVE_LOCK
);
2937 if (BTHasContiguousNodes(VTOF(vcb
->catalogRefNum
)) == 0 ||
2938 BTHasContiguousNodes(VTOF(vcb
->extentsRefNum
)) == 0) {
2940 printf("hfs: volume has a btree w/non-contiguous nodes. can not enable journaling.\n");
2941 hfs_systemfile_unlock(hfsmp
, lockflags
);
2944 hfs_systemfile_unlock(hfsmp
, lockflags
);
2946 // make sure these both exist!
2947 if ( GetFileInfo(vcb
, kHFSRootFolderID
, ".journal_info_block", &jinfo_attr
, &jinfo_fork
) == 0
2948 || GetFileInfo(vcb
, kHFSRootFolderID
, ".journal", &jnl_attr
, &jnl_fork
) == 0) {
2954 * At this point, we have a copy of the metadata that lives in the catalog for the
2955 * journal info block. Compare that the journal info block's single extent matches
2956 * that which was passed into this sysctl.
2958 * If it is different, deny the journal enable call.
2960 if (jinfo_fork
.cf_blocks
> 1) {
2961 /* too many blocks */
2965 if (jinfo_fork
.cf_extents
[0].startBlock
!= jib_blkno
) {
2971 * We want to immediately purge the vnode for the JIB.
2973 * Because it was written to from userland, there's probably
2974 * a vnode somewhere in the vnode cache (possibly with UBC backed blocks).
2975 * So we bring the vnode into core, then immediately do whatever
2976 * we can to flush/vclean it out. This is because those blocks will be
2977 * interpreted as user data, which may be treated separately on some platforms
2978 * than metadata. If the vnode is gone, then there cannot be backing blocks
2981 if (hfs_vget (hfsmp
, jinfo_attr
.ca_fileid
, &jib_vp
, 1, 0)) {
2985 * Now we have a vnode for the JIB. recycle it. Because we hold an iocount
2986 * on the vnode, we'll just mark it for termination when the last iocount
2987 * (hopefully ours), is dropped.
2989 vnode_recycle (jib_vp
);
2990 err
= vnode_put (jib_vp
);
2995 /* Initialize the local copy of the JIB (just like hfs.util) */
2996 memset (&local_jib
, 'Z', sizeof(struct JournalInfoBlock
));
2997 local_jib
.flags
= SWAP_BE32(kJIJournalInFSMask
);
2998 /* Note that the JIB's offset is in bytes */
2999 local_jib
.offset
= SWAP_BE64(journal_byte_offset
);
3000 local_jib
.size
= SWAP_BE64(journal_size
);
3003 * Now write out the local JIB. This essentially overwrites the userland
3004 * copy of the JIB. Read it as BLK_META to treat it as a metadata read/write.
3006 jib_buf
= buf_getblk (hfsmp
->hfs_devvp
,
3007 jib_blkno
* (hfsmp
->blockSize
/ hfsmp
->hfs_logical_block_size
),
3008 hfsmp
->blockSize
, 0, 0, BLK_META
);
3009 char* buf_ptr
= (char*) buf_dataptr (jib_buf
);
3011 /* Zero out the portion of the block that won't contain JIB data */
3012 memset (buf_ptr
, 0, hfsmp
->blockSize
);
3014 bcopy(&local_jib
, buf_ptr
, sizeof(local_jib
));
3015 if (buf_bwrite (jib_buf
)) {
3019 /* Force a flush track cache */
3020 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
3022 /* Now proceed with full volume sync */
3023 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, context
);
3025 printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
3026 (off_t
)name
[2], (off_t
)name
[3]);
3029 // XXXdbg - note that currently (Sept, 08) hfs_util does not support
3030 // enabling the journal on a separate device so it is safe
3031 // to just copy hfs_devvp here. If hfs_util gets the ability
3032 // to dynamically enable the journal on a separate device then
3033 // we will have to do the same thing as hfs_early_journal_init()
3034 // to locate and open the journal device.
3036 jvp
= hfsmp
->hfs_devvp
;
3037 jnl
= journal_create(jvp
, journal_byte_offset
, journal_size
,
3039 hfsmp
->hfs_logical_block_size
,
3042 hfs_sync_metadata
, hfsmp
->hfs_mp
,
3046 * Set up the trim callback function so that we can add
3047 * recently freed extents to the free extent cache once
3048 * the transaction that freed them is written to the
3052 journal_trim_set_callback(jnl
, hfs_trim_callback
, hfsmp
);
3055 printf("hfs: FAILED to create the journal!\n");
3059 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3062 * Flush all dirty metadata buffers.
3064 buf_flushdirtyblks(hfsmp
->hfs_devvp
, TRUE
, 0, "hfs_sysctl");
3065 buf_flushdirtyblks(hfsmp
->hfs_extents_vp
, TRUE
, 0, "hfs_sysctl");
3066 buf_flushdirtyblks(hfsmp
->hfs_catalog_vp
, TRUE
, 0, "hfs_sysctl");
3067 buf_flushdirtyblks(hfsmp
->hfs_allocation_vp
, TRUE
, 0, "hfs_sysctl");
3068 if (hfsmp
->hfs_attribute_vp
)
3069 buf_flushdirtyblks(hfsmp
->hfs_attribute_vp
, TRUE
, 0, "hfs_sysctl");
3071 HFSTOVCB(hfsmp
)->vcbJinfoBlock
= name
[1];
3072 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeJournaledMask
;
3076 // save this off for the hack-y check in hfs_remove()
3077 hfsmp
->jnl_start
= (u_int32_t
)name
[2];
3078 hfsmp
->jnl_size
= (off_t
)((unsigned)name
[3]);
3079 hfsmp
->hfs_jnlinfoblkid
= jinfo_attr
.ca_fileid
;
3080 hfsmp
->hfs_jnlfileid
= jnl_attr
.ca_fileid
;
3082 vfs_setflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3084 hfs_unlock_global (hfsmp
);
3085 hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
3090 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3091 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3092 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3095 } else if (name
[0] == HFS_DISABLE_JOURNALING
) {
3096 // clear the journaling bit
3098 /* Only root can disable journaling */
3099 if (!kauth_cred_issuser(kauth_cred_get())) {
3103 hfsmp
= hfs_mount_from_cwd(context
);
3108 * Disabling journaling is disallowed on volumes with directory hard links
3109 * because we have not tested the relevant code path.
3111 if (hfsmp
->hfs_private_attr
[DIR_HARDLINKS
].ca_entries
!= 0){
3112 printf("hfs: cannot disable journaling on volumes with directory hardlinks\n");
3116 printf("hfs: disabling journaling for %s\n", hfsmp
->vcbVN
);
3118 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3120 // Lights out for you buddy!
3121 journal_close(hfsmp
->jnl
);
3124 hfs_close_jvp(hfsmp
);
3125 vfs_clearflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3126 hfsmp
->jnl_start
= 0;
3127 hfsmp
->hfs_jnlinfoblkid
= 0;
3128 hfsmp
->hfs_jnlfileid
= 0;
3130 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeJournaledMask
;
3132 hfs_unlock_global (hfsmp
);
3134 hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
3139 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3140 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3141 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3144 } else if (name
[0] == VFS_CTL_QUERY
) {
3145 #if TARGET_OS_EMBEDDED
3148 struct sysctl_req
*req
;
3149 union union_vfsidctl vc
;
3153 req
= CAST_DOWN(struct sysctl_req
*, oldp
); /* we're new style vfs sysctl. */
3158 error
= SYSCTL_IN(req
, &vc
, proc_is64bit(p
)? sizeof(vc
.vc64
):sizeof(vc
.vc32
));
3159 if (error
) return (error
);
3161 mp
= vfs_getvfs(&vc
.vc32
.vc_fsid
); /* works for 32 and 64 */
3162 if (mp
== NULL
) return (ENOENT
);
3164 hfsmp
= VFSTOHFS(mp
);
3165 bzero(&vq
, sizeof(vq
));
3166 vq
.vq_flags
= hfsmp
->hfs_notification_conditions
;
3167 return SYSCTL_OUT(req
, &vq
, sizeof(vq
));;
3169 } else if (name
[0] == HFS_REPLAY_JOURNAL
) {
3170 vnode_t devvp
= NULL
;
3175 device_fd
= name
[1];
3176 error
= file_vnode(device_fd
, &devvp
);
3180 error
= vnode_getwithref(devvp
);
3182 file_drop(device_fd
);
3185 error
= hfs_journal_replay(devvp
, context
);
3186 file_drop(device_fd
);
3190 #if DEBUG || !TARGET_OS_EMBEDDED
3191 else if (name
[0] == HFS_ENABLE_RESIZE_DEBUG
) {
3192 if (!kauth_cred_issuser(kauth_cred_get())) {
3196 int old
= hfs_resize_debug
;
3198 int res
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, hfs_resize_debug
);
3200 if (old
!= hfs_resize_debug
) {
3201 printf("hfs: %s resize debug\n",
3202 hfs_resize_debug
? "enabled" : "disabled");
3213 * hfs_vfs_vget is not static since it is used in hfs_readwrite.c to support
3214 * the build_path ioctl. We use it to leverage the code below that updates
3215 * the origin list cache if necessary
3219 hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, __unused vfs_context_t context
)
3223 struct hfsmount
*hfsmp
;
3225 hfsmp
= VFSTOHFS(mp
);
3227 error
= hfs_vget(hfsmp
, (cnid_t
)ino
, vpp
, 1, 0);
3232 * If the look-up was via the object ID (rather than the link ID),
3233 * then we make sure there's a parent here. We can't leave this
3234 * until hfs_vnop_getattr because if there's a problem getting the
3235 * parent at that point, all the caller will do is call
3236 * hfs_vfs_vget again and we'll end up in an infinite loop.
3239 cnode_t
*cp
= VTOC(*vpp
);
3241 if (ISSET(cp
->c_flag
, C_HARDLINK
) && ino
== cp
->c_fileid
) {
3242 hfs_lock_always(cp
, HFS_SHARED_LOCK
);
3244 if (!hfs_haslinkorigin(cp
)) {
3245 if (!hfs_lock_upgrade(cp
))
3246 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
3248 if (cp
->c_cnid
== cp
->c_fileid
) {
3250 * Descriptor is stale, so we need to refresh it. We
3251 * pick the first link.
3255 error
= hfs_first_link(hfsmp
, cp
, &link_id
);
3258 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3259 error
= cat_findname(hfsmp
, link_id
, &cp
->c_desc
);
3260 hfs_systemfile_unlock(hfsmp
, lockflags
);
3263 // We'll use whatever link the descriptor happens to have
3267 hfs_savelinkorigin(cp
, cp
->c_parentcnid
);
3283 * Look up an HFS object by ID.
3285 * The object is returned with an iocount reference and the cnode locked.
3287 * If the object is a file then it will represent the data fork.
3290 hfs_vget(struct hfsmount
*hfsmp
, cnid_t cnid
, struct vnode
**vpp
, int skiplock
, int allow_deleted
)
3292 struct vnode
*vp
= NULLVP
;
3293 struct cat_desc cndesc
;
3294 struct cat_attr cnattr
;
3295 struct cat_fork cnfork
;
3296 u_int32_t linkref
= 0;
3299 /* Check for cnids that should't be exported. */
3300 if ((cnid
< kHFSFirstUserCatalogNodeID
) &&
3301 (cnid
!= kHFSRootFolderID
&& cnid
!= kHFSRootParentID
)) {
3304 /* Don't export our private directories. */
3305 if (cnid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
||
3306 cnid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) {
3310 * Check the hash first
3312 vp
= hfs_chash_getvnode(hfsmp
, cnid
, 0, skiplock
, allow_deleted
);
3318 bzero(&cndesc
, sizeof(cndesc
));
3319 bzero(&cnattr
, sizeof(cnattr
));
3320 bzero(&cnfork
, sizeof(cnfork
));
3323 * Not in hash, lookup in catalog
3325 if (cnid
== kHFSRootParentID
) {
3326 static char hfs_rootname
[] = "/";
3328 cndesc
.cd_nameptr
= (const u_int8_t
*)&hfs_rootname
[0];
3329 cndesc
.cd_namelen
= 1;
3330 cndesc
.cd_parentcnid
= kHFSRootParentID
;
3331 cndesc
.cd_cnid
= kHFSRootFolderID
;
3332 cndesc
.cd_flags
= CD_ISDIR
;
3334 cnattr
.ca_fileid
= kHFSRootFolderID
;
3335 cnattr
.ca_linkcount
= 1;
3336 cnattr
.ca_entries
= 1;
3337 cnattr
.ca_dircount
= 1;
3338 cnattr
.ca_mode
= (S_IFDIR
| S_IRWXU
| S_IRWXG
| S_IRWXO
);
3342 const char *nameptr
;
3344 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3345 error
= cat_idlookup(hfsmp
, cnid
, 0, 0, &cndesc
, &cnattr
, &cnfork
);
3346 hfs_systemfile_unlock(hfsmp
, lockflags
);
3354 * Check for a raw hardlink inode and save its linkref.
3356 pid
= cndesc
.cd_parentcnid
;
3357 nameptr
= (const char *)cndesc
.cd_nameptr
;
3359 if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3360 cndesc
.cd_namelen
> HFS_INODE_PREFIX_LEN
&&
3361 (bcmp(nameptr
, HFS_INODE_PREFIX
, HFS_INODE_PREFIX_LEN
) == 0)) {
3362 linkref
= strtoul(&nameptr
[HFS_INODE_PREFIX_LEN
], NULL
, 10);
3364 } else if ((pid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) &&
3365 cndesc
.cd_namelen
> HFS_DIRINODE_PREFIX_LEN
&&
3366 (bcmp(nameptr
, HFS_DIRINODE_PREFIX
, HFS_DIRINODE_PREFIX_LEN
) == 0)) {
3367 linkref
= strtoul(&nameptr
[HFS_DIRINODE_PREFIX_LEN
], NULL
, 10);
3369 } else if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3370 cndesc
.cd_namelen
> HFS_DELETE_PREFIX_LEN
&&
3371 (bcmp(nameptr
, HFS_DELETE_PREFIX
, HFS_DELETE_PREFIX_LEN
) == 0)) {
3373 cat_releasedesc(&cndesc
);
3374 return (ENOENT
); /* open unlinked file */
3379 * Finish initializing cnode descriptor for hardlinks.
3381 * We need a valid name and parent for reverse lookups.
3385 struct cat_desc linkdesc
;
3388 cnattr
.ca_linkref
= linkref
;
3389 bzero (&linkdesc
, sizeof (linkdesc
));
3392 * If the caller supplied the raw inode value, then we don't know exactly
3393 * which hardlink they wanted. It's likely that they acquired the raw inode
3394 * value BEFORE the item became a hardlink, in which case, they probably
3395 * want the oldest link. So request the oldest link from the catalog.
3397 * Unfortunately, this requires that we iterate through all N hardlinks. On the plus
3398 * side, since we know that we want the last linkID, we can also have this one
3399 * call give us back the name of the last ID, since it's going to have it in-hand...
3401 linkerr
= hfs_lookup_lastlink (hfsmp
, linkref
, &lastid
, &linkdesc
);
3402 if ((linkerr
== 0) && (lastid
!= 0)) {
3404 * Release any lingering buffers attached to our local descriptor.
3405 * Then copy the name and other business into the cndesc
3407 cat_releasedesc (&cndesc
);
3408 bcopy (&linkdesc
, &cndesc
, sizeof(linkdesc
));
3410 /* If it failed, the linkref code will just use whatever it had in-hand below. */
3414 int newvnode_flags
= 0;
3416 error
= hfs_getnewvnode(hfsmp
, NULL
, NULL
, &cndesc
, 0, &cnattr
,
3417 &cnfork
, &vp
, &newvnode_flags
);
3419 VTOC(vp
)->c_flag
|= C_HARDLINK
;
3420 vnode_setmultipath(vp
);
3423 int newvnode_flags
= 0;
3425 void *buf
= hfs_malloc(MAXPATHLEN
);
3427 /* Supply hfs_getnewvnode with a component name. */
3428 struct componentname cn
= {
3429 .cn_nameiop
= LOOKUP
,
3430 .cn_flags
= ISLASTCN
,
3431 .cn_pnlen
= MAXPATHLEN
,
3432 .cn_namelen
= cndesc
.cd_namelen
,
3437 bcopy(cndesc
.cd_nameptr
, cn
.cn_nameptr
, cndesc
.cd_namelen
+ 1);
3439 error
= hfs_getnewvnode(hfsmp
, NULLVP
, &cn
, &cndesc
, 0, &cnattr
,
3440 &cnfork
, &vp
, &newvnode_flags
);
3442 if (error
== 0 && (VTOC(vp
)->c_flag
& C_HARDLINK
)) {
3443 hfs_savelinkorigin(VTOC(vp
), cndesc
.cd_parentcnid
);
3446 hfs_free(buf
, MAXPATHLEN
);
3448 cat_releasedesc(&cndesc
);
3451 if (vp
&& skiplock
) {
3452 hfs_unlock(VTOC(vp
));
3459 * Flush out all the files in a filesystem.
3463 hfs_flushfiles(struct mount
*mp
, int flags
, struct proc
*p
)
3465 hfs_flushfiles(struct mount
*mp
, int flags
, __unused
struct proc
*p
)
3468 struct hfsmount
*hfsmp
;
3469 struct vnode
*skipvp
= NULLVP
;
3471 int accounted_root_usecounts
;
3476 hfsmp
= VFSTOHFS(mp
);
3478 accounted_root_usecounts
= 0;
3481 * The open quota files have an indirect reference on
3482 * the root directory vnode. We must account for this
3483 * extra reference when doing the intial vflush.
3485 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3486 /* Find out how many quota files we have open. */
3487 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3488 if (hfsmp
->hfs_qfiles
[i
].qf_vp
!= NULLVP
)
3489 ++accounted_root_usecounts
;
3494 if (accounted_root_usecounts
> 0) {
3495 /* Obtain the root vnode so we can skip over it. */
3496 skipvp
= hfs_chash_getvnode(hfsmp
, kHFSRootFolderID
, 0, 0, 0);
3499 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| SKIPSWAP
| flags
);
3503 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| flags
);
3507 * See if there are additional references on the
3508 * root vp besides the ones obtained from the open
3509 * quota files and CoreStorage.
3512 (vnode_isinuse(skipvp
, accounted_root_usecounts
))) {
3513 error
= EBUSY
; /* root directory is still open */
3515 hfs_unlock(VTOC(skipvp
));
3516 /* release the iocount from the hfs_chash_getvnode call above. */
3519 if (error
&& (flags
& FORCECLOSE
) == 0)
3523 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3524 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3525 if (hfsmp
->hfs_qfiles
[i
].qf_vp
== NULLVP
)
3527 hfs_quotaoff(p
, mp
, i
);
3533 error
= vflush(mp
, NULLVP
, SKIPSYSTEM
| flags
);
3540 * Update volume encoding bitmap (HFS Plus only)
3542 * Mark a legacy text encoding as in-use (as needed)
3543 * in the volume header of this HFS+ filesystem.
3546 hfs_setencodingbits(struct hfsmount
*hfsmp
, u_int32_t encoding
)
3548 #define kIndexMacUkrainian 48 /* MacUkrainian encoding is 152 */
3549 #define kIndexMacFarsi 49 /* MacFarsi encoding is 140 */
3554 case kTextEncodingMacUkrainian
:
3555 index
= kIndexMacUkrainian
;
3557 case kTextEncodingMacFarsi
:
3558 index
= kIndexMacFarsi
;
3565 /* Only mark the encoding as in-use if it wasn't already set */
3566 if (index
< 64 && (hfsmp
->encodingsBitmap
& (u_int64_t
)(1ULL << index
)) == 0) {
3567 hfs_lock_mount (hfsmp
);
3568 hfsmp
->encodingsBitmap
|= (u_int64_t
)(1ULL << index
);
3569 MarkVCBDirty(hfsmp
);
3570 hfs_unlock_mount(hfsmp
);
3575 * Update volume stats
3577 * On journal volumes this will cause a volume header flush
3580 hfs_volupdate(struct hfsmount
*hfsmp
, enum volop op
, int inroot
)
3586 hfs_lock_mount (hfsmp
);
3588 MarkVCBDirty(hfsmp
);
3589 hfsmp
->hfs_mtime
= tv
.tv_sec
;
3595 if (hfsmp
->hfs_dircount
!= 0xFFFFFFFF)
3596 ++hfsmp
->hfs_dircount
;
3597 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3598 ++hfsmp
->vcbNmRtDirs
;
3601 if (hfsmp
->hfs_dircount
!= 0)
3602 --hfsmp
->hfs_dircount
;
3603 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3604 --hfsmp
->vcbNmRtDirs
;
3607 if (hfsmp
->hfs_filecount
!= 0xFFFFFFFF)
3608 ++hfsmp
->hfs_filecount
;
3609 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3613 if (hfsmp
->hfs_filecount
!= 0)
3614 --hfsmp
->hfs_filecount
;
3615 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3620 hfs_unlock_mount (hfsmp
);
3623 hfs_flushvolumeheader(hfsmp
, 0);
3631 /* HFS Standard MDB flush */
3633 hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
)
3635 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3636 struct filefork
*fp
;
3637 HFSMasterDirectoryBlock
*mdb
;
3638 struct buf
*bp
= NULL
;
3643 sector_size
= hfsmp
->hfs_logical_block_size
;
3644 retval
= (int)buf_bread(hfsmp
->hfs_devvp
, (daddr64_t
)HFS_PRI_SECTOR(sector_size
), sector_size
, NOCRED
, &bp
);
3651 hfs_lock_mount (hfsmp
);
3653 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(sector_size
));
3655 mdb
->drCrDate
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->hfs_itime
)));
3656 mdb
->drLsMod
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbLsMod
)));
3657 mdb
->drAtrb
= SWAP_BE16 (vcb
->vcbAtrb
);
3658 mdb
->drNmFls
= SWAP_BE16 (vcb
->vcbNmFls
);
3659 mdb
->drAllocPtr
= SWAP_BE16 (vcb
->nextAllocation
);
3660 mdb
->drClpSiz
= SWAP_BE32 (vcb
->vcbClpSiz
);
3661 mdb
->drNxtCNID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3662 mdb
->drFreeBks
= SWAP_BE16 (vcb
->freeBlocks
);
3664 namelen
= strlen((char *)vcb
->vcbVN
);
3665 retval
= utf8_to_hfs(vcb
, namelen
, vcb
->vcbVN
, mdb
->drVN
);
3666 /* Retry with MacRoman in case that's how it was exported. */
3668 retval
= utf8_to_mac_roman(namelen
, vcb
->vcbVN
, mdb
->drVN
);
3670 mdb
->drVolBkUp
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbVolBkUp
)));
3671 mdb
->drWrCnt
= SWAP_BE32 (vcb
->vcbWrCnt
);
3672 mdb
->drNmRtDirs
= SWAP_BE16 (vcb
->vcbNmRtDirs
);
3673 mdb
->drFilCnt
= SWAP_BE32 (vcb
->vcbFilCnt
);
3674 mdb
->drDirCnt
= SWAP_BE32 (vcb
->vcbDirCnt
);
3676 bcopy(vcb
->vcbFndrInfo
, mdb
->drFndrInfo
, sizeof(mdb
->drFndrInfo
));
3678 fp
= VTOF(vcb
->extentsRefNum
);
3679 mdb
->drXTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3680 mdb
->drXTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3681 mdb
->drXTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3682 mdb
->drXTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3683 mdb
->drXTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3684 mdb
->drXTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3685 mdb
->drXTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3686 mdb
->drXTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3687 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3689 fp
= VTOF(vcb
->catalogRefNum
);
3690 mdb
->drCTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3691 mdb
->drCTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3692 mdb
->drCTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3693 mdb
->drCTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3694 mdb
->drCTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3695 mdb
->drCTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3696 mdb
->drCTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3697 mdb
->drCTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3698 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3700 MarkVCBClean( vcb
);
3702 hfs_unlock_mount (hfsmp
);
3704 /* If requested, flush out the alternate MDB */
3706 struct buf
*alt_bp
= NULL
;
3708 if (buf_meta_bread(hfsmp
->hfs_devvp
, hfsmp
->hfs_partition_avh_sector
, sector_size
, NOCRED
, &alt_bp
) == 0) {
3709 bcopy(mdb
, (char *)buf_dataptr(alt_bp
) + HFS_ALT_OFFSET(sector_size
), kMDBSize
);
3711 (void) VNOP_BWRITE(alt_bp
);
3716 if (waitfor
!= MNT_WAIT
)
3719 retval
= VNOP_BWRITE(bp
);
3726 * Flush any dirty in-memory mount data to the on-disk
3729 * Note: the on-disk volume signature is intentionally
3730 * not flushed since the on-disk "H+" and "HX" signatures
3731 * are always stored in-memory as "H+".
3734 hfs_flushvolumeheader(struct hfsmount
*hfsmp
,
3735 hfs_flush_volume_header_options_t options
)
3737 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3738 struct filefork
*fp
;
3739 HFSPlusVolumeHeader
*volumeHeader
, *altVH
;
3741 struct buf
*bp
, *alt_bp
;
3743 daddr64_t priIDSector
;
3744 bool critical
= false;
3745 u_int16_t signature
;
3746 u_int16_t hfsversion
;
3747 daddr64_t avh_sector
;
3748 bool altflush
= ISSET(options
, HFS_FVH_WRITE_ALT
);
3750 if (ISSET(options
, HFS_FVH_FLUSH_IF_DIRTY
)
3751 && !hfs_header_needs_flushing(hfsmp
)) {
3755 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
3759 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
3760 return hfs_flushMDB(hfsmp
, ISSET(options
, HFS_FVH_WAIT
) ? MNT_WAIT
: 0, altflush
);
3763 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3764 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
3766 if (hfs_start_transaction(hfsmp
) != 0) {
3773 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3774 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
3775 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
3777 printf("hfs: err %d reading VH blk (vol=%s)\n", retval
, vcb
->vcbVN
);
3781 volumeHeader
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(bp
) +
3782 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3785 * Sanity check what we just read. If it's bad, try the alternate
3788 signature
= SWAP_BE16 (volumeHeader
->signature
);
3789 hfsversion
= SWAP_BE16 (volumeHeader
->version
);
3790 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3791 (hfsversion
< kHFSPlusVersion
) || (hfsversion
> 100) ||
3792 (SWAP_BE32 (volumeHeader
->blockSize
) != vcb
->blockSize
)) {
3793 printf("hfs: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3794 vcb
->vcbVN
, signature
, hfsversion
,
3795 SWAP_BE32 (volumeHeader
->blockSize
));
3796 hfs_mark_inconsistent(hfsmp
, HFS_INCONSISTENCY_DETECTED
);
3798 /* Almost always we read AVH relative to the partition size */
3799 avh_sector
= hfsmp
->hfs_partition_avh_sector
;
3801 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
3803 * The two altVH offsets do not match --- which means that a smaller file
3804 * system exists in a larger partition. Verify that we have the correct
3805 * alternate volume header sector as per the current parititon size.
3806 * The GPT device that we are mounted on top could have changed sizes
3807 * without us knowing.
3809 * We're in a transaction, so it's safe to modify the partition_avh_sector
3810 * field if necessary.
3813 uint64_t sector_count
;
3815 /* Get underlying device block count */
3816 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
3817 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
3818 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
3823 /* Partition size was changed without our knowledge */
3824 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
3825 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3826 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
3827 /* Note: hfs_fs_avh_sector will remain unchanged */
3828 printf ("hfs_flushVH: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
3829 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
3832 * We just updated the offset for AVH relative to
3833 * the partition size, so the content of that AVH
3834 * will be invalid. But since we are also maintaining
3835 * a valid AVH relative to the file system size, we
3836 * can read it since primary VH and partition AVH
3839 avh_sector
= hfsmp
->hfs_fs_avh_sector
;
3843 printf ("hfs: trying alternate (for %s) avh_sector=%qu\n",
3844 (avh_sector
== hfsmp
->hfs_fs_avh_sector
) ? "file system" : "partition", avh_sector
);
3847 retval
= buf_meta_bread(hfsmp
->hfs_devvp
,
3848 HFS_PHYSBLK_ROUNDDOWN(avh_sector
, hfsmp
->hfs_log_per_phys
),
3849 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
);
3851 printf("hfs: err %d reading alternate VH (%s)\n", retval
, vcb
->vcbVN
);
3855 altVH
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(alt_bp
) +
3856 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
));
3857 signature
= SWAP_BE16(altVH
->signature
);
3858 hfsversion
= SWAP_BE16(altVH
->version
);
3860 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3861 (hfsversion
< kHFSPlusVersion
) || (kHFSPlusVersion
> 100) ||
3862 (SWAP_BE32(altVH
->blockSize
) != vcb
->blockSize
)) {
3863 printf("hfs: corrupt alternate VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3864 vcb
->vcbVN
, signature
, hfsversion
,
3865 SWAP_BE32(altVH
->blockSize
));
3870 /* The alternate is plausible, so use it. */
3871 bcopy(altVH
, volumeHeader
, kMDBSize
);
3875 /* No alternate VH, nothing more we can do. */
3882 journal_modify_block_start(hfsmp
->jnl
, bp
);
3886 * For embedded HFS+ volumes, update create date if it changed
3887 * (ie from a setattrlist call)
3889 if ((vcb
->hfsPlusIOPosOffset
!= 0) &&
3890 (SWAP_BE32 (volumeHeader
->createDate
) != vcb
->localCreateDate
)) {
3892 HFSMasterDirectoryBlock
*mdb
;
3894 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3895 HFS_PHYSBLK_ROUNDDOWN(HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
), hfsmp
->hfs_log_per_phys
),
3896 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp2
);
3902 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp2
) +
3903 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3905 if ( SWAP_BE32 (mdb
->drCrDate
) != vcb
->localCreateDate
)
3908 journal_modify_block_start(hfsmp
->jnl
, bp2
);
3911 mdb
->drCrDate
= SWAP_BE32 (vcb
->localCreateDate
); /* pick up the new create date */
3914 journal_modify_block_end(hfsmp
->jnl
, bp2
, NULL
, NULL
);
3916 (void) VNOP_BWRITE(bp2
); /* write out the changes */
3921 buf_brelse(bp2
); /* just release it */
3926 hfs_lock_mount (hfsmp
);
3928 /* Note: only update the lower 16 bits worth of attributes */
3929 volumeHeader
->attributes
= SWAP_BE32 (vcb
->vcbAtrb
);
3930 volumeHeader
->journalInfoBlock
= SWAP_BE32 (vcb
->vcbJinfoBlock
);
3932 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSJMountVersion
);
3934 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSPlusMountVersion
);
3936 volumeHeader
->createDate
= SWAP_BE32 (vcb
->localCreateDate
); /* volume create date is in local time */
3937 volumeHeader
->modifyDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbLsMod
));
3938 volumeHeader
->backupDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbVolBkUp
));
3939 volumeHeader
->fileCount
= SWAP_BE32 (vcb
->vcbFilCnt
);
3940 volumeHeader
->folderCount
= SWAP_BE32 (vcb
->vcbDirCnt
);
3941 volumeHeader
->totalBlocks
= SWAP_BE32 (vcb
->totalBlocks
);
3942 volumeHeader
->freeBlocks
= SWAP_BE32 (vcb
->freeBlocks
+ vcb
->reclaimBlocks
);
3943 volumeHeader
->nextAllocation
= SWAP_BE32 (vcb
->nextAllocation
);
3944 volumeHeader
->rsrcClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3945 volumeHeader
->dataClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3946 volumeHeader
->nextCatalogID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3947 volumeHeader
->writeCount
= SWAP_BE32 (vcb
->vcbWrCnt
);
3948 volumeHeader
->encodingsBitmap
= SWAP_BE64 (vcb
->encodingsBitmap
);
3950 if (bcmp(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
)) != 0) {
3951 bcopy(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
));
3955 if (!altflush
&& !ISSET(options
, HFS_FVH_FLUSH_IF_DIRTY
)) {
3959 /* Sync Extents over-flow file meta data */
3960 fp
= VTOF(vcb
->extentsRefNum
);
3961 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3962 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3963 volumeHeader
->extentsFile
.extents
[i
].startBlock
=
3964 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3965 volumeHeader
->extentsFile
.extents
[i
].blockCount
=
3966 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3968 volumeHeader
->extentsFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3969 volumeHeader
->extentsFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3970 volumeHeader
->extentsFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3971 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3975 /* Sync Catalog file meta data */
3976 fp
= VTOF(vcb
->catalogRefNum
);
3977 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3978 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3979 volumeHeader
->catalogFile
.extents
[i
].startBlock
=
3980 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3981 volumeHeader
->catalogFile
.extents
[i
].blockCount
=
3982 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3984 volumeHeader
->catalogFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3985 volumeHeader
->catalogFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3986 volumeHeader
->catalogFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3987 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3991 /* Sync Allocation file meta data */
3992 fp
= VTOF(vcb
->allocationsRefNum
);
3993 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3994 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3995 volumeHeader
->allocationFile
.extents
[i
].startBlock
=
3996 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3997 volumeHeader
->allocationFile
.extents
[i
].blockCount
=
3998 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4000 volumeHeader
->allocationFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4001 volumeHeader
->allocationFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4002 volumeHeader
->allocationFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4003 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4007 /* Sync Attribute file meta data */
4008 if (hfsmp
->hfs_attribute_vp
) {
4009 fp
= VTOF(hfsmp
->hfs_attribute_vp
);
4010 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4011 volumeHeader
->attributesFile
.extents
[i
].startBlock
=
4012 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4013 volumeHeader
->attributesFile
.extents
[i
].blockCount
=
4014 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4016 if (ISSET(FTOC(fp
)->c_flag
, C_MODIFIED
)) {
4017 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4020 volumeHeader
->attributesFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4021 volumeHeader
->attributesFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4022 volumeHeader
->attributesFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4025 /* Sync Startup file meta data */
4026 if (hfsmp
->hfs_startup_vp
) {
4027 fp
= VTOF(hfsmp
->hfs_startup_vp
);
4028 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
4029 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4030 volumeHeader
->startupFile
.extents
[i
].startBlock
=
4031 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4032 volumeHeader
->startupFile
.extents
[i
].blockCount
=
4033 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4035 volumeHeader
->startupFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4036 volumeHeader
->startupFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4037 volumeHeader
->startupFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4038 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4047 MarkVCBClean(hfsmp
);
4048 hfs_unlock_mount (hfsmp
);
4050 /* If requested, flush out the alternate volume header */
4053 * The two altVH offsets do not match --- which means that a smaller file
4054 * system exists in a larger partition. Verify that we have the correct
4055 * alternate volume header sector as per the current parititon size.
4056 * The GPT device that we are mounted on top could have changed sizes
4057 * without us knowning.
4059 * We're in a transaction, so it's safe to modify the partition_avh_sector
4060 * field if necessary.
4062 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
4063 uint64_t sector_count
;
4065 /* Get underlying device block count */
4066 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
4067 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
4068 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
4073 /* Partition size was changed without our knowledge */
4074 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
4075 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
4076 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
4077 /* Note: hfs_fs_avh_sector will remain unchanged */
4078 printf ("hfs_flushVH: altflush: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
4079 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
4084 * First see if we need to write I/O to the "secondary" AVH
4085 * located at FS Size - 1024 bytes, because this one will
4086 * always go into the journal. We put this AVH into the journal
4087 * because even if the filesystem size has shrunk, this LBA should be
4088 * reachable after the partition-size modification has occurred.
4089 * The one where we need to be careful is partitionsize-1024, since the
4090 * partition size should hopefully shrink.
4092 * Most of the time this block will not execute.
4094 if ((hfsmp
->hfs_fs_avh_sector
) &&
4095 (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
4096 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4097 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
4098 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4100 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4103 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4104 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4108 journal_modify_block_end(hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4110 (void) VNOP_BWRITE(alt_bp
);
4112 } else if (alt_bp
) {
4118 * Flush out alternate volume header located at 1024 bytes before
4119 * end of the partition as part of journal transaction. In
4120 * most cases, this will be the only alternate volume header
4121 * that we need to worry about because the file system size is
4122 * same as the partition size, therefore hfs_fs_avh_sector is
4123 * same as hfs_partition_avh_sector. This is the "priority" AVH.
4125 * However, do not always put this I/O into the journal. If we skipped the
4126 * FS-Size AVH write above, then we will put this I/O into the journal as
4127 * that indicates the two were in sync. However, if the FS size is
4128 * not the same as the partition size, we are tracking two. We don't
4129 * put it in the journal in that case, since if the partition
4130 * size changes between uptimes, and we need to replay the journal,
4131 * this I/O could generate an EIO if during replay it is now trying
4132 * to access blocks beyond the device EOF.
4134 if (hfsmp
->hfs_partition_avh_sector
) {
4135 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4136 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
4137 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4139 /* only one AVH, put this I/O in the journal. */
4140 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4141 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4144 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4145 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4148 /* If journaled and we only have one AVH to track */
4149 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4150 journal_modify_block_end (hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4153 * If we don't have a journal or there are two AVH's at the
4154 * moment, then this one doesn't go in the journal. Note that
4155 * this one may generate I/O errors, since the partition
4156 * can be resized behind our backs at any moment and this I/O
4157 * may now appear to be beyond the device EOF.
4159 (void) VNOP_BWRITE(alt_bp
);
4160 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
4162 } else if (alt_bp
) {
4168 /* Finish modifying the block for the primary VH */
4170 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
4172 if (!ISSET(options
, HFS_FVH_WAIT
)) {
4175 retval
= VNOP_BWRITE(bp
);
4176 /* When critical data changes, flush the device cache */
4177 if (critical
&& (retval
== 0)) {
4178 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
4182 hfs_end_transaction(hfsmp
);
4191 hfs_end_transaction(hfsmp
);
4197 * Creates a UUID from a unique "name" in the HFS UUID Name space.
4198 * See version 3 UUID.
4201 hfs_getvoluuid(struct hfsmount
*hfsmp
, uuid_t result_uuid
)
4204 if (uuid_is_null(hfsmp
->hfs_full_uuid
)) {
4210 ((uint32_t *)rawUUID
)[0] = hfsmp
->vcbFndrInfo
[6];
4211 ((uint32_t *)rawUUID
)[1] = hfsmp
->vcbFndrInfo
[7];
4214 MD5Update( &md5c
, HFS_UUID_NAMESPACE_ID
, sizeof( uuid_t
) );
4215 MD5Update( &md5c
, rawUUID
, sizeof (rawUUID
) );
4216 MD5Final( result
, &md5c
);
4218 result
[6] = 0x30 | ( result
[6] & 0x0F );
4219 result
[8] = 0x80 | ( result
[8] & 0x3F );
4221 uuid_copy(hfsmp
->hfs_full_uuid
, result
);
4223 uuid_copy (result_uuid
, hfsmp
->hfs_full_uuid
);
4228 * Get file system attributes.
4231 hfs_vfs_getattr(struct mount
*mp
, struct vfs_attr
*fsap
, __unused vfs_context_t context
)
4233 #define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST | ATTR_FILE_CLUMPSIZE))
4234 #define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_DATA_PROTECT_FLAGS))
4236 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
4237 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
4239 int searchfs_on
= 0;
4240 int exchangedata_on
= 1;
4247 if (cp_fs_protected(mp
)) {
4248 exchangedata_on
= 0;
4252 VFSATTR_RETURN(fsap
, f_objcount
, (u_int64_t
)hfsmp
->vcbFilCnt
+ (u_int64_t
)hfsmp
->vcbDirCnt
);
4253 VFSATTR_RETURN(fsap
, f_filecount
, (u_int64_t
)hfsmp
->vcbFilCnt
);
4254 VFSATTR_RETURN(fsap
, f_dircount
, (u_int64_t
)hfsmp
->vcbDirCnt
);
4255 VFSATTR_RETURN(fsap
, f_maxobjcount
, (u_int64_t
)0xFFFFFFFF);
4256 VFSATTR_RETURN(fsap
, f_iosize
, (size_t)cluster_max_io_size(mp
, 0));
4257 VFSATTR_RETURN(fsap
, f_blocks
, (u_int64_t
)hfsmp
->totalBlocks
);
4258 VFSATTR_RETURN(fsap
, f_bfree
, (u_int64_t
)hfs_freeblks(hfsmp
, 0));
4259 VFSATTR_RETURN(fsap
, f_bavail
, (u_int64_t
)hfs_freeblks(hfsmp
, 1));
4260 VFSATTR_RETURN(fsap
, f_bsize
, (u_int32_t
)vcb
->blockSize
);
4261 /* XXX needs clarification */
4262 VFSATTR_RETURN(fsap
, f_bused
, hfsmp
->totalBlocks
- hfs_freeblks(hfsmp
, 1));
4263 VFSATTR_RETURN(fsap
, f_files
, (u_int64_t
)HFS_MAX_FILES
);
4264 VFSATTR_RETURN(fsap
, f_ffree
, (u_int64_t
)hfs_free_cnids(hfsmp
));
4266 fsap
->f_fsid
.val
[0] = hfsmp
->hfs_raw_dev
;
4267 fsap
->f_fsid
.val
[1] = vfs_typenum(mp
);
4268 VFSATTR_SET_SUPPORTED(fsap
, f_fsid
);
4270 VFSATTR_RETURN(fsap
, f_signature
, vcb
->vcbSigWord
);
4271 VFSATTR_RETURN(fsap
, f_carbon_fsid
, 0);
4273 if (VFSATTR_IS_ACTIVE(fsap
, f_capabilities
)) {
4274 vol_capabilities_attr_t
*cap
;
4276 cap
= &fsap
->f_capabilities
;
4278 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4279 /* HFS+ & variants */
4280 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4281 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4282 VOL_CAP_FMT_SYMBOLICLINKS
|
4283 VOL_CAP_FMT_HARDLINKS
|
4284 VOL_CAP_FMT_JOURNAL
|
4285 VOL_CAP_FMT_ZERO_RUNS
|
4286 (hfsmp
->jnl
? VOL_CAP_FMT_JOURNAL_ACTIVE
: 0) |
4287 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
? VOL_CAP_FMT_CASE_SENSITIVE
: 0) |
4288 VOL_CAP_FMT_CASE_PRESERVING
|
4289 VOL_CAP_FMT_FAST_STATFS
|
4290 VOL_CAP_FMT_2TB_FILESIZE
|
4291 VOL_CAP_FMT_HIDDEN_FILES
|
4293 VOL_CAP_FMT_DECMPFS_COMPRESSION
|
4295 #if CONFIG_HFS_DIRLINK
4296 VOL_CAP_FMT_DIR_HARDLINKS
|
4298 #ifdef VOL_CAP_FMT_DOCUMENT_ID
4299 VOL_CAP_FMT_DOCUMENT_ID
|
4300 #endif /* VOL_CAP_FMT_DOCUMENT_ID */
4301 #ifdef VOL_CAP_FMT_WRITE_GENERATION_COUNT
4302 VOL_CAP_FMT_WRITE_GENERATION_COUNT
|
4303 #endif /* VOL_CAP_FMT_WRITE_GENERATION_COUNT */
4304 VOL_CAP_FMT_PATH_FROM_ID
;
4309 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4310 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4311 VOL_CAP_FMT_CASE_PRESERVING
|
4312 VOL_CAP_FMT_FAST_STATFS
|
4313 VOL_CAP_FMT_HIDDEN_FILES
|
4314 VOL_CAP_FMT_PATH_FROM_ID
;
4319 * The capabilities word in 'cap' tell you whether or not
4320 * this particular filesystem instance has feature X enabled.
4323 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] =
4324 VOL_CAP_INT_ATTRLIST
|
4325 VOL_CAP_INT_NFSEXPORT
|
4326 VOL_CAP_INT_READDIRATTR
|
4327 VOL_CAP_INT_ALLOCATE
|
4328 VOL_CAP_INT_VOL_RENAME
|
4329 VOL_CAP_INT_ADVLOCK
|
4331 #if VOL_CAP_INT_RENAME_EXCL
4332 VOL_CAP_INT_RENAME_EXCL
|
4335 VOL_CAP_INT_EXTENDED_ATTR
|
4336 VOL_CAP_INT_NAMEDSTREAMS
;
4338 VOL_CAP_INT_EXTENDED_ATTR
;
4341 /* HFS may conditionally support searchfs and exchangedata depending on the runtime */
4344 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_SEARCHFS
;
4346 if (exchangedata_on
) {
4347 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_EXCHANGEDATA
;
4350 cap
->capabilities
[VOL_CAPABILITIES_RESERVED1
] = 0;
4351 cap
->capabilities
[VOL_CAPABILITIES_RESERVED2
] = 0;
4353 cap
->valid
[VOL_CAPABILITIES_FORMAT
] =
4354 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4355 VOL_CAP_FMT_SYMBOLICLINKS
|
4356 VOL_CAP_FMT_HARDLINKS
|
4357 VOL_CAP_FMT_JOURNAL
|
4358 VOL_CAP_FMT_JOURNAL_ACTIVE
|
4359 VOL_CAP_FMT_NO_ROOT_TIMES
|
4360 VOL_CAP_FMT_SPARSE_FILES
|
4361 VOL_CAP_FMT_ZERO_RUNS
|
4362 VOL_CAP_FMT_CASE_SENSITIVE
|
4363 VOL_CAP_FMT_CASE_PRESERVING
|
4364 VOL_CAP_FMT_FAST_STATFS
|
4365 VOL_CAP_FMT_2TB_FILESIZE
|
4366 VOL_CAP_FMT_OPENDENYMODES
|
4367 VOL_CAP_FMT_HIDDEN_FILES
|
4368 VOL_CAP_FMT_PATH_FROM_ID
|
4369 VOL_CAP_FMT_DECMPFS_COMPRESSION
|
4370 #ifdef VOL_CAP_FMT_DOCUMENT_ID
4371 VOL_CAP_FMT_DOCUMENT_ID
|
4372 #endif /* VOL_CAP_FMT_DOCUMENT_ID */
4373 #ifdef VOL_CAP_FMT_WRITE_GENERATION_COUNT
4374 VOL_CAP_FMT_WRITE_GENERATION_COUNT
|
4375 #endif /* VOL_CAP_FMT_WRITE_GENERATION_COUNT */
4376 VOL_CAP_FMT_DIR_HARDLINKS
;
4379 * Bits in the "valid" field tell you whether or not the on-disk
4380 * format supports feature X.
4383 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] =
4384 VOL_CAP_INT_ATTRLIST
|
4385 VOL_CAP_INT_NFSEXPORT
|
4386 VOL_CAP_INT_READDIRATTR
|
4387 VOL_CAP_INT_COPYFILE
|
4388 VOL_CAP_INT_ALLOCATE
|
4389 VOL_CAP_INT_VOL_RENAME
|
4390 VOL_CAP_INT_ADVLOCK
|
4392 VOL_CAP_INT_MANLOCK
|
4393 #if VOL_CAP_INT_RENAME_EXCL
4394 VOL_CAP_INT_RENAME_EXCL
|
4398 VOL_CAP_INT_EXTENDED_ATTR
|
4399 VOL_CAP_INT_NAMEDSTREAMS
;
4401 VOL_CAP_INT_EXTENDED_ATTR
;
4404 /* HFS always supports exchangedata and searchfs in the on-disk format natively */
4405 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] |= (VOL_CAP_INT_SEARCHFS
| VOL_CAP_INT_EXCHANGEDATA
);
4408 cap
->valid
[VOL_CAPABILITIES_RESERVED1
] = 0;
4409 cap
->valid
[VOL_CAPABILITIES_RESERVED2
] = 0;
4410 VFSATTR_SET_SUPPORTED(fsap
, f_capabilities
);
4412 if (VFSATTR_IS_ACTIVE(fsap
, f_attributes
)) {
4413 vol_attributes_attr_t
*attrp
= &fsap
->f_attributes
;
4415 attrp
->validattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4417 attrp
->validattr
.commonattr
|= ATTR_CMN_DATA_PROTECT_FLAGS
;
4418 #endif // CONFIG_PROTECT
4420 attrp
->validattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4421 attrp
->validattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4422 attrp
->validattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4423 attrp
->validattr
.forkattr
= 0;
4425 attrp
->nativeattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4427 attrp
->nativeattr
.commonattr
|= ATTR_CMN_DATA_PROTECT_FLAGS
;
4428 #endif // CONFIG_PROTECT
4430 attrp
->nativeattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4431 attrp
->nativeattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4432 attrp
->nativeattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4433 attrp
->nativeattr
.forkattr
= 0;
4434 VFSATTR_SET_SUPPORTED(fsap
, f_attributes
);
4436 fsap
->f_create_time
.tv_sec
= hfsmp
->hfs_itime
;
4437 fsap
->f_create_time
.tv_nsec
= 0;
4438 VFSATTR_SET_SUPPORTED(fsap
, f_create_time
);
4439 fsap
->f_modify_time
.tv_sec
= hfsmp
->vcbLsMod
;
4440 fsap
->f_modify_time
.tv_nsec
= 0;
4441 VFSATTR_SET_SUPPORTED(fsap
, f_modify_time
);
4442 // We really don't have volume access time, they should check the root node, fake it up
4443 if (VFSATTR_IS_ACTIVE(fsap
, f_access_time
)) {
4447 fsap
->f_access_time
.tv_sec
= tv
.tv_sec
;
4448 fsap
->f_access_time
.tv_nsec
= 0;
4449 VFSATTR_SET_SUPPORTED(fsap
, f_access_time
);
4452 fsap
->f_backup_time
.tv_sec
= hfsmp
->vcbVolBkUp
;
4453 fsap
->f_backup_time
.tv_nsec
= 0;
4454 VFSATTR_SET_SUPPORTED(fsap
, f_backup_time
);
4456 if (VFSATTR_IS_ACTIVE(fsap
, f_fssubtype
)) {
4457 u_int16_t subtype
= 0;
4460 * Subtypes (flavors) for HFS
4461 * 0: Mac OS Extended
4462 * 1: Mac OS Extended (Journaled)
4463 * 2: Mac OS Extended (Case Sensitive)
4464 * 3: Mac OS Extended (Case Sensitive, Journaled)
4466 * 128: Mac OS Standard
4469 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4471 subtype
|= HFS_SUBTYPE_JOURNALED
;
4473 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
4474 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
4479 subtype
= HFS_SUBTYPE_STANDARDHFS
;
4482 fsap
->f_fssubtype
= subtype
;
4483 VFSATTR_SET_SUPPORTED(fsap
, f_fssubtype
);
4486 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4487 strlcpy(fsap
->f_vol_name
, (char *) hfsmp
->vcbVN
, MAXPATHLEN
);
4488 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4490 if (VFSATTR_IS_ACTIVE(fsap
, f_uuid
)) {
4491 hfs_getvoluuid(hfsmp
, fsap
->f_uuid
);
4492 VFSATTR_SET_SUPPORTED(fsap
, f_uuid
);
4498 * Perform a volume rename. Requires the FS' root vp.
4501 hfs_rename_volume(struct vnode
*vp
, const char *name
, proc_t p
)
4503 ExtendedVCB
*vcb
= VTOVCB(vp
);
4504 struct cnode
*cp
= VTOC(vp
);
4505 struct hfsmount
*hfsmp
= VTOHFS(vp
);
4506 struct cat_desc to_desc
;
4507 struct cat_desc todir_desc
;
4508 struct cat_desc new_desc
;
4509 cat_cookie_t cookie
;
4512 char converted_volname
[256];
4513 size_t volname_length
= 0;
4514 size_t conv_volname_length
= 0;
4518 * Ignore attempts to rename a volume to a zero-length name.
4523 bzero(&to_desc
, sizeof(to_desc
));
4524 bzero(&todir_desc
, sizeof(todir_desc
));
4525 bzero(&new_desc
, sizeof(new_desc
));
4526 bzero(&cookie
, sizeof(cookie
));
4528 todir_desc
.cd_parentcnid
= kHFSRootParentID
;
4529 todir_desc
.cd_cnid
= kHFSRootFolderID
;
4530 todir_desc
.cd_flags
= CD_ISDIR
;
4532 to_desc
.cd_nameptr
= (const u_int8_t
*)name
;
4533 to_desc
.cd_namelen
= strlen(name
);
4534 to_desc
.cd_parentcnid
= kHFSRootParentID
;
4535 to_desc
.cd_cnid
= cp
->c_cnid
;
4536 to_desc
.cd_flags
= CD_ISDIR
;
4538 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)) == 0) {
4539 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
4540 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, &cookie
, p
)) == 0) {
4541 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4543 error
= cat_rename(hfsmp
, &cp
->c_desc
, &todir_desc
, &to_desc
, &new_desc
);
4546 * If successful, update the name in the VCB, ensure it's terminated.
4549 strlcpy((char *)vcb
->vcbVN
, name
, sizeof(vcb
->vcbVN
));
4551 volname_length
= strlen ((const char*)vcb
->vcbVN
);
4552 /* Send the volume name down to CoreStorage if necessary */
4553 error
= utf8_normalizestr(vcb
->vcbVN
, volname_length
, (u_int8_t
*)converted_volname
, &conv_volname_length
, 256, UTF_PRECOMPOSED
);
4555 (void) VNOP_IOCTL (hfsmp
->hfs_devvp
, _DKIOCCSSETLVNAME
, converted_volname
, 0, vfs_context_current());
4560 hfs_systemfile_unlock(hfsmp
, lockflags
);
4561 cat_postflight(hfsmp
, &cookie
, p
);
4565 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
4567 hfs_end_transaction(hfsmp
);
4570 /* Release old allocated name buffer */
4571 if (cp
->c_desc
.cd_flags
& CD_HASBUF
) {
4572 const char *tmp_name
= (const char *)cp
->c_desc
.cd_nameptr
;
4574 cp
->c_desc
.cd_nameptr
= 0;
4575 cp
->c_desc
.cd_namelen
= 0;
4576 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
4577 vfs_removename(tmp_name
);
4579 /* Update cnode's catalog descriptor */
4580 replace_desc(cp
, &new_desc
);
4581 vcb
->volumeNameEncodingHint
= new_desc
.cd_encoding
;
4582 cp
->c_touch_chgtime
= TRUE
;
4592 * Get file system attributes.
4595 hfs_vfs_setattr(struct mount
*mp
, struct vfs_attr
*fsap
, vfs_context_t context
)
4597 kauth_cred_t cred
= vfs_context_ucred(context
);
4601 * Must be superuser or owner of filesystem to change volume attributes
4603 if (!kauth_cred_issuser(cred
) && (kauth_cred_getuid(cred
) != vfs_statfs(mp
)->f_owner
))
4606 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4609 error
= hfs_vfs_root(mp
, &root_vp
, context
);
4613 error
= hfs_rename_volume(root_vp
, fsap
->f_vol_name
, vfs_context_proc(context
));
4614 (void) vnode_put(root_vp
);
4618 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4625 /* If a runtime corruption is detected, set the volume inconsistent
4626 * bit in the volume attributes. The volume inconsistent bit is a persistent
4627 * bit which represents that the volume is corrupt and needs repair.
4628 * The volume inconsistent bit can be set from the kernel when it detects
4629 * runtime corruption or from file system repair utilities like fsck_hfs when
4630 * a repair operation fails. The bit should be cleared only from file system
4631 * verify/repair utility like fsck_hfs when a verify/repair succeeds.
4633 void hfs_mark_inconsistent(struct hfsmount
*hfsmp
,
4634 hfs_inconsistency_reason_t reason
)
4636 hfs_lock_mount (hfsmp
);
4637 if ((hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) == 0) {
4638 hfsmp
->vcbAtrb
|= kHFSVolumeInconsistentMask
;
4639 MarkVCBDirty(hfsmp
);
4641 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
)==0) {
4643 case HFS_INCONSISTENCY_DETECTED
:
4644 printf("hfs_mark_inconsistent: Runtime corruption detected on %s, fsck will be forced on next mount.\n",
4647 case HFS_ROLLBACK_FAILED
:
4648 printf("hfs_mark_inconsistent: Failed to roll back; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4651 case HFS_OP_INCOMPLETE
:
4652 printf("hfs_mark_inconsistent: Failed to complete operation; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4655 case HFS_FSCK_FORCED
:
4656 printf("hfs_mark_inconsistent: fsck requested for `%s'; fsck will be forced on next mount.\n",
4661 hfs_unlock_mount (hfsmp
);
4664 /* Replay the journal on the device node provided. Returns zero if
4665 * journal replay succeeded or no journal was supposed to be replayed.
4667 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
)
4672 /* Replay allowed only on raw devices */
4673 if (!vnode_ischr(devvp
) && !vnode_isblk(devvp
))
4676 retval
= hfs_mountfs(devvp
, NULL
, NULL
, /* journal_replay_only: */ 1, context
);
4677 buf_flushdirtyblks(devvp
, TRUE
, 0, "hfs_journal_replay");
4679 /* FSYNC the devnode to be sure all data has been flushed */
4680 error
= VNOP_FSYNC(devvp
, MNT_WAIT
, context
);
4693 hfs_syncer_free(struct hfsmount
*hfsmp
)
4695 if (hfsmp
&& ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)) {
4696 hfs_syncer_lock(hfsmp
);
4697 CLR(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
);
4698 hfs_syncer_unlock(hfsmp
);
4700 // Wait for the syncer thread to finish
4701 if (hfsmp
->hfs_syncer_thread
) {
4702 hfs_syncer_wakeup(hfsmp
);
4703 hfs_syncer_lock(hfsmp
);
4704 while (hfsmp
->hfs_syncer_thread
)
4705 hfs_syncer_wait(hfsmp
, NULL
);
4706 hfs_syncer_unlock(hfsmp
);
4711 static int hfs_vfs_ioctl(struct mount
*mp
, u_long command
, caddr_t data
,
4712 __unused
int flags
, __unused vfs_context_t context
)
4716 case FIODEVICELOCKED
:
4717 cp_device_locked_callback(mp
, (cp_lock_state_t
)data
);
4725 * hfs vfs operations.
4727 struct vfsops hfs_vfsops
= {
4728 .vfs_mount
= hfs_mount
,
4729 .vfs_start
= hfs_start
,
4730 .vfs_unmount
= hfs_unmount
,
4731 .vfs_root
= hfs_vfs_root
,
4732 .vfs_quotactl
= hfs_quotactl
,
4733 .vfs_getattr
= hfs_vfs_getattr
,
4734 .vfs_sync
= hfs_sync
,
4735 .vfs_vget
= hfs_vfs_vget
,
4736 .vfs_fhtovp
= hfs_fhtovp
,
4737 .vfs_vptofh
= hfs_vptofh
,
4738 .vfs_init
= hfs_init
,
4739 .vfs_sysctl
= hfs_sysctl
,
4740 .vfs_setattr
= hfs_vfs_setattr
,
4741 .vfs_ioctl
= hfs_vfs_ioctl
,