]>
Commit | Line | Data |
---|---|---|
de8ee011 A |
1 | /* Copyright © 2017-2018 Apple Inc. All rights reserved. |
2 | * | |
3 | * lf_hfs_volume_allocation.c | |
4 | * livefiles_hfs | |
5 | * | |
6 | * Created by Or Haimovich on 22/3/18. | |
7 | */ | |
8 | ||
9 | #include <sys/disk.h> | |
10 | ||
11 | #include "lf_hfs_volume_allocation.h" | |
12 | #include "lf_hfs_logger.h" | |
13 | #include "lf_hfs_endian.h" | |
14 | #include "lf_hfs_format.h" | |
15 | #include "lf_hfs_locks.h" | |
16 | #include "lf_hfs_rangelist.h" | |
17 | #include "lf_hfs_raw_read_write.h" | |
18 | #include "lf_hfs_readwrite_ops.h" | |
19 | #include "lf_hfs_utils.h" | |
20 | #include "lf_hfs_journal.h" | |
21 | #include "lf_hfs_vfsutils.h" | |
22 | #include "lf_hfs_vfsops.h" | |
23 | #include "lf_hfs_generic_buf.h" | |
24 | ||
25 | #pragma clang diagnostic ignored "-Waddress-of-packed-member" | |
26 | ||
27 | enum { | |
28 | /* | |
29 | * HFSDBG_ALLOC_ENABLED: Log calls to BlockAllocate and | |
30 | * BlockDeallocate, including the internal BlockAllocateXxx | |
31 | * routines so we can see how an allocation was satisfied. | |
32 | * | |
33 | * HFSDBG_EXT_CACHE_ENABLED: Log routines that read or write the | |
34 | * free extent cache. | |
35 | * | |
36 | * HFSDBG_UNMAP_ENABLED: Log events involving the trim list. | |
37 | * | |
38 | * HFSDBG_BITMAP_ENABLED: Log accesses to the volume bitmap (setting | |
39 | * or clearing bits, scanning the bitmap). | |
40 | */ | |
41 | HFSDBG_ALLOC_ENABLED = 1, | |
42 | HFSDBG_EXT_CACHE_ENABLED = 2, | |
43 | HFSDBG_UNMAP_ENABLED = 4, | |
44 | HFSDBG_BITMAP_ENABLED = 8 | |
45 | }; | |
46 | ||
47 | enum { | |
48 | kBytesPerWord = 4, | |
49 | kBitsPerByte = 8, | |
50 | kBitsPerWord = 32, | |
51 | ||
52 | kBitsWithinWordMask = kBitsPerWord-1 | |
53 | }; | |
54 | ||
55 | #define kLowBitInWordMask 0x00000001ul | |
56 | #define kHighBitInWordMask 0x80000000ul | |
57 | #define kAllBitsSetInWord 0xFFFFFFFFul | |
58 | ||
59 | #define HFS_MIN_SUMMARY_BLOCKSIZE 4096 | |
60 | ||
61 | #define ALLOC_DEBUG 0 | |
62 | ||
63 | static OSErr ReadBitmapBlock( | |
64 | ExtendedVCB *vcb, | |
65 | u_int32_t bit, | |
66 | u_int32_t **buffer, | |
67 | GenericLFBufPtr *blockRef, | |
68 | hfs_block_alloc_flags_t flags); | |
69 | ||
70 | static OSErr ReleaseBitmapBlock( | |
71 | ExtendedVCB *vcb, | |
72 | GenericLFBufPtr blockRef, | |
73 | Boolean dirty); | |
74 | ||
75 | static OSErr hfs_block_alloc_int(hfsmount_t *hfsmp, | |
76 | HFSPlusExtentDescriptor *extent, | |
77 | hfs_block_alloc_flags_t flags, | |
78 | hfs_alloc_extra_args_t *ap); | |
79 | ||
80 | static OSErr BlockFindAny( | |
81 | ExtendedVCB *vcb, | |
82 | u_int32_t startingBlock, | |
83 | u_int32_t endingBlock, | |
84 | u_int32_t maxBlocks, | |
85 | hfs_block_alloc_flags_t flags, | |
86 | Boolean trustSummary, | |
87 | u_int32_t *actualStartBlock, | |
88 | u_int32_t *actualNumBlocks); | |
89 | ||
90 | static OSErr BlockFindAnyBitmap( | |
91 | ExtendedVCB *vcb, | |
92 | u_int32_t startingBlock, | |
93 | u_int32_t endingBlock, | |
94 | u_int32_t maxBlocks, | |
95 | hfs_block_alloc_flags_t flags, | |
96 | u_int32_t *actualStartBlock, | |
97 | u_int32_t *actualNumBlocks); | |
98 | ||
99 | static OSErr BlockFindContig( | |
100 | ExtendedVCB *vcb, | |
101 | u_int32_t startingBlock, | |
102 | u_int32_t minBlocks, | |
103 | u_int32_t maxBlocks, | |
104 | hfs_block_alloc_flags_t flags, | |
105 | u_int32_t *actualStartBlock, | |
106 | u_int32_t *actualNumBlocks); | |
107 | ||
108 | static OSErr BlockFindContiguous( | |
109 | ExtendedVCB *vcb, | |
110 | u_int32_t startingBlock, | |
111 | u_int32_t endingBlock, | |
112 | u_int32_t minBlocks, | |
113 | u_int32_t maxBlocks, | |
114 | Boolean useMetaZone, | |
115 | Boolean trustSummary, | |
116 | u_int32_t *actualStartBlock, | |
117 | u_int32_t *actualNumBlocks, | |
118 | hfs_block_alloc_flags_t flags); | |
119 | ||
120 | static OSErr BlockFindKnown( | |
121 | ExtendedVCB *vcb, | |
122 | u_int32_t maxBlocks, | |
123 | u_int32_t *actualStartBlock, | |
124 | u_int32_t *actualNumBlocks); | |
125 | ||
126 | static OSErr hfs_alloc_try_hard(hfsmount_t *hfsmp, | |
127 | HFSPlusExtentDescriptor *extent, | |
128 | uint32_t max_blocks, | |
129 | hfs_block_alloc_flags_t flags); | |
130 | ||
131 | static OSErr BlockMarkAllocatedInternal ( | |
132 | ExtendedVCB *vcb, | |
133 | u_int32_t startingBlock, | |
134 | u_int32_t numBlocks, | |
135 | hfs_block_alloc_flags_t flags); | |
136 | ||
137 | static OSErr BlockMarkFreeInternal( | |
138 | ExtendedVCB *vcb, | |
139 | u_int32_t startingBlock, | |
140 | u_int32_t numBlocks, | |
141 | Boolean do_validate); | |
142 | ||
143 | ||
144 | static OSErr ReadBitmapRange (struct hfsmount *hfsmp, uint32_t offset, uint32_t iosize, | |
145 | uint32_t **buffer, GenericLFBuf **blockRef); | |
146 | ||
147 | static OSErr ReleaseScanBitmapRange( GenericLFBufPtr bp ); | |
148 | ||
149 | static int hfs_track_unmap_blocks (struct hfsmount *hfsmp, u_int32_t offset, | |
150 | u_int32_t numBlocks, struct jnl_trim_list *list); | |
151 | ||
152 | static int hfs_alloc_scan_range(struct hfsmount *hfsmp, | |
153 | u_int32_t startbit, | |
154 | u_int32_t *bitToScan, | |
155 | struct jnl_trim_list *list); | |
156 | ||
157 | static int hfs_scan_range_size (struct hfsmount* hfsmp, uint32_t start, uint32_t *iosize); | |
158 | /* Bitmap Re-use Detection */ | |
159 | static inline int extents_overlap (uint32_t start1, uint32_t len1, | |
160 | uint32_t start2, uint32_t len2) { | |
161 | return !( ((start1 + len1) <= start2) || ((start2 + len2) <= start1) ); | |
162 | } | |
163 | ||
164 | /* Summary Table Functions */ | |
165 | static int hfs_set_summary (struct hfsmount *hfsmp, uint32_t summarybit, uint32_t inuse); | |
166 | static int hfs_get_summary_index (struct hfsmount *hfsmp, uint32_t block, uint32_t *index); | |
167 | static int hfs_find_summary_free (struct hfsmount *hfsmp, uint32_t block, uint32_t *newblock); | |
168 | static int hfs_get_summary_allocblock (struct hfsmount *hfsmp, uint32_t summarybit, uint32_t *alloc); | |
169 | static int hfs_release_summary (struct hfsmount *hfsmp, uint32_t start, uint32_t length); | |
170 | static int hfs_check_summary (struct hfsmount *hfsmp, uint32_t start, uint32_t *freeblocks); | |
171 | ||
172 | /* Used in external mount code to initialize the summary table */ | |
173 | int hfs_init_summary (struct hfsmount *hfsmp); | |
174 | ||
175 | #if ALLOC_DEBUG | |
176 | void hfs_validate_summary (struct hfsmount *hfsmp); | |
177 | #endif | |
178 | ||
179 | ||
180 | /* Functions for manipulating free extent cache */ | |
181 | static void remove_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount); | |
182 | static Boolean add_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount); | |
183 | static void sanity_check_free_ext(struct hfsmount *hfsmp, int check_allocated); | |
184 | ||
185 | static void hfs_release_reserved(hfsmount_t *hfsmp, struct rl_entry *range, int list); | |
186 | ||
187 | ||
188 | #if ALLOC_DEBUG | |
189 | /* | |
190 | * Validation Routine to verify that the TRIM list maintained by the journal | |
191 | * is in good shape relative to what we think the bitmap should have. We should | |
192 | * never encounter allocated blocks in the TRIM list, so if we ever encounter them, | |
193 | * we panic. | |
194 | */ | |
195 | int trim_validate_bitmap (struct hfsmount *hfsmp); | |
196 | int trim_validate_bitmap (struct hfsmount *hfsmp) { | |
197 | u_int64_t blockno_offset; | |
198 | u_int64_t numblocks; | |
199 | int i; | |
200 | int count; | |
201 | u_int32_t startblk; | |
202 | u_int32_t blks; | |
203 | int err = 0; | |
204 | uint32_t alloccount = 0; | |
205 | ||
206 | if (hfsmp->jnl) { | |
207 | struct journal *jnl = (struct journal*)hfsmp->jnl; | |
208 | if (jnl->active_tr) { | |
209 | struct jnl_trim_list *trim = &(jnl->active_tr->trim); | |
210 | count = trim->extent_count; | |
211 | for (i = 0; i < count; i++) { | |
212 | blockno_offset = trim->extents[i].offset; | |
213 | blockno_offset = blockno_offset - (uint64_t)hfsmp->hfsPlusIOPosOffset; | |
214 | blockno_offset = blockno_offset / hfsmp->blockSize; | |
215 | numblocks = trim->extents[i].length / hfsmp->blockSize; | |
216 | ||
217 | startblk = (u_int32_t)blockno_offset; | |
218 | blks = (u_int32_t) numblocks; | |
219 | err = hfs_count_allocated (hfsmp, startblk, blks, &alloccount); | |
220 | ||
221 | if (err == 0 && alloccount != 0) { | |
222 | LFHFS_LOG(LEVEL_ERROR, "trim_validate_bitmap: %d blocks @ ABN %d are allocated!", alloccount, startblk); | |
223 | hfs_assert(0); | |
224 | } | |
225 | } | |
226 | } | |
227 | } | |
228 | return 0; | |
229 | } | |
230 | ||
231 | #endif | |
232 | ||
233 | /* | |
234 | ;________________________________________________________________________________ | |
235 | ; | |
236 | ; Routine: hfs_issue_unmap | |
237 | ; | |
238 | ; Function: Issue a DKIOCUNMAP for all blocks currently tracked by the jnl_trim_list | |
239 | ; | |
240 | ; Input Arguments: | |
241 | ; hfsmp - The volume containing the allocation blocks. | |
242 | ; list - The list of currently tracked trim ranges. | |
243 | ;________________________________________________________________________________ | |
244 | */ | |
245 | ||
246 | static int hfs_issue_unmap (struct hfsmount *hfsmp, struct jnl_trim_list *list) | |
247 | { | |
248 | dk_unmap_t unmap; | |
249 | int error = 0; | |
250 | ||
251 | if (list->extent_count > 0 && list->extents != NULL) { | |
252 | bzero(&unmap, sizeof(unmap)); | |
253 | unmap.extents = list->extents; | |
254 | unmap.extentsCount = list->extent_count; | |
255 | ||
256 | /* Issue a TRIM and flush them out */ | |
257 | error = ioctl(hfsmp->hfs_devvp->psFSRecord->iFD, DKIOCUNMAP, &unmap); | |
258 | ||
259 | bzero (list->extents, (list->allocated_count * sizeof(dk_extent_t))); | |
260 | bzero (&unmap, sizeof(unmap)); | |
261 | list->extent_count = 0; | |
262 | } | |
263 | ||
264 | return error; | |
265 | } | |
266 | ||
267 | /* | |
268 | ;________________________________________________________________________________ | |
269 | ; | |
270 | ; Routine: hfs_track_unmap_blocks | |
271 | ; | |
272 | ; Function: Make note of a range of allocation blocks that should be | |
273 | ; unmapped (trimmed). That is, the given range of blocks no | |
274 | ; longer have useful content, and the device can unmap the | |
275 | ; previous contents. For example, a solid state disk may reuse | |
276 | ; the underlying storage for other blocks. | |
277 | ; | |
278 | ; This routine is only supported for journaled volumes. | |
279 | ; | |
280 | ; *****NOTE*****: | |
281 | ; This function should *NOT* be used when the volume is fully | |
282 | ; mounted. This function is intended to support a bitmap iteration | |
283 | ; at mount time to fully inform the SSD driver of the state of all blocks | |
284 | ; at mount time, and assumes that there is no allocation/deallocation | |
285 | ; interference during its iteration., | |
286 | ; | |
287 | ; Input Arguments: | |
288 | ; hfsmp - The volume containing the allocation blocks. | |
289 | ; offset - The first allocation block of the extent being freed. | |
290 | ; numBlocks - The number of allocation blocks of the extent being freed. | |
291 | ; list - The list of currently tracked trim ranges. | |
292 | ;________________________________________________________________________________ | |
293 | */ | |
294 | static int hfs_track_unmap_blocks (struct hfsmount *hfsmp, u_int32_t start, u_int32_t numBlocks, struct jnl_trim_list *list) { | |
295 | u_int64_t offset; | |
296 | u_int64_t length; | |
297 | int error = 0; | |
298 | ||
299 | if ((hfsmp->jnl != NULL)) | |
300 | { | |
301 | if ((hfsmp->hfs_flags & HFS_UNMAP) && list->allocated_count && list->extents != NULL) | |
302 | { | |
303 | ||
304 | int extent_no = list->extent_count; | |
305 | offset = (u_int64_t) start * hfsmp->blockSize + (u_int64_t) hfsmp->hfsPlusIOPosOffset; | |
306 | length = (u_int64_t) numBlocks * hfsmp->blockSize; | |
307 | ||
308 | list->extents[extent_no].offset = offset; | |
309 | list->extents[extent_no].length = length; | |
310 | list->extent_count++; | |
311 | if (list->extent_count == list->allocated_count) { | |
312 | error = hfs_issue_unmap (hfsmp, list); | |
313 | } | |
314 | } | |
315 | } | |
316 | ||
317 | return error; | |
318 | } | |
319 | ||
320 | /* | |
321 | ;________________________________________________________________________________ | |
322 | ; | |
323 | ; Routine: hfs_trim_callback | |
324 | ; | |
325 | ; Function: This function is called when a transaction that freed extents | |
326 | ; (via hfs_unmap_free_extent/journal_trim_add_extent) has been | |
327 | ; written to the on-disk journal. This routine will add those | |
328 | ; extents to the free extent cache so that they can be reused. | |
329 | ; | |
330 | ; CAUTION: This routine is called while the journal's trim lock | |
331 | ; is held shared, so that no other thread can reuse any portion | |
332 | ; of those extents. We must be very careful about which locks | |
333 | ; we take from within this callback, to avoid deadlock. The | |
334 | ; call to add_free_extent_cache will end up taking the cache's | |
335 | ; lock (just long enough to add these extents to the cache). | |
336 | ; | |
337 | ; CAUTION: If the journal becomes invalid (eg., due to an I/O | |
338 | ; error when trying to write to the journal), this callback | |
339 | ; will stop getting called, even if extents got freed before | |
340 | ; the journal became invalid! | |
341 | ; | |
342 | ; Input Arguments: | |
343 | ; arg - The hfsmount of the volume containing the extents. | |
344 | ; extent_count - The number of extents freed in the transaction. | |
345 | ; extents - An array of extents (byte ranges) that were freed. | |
346 | ;________________________________________________________________________________ | |
347 | */ | |
348 | ||
349 | void | |
350 | hfs_trim_callback(void *arg, uint32_t extent_count, const dk_extent_t *extents) | |
351 | { | |
352 | uint32_t i; | |
353 | uint32_t startBlock, numBlocks; | |
354 | struct hfsmount *hfsmp = arg; | |
355 | ||
356 | for (i=0; i<extent_count; ++i) { | |
357 | /* Convert the byte range in *extents back to a range of allocation blocks. */ | |
358 | startBlock = (uint32_t)((extents[i].offset - hfsmp->hfsPlusIOPosOffset) / hfsmp->blockSize); | |
359 | numBlocks = (uint32_t)(extents[i].length / hfsmp->blockSize); | |
360 | (void) add_free_extent_cache(hfsmp, startBlock, numBlocks); | |
361 | } | |
362 | } | |
363 | ||
364 | ||
365 | /* | |
366 | ;________________________________________________________________________________ | |
367 | ; | |
368 | ; Routine: ScanUnmapBlocks | |
369 | ; | |
370 | ; Function: Traverse the bitmap, and potentially issue DKIOCUNMAPs to the underlying | |
371 | ; device as needed so that the underlying disk device is as | |
372 | ; up-to-date as possible with which blocks are unmapped. | |
373 | ; Additionally build up the summary table as needed. | |
374 | ; | |
375 | ; This function reads the bitmap in large block size | |
376 | ; (up to 1MB) unlike the runtime which reads the bitmap | |
377 | ; in 4K block size. So if this function is being called | |
378 | ; after the volume is mounted and actively modified, the | |
379 | ; caller needs to invalidate all of the existing buffers | |
380 | ; associated with the bitmap vnode before calling this | |
381 | ; function. If the buffers are not invalidated, it can | |
382 | ; cause buf_t collision and potential data corruption. | |
383 | ; | |
384 | ; Input Arguments: | |
385 | ; hfsmp - The volume containing the allocation blocks. | |
386 | ;________________________________________________________________________________ | |
387 | */ | |
388 | ||
389 | u_int32_t ScanUnmapBlocks (struct hfsmount *hfsmp) | |
390 | { | |
391 | u_int32_t blocks_scanned = 0; | |
392 | int error = 0; | |
393 | struct jnl_trim_list trimlist; | |
394 | ||
395 | /* | |
396 | *struct jnl_trim_list { | |
397 | uint32_t allocated_count; | |
398 | uint32_t extent_count; | |
399 | dk_extent_t *extents; | |
400 | }; | |
401 | */ | |
402 | bzero (&trimlist, sizeof(trimlist)); | |
403 | ||
404 | /* | |
405 | * Any trim related work should be tied to whether the underlying | |
406 | * storage media supports UNMAP, as any solid state device would | |
407 | * on desktop or embedded. | |
408 | * | |
409 | * We do this because we may want to scan the full bitmap on | |
410 | * desktop for spinning media for the purposes of building up the | |
411 | * summary table. | |
412 | * | |
413 | * We also avoid sending TRIMs down to the underlying media if the | |
414 | * mount is read-only. | |
415 | */ | |
416 | ||
417 | if ((hfsmp->hfs_flags & HFS_UNMAP) && | |
418 | ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0)) { | |
419 | /* If the underlying device supports unmap and the mount is read-write, initialize */ | |
420 | int alloc_count = ((u_int32_t)PAGE_SIZE) / sizeof(dk_extent_t); | |
421 | void *extents = hfs_malloc(alloc_count * sizeof(dk_extent_t)); | |
422 | trimlist.extents = (dk_extent_t*)extents; | |
423 | trimlist.allocated_count = alloc_count; | |
424 | trimlist.extent_count = 0; | |
425 | } | |
426 | ||
427 | while ((blocks_scanned < hfsmp->totalBlocks) && (error == 0)){ | |
428 | ||
429 | error = hfs_alloc_scan_range (hfsmp, blocks_scanned, &blocks_scanned, &trimlist); | |
430 | ||
431 | if (error) { | |
432 | LFHFS_LOG(LEVEL_DEBUG, "ScanUnmapBlocks: bitmap scan range error: %d on vol=%s\n", error, hfsmp->vcbVN); | |
433 | break; | |
434 | } | |
435 | } | |
436 | ||
437 | if ((hfsmp->hfs_flags & HFS_UNMAP) && ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0)) { | |
438 | if (error == 0) { | |
439 | hfs_issue_unmap(hfsmp, &trimlist); | |
440 | } | |
441 | if (trimlist.extents) { | |
442 | hfs_free(trimlist.extents); | |
443 | } | |
444 | } | |
445 | ||
446 | /* | |
447 | * This is in an #if block because hfs_validate_summary prototype and function body | |
448 | * will only show up if ALLOC_DEBUG is on, to save wired memory ever so slightly. | |
449 | */ | |
450 | #if ALLOC_DEBUG | |
451 | sanity_check_free_ext(hfsmp, 1); | |
452 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
453 | /* Validate the summary table too! */ | |
454 | hfs_validate_summary(hfsmp); | |
455 | LFHFS_LOG(LEVEL_DEBUG, "ScanUnmapBlocks: Summary validation complete on %s\n", hfsmp->vcbVN); | |
456 | } | |
457 | #endif | |
458 | ||
459 | return error; | |
460 | } | |
461 | ||
462 | static void add_to_reserved_list(hfsmount_t *hfsmp, uint32_t start, | |
463 | uint32_t count, int list, | |
464 | struct rl_entry **reservation) | |
465 | { | |
466 | struct rl_entry *range, *next_range; | |
467 | ||
468 | if (list == HFS_TENTATIVE_BLOCKS) { | |
469 | int nranges = 0; | |
470 | // Don't allow more than 4 tentative reservations | |
471 | TAILQ_FOREACH_SAFE(range, &hfsmp->hfs_reserved_ranges[HFS_TENTATIVE_BLOCKS], | |
472 | rl_link, next_range) { | |
473 | if (++nranges > 3) | |
474 | hfs_release_reserved(hfsmp, range, HFS_TENTATIVE_BLOCKS); | |
475 | } | |
476 | } | |
477 | ||
478 | range = hfs_malloc(sizeof(*range)); | |
479 | range->rl_start = start; | |
480 | range->rl_end = start + count - 1; | |
481 | TAILQ_INSERT_HEAD(&hfsmp->hfs_reserved_ranges[list], range, rl_link); | |
482 | *reservation = range; | |
483 | } | |
484 | ||
485 | static void hfs_release_reserved(hfsmount_t *hfsmp, | |
486 | struct rl_entry *range, | |
487 | int list) | |
488 | { | |
489 | if (range->rl_start == -1) | |
490 | return; | |
491 | ||
492 | TAILQ_REMOVE(&hfsmp->hfs_reserved_ranges[list], range, rl_link); | |
493 | ||
494 | if (rl_len(range) > 0) { | |
495 | if (list == HFS_TENTATIVE_BLOCKS) | |
496 | hfsmp->tentativeBlocks -= rl_len(range); | |
497 | else { | |
498 | hfs_assert(hfsmp->lockedBlocks >= rl_len(range)); | |
499 | hfsmp->lockedBlocks -= rl_len(range); | |
500 | } | |
501 | hfs_release_summary(hfsmp, (uint32_t)range->rl_start, (uint32_t)rl_len(range)); | |
502 | add_free_extent_cache(hfsmp, (uint32_t)range->rl_start, (uint32_t)rl_len(range)); | |
503 | } | |
504 | ||
505 | range->rl_start = -1; | |
506 | range->rl_end = -2; | |
507 | } | |
508 | ||
509 | static void hfs_free_locked_internal(hfsmount_t *hfsmp, | |
510 | struct rl_entry **reservation, | |
511 | int list) | |
512 | { | |
513 | if (*reservation) { | |
514 | hfs_release_reserved(hfsmp, *reservation, list); | |
515 | hfs_free(*reservation); | |
516 | *reservation = NULL; | |
517 | } | |
518 | } | |
519 | ||
520 | void hfs_free_tentative(hfsmount_t *hfsmp, struct rl_entry **reservation) | |
521 | { | |
522 | hfs_free_locked_internal(hfsmp, reservation, HFS_TENTATIVE_BLOCKS); | |
523 | } | |
524 | ||
525 | void hfs_free_locked(hfsmount_t *hfsmp, struct rl_entry **reservation) | |
526 | { | |
527 | hfs_free_locked_internal(hfsmp, reservation, HFS_LOCKED_BLOCKS); | |
528 | } | |
529 | ||
530 | OSErr BlockAllocate ( | |
531 | hfsmount_t *hfsmp, /* which volume to allocate space on */ | |
532 | u_int32_t startingBlock, /* preferred starting block, or 0 for no preference */ | |
533 | u_int32_t minBlocks, /* desired number of blocks to allocate */ | |
534 | u_int32_t maxBlocks, /* maximum number of blocks to allocate */ | |
535 | hfs_block_alloc_flags_t flags, /* option flags */ | |
536 | u_int32_t *actualStartBlock, /* actual first block of allocation */ | |
537 | u_int32_t *actualNumBlocks) | |
538 | { | |
539 | hfs_alloc_extra_args_t extra_args = { | |
540 | .max_blocks = maxBlocks | |
541 | }; | |
542 | ||
543 | HFSPlusExtentDescriptor extent = { startingBlock, minBlocks }; | |
544 | ||
545 | OSErr err = hfs_block_alloc_int(hfsmp, &extent, flags, &extra_args); | |
546 | ||
547 | *actualStartBlock = extent.startBlock; | |
548 | *actualNumBlocks = extent.blockCount; | |
549 | ||
550 | return err; | |
551 | } | |
552 | ||
553 | errno_t hfs_block_alloc(hfsmount_t *hfsmp, | |
554 | HFSPlusExtentDescriptor *extent, | |
555 | hfs_block_alloc_flags_t flags, | |
556 | hfs_alloc_extra_args_t *ap) | |
557 | { | |
558 | return MacToVFSError(hfs_block_alloc_int(hfsmp, extent, flags, ap)); | |
559 | } | |
560 | ||
561 | /* | |
562 | ;________________________________________________________________________________ | |
563 | ; | |
564 | ; Routine: hfs_block_alloc_int | |
565 | ; | |
566 | ; Function: Allocate space on a volume. If contiguous allocation is requested, | |
567 | ; at least the requested number of bytes will be allocated or an | |
568 | ; error will be returned. If contiguous allocation is not forced, | |
569 | ; the space will be allocated with the first largest extent available | |
570 | ; at the requested starting allocation block. If there is not enough | |
571 | ; room there, a block allocation of less than the requested size will be | |
572 | ; allocated. | |
573 | ; | |
574 | ; If the requested starting block is 0 (for new file allocations), | |
575 | ; the volume's allocation block pointer will be used as a starting | |
576 | ; point. | |
577 | ; | |
578 | ; Input Arguments: | |
579 | ; hfsmp - Pointer to the HFS mount structure. | |
580 | ; extent - startBlock indicates the block to start | |
581 | ; searching from and blockCount is the number of | |
582 | ; blocks required. Depending on the flags used, | |
583 | ; more or less blocks may be returned. The | |
584 | ; allocated extent is returned via this | |
585 | ; parameter. | |
586 | ; flags - Flags to specify options like contiguous, use | |
587 | ; metadata zone, skip free block check, etc. | |
588 | ; ap - Additional arguments used depending on flags. | |
589 | ; See hfs_alloc_extra_args_t and below. | |
590 | ; | |
591 | ; Output: | |
592 | ; (result) - Error code, zero for successful allocation | |
593 | ; extent - If successful, the allocated extent. | |
594 | ; | |
595 | ; Side effects: | |
596 | ; The volume bitmap is read and updated; the volume bitmap cache may be changed. | |
597 | ; | |
598 | ; HFS_ALLOC_TENTATIVE | |
599 | ; Blocks will be reserved but not marked allocated. They can be | |
600 | ; stolen if free space is limited. Tentative blocks can be used by | |
601 | ; passing HFS_ALLOC_USE_TENTATIVE and passing in the resevation. | |
602 | ; @ap->reservation_out is used to store the reservation. | |
603 | ; | |
604 | ; HFS_ALLOC_USE_TENTATIVE | |
605 | ; Use blocks previously returned with HFS_ALLOC_TENTATIVE. | |
606 | ; @ap->reservation_in should be set to whatever @ap->reservation_out | |
607 | ; was set to when HFS_ALLOC_TENTATIVE was used. If the tentative | |
608 | ; reservation was stolen, a normal allocation will take place. | |
609 | ; | |
610 | ; HFS_ALLOC_LOCKED | |
611 | ; Blocks will be reserved but not marked allocated. Unlike tentative | |
612 | ; reservations they cannot be stolen. It is safe to write to these | |
613 | ; blocks. @ap->reservation_out is used to store the reservation. | |
614 | ; | |
615 | ; HFS_ALLOC_COMMIT | |
616 | ; This will take blocks previously returned with HFS_ALLOC_LOCKED and | |
617 | ; mark them allocated on disk. @ap->reservation_in is used. | |
618 | ; | |
619 | ; HFS_ALLOC_ROLL_BACK | |
620 | ; Take blocks that were just recently deallocated and mark them | |
621 | ; allocated. This is for roll back situations. Blocks got | |
622 | ; deallocated and then something went wrong and we need to roll back | |
623 | ; by marking the blocks allocated. | |
624 | ; | |
625 | ; HFS_ALLOC_FORCECONTIG | |
626 | ; It will not return fewer than @min_blocks. | |
627 | ; | |
628 | ; HFS_ALLOC_TRY_HARD | |
629 | ; We will perform an exhaustive search to try and find @max_blocks. | |
630 | ; It will not return fewer than @min_blocks. | |
631 | ; | |
632 | ;________________________________________________________________________________ | |
633 | */ | |
634 | OSErr hfs_block_alloc_int(hfsmount_t *hfsmp, | |
635 | HFSPlusExtentDescriptor *extent, | |
636 | hfs_block_alloc_flags_t flags, | |
637 | hfs_alloc_extra_args_t *ap) | |
638 | { | |
639 | OSErr err = 0; | |
640 | u_int32_t freeBlocks; | |
641 | Boolean updateAllocPtr = false; // true if nextAllocation needs to be updated | |
642 | Boolean forceContiguous = false; | |
643 | Boolean forceFlush; | |
644 | ||
645 | uint32_t startingBlock = extent->startBlock; | |
646 | uint32_t minBlocks = extent->blockCount; | |
647 | uint32_t maxBlocks = (ap && ap->max_blocks) ? ap->max_blocks : minBlocks; | |
648 | ||
649 | if (ISSET(flags, HFS_ALLOC_COMMIT)) { | |
650 | if (ap == NULL || ap->reservation_in == NULL) { | |
651 | err = paramErr; | |
652 | goto exit; | |
653 | } | |
654 | extent->startBlock = (uint32_t)(*ap->reservation_in)->rl_start; | |
655 | extent->blockCount = (uint32_t)rl_len(*ap->reservation_in); | |
656 | goto mark_allocated; | |
657 | } | |
658 | ||
659 | if (ISSET(flags, HFS_ALLOC_ROLL_BACK)) | |
660 | goto mark_allocated; | |
661 | ||
662 | freeBlocks = hfs_freeblks(hfsmp, 0); | |
663 | ||
664 | if (ISSET(flags, HFS_ALLOC_USE_TENTATIVE)) { | |
665 | if (ap == NULL || ap->reservation_in == NULL) { | |
666 | err = paramErr; | |
667 | goto exit; | |
668 | } | |
669 | struct rl_entry *range = *ap->reservation_in; | |
670 | ||
671 | if (range && range->rl_start != -1) { | |
672 | /* | |
673 | * It's possible that we have a tentative reservation | |
674 | * but there aren't enough free blocks due to loaned blocks | |
675 | * or insufficient space in the backing store. | |
676 | */ | |
677 | uint32_t count = (uint32_t)min(min(maxBlocks, rl_len(range)), freeBlocks); | |
678 | ||
679 | if (count >= minBlocks) { | |
680 | extent->startBlock = (uint32_t)range->rl_start; | |
681 | extent->blockCount = count; | |
682 | ||
683 | // Should we go straight to commit? | |
684 | if (!ISSET(flags, HFS_ALLOC_LOCKED)) | |
685 | SET(flags, HFS_ALLOC_COMMIT); | |
686 | ||
687 | goto mark_allocated; | |
688 | } | |
689 | } | |
690 | ||
691 | /* | |
692 | * We can't use the tentative reservation so free it and allocate | |
693 | * normally. | |
694 | */ | |
695 | hfs_free_tentative(hfsmp, ap->reservation_in); | |
696 | CLR(flags, HFS_ALLOC_USE_TENTATIVE); | |
697 | } | |
698 | ||
699 | if (ISSET(flags, HFS_ALLOC_FORCECONTIG | HFS_ALLOC_TRY_HARD)) | |
700 | forceContiguous = true; | |
701 | ||
702 | if (flags & HFS_ALLOC_FLUSHTXN) { | |
703 | forceFlush = true; | |
704 | } | |
705 | else { | |
706 | forceFlush = false; | |
707 | } | |
708 | ||
709 | hfs_assert(hfsmp->freeBlocks >= hfsmp->tentativeBlocks); | |
710 | ||
711 | // See if we have to steal tentative blocks | |
712 | if (freeBlocks < hfsmp->tentativeBlocks + minBlocks) | |
713 | SET(flags, HFS_ALLOC_IGNORE_TENTATIVE); | |
714 | ||
715 | /* Skip free block check if blocks are being allocated for relocating | |
716 | * data during truncating a volume. | |
717 | * | |
718 | * During hfs_truncatefs(), the volume free block count is updated | |
719 | * before relocating data to reflect the total number of free blocks | |
720 | * that will exist on the volume after resize is successful. This | |
721 | * means that we have reserved allocation blocks required for relocating | |
722 | * the data and hence there is no need to check the free blocks. | |
723 | * It will also prevent resize failure when the number of blocks in | |
724 | * an extent being relocated is more than the free blocks that will | |
725 | * exist after the volume is resized. | |
726 | */ | |
727 | if ((flags & HFS_ALLOC_SKIPFREEBLKS) == 0) { | |
728 | // If the disk is already full, don't bother. | |
729 | if (freeBlocks == 0) { | |
730 | err = dskFulErr; | |
731 | goto exit; | |
732 | } | |
733 | if (forceContiguous && freeBlocks < minBlocks) { | |
734 | err = dskFulErr; | |
735 | goto exit; | |
736 | } | |
737 | ||
738 | /* | |
739 | * Clip if necessary so we don't over-subscribe the free blocks. | |
740 | */ | |
741 | if (minBlocks > freeBlocks) { | |
742 | minBlocks = freeBlocks; | |
743 | } | |
744 | if (maxBlocks > freeBlocks) { | |
745 | maxBlocks = freeBlocks; | |
746 | } | |
747 | } | |
748 | ||
749 | if (ISSET(flags, HFS_ALLOC_TRY_HARD)) { | |
750 | err = hfs_alloc_try_hard(hfsmp, extent, maxBlocks, flags); | |
751 | if (err) | |
752 | goto exit; | |
753 | ||
754 | goto mark_allocated; | |
755 | } | |
756 | ||
757 | // | |
758 | // If caller didn't specify a starting block number, then use the volume's | |
759 | // next block to allocate from. | |
760 | // | |
761 | if (startingBlock == 0) { | |
762 | hfs_lock_mount (hfsmp); | |
763 | startingBlock = hfsmp->nextAllocation; | |
764 | hfs_unlock_mount(hfsmp); | |
765 | updateAllocPtr = true; | |
766 | } | |
767 | ||
768 | if (startingBlock >= hfsmp->allocLimit) { | |
769 | startingBlock = 0; /* overflow so start at beginning */ | |
770 | } | |
771 | ||
772 | // | |
773 | // If the request must be contiguous, then find a sequence of free blocks | |
774 | // that is long enough. Otherwise, find the first free block. | |
775 | // | |
776 | if (forceContiguous) { | |
777 | err = BlockFindContig(hfsmp, startingBlock, minBlocks, maxBlocks, | |
778 | flags, &extent->startBlock, &extent->blockCount); | |
779 | /* | |
780 | * If we allocated from a new position then also update the roving allocator. | |
781 | * This will keep the roving allocation pointer up-to-date even | |
782 | * if we are using the new R/B tree allocator, since | |
783 | * it doesn't matter to us here, how the underlying allocator found | |
784 | * the block to vend out. | |
785 | */ | |
786 | if ((err == noErr) && | |
787 | (extent->startBlock > startingBlock) && | |
788 | ((extent->startBlock < hfsmp->hfs_metazone_start) || | |
789 | (extent->startBlock > hfsmp->hfs_metazone_end))) { | |
790 | updateAllocPtr = true; | |
791 | } | |
792 | } else { | |
793 | /* | |
794 | * Scan the bitmap once, gather the N largest free extents, then | |
795 | * allocate from these largest extents. Repeat as needed until | |
796 | * we get all the space we needed. We could probably build up | |
797 | * that list when the higher level caller tried (and failed) a | |
798 | * contiguous allocation first. | |
799 | * | |
800 | * Note that the free-extent cache will be cease to be updated if | |
801 | * we are using the red-black tree for allocations. If we jettison | |
802 | * the tree, then we will reset the free-extent cache and start over. | |
803 | */ | |
804 | ||
805 | /* Disable HFS_ALLOC_FLUSHTXN if needed */ | |
806 | if (forceFlush) { | |
807 | flags &= ~HFS_ALLOC_FLUSHTXN; | |
808 | } | |
809 | ||
810 | /* | |
811 | * BlockFindKnown only examines the free extent cache; anything in there will | |
812 | * have been committed to stable storage already. | |
813 | */ | |
814 | err = BlockFindKnown(hfsmp, maxBlocks, &extent->startBlock, | |
815 | &extent->blockCount); | |
816 | ||
817 | /* dskFulErr out of BlockFindKnown indicates an empty Free Extent Cache */ | |
818 | ||
819 | if (err == dskFulErr) { | |
820 | /* | |
821 | * Now we have to do a bigger scan. Start at startingBlock and go up until the | |
822 | * allocation limit. We 'trust' the summary bitmap in this call, if it tells us | |
823 | * that it could not find any free space. | |
824 | */ | |
825 | err = BlockFindAny(hfsmp, startingBlock, hfsmp->allocLimit, | |
826 | maxBlocks, flags, true, | |
827 | &extent->startBlock, &extent->blockCount); | |
828 | } | |
829 | if (err == dskFulErr) { | |
830 | /* | |
831 | * Vary the behavior here if the summary table is on or off. | |
832 | * If it is on, then we don't trust it it if we get into this case and | |
833 | * basically do a full scan for maximum coverage. | |
834 | * If it is off, then we trust the above and go up until the startingBlock. | |
835 | */ | |
836 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
837 | err = BlockFindAny(hfsmp, 1, hfsmp->allocLimit, maxBlocks, | |
838 | flags, false, | |
839 | &extent->startBlock, &extent->blockCount); | |
840 | } | |
841 | else { | |
842 | err = BlockFindAny(hfsmp, 1, startingBlock, maxBlocks, | |
843 | flags, false, | |
844 | &extent->startBlock, &extent->blockCount); | |
845 | } | |
846 | ||
847 | /* | |
848 | * Last Resort: Find/use blocks that may require a journal flush. | |
849 | */ | |
850 | if (err == dskFulErr && forceFlush) { | |
851 | flags |= HFS_ALLOC_FLUSHTXN; | |
852 | err = BlockFindAny(hfsmp, 1, hfsmp->allocLimit, maxBlocks, | |
853 | flags, false, | |
854 | &extent->startBlock, &extent->blockCount); | |
855 | } | |
856 | } | |
857 | } | |
858 | ||
859 | if (err) | |
860 | goto exit; | |
861 | ||
862 | mark_allocated: | |
863 | ||
864 | // Handle alignment | |
865 | if (ap && ap->alignment && extent->blockCount < ap->max_blocks) { | |
866 | /* | |
867 | * See the comment in FileMgrInternal.h for alignment | |
868 | * semantics. | |
869 | */ | |
870 | uint32_t rounding = ((extent->blockCount + ap->alignment_offset) | |
871 | % ap->alignment); | |
872 | ||
873 | // @minBlocks is still the minimum | |
874 | if (extent->blockCount >= minBlocks + rounding) | |
875 | extent->blockCount -= rounding; | |
876 | } | |
877 | ||
878 | err = BlockMarkAllocatedInternal(hfsmp, extent->startBlock, | |
879 | extent->blockCount, flags); | |
880 | ||
881 | if (err) | |
882 | goto exit; | |
883 | ||
884 | // if we actually allocated something then go update the | |
885 | // various bits of state that we maintain regardless of | |
886 | // whether there was an error (i.e. partial allocations | |
887 | // still need to update things like the free block count). | |
888 | // | |
889 | if (extent->blockCount != 0) { | |
890 | // | |
891 | // If we used the volume's roving allocation pointer, then we need to update it. | |
892 | // Adding in the length of the current allocation might reduce the next allocate | |
893 | // call by avoiding a re-scan of the already allocated space. However, the clump | |
894 | // just allocated can quite conceivably end up being truncated or released when | |
895 | // the file is closed or its EOF changed. Leaving the allocation pointer at the | |
896 | // start of the last allocation will avoid unnecessary fragmentation in this case. | |
897 | // | |
898 | hfs_lock_mount (hfsmp); | |
899 | ||
900 | if (!ISSET(flags, HFS_ALLOC_USE_TENTATIVE | HFS_ALLOC_COMMIT)) { | |
901 | lf_lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
902 | if (hfsmp->vcbFreeExtCnt == 0 && hfsmp->hfs_freed_block_count == 0) { | |
903 | hfsmp->sparseAllocation = extent->startBlock; | |
904 | } | |
905 | lf_lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
906 | if (extent->blockCount < hfsmp->hfs_freed_block_count) { | |
907 | hfsmp->hfs_freed_block_count -= extent->blockCount; | |
908 | } else { | |
909 | hfsmp->hfs_freed_block_count = 0; | |
910 | } | |
911 | ||
912 | if (updateAllocPtr && | |
913 | ((extent->startBlock < hfsmp->hfs_metazone_start) || | |
914 | (extent->startBlock > hfsmp->hfs_metazone_end))) { | |
915 | HFS_UPDATE_NEXT_ALLOCATION(hfsmp, extent->startBlock); | |
916 | } | |
917 | ||
918 | (void) remove_free_extent_cache(hfsmp, extent->startBlock, extent->blockCount); | |
919 | } | |
920 | ||
921 | if (ISSET(flags, HFS_ALLOC_USE_TENTATIVE)) { | |
922 | if (ap == NULL || ap->reservation_in == NULL) { | |
923 | err = paramErr; | |
924 | goto exit; | |
925 | } | |
926 | (*ap->reservation_in)->rl_start += extent->blockCount; | |
927 | hfsmp->tentativeBlocks -= extent->blockCount; | |
928 | if (rl_len(*ap->reservation_in) <= 0) | |
929 | hfs_free_tentative(hfsmp, ap->reservation_in); | |
930 | } else if (ISSET(flags, HFS_ALLOC_COMMIT)) { | |
931 | // Handle committing locked extents | |
932 | hfs_assert(hfsmp->lockedBlocks >= extent->blockCount); | |
933 | (*ap->reservation_in)->rl_start += extent->blockCount; | |
934 | hfsmp->lockedBlocks -= extent->blockCount; | |
935 | hfs_free_locked(hfsmp, ap->reservation_in); | |
936 | } | |
937 | ||
938 | /* | |
939 | * Update the number of free blocks on the volume | |
940 | * | |
941 | * Skip updating the free blocks count if the block are | |
942 | * being allocated to relocate data as part of hfs_truncatefs() | |
943 | */ | |
944 | ||
945 | if (ISSET(flags, HFS_ALLOC_TENTATIVE)) { | |
946 | hfsmp->tentativeBlocks += extent->blockCount; | |
947 | } else if (ISSET(flags, HFS_ALLOC_LOCKED)) { | |
948 | hfsmp->lockedBlocks += extent->blockCount; | |
949 | } else if ((flags & HFS_ALLOC_SKIPFREEBLKS) == 0) { | |
950 | hfsmp->freeBlocks -= extent->blockCount; | |
951 | } | |
952 | MarkVCBDirty(hfsmp); | |
953 | hfs_unlock_mount(hfsmp); | |
954 | ||
955 | if (ISSET(flags, HFS_ALLOC_TENTATIVE)) { | |
956 | hfs_assert(ap); | |
957 | add_to_reserved_list(hfsmp, extent->startBlock, extent->blockCount, | |
958 | 0, ap->reservation_out); | |
959 | } else if (ISSET(flags, HFS_ALLOC_LOCKED)) { | |
960 | hfs_assert(ap); | |
961 | add_to_reserved_list(hfsmp, extent->startBlock, extent->blockCount, | |
962 | 1, ap->reservation_out); | |
963 | } | |
964 | ||
965 | if (ISSET(flags, HFS_ALLOC_IGNORE_TENTATIVE)) { | |
966 | /* | |
967 | * See if we used tentative blocks. Note that we cannot | |
968 | * free the reservations here because we don't have access | |
969 | * to the external pointers. All we can do is update the | |
970 | * reservations and they'll be cleaned up when whatever is | |
971 | * holding the pointers calls us back. | |
972 | * | |
973 | * We use the rangelist code to detect overlaps and | |
974 | * constrain the tentative block allocation. Note that | |
975 | * @end is inclusive so that our rangelist code will | |
976 | * resolve the various cases for us. As a result, we need | |
977 | * to ensure that we account for it properly when removing | |
978 | * the blocks from the tentative count in the mount point | |
979 | * and re-inserting the remainder (either head or tail) | |
980 | */ | |
981 | struct rl_entry *range, *next_range; | |
982 | struct rl_head *ranges = &hfsmp->hfs_reserved_ranges[HFS_TENTATIVE_BLOCKS]; | |
983 | const uint32_t start = extent->startBlock; | |
984 | const uint32_t end = start + extent->blockCount - 1; | |
985 | TAILQ_FOREACH_SAFE(range, ranges, rl_link, next_range) { | |
986 | switch (rl_overlap(range, start, end)) { | |
987 | case RL_OVERLAPCONTAINSRANGE: | |
988 | // Keep the bigger part | |
989 | if (start - range->rl_start > range->rl_end - end) { | |
990 | // Discard the tail | |
991 | hfsmp->tentativeBlocks -= range->rl_end + 1 - start; | |
992 | hfs_release_summary(hfsmp, end + 1, (uint32_t)(range->rl_end - end)); | |
993 | const uint32_t old_end = (uint32_t)range->rl_end; | |
994 | range->rl_end = start - 1; | |
995 | add_free_extent_cache(hfsmp, end + 1, old_end - end); | |
996 | } else { | |
997 | // Discard the head | |
998 | hfsmp->tentativeBlocks -= end + 1 - range->rl_start; | |
999 | hfs_release_summary(hfsmp, (uint32_t)range->rl_start, (uint32_t)(start - range->rl_start)); | |
1000 | const uint32_t old_start = (uint32_t)range->rl_start; | |
1001 | range->rl_start = end + 1; | |
1002 | add_free_extent_cache(hfsmp, old_start, | |
1003 | start - old_start); | |
1004 | } | |
1005 | hfs_assert(range->rl_end >= range->rl_start); | |
1006 | break; | |
1007 | case RL_MATCHINGOVERLAP: | |
1008 | case RL_OVERLAPISCONTAINED: | |
1009 | hfsmp->tentativeBlocks -= rl_len(range); | |
1010 | range->rl_end = range->rl_start - 1; | |
1011 | hfs_release_reserved(hfsmp, range, HFS_TENTATIVE_BLOCKS); | |
1012 | break; | |
1013 | case RL_OVERLAPSTARTSBEFORE: | |
1014 | hfsmp->tentativeBlocks -= range->rl_end + 1 - start; | |
1015 | range->rl_end = start - 1; | |
1016 | hfs_assert(range->rl_end >= range->rl_start); | |
1017 | break; | |
1018 | case RL_OVERLAPENDSAFTER: | |
1019 | hfsmp->tentativeBlocks -= end + 1 - range->rl_start; | |
1020 | range->rl_start = end + 1; | |
1021 | hfs_assert(range->rl_end >= range->rl_start); | |
1022 | break; | |
1023 | case RL_NOOVERLAP: | |
1024 | break; | |
1025 | } | |
1026 | } | |
1027 | } | |
1028 | } | |
1029 | ||
1030 | exit: | |
1031 | ||
1032 | if (ALLOC_DEBUG) { | |
1033 | if (err == noErr) { | |
1034 | if (extent->startBlock >= hfsmp->totalBlocks) { | |
1035 | LFHFS_LOG(LEVEL_ERROR, "BlockAllocate: vending invalid blocks!"); | |
1036 | hfs_assert(0); | |
1037 | } | |
1038 | if (extent->startBlock >= hfsmp->allocLimit) { | |
1039 | LFHFS_LOG(LEVEL_ERROR, "BlockAllocate: vending block past allocLimit!"); | |
1040 | hfs_assert(0); | |
1041 | } | |
1042 | ||
1043 | if ((extent->startBlock + extent->blockCount) >= hfsmp->totalBlocks) { | |
1044 | LFHFS_LOG(LEVEL_ERROR, "BlockAllocate: vending too many invalid blocks!"); | |
1045 | hfs_assert(0); | |
1046 | } | |
1047 | ||
1048 | if ((extent->startBlock + extent->blockCount) >= hfsmp->allocLimit) { | |
1049 | LFHFS_LOG(LEVEL_ERROR, "BlockAllocate: vending too many invalid blocks past allocLimit!"); | |
1050 | hfs_assert(0); | |
1051 | } | |
1052 | } | |
1053 | } | |
1054 | ||
1055 | if (err) { | |
1056 | // Just to be safe... | |
1057 | extent->startBlock = 0; | |
1058 | extent->blockCount = 0; | |
1059 | } | |
1060 | ||
1061 | // KBZ : For now, make sure clusters fills with zeros. | |
1062 | raw_readwrite_zero_fill_fill( hfsmp, extent->startBlock, extent->blockCount ); | |
1063 | ||
1064 | return err; | |
1065 | } | |
1066 | ||
1067 | ||
1068 | /* | |
1069 | ;________________________________________________________________________________ | |
1070 | ; | |
1071 | ; Routine: BlockDeallocate | |
1072 | ; | |
1073 | ; Function: Update the bitmap to deallocate a run of disk allocation blocks | |
1074 | ; | |
1075 | ; Input Arguments: | |
1076 | ; vcb - Pointer to ExtendedVCB for the volume to free space on | |
1077 | ; firstBlock - First allocation block to be freed | |
1078 | ; numBlocks - Number of allocation blocks to free up (must be > 0!) | |
1079 | ; | |
1080 | ; Output: | |
1081 | ; (result) - Result code | |
1082 | ; | |
1083 | ; Side effects: | |
1084 | ; The volume bitmap is read and updated; the volume bitmap cache may be changed. | |
1085 | ; The Allocator's red-black trees may also be modified as a result. | |
1086 | ; | |
1087 | ;________________________________________________________________________________ | |
1088 | */ | |
1089 | ||
1090 | OSErr BlockDeallocate ( | |
1091 | ExtendedVCB *vcb, // Which volume to deallocate space on | |
1092 | u_int32_t firstBlock, // First block in range to deallocate | |
1093 | u_int32_t numBlocks, // Number of contiguous blocks to deallocate | |
1094 | hfs_block_alloc_flags_t flags) | |
1095 | { | |
1096 | if (ISSET(flags, HFS_ALLOC_TENTATIVE | HFS_ALLOC_LOCKED)) | |
1097 | return 0; | |
1098 | ||
1099 | OSErr err; | |
1100 | struct hfsmount *hfsmp; | |
1101 | hfsmp = VCBTOHFS(vcb); | |
1102 | ||
1103 | // | |
1104 | // If no blocks to deallocate, then exit early | |
1105 | // | |
1106 | if (numBlocks == 0) { | |
1107 | err = noErr; | |
1108 | goto Exit; | |
1109 | } | |
1110 | ||
1111 | ||
1112 | if (ALLOC_DEBUG) { | |
1113 | if (firstBlock >= hfsmp->totalBlocks) { | |
1114 | LFHFS_LOG(LEVEL_ERROR, "BlockDeallocate: freeing invalid blocks!"); | |
1115 | hfs_assert(0); | |
1116 | } | |
1117 | ||
1118 | if ((firstBlock + numBlocks) >= hfsmp->totalBlocks) { | |
1119 | LFHFS_LOG(LEVEL_ERROR, "BlockDeallocate: freeing too many invalid blocks!"); | |
1120 | hfs_assert(0); | |
1121 | } | |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * If we're using the summary bitmap, then try to mark the bits | |
1126 | * as potentially usable/free before actually deallocating them. | |
1127 | * It is better to be slightly speculative here for correctness. | |
1128 | */ | |
1129 | ||
1130 | (void) hfs_release_summary (hfsmp, firstBlock, numBlocks); | |
1131 | ||
1132 | err = BlockMarkFreeInternal(vcb, firstBlock, numBlocks, true); | |
1133 | ||
1134 | if (err) { | |
1135 | goto Exit; | |
1136 | } | |
1137 | ||
1138 | // | |
1139 | // Update the volume's free block count, and mark the VCB as dirty. | |
1140 | // | |
1141 | hfs_lock_mount(hfsmp); | |
1142 | /* | |
1143 | * Do not update the free block count. This flags is specified | |
1144 | * when a volume is being truncated. | |
1145 | */ | |
1146 | if ((flags & HFS_ALLOC_SKIPFREEBLKS) == 0) { | |
1147 | vcb->freeBlocks += numBlocks; | |
1148 | } | |
1149 | ||
1150 | vcb->hfs_freed_block_count += numBlocks; | |
1151 | ||
1152 | if (vcb->nextAllocation == (firstBlock + numBlocks)) { | |
1153 | HFS_UPDATE_NEXT_ALLOCATION(vcb, (vcb->nextAllocation - numBlocks)); | |
1154 | } | |
1155 | ||
1156 | if (hfsmp->jnl == NULL) | |
1157 | { | |
1158 | /* | |
1159 | * In the journal case, we'll add the free extent once the journal | |
1160 | * calls us back to tell us it wrote the transaction to disk. | |
1161 | */ | |
1162 | (void) add_free_extent_cache(vcb, firstBlock, numBlocks); | |
1163 | ||
1164 | /* | |
1165 | * If the journal case, we'll only update sparseAllocation once the | |
1166 | * free extent cache becomes empty (when we remove the last entry | |
1167 | * from the cache). Skipping it here means we're less likely to | |
1168 | * find a recently freed extent via the bitmap before it gets added | |
1169 | * to the free extent cache. | |
1170 | */ | |
1171 | if (firstBlock < vcb->sparseAllocation) { | |
1172 | vcb->sparseAllocation = firstBlock; | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | MarkVCBDirty(vcb); | |
1177 | hfs_unlock_mount(hfsmp); | |
1178 | ||
1179 | Exit: | |
1180 | ||
1181 | return err; | |
1182 | } | |
1183 | ||
1184 | ||
1185 | u_int8_t freebitcount[16] = { | |
1186 | 4, 3, 3, 2, 3, 2, 2, 1, /* 0 1 2 3 4 5 6 7 */ | |
1187 | 3, 2, 2, 1, 2, 1, 1, 0, /* 8 9 A B C D E F */ | |
1188 | }; | |
1189 | ||
1190 | u_int32_t | |
1191 | MetaZoneFreeBlocks(ExtendedVCB *vcb) | |
1192 | { | |
1193 | u_int32_t freeblocks; | |
1194 | u_int32_t *currCache; | |
1195 | GenericLFBufPtr blockRef; | |
1196 | u_int32_t bit; | |
1197 | u_int32_t lastbit; | |
1198 | int bytesleft; | |
1199 | int bytesperblock; | |
1200 | u_int8_t byte; | |
1201 | u_int8_t *buffer; | |
1202 | ||
1203 | blockRef = 0; | |
1204 | bytesleft = freeblocks = 0; | |
1205 | buffer = NULL; | |
1206 | bit = VCBTOHFS(vcb)->hfs_metazone_start; | |
1207 | if (bit == 1) | |
1208 | bit = 0; | |
1209 | ||
1210 | lastbit = VCBTOHFS(vcb)->hfs_metazone_end; | |
1211 | bytesperblock = vcb->vcbVBMIOSize; | |
1212 | ||
1213 | /* | |
1214 | * Count all the bits from bit to lastbit. | |
1215 | */ | |
1216 | while (bit < lastbit) { | |
1217 | /* | |
1218 | * Get next bitmap block. | |
1219 | */ | |
1220 | if (bytesleft == 0) { | |
1221 | if (blockRef) { | |
1222 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
1223 | blockRef = 0; | |
1224 | } | |
1225 | if (ReadBitmapBlock(vcb, bit, &currCache, &blockRef, | |
1226 | HFS_ALLOC_IGNORE_TENTATIVE) != 0) { | |
1227 | return (0); | |
1228 | } | |
1229 | buffer = (u_int8_t *)currCache; | |
1230 | bytesleft = bytesperblock; | |
1231 | } | |
1232 | byte = *buffer++; | |
1233 | freeblocks += freebitcount[byte & 0x0F]; | |
1234 | freeblocks += freebitcount[(byte >> 4) & 0x0F]; | |
1235 | bit += kBitsPerByte; | |
1236 | --bytesleft; | |
1237 | } | |
1238 | if (blockRef) | |
1239 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
1240 | ||
1241 | return (freeblocks); | |
1242 | } | |
1243 | ||
1244 | ||
1245 | /* | |
1246 | * Obtain the next allocation block (bit) that's | |
1247 | * outside the metadata allocation zone. | |
1248 | */ | |
1249 | static u_int32_t NextBitmapBlock( | |
1250 | ExtendedVCB *vcb, | |
1251 | u_int32_t bit) | |
1252 | { | |
1253 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1254 | ||
1255 | if ((hfsmp->hfs_flags & HFS_METADATA_ZONE) == 0) | |
1256 | return (bit); | |
1257 | /* | |
1258 | * Skip over metadata allocation zone. | |
1259 | */ | |
1260 | if ((bit >= hfsmp->hfs_metazone_start) && | |
1261 | (bit <= hfsmp->hfs_metazone_end)) { | |
1262 | bit = hfsmp->hfs_metazone_end + 1; | |
1263 | } | |
1264 | return (bit); | |
1265 | } | |
1266 | ||
1267 | ||
1268 | // Assumes @bitmap is aligned to 8 bytes and multiple of 8 bytes. | |
1269 | static void bits_set(void *bitmap, int start, int end) | |
1270 | { | |
1271 | const int start_bit = start & 63; | |
1272 | const int end_bit = end & 63; | |
1273 | ||
1274 | #define LEFT_MASK(bit) OSSwapHostToBigInt64(0xffffffffffffffffull << (64 - bit)) | |
1275 | #define RIGHT_MASK(bit) OSSwapHostToBigInt64(0xffffffffffffffffull >> bit) | |
1276 | ||
1277 | uint64_t *p = (uint64_t *)bitmap + start / 64; | |
1278 | ||
1279 | if ((start & ~63) == (end & ~63)) { | |
1280 | // Start and end in same 64 bits | |
1281 | *p |= RIGHT_MASK(start_bit) & LEFT_MASK(end_bit); | |
1282 | } else { | |
1283 | *p++ |= RIGHT_MASK(start_bit); | |
1284 | ||
1285 | int nquads = (end - end_bit - start - 1) / 64; | |
1286 | ||
1287 | while (nquads--) | |
1288 | *p++ = 0xffffffffffffffffull; | |
1289 | ||
1290 | if (end_bit) | |
1291 | *p |= LEFT_MASK(end_bit); | |
1292 | } | |
1293 | } | |
1294 | ||
1295 | // Modifies the buffer and applies any reservations that we might have | |
1296 | static GenericLFBufPtr process_reservations(hfsmount_t *hfsmp, GenericLFBufPtr bp, off_t offset, hfs_block_alloc_flags_t flags, bool always_copy) | |
1297 | { | |
1298 | ||
1299 | #if 0 | |
1300 | bool taken_copy = false; | |
1301 | #else | |
1302 | #pragma unused (always_copy) | |
1303 | #endif | |
1304 | ||
1305 | void *buffer = bp->pvData; | |
1306 | const uint64_t nbytes = bp->uValidBytes; | |
1307 | const off_t end = offset + nbytes * 8 - 1; | |
1308 | ||
1309 | for (int i = (ISSET(flags, HFS_ALLOC_IGNORE_TENTATIVE) | |
1310 | ? HFS_LOCKED_BLOCKS : HFS_TENTATIVE_BLOCKS); i < 2; ++i) { | |
1311 | struct rl_entry *entry; | |
1312 | TAILQ_FOREACH(entry, &hfsmp->hfs_reserved_ranges[i], rl_link) { | |
1313 | uint32_t a, b; | |
1314 | ||
1315 | enum rl_overlaptype overlap_type = rl_overlap(entry, offset, end); | |
1316 | ||
1317 | if (overlap_type == RL_NOOVERLAP) | |
1318 | continue; | |
1319 | ||
1320 | #if 0 | |
1321 | /* | |
1322 | * If always_copy is false, we only take a copy if B_LOCKED is | |
1323 | * set because ReleaseScanBitmapRange doesn't invalidate the | |
1324 | * buffer in that case. | |
1325 | */ | |
1326 | if (!taken_copy && (always_copy || ISSET(buf_flags(bp), B_LOCKED))) { | |
1327 | buf_t new_bp = buf_create_shadow(bp, true, 0, NULL, NULL); | |
1328 | buf_brelse(bp); | |
1329 | bp = new_bp; | |
1330 | buf_setflags(bp, B_NOCACHE); | |
1331 | buffer = (void *)buf_dataptr(bp); | |
1332 | taken_copy = true; | |
1333 | } | |
1334 | #endif | |
1335 | switch (overlap_type) { | |
1336 | case RL_OVERLAPCONTAINSRANGE: | |
1337 | case RL_MATCHINGOVERLAP: | |
1338 | memset(buffer, 0xff, nbytes); | |
1339 | return bp; | |
1340 | case RL_OVERLAPISCONTAINED: | |
1341 | a = (uint32_t)entry->rl_start; | |
1342 | b = (uint32_t)entry->rl_end; | |
1343 | break; | |
1344 | case RL_OVERLAPSTARTSBEFORE: | |
1345 | a = (uint32_t)offset; | |
1346 | b = (uint32_t)entry->rl_end; | |
1347 | break; | |
1348 | case RL_OVERLAPENDSAFTER: | |
1349 | a = (uint32_t)entry->rl_start; | |
1350 | b = (uint32_t)end; | |
1351 | break; | |
1352 | case RL_NOOVERLAP: | |
1353 | __builtin_unreachable(); | |
1354 | } | |
1355 | ||
1356 | a -= offset; | |
1357 | b -= offset; | |
1358 | ||
1359 | hfs_assert(b >= a); | |
1360 | ||
1361 | // b is inclusive | |
1362 | bits_set(buffer, a, b + 1); | |
1363 | } | |
1364 | } // for (;;) | |
1365 | ||
1366 | return bp; | |
1367 | } | |
1368 | ||
1369 | /* | |
1370 | ;_______________________________________________________________________ | |
1371 | ; | |
1372 | ; Routine: ReadBitmapBlock | |
1373 | ; | |
1374 | ; Function: Read in a bitmap block corresponding to a given allocation | |
1375 | ; block (bit). Return a pointer to the bitmap block. | |
1376 | ; | |
1377 | ; Inputs: | |
1378 | ; vcb -- Pointer to ExtendedVCB | |
1379 | ; bit -- Allocation block whose bitmap block is desired | |
1380 | ; | |
1381 | ; Outputs: | |
1382 | ; buffer -- Pointer to bitmap block corresonding to "block" | |
1383 | ; blockRef | |
1384 | ;_______________________________________________________________________ | |
1385 | */ | |
1386 | static OSErr ReadBitmapBlock(ExtendedVCB *vcb, | |
1387 | u_int32_t bit, | |
1388 | u_int32_t **buffer, | |
1389 | GenericLFBufPtr *blockRef, | |
1390 | hfs_block_alloc_flags_t flags) | |
1391 | { | |
1392 | OSErr err = 0; | |
1393 | GenericLFBufPtr bp = NULL; | |
1394 | struct vnode *vp = NULL; | |
1395 | daddr64_t block; | |
1396 | u_int32_t blockSize; | |
1397 | ||
1398 | /* | |
1399 | * volume bitmap blocks are protected by the allocation file lock | |
1400 | */ | |
1401 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); | |
1402 | ||
1403 | blockSize = (u_int32_t)vcb->vcbVBMIOSize; | |
1404 | if (blockSize == 0) return EINVAL; //Devision protection | |
1405 | block = (daddr64_t)(bit / (blockSize * kBitsPerByte)); | |
1406 | ||
1407 | /* HFS+ / HFSX */ | |
1408 | vp = vcb->hfs_allocation_vp; /* use allocation file vnode */ | |
1409 | ||
1410 | bp = lf_hfs_generic_buf_allocate(vp, block, blockSize, 0); | |
1411 | err = lf_hfs_generic_buf_read(bp); | |
1412 | ||
1413 | if ( err ) | |
1414 | { | |
1415 | lf_hfs_generic_buf_release(bp); | |
1416 | *blockRef = NULL; | |
1417 | *buffer = NULL; | |
1418 | } | |
1419 | else | |
1420 | { | |
1421 | if (!ISSET(flags, HFS_ALLOC_IGNORE_RESERVED)) { | |
1422 | bp = process_reservations(vcb, bp, block * blockSize * 8, flags, /* always_copy: */ true); | |
1423 | } | |
1424 | ||
1425 | bp->uFlags = flags; | |
1426 | ||
1427 | *blockRef = bp; | |
1428 | *buffer = bp->pvData; | |
1429 | } | |
1430 | ||
1431 | return err; | |
1432 | } | |
1433 | ||
1434 | ||
1435 | /* | |
1436 | ;_______________________________________________________________________ | |
1437 | ; | |
1438 | ; Routine: ReadBitmapRange | |
1439 | ; | |
1440 | ; Function: Read in a range of the bitmap starting at the given offset. | |
1441 | ; Use the supplied size to determine the amount of I/O to generate | |
1442 | ; against the bitmap file. Return a pointer to the bitmap block. | |
1443 | ; | |
1444 | ; Inputs: | |
1445 | ; hfsmp -- Pointer to hfs mount | |
1446 | ; offset -- byte offset into the bitmap file | |
1447 | ; size -- How much I/O to generate against the bitmap file. | |
1448 | ; | |
1449 | ; Outputs: | |
1450 | ; buffer -- Pointer to bitmap block data corresonding to "block" | |
1451 | ; blockRef -- struct 'buf' pointer which MUST be released in a subsequent call. | |
1452 | ;_______________________________________________________________________ | |
1453 | */ | |
1454 | static OSErr ReadBitmapRange(struct hfsmount *hfsmp, uint32_t offset, uint32_t iosize, uint32_t **buffer, GenericLFBuf **blockRef) | |
1455 | { | |
1456 | ||
1457 | OSErr err = 0; | |
1458 | GenericLFBufPtr bp = NULL; | |
1459 | struct vnode *vp = NULL; | |
1460 | daddr64_t block; | |
1461 | ||
1462 | /* | |
1463 | * volume bitmap blocks are protected by the allocation file lock | |
1464 | */ | |
1465 | REQUIRE_FILE_LOCK(hfsmp->hfs_allocation_vp, false); | |
1466 | ||
1467 | vp = hfsmp->hfs_allocation_vp; /* use allocation file vnode */ | |
1468 | ||
1469 | /* | |
1470 | * The byte offset argument must be converted into bitmap-relative logical | |
1471 | * block numbers before using it in buf_meta_bread. | |
1472 | * | |
1473 | * lf_hfs_generic_buf_read (and the things it calls) will eventually try to | |
1474 | * reconstruct the byte offset into the file by multiplying the logical | |
1475 | * block number passed in below by the given iosize. | |
1476 | * So we prepare for that by converting the byte offset back into | |
1477 | * logical blocks in terms of iosize units. | |
1478 | * | |
1479 | * The amount of I/O requested and the byte offset should be computed | |
1480 | * based on the helper function in the frame that called us, so we can | |
1481 | * get away with just doing a simple divide here. | |
1482 | */ | |
1483 | block = (daddr64_t)(offset / iosize); | |
1484 | ||
1485 | bp = lf_hfs_generic_buf_allocate(vp, block, iosize, 0); | |
1486 | err = lf_hfs_generic_buf_read(bp); | |
1487 | ||
1488 | if ( err ) | |
1489 | { | |
1490 | lf_hfs_generic_buf_release(bp); | |
1491 | *blockRef = 0; | |
1492 | *buffer = NULL; | |
1493 | } | |
1494 | else | |
1495 | { | |
1496 | bp = process_reservations(hfsmp, bp, (offset * 8), 0, /* always_copy: */ false); | |
1497 | *blockRef = bp; | |
1498 | *buffer = bp->pvData; | |
1499 | } | |
1500 | ||
1501 | return err; | |
1502 | } | |
1503 | ||
1504 | ||
1505 | /* | |
1506 | ;_______________________________________________________________________ | |
1507 | ; | |
1508 | ; Routine: ReleaseBitmapBlock | |
1509 | ; | |
1510 | ; Function: Relase a bitmap block. | |
1511 | ; | |
1512 | ; Inputs: | |
1513 | ; vcb | |
1514 | ; blockRef | |
1515 | ; dirty | |
1516 | ;_______________________________________________________________________ | |
1517 | */ | |
1518 | static OSErr ReleaseBitmapBlock( ExtendedVCB *vcb, GenericLFBufPtr blockRef, Boolean dirty) | |
1519 | { | |
1520 | ||
1521 | GenericLFBufPtr bp = blockRef; | |
1522 | ||
1523 | if (blockRef == 0) { | |
1524 | if (dirty) | |
1525 | { | |
1526 | LFHFS_LOG(LEVEL_ERROR, "ReleaseBitmapBlock: missing bp"); | |
1527 | hfs_assert(0); | |
1528 | } | |
1529 | return (0); | |
1530 | } | |
1531 | ||
1532 | if (bp) | |
1533 | { | |
1534 | if (dirty) | |
1535 | { | |
1536 | hfs_block_alloc_flags_t flags = (uint32_t)bp->uFlags; | |
1537 | ||
1538 | if (!ISSET(flags, HFS_ALLOC_IGNORE_RESERVED)) | |
1539 | { | |
1540 | LFHFS_LOG(LEVEL_ERROR, "Modified read-only bitmap buffer!"); | |
1541 | hfs_assert(0); | |
1542 | } | |
1543 | ||
1544 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1545 | if (hfsmp->jnl) | |
1546 | { | |
1547 | journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL); | |
1548 | } | |
1549 | else | |
1550 | { | |
1551 | lf_hfs_generic_buf_write(bp); | |
1552 | lf_hfs_generic_buf_release(bp); | |
1553 | } | |
1554 | } else { | |
1555 | lf_hfs_generic_buf_release(bp); | |
1556 | } | |
1557 | } | |
1558 | ||
1559 | return (0); | |
1560 | } | |
1561 | ||
1562 | /* | |
1563 | * ReleaseScanBitmapRange | |
1564 | * | |
1565 | * This is used to release struct bufs that were created for use by | |
1566 | * bitmap scanning code. Because they may be of sizes different than the | |
1567 | * typical runtime manipulation code, we want to force them to be purged out | |
1568 | * of the buffer cache ASAP, so we'll release them differently than in the | |
1569 | * ReleaseBitmapBlock case. | |
1570 | * | |
1571 | * Additionally, because we know that we're only reading the blocks and that they | |
1572 | * should have been clean prior to reading them, we will never | |
1573 | * issue a write to them (thus dirtying them). | |
1574 | */ | |
1575 | ||
1576 | static OSErr ReleaseScanBitmapRange( GenericLFBufPtr bp ) | |
1577 | { | |
1578 | if (bp) | |
1579 | { | |
1580 | lf_hfs_generic_buf_release(bp); | |
1581 | } | |
1582 | ||
1583 | return (0); | |
1584 | } | |
1585 | ||
1586 | /* | |
1587 | * @extent.startBlock, on input, contains a preferred block for the | |
1588 | * allocation. @extent.blockCount, on input, contains the minimum | |
1589 | * number of blocks acceptable. Upon success, the result is conveyed | |
1590 | * in @extent. | |
1591 | */ | |
1592 | static OSErr hfs_alloc_try_hard(hfsmount_t *hfsmp, | |
1593 | HFSPlusExtentDescriptor *extent, | |
1594 | uint32_t max_blocks, | |
1595 | hfs_block_alloc_flags_t flags) | |
1596 | { | |
1597 | OSErr err = dskFulErr; | |
1598 | ||
1599 | const uint32_t min_blocks = extent->blockCount; | |
1600 | ||
1601 | // It's > rather than >= because the last block is always reserved | |
1602 | if (extent->startBlock > 0 && extent->startBlock < hfsmp->allocLimit | |
1603 | && hfsmp->allocLimit - extent->startBlock > max_blocks) { | |
1604 | /* | |
1605 | * This is just checking to see if there's an extent starting | |
1606 | * at extent->startBlock that will suit. We only check for | |
1607 | * @max_blocks here; @min_blocks is ignored. | |
1608 | */ | |
1609 | ||
1610 | err = BlockFindContiguous(hfsmp, extent->startBlock, extent->startBlock + max_blocks, | |
1611 | max_blocks, max_blocks, true, true, | |
1612 | &extent->startBlock, &extent->blockCount, flags); | |
1613 | ||
1614 | if (err != dskFulErr) | |
1615 | return err; | |
1616 | } | |
1617 | ||
1618 | err = BlockFindKnown(hfsmp, max_blocks, &extent->startBlock, | |
1619 | &extent->blockCount); | |
1620 | ||
1621 | if (!err) { | |
1622 | if (extent->blockCount >= max_blocks) | |
1623 | return 0; | |
1624 | } else if (err != dskFulErr) | |
1625 | return err; | |
1626 | ||
1627 | // Try a more exhaustive search | |
1628 | return BlockFindContiguous(hfsmp, 1, hfsmp->allocLimit, | |
1629 | min_blocks, max_blocks, | |
1630 | /* useMetaZone: */ true, | |
1631 | /* trustSummary: */ true, | |
1632 | &extent->startBlock, &extent->blockCount, flags); | |
1633 | } | |
1634 | ||
1635 | /* | |
1636 | _______________________________________________________________________ | |
1637 | ||
1638 | Routine: BlockFindContig | |
1639 | ||
1640 | Function: Find a contiguous group of allocation blocks. If the | |
1641 | minimum cannot be satisfied, nothing is returned. The | |
1642 | caller guarantees that there are enough free blocks | |
1643 | (though they may not be contiguous, in which case this | |
1644 | call will fail). | |
1645 | ||
1646 | Inputs: | |
1647 | vcb Pointer to volume where space is to be allocated | |
1648 | startingBlock Preferred first block for allocation | |
1649 | minBlocks Minimum number of contiguous blocks to allocate | |
1650 | maxBlocks Maximum number of contiguous blocks to allocate | |
1651 | flags | |
1652 | ||
1653 | Outputs: | |
1654 | actualStartBlock First block of range allocated, or 0 if error | |
1655 | actualNumBlocks Number of blocks allocated, or 0 if error | |
1656 | _______________________________________________________________________ | |
1657 | */ | |
1658 | static OSErr BlockFindContig( | |
1659 | ExtendedVCB *vcb, | |
1660 | u_int32_t startingBlock, | |
1661 | u_int32_t minBlocks, | |
1662 | u_int32_t maxBlocks, | |
1663 | hfs_block_alloc_flags_t flags, | |
1664 | u_int32_t *actualStartBlock, | |
1665 | u_int32_t *actualNumBlocks) | |
1666 | { | |
1667 | OSErr retval = noErr; | |
1668 | uint32_t currentStart = startingBlock; | |
1669 | ||
1670 | uint32_t foundStart = 0; // values to emit to caller | |
1671 | uint32_t foundCount = 0; | |
1672 | ||
1673 | uint32_t collision_start = 0; // if we have to re-allocate a recently deleted extent, use this | |
1674 | uint32_t collision_count = 0; | |
1675 | ||
1676 | int allowReuse = (flags & HFS_ALLOC_FLUSHTXN); | |
1677 | Boolean useMetaZone = (flags & HFS_ALLOC_METAZONE); | |
1678 | ||
1679 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1680 | ||
1681 | while ((retval == noErr) && (foundStart == 0) && (foundCount == 0)) { | |
1682 | ||
1683 | /* Try and find something that works. */ | |
1684 | ||
1685 | /* | |
1686 | * NOTE: If the only contiguous free extent of at least minBlocks | |
1687 | * crosses startingBlock (i.e. starts before, ends after), then we | |
1688 | * won't find it. Earlier versions *did* find this case by letting | |
1689 | * the second search look past startingBlock by minBlocks. But | |
1690 | * with the free extent cache, this can lead to duplicate entries | |
1691 | * in the cache, causing the same blocks to be allocated twice. | |
1692 | */ | |
1693 | retval = BlockFindContiguous(vcb, currentStart, vcb->allocLimit, minBlocks, | |
1694 | maxBlocks, useMetaZone, true, &foundStart, &foundCount, flags); | |
1695 | ||
1696 | if (retval == dskFulErr && currentStart != 0) { | |
1697 | /* | |
1698 | * We constrain the endingBlock so we don't bother looking for ranges | |
1699 | * that would overlap those found in the previous call, if the summary bitmap | |
1700 | * is not on for this volume. If it is, then we assume that it was not trust | |
1701 | * -worthy and do a full scan. | |
1702 | */ | |
1703 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
1704 | retval = BlockFindContiguous(vcb, 1, vcb->allocLimit, minBlocks, | |
1705 | maxBlocks, useMetaZone, false, &foundStart, &foundCount, flags); | |
1706 | } | |
1707 | else { | |
1708 | retval = BlockFindContiguous(vcb, 1, currentStart, minBlocks, | |
1709 | maxBlocks, useMetaZone, false, &foundStart, &foundCount, flags); | |
1710 | } | |
1711 | } | |
1712 | ||
1713 | if (retval != noErr) { | |
1714 | goto bailout; | |
1715 | } | |
1716 | ||
1717 | /* Do we overlap with the recently found collision extent? */ | |
1718 | if (collision_start) { | |
1719 | if (extents_overlap (foundStart, foundCount, collision_start, collision_count)) { | |
1720 | /* | |
1721 | * We've looped around, and the only thing we could use was the collision extent. | |
1722 | * Since we are allowed to use it, go ahead and do so now. | |
1723 | */ | |
1724 | if(allowReuse) { | |
1725 | /* | |
1726 | * then we couldn't find anything except values which might have been | |
1727 | * recently deallocated. just return our cached value if we are allowed to. | |
1728 | */ | |
1729 | foundStart = collision_start; | |
1730 | foundCount = collision_count; | |
1731 | goto bailout; | |
1732 | } | |
1733 | else { | |
1734 | /* Otherwise, we looped around and couldn't find anything that wouldn't require a journal flush. */ | |
1735 | retval = dskFulErr; | |
1736 | goto bailout; | |
1737 | } | |
1738 | } | |
1739 | } | |
1740 | /* | |
1741 | * If we found something good, we'd break out of the loop at the top; foundCount | |
1742 | * and foundStart should be set. | |
1743 | */ | |
1744 | ||
1745 | } // end while loop. | |
1746 | ||
1747 | bailout: | |
1748 | ||
1749 | if (retval == noErr) { | |
1750 | *actualStartBlock = foundStart; | |
1751 | *actualNumBlocks = foundCount; | |
1752 | } | |
1753 | ||
1754 | return retval; | |
1755 | ||
1756 | } | |
1757 | ||
1758 | ||
1759 | /* | |
1760 | _______________________________________________________________________ | |
1761 | ||
1762 | Routine: BlockFindAny | |
1763 | ||
1764 | Function: Find one or more allocation blocks and may return fewer than | |
1765 | requested. The caller guarantees that there is at least one | |
1766 | free block. | |
1767 | ||
1768 | Inputs: | |
1769 | vcb Pointer to volume where space is to be allocated | |
1770 | startingBlock Preferred first block for allocation | |
1771 | endingBlock Last block to check + 1 | |
1772 | maxBlocks Maximum number of contiguous blocks to allocate | |
1773 | useMetaZone | |
1774 | ||
1775 | Outputs: | |
1776 | actualStartBlock First block of range allocated, or 0 if error | |
1777 | actualNumBlocks Number of blocks allocated, or 0 if error | |
1778 | _______________________________________________________________________ | |
1779 | */ | |
1780 | ||
1781 | static OSErr BlockFindAny( | |
1782 | ExtendedVCB *vcb, | |
1783 | u_int32_t startingBlock, | |
1784 | register u_int32_t endingBlock, | |
1785 | u_int32_t maxBlocks, | |
1786 | hfs_block_alloc_flags_t flags, | |
1787 | Boolean trustSummary, | |
1788 | u_int32_t *actualStartBlock, | |
1789 | u_int32_t *actualNumBlocks) | |
1790 | { | |
1791 | ||
1792 | /* | |
1793 | * If it is enabled, scan through the summary table to find the first free block. | |
1794 | * | |
1795 | * If it reports that there are not any free blocks, we could have a false | |
1796 | * positive, so in that case, use the input arguments as a pass through. | |
1797 | */ | |
1798 | uint32_t start_blk = startingBlock; | |
1799 | uint32_t end_blk = endingBlock; | |
1800 | struct hfsmount *hfsmp; | |
1801 | OSErr err; | |
1802 | ||
1803 | hfsmp = (struct hfsmount*)vcb; | |
1804 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
1805 | uint32_t suggested_start; | |
1806 | ||
1807 | /* | |
1808 | * If the summary table is enabled, scan through it to find the first free | |
1809 | * block. If there was an error, or we couldn't find anything free in the | |
1810 | * summary table, then just leave the start_blk fields unmodified. We wouldn't | |
1811 | * have gotten to this point if the mount point made it look like there was possibly | |
1812 | * free space in the FS. | |
1813 | */ | |
1814 | err = hfs_find_summary_free (hfsmp, startingBlock, &suggested_start); | |
1815 | if (err == 0) { | |
1816 | start_blk = suggested_start; | |
1817 | } | |
1818 | else { | |
1819 | /* Differentiate between ENOSPC and a more esoteric error in the above call. */ | |
1820 | if ((err == ENOSPC) && (trustSummary)) { | |
1821 | /* | |
1822 | * The 'trustSummary' argument is for doing a full scan if we really | |
1823 | * really, need the space and we think it's somewhere but can't find it in the | |
1824 | * summary table. If it's true, then we trust the summary table and return | |
1825 | * dskFulErr if we couldn't find it above. | |
1826 | */ | |
1827 | return dskFulErr; | |
1828 | } | |
1829 | /* | |
1830 | * If either trustSummary was false or we got a different errno, then we | |
1831 | * want to fall through to the real bitmap single i/o code... | |
1832 | */ | |
1833 | } | |
1834 | } | |
1835 | ||
1836 | err = BlockFindAnyBitmap(vcb, start_blk, end_blk, maxBlocks, | |
1837 | flags, actualStartBlock, actualNumBlocks); | |
1838 | ||
1839 | return err; | |
1840 | } | |
1841 | ||
1842 | ||
1843 | /* | |
1844 | * BlockFindAnyBitmap finds free ranges by scanning the bitmap to | |
1845 | * figure out where the free allocation blocks are. Inputs and | |
1846 | * outputs are the same as for BlockFindAny. | |
1847 | */ | |
1848 | ||
1849 | static OSErr BlockFindAnyBitmap( | |
1850 | ExtendedVCB *vcb, | |
1851 | u_int32_t startingBlock, | |
1852 | register u_int32_t endingBlock, | |
1853 | u_int32_t maxBlocks, | |
1854 | hfs_block_alloc_flags_t flags, | |
1855 | u_int32_t *actualStartBlock, | |
1856 | u_int32_t *actualNumBlocks) | |
1857 | { | |
1858 | OSErr err; | |
1859 | register u_int32_t block = 0; // current block number | |
1860 | register u_int32_t currentWord; // Pointer to current word within bitmap block | |
1861 | register u_int32_t bitMask; // Word with given bits already set (ready to OR in) | |
1862 | register u_int32_t wordsLeft; // Number of words left in this bitmap block | |
1863 | u_int32_t *buffer = NULL; | |
1864 | u_int32_t *currCache = NULL; | |
1865 | GenericLFBufPtr blockRef = 0; | |
1866 | u_int32_t bitsPerBlock; | |
1867 | u_int32_t wordsPerBlock; | |
1868 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1869 | Boolean useMetaZone = (flags & HFS_ALLOC_METAZONE); | |
1870 | ||
1871 | /* | |
1872 | * When we're skipping the metadata zone and the start/end | |
1873 | * range overlaps with the metadata zone then adjust the | |
1874 | * start to be outside of the metadata zone. If the range | |
1875 | * is entirely inside the metadata zone then we can deny the | |
1876 | * request (dskFulErr). | |
1877 | */ | |
1878 | if (!useMetaZone && (vcb->hfs_flags & HFS_METADATA_ZONE)) { | |
1879 | if (startingBlock <= vcb->hfs_metazone_end) { | |
1880 | if (endingBlock > (vcb->hfs_metazone_end + 2)) | |
1881 | startingBlock = vcb->hfs_metazone_end + 1; | |
1882 | else { | |
1883 | err = dskFulErr; | |
1884 | goto Exit; | |
1885 | } | |
1886 | } | |
1887 | } | |
1888 | ||
1889 | // Since this routine doesn't wrap around | |
1890 | if (maxBlocks > (endingBlock - startingBlock)) { | |
1891 | maxBlocks = endingBlock - startingBlock; | |
1892 | } | |
1893 | ||
1894 | // | |
1895 | // Pre-read the first bitmap block | |
1896 | // | |
1897 | err = ReadBitmapBlock(vcb, startingBlock, &currCache, &blockRef, flags); | |
1898 | if (err != noErr) goto Exit; | |
1899 | buffer = currCache; | |
1900 | ||
1901 | // | |
1902 | // Set up the current position within the block | |
1903 | // | |
1904 | { | |
1905 | u_int32_t wordIndexInBlock; | |
1906 | ||
1907 | bitsPerBlock = vcb->vcbVBMIOSize * kBitsPerByte; | |
1908 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
1909 | ||
1910 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; | |
1911 | buffer += wordIndexInBlock; | |
1912 | wordsLeft = wordsPerBlock - wordIndexInBlock; | |
1913 | currentWord = SWAP_BE32 (*buffer); | |
1914 | bitMask = kHighBitInWordMask >> (startingBlock & kBitsWithinWordMask); | |
1915 | } | |
1916 | ||
1917 | /* | |
1918 | * While loop 1: | |
1919 | * Find the first unallocated block starting at 'block' | |
1920 | */ | |
1921 | uint32_t summary_block_scan = 0; | |
1922 | ||
1923 | block=startingBlock; | |
1924 | while (block < endingBlock) { | |
1925 | if ((currentWord & bitMask) == 0) | |
1926 | break; | |
1927 | ||
1928 | // Next bit | |
1929 | ++block; | |
1930 | bitMask >>= 1; | |
1931 | if (bitMask == 0) { | |
1932 | // Next word | |
1933 | bitMask = kHighBitInWordMask; | |
1934 | ++buffer; | |
1935 | ||
1936 | if (--wordsLeft == 0) { | |
1937 | // Next block | |
1938 | buffer = currCache = NULL; | |
1939 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
1940 | /* | |
1941 | * If summary_block_scan is non-zero, then we must have | |
1942 | * pulled a bitmap file block into core, and scanned through | |
1943 | * the entire thing. Because we're in this loop, we are | |
1944 | * implicitly trusting that the bitmap didn't have any knowledge | |
1945 | * about this particular block. As a result, update the bitmap | |
1946 | * (lazily, now that we've scanned it) with our findings that | |
1947 | * this particular block is completely used up. | |
1948 | */ | |
1949 | if (summary_block_scan != 0) { | |
1950 | uint32_t summary_bit; | |
1951 | (void) hfs_get_summary_index (hfsmp, summary_block_scan, &summary_bit); | |
1952 | hfs_set_summary (hfsmp, summary_bit, 1); | |
1953 | } | |
1954 | } | |
1955 | ||
1956 | err = ReleaseBitmapBlock(vcb, blockRef, false); | |
1957 | if (err != noErr) goto Exit; | |
1958 | ||
1959 | /* | |
1960 | * Skip over metadata blocks. | |
1961 | */ | |
1962 | if (!useMetaZone) { | |
1963 | block = NextBitmapBlock(vcb, block); | |
1964 | } | |
1965 | if (block >= endingBlock) { | |
1966 | err = dskFulErr; | |
1967 | goto Exit; | |
1968 | } | |
1969 | ||
1970 | err = ReadBitmapBlock(vcb, block, &currCache, &blockRef, flags); | |
1971 | if (err != noErr) goto Exit; | |
1972 | buffer = currCache; | |
1973 | summary_block_scan = block; | |
1974 | wordsLeft = wordsPerBlock; | |
1975 | } | |
1976 | currentWord = SWAP_BE32 (*buffer); | |
1977 | } | |
1978 | } | |
1979 | ||
1980 | // Did we get to the end of the bitmap before finding a free block? | |
1981 | // If so, then couldn't allocate anything. | |
1982 | if (block >= endingBlock) { | |
1983 | err = dskFulErr; | |
1984 | goto Exit; | |
1985 | } | |
1986 | ||
1987 | #if LF_HFS_CHECK_UNMAPPED | |
1988 | /* | |
1989 | * Don't move forward just yet. Verify that either one of the following | |
1990 | * two conditions is true: | |
1991 | * 1) journaling is not enabled | |
1992 | * 2) block is not currently on any pending TRIM list. | |
1993 | */ | |
1994 | if (hfsmp->jnl != NULL && (forceFlush == false)) { | |
1995 | int recently_deleted = 0; | |
1996 | uint32_t nextblk; | |
1997 | err = CheckUnmappedBytes (hfsmp, (uint64_t) block, 1, &recently_deleted, &nextblk); | |
1998 | if ((err == 0) && (recently_deleted)) { | |
1999 | ||
2000 | /* release the bitmap block & unset currCache. we may jump past it. */ | |
2001 | err = ReleaseBitmapBlock(vcb, blockRef, false); | |
2002 | currCache = NULL; | |
2003 | if (err != noErr) { | |
2004 | goto Exit; | |
2005 | } | |
2006 | /* set our start to nextblk, and re-do the search. */ | |
2007 | startingBlock = nextblk; | |
2008 | goto restartSearchAny; | |
2009 | } | |
2010 | } | |
2011 | #endif | |
2012 | ||
2013 | // Return the first block in the allocated range | |
2014 | *actualStartBlock = block; | |
2015 | ||
2016 | // If we could get the desired number of blocks before hitting endingBlock, | |
2017 | // then adjust endingBlock so we won't keep looking. Ideally, the comparison | |
2018 | // would be (block + maxBlocks) < endingBlock, but that could overflow. The | |
2019 | // comparison below yields identical results, but without overflow. | |
2020 | if (block < (endingBlock-maxBlocks)) { | |
2021 | endingBlock = block + maxBlocks; // if we get this far, we've found enough | |
2022 | } | |
2023 | ||
2024 | /* | |
2025 | * While loop 2: | |
2026 | * Scan the bitmap, starting at 'currentWord' in the current | |
2027 | * bitmap block. Continue iterating through the bitmap until | |
2028 | * either we hit an allocated block, or until we have accumuluated | |
2029 | * maxBlocks worth of bitmap. | |
2030 | */ | |
2031 | ||
2032 | /* Continue until we see an allocated block */ | |
2033 | while ((currentWord & bitMask) == 0) { | |
2034 | // Move to the next block. If no more, then exit. | |
2035 | ++block; | |
2036 | if (block == endingBlock) { | |
2037 | break; | |
2038 | } | |
2039 | ||
2040 | // Next bit | |
2041 | bitMask >>= 1; | |
2042 | if (bitMask == 0) { | |
2043 | // Next word | |
2044 | bitMask = kHighBitInWordMask; | |
2045 | ++buffer; | |
2046 | ||
2047 | if (--wordsLeft == 0) { | |
2048 | // Next block | |
2049 | buffer = currCache = NULL; | |
2050 | ||
2051 | /* We're only reading the bitmap here, so mark it as clean */ | |
2052 | err = ReleaseBitmapBlock(vcb, blockRef, false); | |
2053 | if (err != noErr) { | |
2054 | goto Exit; | |
2055 | } | |
2056 | ||
2057 | /* | |
2058 | * Skip over metadata blocks. | |
2059 | */ | |
2060 | if (!useMetaZone) { | |
2061 | u_int32_t nextBlock; | |
2062 | nextBlock = NextBitmapBlock(vcb, block); | |
2063 | if (nextBlock != block) { | |
2064 | goto Exit; /* allocation gap, so stop */ | |
2065 | } | |
2066 | } | |
2067 | ||
2068 | if (block >= endingBlock) { | |
2069 | goto Exit; | |
2070 | } | |
2071 | ||
2072 | err = ReadBitmapBlock(vcb, block, &currCache, &blockRef, flags); | |
2073 | if (err != noErr) { | |
2074 | goto Exit; | |
2075 | } | |
2076 | buffer = currCache; | |
2077 | wordsLeft = wordsPerBlock; | |
2078 | } | |
2079 | currentWord = SWAP_BE32 (*buffer); | |
2080 | } | |
2081 | } | |
2082 | ||
2083 | Exit: | |
2084 | if (currCache) { | |
2085 | /* Release the bitmap reference prior to marking bits in-use */ | |
2086 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
2087 | currCache = NULL; | |
2088 | } | |
2089 | ||
2090 | if (err == noErr) { | |
2091 | *actualNumBlocks = block - *actualStartBlock; | |
2092 | ||
2093 | // sanity check | |
2094 | if ((*actualStartBlock + *actualNumBlocks) > vcb->allocLimit) { | |
2095 | LFHFS_LOG(LEVEL_ERROR, "BlockFindAnyBitmap: allocation overflow on \"%s\"", vcb->vcbVN); | |
2096 | hfs_assert(0); | |
2097 | } | |
2098 | } | |
2099 | else { | |
2100 | *actualStartBlock = 0; | |
2101 | *actualNumBlocks = 0; | |
2102 | } | |
2103 | ||
2104 | return err; | |
2105 | } | |
2106 | ||
2107 | ||
2108 | /* | |
2109 | _______________________________________________________________________ | |
2110 | ||
2111 | Routine: BlockFindKnown | |
2112 | ||
2113 | Function: Return a potential extent from the free extent cache. The | |
2114 | returned extent *must* be marked allocated and removed | |
2115 | from the cache by the *caller*. | |
2116 | ||
2117 | Inputs: | |
2118 | vcb Pointer to volume where space is to be allocated | |
2119 | maxBlocks Maximum number of contiguous blocks to allocate | |
2120 | ||
2121 | Outputs: | |
2122 | actualStartBlock First block of range allocated, or 0 if error | |
2123 | actualNumBlocks Number of blocks allocated, or 0 if error | |
2124 | ||
2125 | Returns: | |
2126 | dskFulErr Free extent cache is empty | |
2127 | _______________________________________________________________________ | |
2128 | */ | |
2129 | ||
2130 | static OSErr BlockFindKnown( | |
2131 | ExtendedVCB *vcb, | |
2132 | u_int32_t maxBlocks, | |
2133 | u_int32_t *actualStartBlock, | |
2134 | u_int32_t *actualNumBlocks) | |
2135 | { | |
2136 | OSErr err; | |
2137 | u_int32_t foundBlocks; | |
2138 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2139 | ||
2140 | hfs_lock_mount (hfsmp); | |
2141 | lf_lck_spin_lock(&vcb->vcbFreeExtLock); | |
2142 | if ( vcb->vcbFreeExtCnt == 0 || | |
2143 | vcb->vcbFreeExt[0].blockCount == 0) { | |
2144 | lf_lck_spin_unlock(&vcb->vcbFreeExtLock); | |
2145 | hfs_unlock_mount(hfsmp); | |
2146 | return dskFulErr; | |
2147 | } | |
2148 | lf_lck_spin_unlock(&vcb->vcbFreeExtLock); | |
2149 | hfs_unlock_mount(hfsmp); | |
2150 | ||
2151 | lf_lck_spin_lock(&vcb->vcbFreeExtLock); | |
2152 | ||
2153 | // Just grab up to maxBlocks of the first (largest) free exent. | |
2154 | *actualStartBlock = vcb->vcbFreeExt[0].startBlock; | |
2155 | foundBlocks = vcb->vcbFreeExt[0].blockCount; | |
2156 | if (foundBlocks > maxBlocks) | |
2157 | foundBlocks = maxBlocks; | |
2158 | *actualNumBlocks = foundBlocks; | |
2159 | ||
2160 | lf_lck_spin_unlock(&vcb->vcbFreeExtLock); | |
2161 | ||
2162 | // sanity check | |
2163 | if ((*actualStartBlock + *actualNumBlocks) > vcb->allocLimit) | |
2164 | { | |
2165 | LFHFS_LOG(LEVEL_ERROR, "BlockAllocateKnown() found allocation overflow on \"%s\"", vcb->vcbVN); | |
2166 | hfs_mark_inconsistent(vcb, HFS_INCONSISTENCY_DETECTED); | |
2167 | err = EIO; | |
2168 | } else | |
2169 | err = 0; | |
2170 | ||
2171 | return err; | |
2172 | } | |
2173 | ||
2174 | /* | |
2175 | * BlockMarkAllocated | |
2176 | * | |
2177 | * This is a wrapper function around the internal calls which will actually mark the blocks | |
2178 | * as in-use. It will mark the blocks in the red-black tree if appropriate. We need to do | |
2179 | * this logic here to avoid callers having to deal with whether or not the red-black tree | |
2180 | * is enabled. | |
2181 | */ | |
2182 | ||
2183 | OSErr BlockMarkAllocated( | |
2184 | ExtendedVCB *vcb, | |
2185 | u_int32_t startingBlock, | |
2186 | register u_int32_t numBlocks) | |
2187 | { | |
2188 | return BlockMarkAllocatedInternal(vcb, startingBlock, numBlocks, 0); | |
2189 | } | |
2190 | ||
2191 | ||
2192 | /* | |
2193 | _______________________________________________________________________ | |
2194 | ||
2195 | Routine: BlockMarkAllocatedInternal | |
2196 | ||
2197 | Function: Mark a contiguous group of blocks as allocated (set in the | |
2198 | bitmap). It assumes those bits are currently marked | |
2199 | deallocated (clear in the bitmap). Note that this function | |
2200 | must be called regardless of whether or not the bitmap or | |
2201 | tree-based allocator is used, as all allocations must correctly | |
2202 | be marked on-disk. If the tree-based approach is running, then | |
2203 | this will be done before the node is removed from the tree. | |
2204 | ||
2205 | Inputs: | |
2206 | vcb Pointer to volume where space is to be allocated | |
2207 | startingBlock First block number to mark as allocated | |
2208 | numBlocks Number of blocks to mark as allocated | |
2209 | _______________________________________________________________________ | |
2210 | */ | |
2211 | static | |
2212 | OSErr BlockMarkAllocatedInternal ( | |
2213 | ExtendedVCB *vcb, | |
2214 | u_int32_t startingBlock, | |
2215 | u_int32_t numBlocks, | |
2216 | hfs_block_alloc_flags_t flags) | |
2217 | { | |
2218 | OSErr err; | |
2219 | register u_int32_t *currentWord; // Pointer to current word within bitmap block | |
2220 | register u_int32_t wordsLeft; // Number of words left in this bitmap block | |
2221 | register u_int32_t bitMask; // Word with given bits already set (ready to OR in) | |
2222 | u_int32_t firstBit; // Bit index within word of first bit to allocate | |
2223 | u_int32_t numBits; // Number of bits in word to allocate | |
2224 | u_int32_t *buffer = NULL; | |
2225 | GenericLFBufPtr blockRef = NULL; | |
2226 | u_int32_t bitsPerBlock; | |
2227 | u_int32_t wordsPerBlock; | |
2228 | // XXXdbg | |
2229 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2230 | ||
2231 | #if DEBUG | |
2232 | ||
2233 | if (!ISSET(flags, HFS_ALLOC_COMMIT) | |
2234 | || ISSET(flags, HFS_ALLOC_USE_TENTATIVE)) { | |
2235 | struct rl_entry *range; | |
2236 | TAILQ_FOREACH(range, &hfsmp->hfs_reserved_ranges[HFS_LOCKED_BLOCKS], rl_link) { | |
2237 | hfs_assert(rl_overlap(range, startingBlock, | |
2238 | startingBlock + numBlocks - 1) == RL_NOOVERLAP); | |
2239 | } | |
2240 | } | |
2241 | ||
2242 | #endif | |
2243 | ||
2244 | #if LF_HFS_CHECK_UNMAPPED | |
2245 | int force_flush = 0; | |
2246 | /* | |
2247 | * Since we are about to mark these bits as in-use | |
2248 | * in the bitmap, decide if we need to alert the caller | |
2249 | * that a journal flush might be appropriate. It's safe to | |
2250 | * poke at the journal pointer here since we MUST have | |
2251 | * called start_transaction by the time this function is invoked. | |
2252 | * If the journal is enabled, then it will have taken the requisite | |
2253 | * journal locks. If it is not enabled, then we have taken | |
2254 | * a shared lock on the global lock. | |
2255 | */ | |
2256 | if (hfsmp->jnl) { | |
2257 | uint32_t ignore; | |
2258 | err = CheckUnmappedBytes (hfsmp, (uint64_t) startingBlock, (uint64_t)numBlocks, &force_flush, &ignore); | |
2259 | if ((err == 0) && (force_flush)) { | |
2260 | journal_request_immediate_flush (hfsmp->jnl); | |
2261 | } | |
2262 | } | |
2263 | ||
2264 | hfs_unmap_alloc_extent(vcb, startingBlock, numBlocks); | |
2265 | #endif | |
2266 | ||
2267 | /* | |
2268 | * Don't make changes to the disk if we're just reserving. Note that | |
2269 | * we could do better in the tentative case because we could, in theory, | |
2270 | * avoid the journal flush above. However, that would mean that we would | |
2271 | * need to catch the callback to stop it incorrectly addding the extent | |
2272 | * to our free cache. | |
2273 | */ | |
2274 | if (ISSET(flags, HFS_ALLOC_LOCKED | HFS_ALLOC_TENTATIVE)) { | |
2275 | err = 0; | |
2276 | goto Exit; | |
2277 | } | |
2278 | ||
2279 | // | |
2280 | // Pre-read the bitmap block containing the first word of allocation | |
2281 | // | |
2282 | ||
2283 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef, | |
2284 | HFS_ALLOC_IGNORE_RESERVED); | |
2285 | if (err != noErr) goto Exit; | |
2286 | // | |
2287 | // Initialize currentWord, and wordsLeft. | |
2288 | // | |
2289 | { | |
2290 | u_int32_t wordIndexInBlock; | |
2291 | ||
2292 | bitsPerBlock = vcb->vcbVBMIOSize * kBitsPerByte; | |
2293 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
2294 | ||
2295 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; | |
2296 | currentWord = buffer + wordIndexInBlock; | |
2297 | wordsLeft = wordsPerBlock - wordIndexInBlock; | |
2298 | } | |
2299 | ||
2300 | // XXXdbg | |
2301 | if (hfsmp->jnl) { | |
2302 | journal_modify_block_start(hfsmp->jnl, blockRef); | |
2303 | } | |
2304 | ||
2305 | // | |
2306 | // If the first block to allocate doesn't start on a word | |
2307 | // boundary in the bitmap, then treat that first word | |
2308 | // specially. | |
2309 | // | |
2310 | ||
2311 | firstBit = startingBlock % kBitsPerWord; | |
2312 | if (firstBit != 0) { | |
2313 | bitMask = kAllBitsSetInWord >> firstBit; // turn off all bits before firstBit | |
2314 | numBits = kBitsPerWord - firstBit; // number of remaining bits in this word | |
2315 | if (numBits > numBlocks) { | |
2316 | numBits = numBlocks; // entire allocation is inside this one word | |
2317 | bitMask &= ~(kAllBitsSetInWord >> (firstBit + numBits)); // turn off bits after last | |
2318 | } | |
2319 | #if DEBUG | |
2320 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
2321 | LFHFS_LOG(LEVEL_ERROR, "BlockMarkAllocatedInternal: blocks already allocated!"); | |
2322 | hfs_assert(0); | |
2323 | } | |
2324 | #endif | |
2325 | *currentWord |= SWAP_BE32 (bitMask); // set the bits in the bitmap | |
2326 | numBlocks -= numBits; // adjust number of blocks left to allocate | |
2327 | ||
2328 | ++currentWord; // move to next word | |
2329 | --wordsLeft; // one less word left in this block | |
2330 | } | |
2331 | ||
2332 | // | |
2333 | // Allocate whole words (32 blocks) at a time. | |
2334 | // | |
2335 | ||
2336 | bitMask = kAllBitsSetInWord; // put this in a register for 68K | |
2337 | while (numBlocks >= kBitsPerWord) { | |
2338 | if (wordsLeft == 0) { | |
2339 | // Read in the next bitmap block | |
2340 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block | |
2341 | ||
2342 | buffer = NULL; | |
2343 | err = ReleaseBitmapBlock(vcb, blockRef, true); | |
2344 | if (err != noErr) goto Exit; | |
2345 | ||
2346 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef, | |
2347 | HFS_ALLOC_IGNORE_RESERVED); | |
2348 | if (err != noErr) goto Exit; | |
2349 | ||
2350 | // XXXdbg | |
2351 | if (hfsmp->jnl) { | |
2352 | journal_modify_block_start(hfsmp->jnl, blockRef); | |
2353 | } | |
2354 | ||
2355 | // Readjust currentWord and wordsLeft | |
2356 | currentWord = buffer; | |
2357 | wordsLeft = wordsPerBlock; | |
2358 | } | |
2359 | #if DEBUG | |
2360 | if (*currentWord != 0) { | |
2361 | LFHFS_LOG(LEVEL_ERROR, "BlockMarkAllocatedInternal: blocks already allocated!"); | |
2362 | hfs_assert(0); | |
2363 | } | |
2364 | #endif | |
2365 | *currentWord = SWAP_BE32 (bitMask); | |
2366 | numBlocks -= kBitsPerWord; | |
2367 | ||
2368 | ++currentWord; // move to next word | |
2369 | --wordsLeft; // one less word left in this block | |
2370 | } | |
2371 | ||
2372 | // | |
2373 | // Allocate any remaining blocks. | |
2374 | // | |
2375 | ||
2376 | if (numBlocks != 0) { | |
2377 | bitMask = ~(kAllBitsSetInWord >> numBlocks); // set first numBlocks bits | |
2378 | if (wordsLeft == 0) { | |
2379 | // Read in the next bitmap block | |
2380 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block | |
2381 | ||
2382 | buffer = NULL; | |
2383 | err = ReleaseBitmapBlock(vcb, blockRef, true); | |
2384 | if (err != noErr) goto Exit; | |
2385 | ||
2386 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef, | |
2387 | HFS_ALLOC_IGNORE_RESERVED); | |
2388 | if (err != noErr) goto Exit; | |
2389 | // XXXdbg | |
2390 | if (hfsmp->jnl) { | |
2391 | journal_modify_block_start(hfsmp->jnl, blockRef); | |
2392 | } | |
2393 | currentWord = buffer; | |
2394 | } | |
2395 | #if DEBUG | |
2396 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
2397 | LFHFS_LOG(LEVEL_ERROR, "BlockMarkAllocatedInternal: blocks already allocated!"); | |
2398 | hfs_assert(0); | |
2399 | } | |
2400 | #endif | |
2401 | *currentWord |= SWAP_BE32 (bitMask); // set the bits in the bitmap | |
2402 | ||
2403 | // No need to update currentWord or wordsLeft | |
2404 | } | |
2405 | ||
2406 | Exit: | |
2407 | ||
2408 | if (buffer) | |
2409 | (void)ReleaseBitmapBlock(vcb, blockRef, true); | |
2410 | ||
2411 | return err; | |
2412 | } | |
2413 | ||
2414 | ||
2415 | /* | |
2416 | * BlockMarkFree | |
2417 | * | |
2418 | * This is a wrapper function around the internal calls which will actually mark the blocks | |
2419 | * as freed. It will mark the blocks in the red-black tree if appropriate. We need to do | |
2420 | * this logic here to avoid callers having to deal with whether or not the red-black tree | |
2421 | * is enabled. | |
2422 | * | |
2423 | */ | |
2424 | OSErr BlockMarkFree( | |
2425 | ExtendedVCB *vcb, | |
2426 | u_int32_t startingBlock, | |
2427 | register u_int32_t numBlocks) | |
2428 | { | |
2429 | return BlockMarkFreeInternal(vcb, startingBlock, numBlocks, true); | |
2430 | } | |
2431 | ||
2432 | ||
2433 | /* | |
2434 | * BlockMarkFreeUnused | |
2435 | * | |
2436 | * Scan the bitmap block beyond end of current file system for bits | |
2437 | * that are marked as used. If any of the bits are marked as used, | |
2438 | * this function marks them free. | |
2439 | * | |
2440 | * Note: This was specifically written to mark all bits beyond | |
2441 | * end of current file system during hfs_extendfs(), which makes | |
2442 | * sure that all the new blocks added to the file system are | |
2443 | * marked as free. We expect that all the blocks beyond end of | |
2444 | * current file system are always marked as free, but there might | |
2445 | * be cases where are marked as used. This function assumes that | |
2446 | * the number of blocks marked as used incorrectly are relatively | |
2447 | * small, otherwise this can overflow journal transaction size | |
2448 | * on certain file system configurations (example, large unused | |
2449 | * bitmap with relatively small journal). | |
2450 | * | |
2451 | * Input: | |
2452 | * startingBlock: First block of the range to mark unused | |
2453 | * numBlocks: Number of blocks in the range to mark unused | |
2454 | * | |
2455 | * Returns: zero on success, non-zero on error. | |
2456 | */ | |
2457 | OSErr BlockMarkFreeUnused(ExtendedVCB *vcb, u_int32_t startingBlock, register u_int32_t numBlocks) | |
2458 | { | |
2459 | int error = 0; | |
2460 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2461 | u_int32_t curNumBlocks; | |
2462 | u_int32_t bitsPerBlock; | |
2463 | u_int32_t lastBit; | |
2464 | ||
2465 | /* Use the optimal bitmap I/O size instead of bitmap block size */ | |
2466 | bitsPerBlock = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
2467 | ||
2468 | /* | |
2469 | * First clear any non bitmap allocation block aligned bits | |
2470 | * | |
2471 | * Calculate the first bit in the bitmap block next to | |
2472 | * the bitmap block containing the bit for startingBlock. | |
2473 | * Using this value, we calculate the total number of | |
2474 | * bits to be marked unused from startingBlock to the | |
2475 | * end of bitmap block containing startingBlock. | |
2476 | */ | |
2477 | lastBit = ((startingBlock + (bitsPerBlock - 1))/bitsPerBlock) * bitsPerBlock; | |
2478 | curNumBlocks = lastBit - startingBlock; | |
2479 | if (curNumBlocks > numBlocks) { | |
2480 | curNumBlocks = numBlocks; | |
2481 | } | |
2482 | error = BlockMarkFreeInternal(vcb, startingBlock, curNumBlocks, false); | |
2483 | if (error) { | |
2484 | return error; | |
2485 | } | |
2486 | startingBlock += curNumBlocks; | |
2487 | numBlocks -= curNumBlocks; | |
2488 | ||
2489 | /* | |
2490 | * Check a full bitmap block for any 'used' bit. If any bit is used, | |
2491 | * mark all the bits only in that bitmap block as free. This ensures | |
2492 | * that we do not write unmodified bitmap blocks and do not | |
2493 | * overwhelm the journal. | |
2494 | * | |
2495 | * The code starts by checking full bitmap block at a time, and | |
2496 | * marks entire bitmap block as free only if any bit in that bitmap | |
2497 | * block is marked as used. In the end, it handles the last bitmap | |
2498 | * block which might be partially full by only checking till the | |
2499 | * caller-specified last bit and if any bit is set, only mark that | |
2500 | * range as free. | |
2501 | */ | |
2502 | while (numBlocks) { | |
2503 | if (numBlocks >= bitsPerBlock) { | |
2504 | curNumBlocks = bitsPerBlock; | |
2505 | } else { | |
2506 | curNumBlocks = numBlocks; | |
2507 | } | |
2508 | if (hfs_isallocated(hfsmp, startingBlock, curNumBlocks) == true) { | |
2509 | error = BlockMarkFreeInternal(vcb, startingBlock, curNumBlocks, false); | |
2510 | if (error) { | |
2511 | return error; | |
2512 | } | |
2513 | } | |
2514 | startingBlock += curNumBlocks; | |
2515 | numBlocks -= curNumBlocks; | |
2516 | } | |
2517 | ||
2518 | return error; | |
2519 | } | |
2520 | ||
2521 | /* | |
2522 | _______________________________________________________________________ | |
2523 | ||
2524 | Routine: BlockMarkFreeInternal | |
2525 | ||
2526 | Function: Mark a contiguous group of blocks as free (clear in the | |
2527 | bitmap). It assumes those bits are currently marked | |
2528 | allocated (set in the bitmap). | |
2529 | ||
2530 | Inputs: | |
2531 | vcb Pointer to volume where space is to be freed | |
2532 | startingBlock First block number to mark as freed | |
2533 | numBlocks Number of blocks to mark as freed | |
2534 | do_validate If true, validate that the blocks being | |
2535 | deallocated to check if they are within totalBlocks | |
2536 | for current volume and whether they were allocated | |
2537 | before they are marked free. | |
2538 | _______________________________________________________________________ | |
2539 | */ | |
2540 | static | |
2541 | OSErr BlockMarkFreeInternal( | |
2542 | ExtendedVCB *vcb, | |
2543 | u_int32_t startingBlock_in, | |
2544 | register u_int32_t numBlocks_in, | |
2545 | Boolean do_validate) | |
2546 | { | |
2547 | OSErr err; | |
2548 | u_int32_t startingBlock = startingBlock_in; | |
2549 | u_int32_t numBlocks = numBlocks_in; | |
2550 | uint32_t unmapStart = startingBlock_in; | |
2551 | uint32_t unmapCount = numBlocks_in; | |
2552 | uint32_t wordIndexInBlock; | |
2553 | u_int32_t *currentWord; // Pointer to current word within bitmap block | |
2554 | u_int32_t wordsLeft; // Number of words left in this bitmap block | |
2555 | u_int32_t bitMask; // Word with given bits already set (ready to OR in) | |
2556 | u_int32_t currentBit; // Bit index within word of current bit to allocate | |
2557 | u_int32_t numBits; // Number of bits in word to allocate | |
2558 | u_int32_t *buffer = NULL; | |
2559 | GenericLFBufPtr blockRef = NULL; | |
2560 | u_int32_t bitsPerBlock; | |
2561 | u_int32_t wordsPerBlock; | |
2562 | // XXXdbg | |
2563 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2564 | ||
2565 | /* | |
2566 | * NOTE: We use vcb->totalBlocks instead of vcb->allocLimit because we | |
2567 | * need to be able to free blocks being relocated during hfs_truncatefs. | |
2568 | */ | |
2569 | if ((do_validate == true) && | |
2570 | (startingBlock + numBlocks > vcb->totalBlocks)) { | |
2571 | #if ALLOC_DEBUG || DEBUG | |
2572 | LFHFS_LOG(LEVEL_ERROR, "lockMarkFreeInternal() free non-existent blocks at %u (numBlock=%u) on vol %s\n", startingBlock, numBlocks, vcb->vcbVN); | |
2573 | hfs_assert(0); | |
2574 | __builtin_unreachable(); | |
2575 | #else | |
2576 | LFHFS_LOG(LEVEL_ERROR, "BlockMarkFreeInternal() trying to free non-existent blocks starting at %u (numBlock=%u) on volume %s\n", startingBlock, numBlocks, vcb->vcbVN); | |
2577 | hfs_mark_inconsistent(vcb, HFS_INCONSISTENCY_DETECTED); | |
2578 | err = EIO; | |
2579 | goto Exit; | |
2580 | #endif | |
2581 | } | |
2582 | ||
2583 | // | |
2584 | // Pre-read the bitmap block containing the first word of allocation | |
2585 | // | |
2586 | ||
2587 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef, | |
2588 | HFS_ALLOC_IGNORE_RESERVED); | |
2589 | if (err != noErr) goto Exit; | |
2590 | ||
2591 | // XXXdbg | |
2592 | if (hfsmp->jnl) { | |
2593 | journal_modify_block_start(hfsmp->jnl, blockRef); | |
2594 | } | |
2595 | ||
2596 | uint32_t min_unmap = 0, max_unmap = UINT32_MAX; | |
2597 | ||
2598 | // Work out the bounds of any unmap we can send down | |
2599 | struct rl_entry *range; | |
2600 | for (int i = 0; i < 2; ++i) { | |
2601 | TAILQ_FOREACH(range, &hfsmp->hfs_reserved_ranges[i], rl_link) { | |
2602 | if (range->rl_start < startingBlock | |
2603 | && range->rl_end >= min_unmap) { | |
2604 | min_unmap = (uint32_t)(range->rl_end + 1); | |
2605 | } | |
2606 | if (range->rl_end >= startingBlock + numBlocks | |
2607 | && range->rl_start < max_unmap) { | |
2608 | max_unmap = (uint32_t)range->rl_start; | |
2609 | } | |
2610 | } | |
2611 | } | |
2612 | ||
2613 | // | |
2614 | // Figure out how many bits and words per bitmap block. | |
2615 | // | |
2616 | bitsPerBlock = vcb->vcbVBMIOSize * kBitsPerByte; | |
2617 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
2618 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; | |
2619 | ||
2620 | // | |
2621 | // Look for a range of free blocks immediately before startingBlock | |
2622 | // (up to the start of the current bitmap block). Set unmapStart to | |
2623 | // the first free block. | |
2624 | // | |
2625 | currentWord = buffer + wordIndexInBlock; | |
2626 | currentBit = startingBlock % kBitsPerWord; | |
2627 | bitMask = kHighBitInWordMask >> currentBit; | |
2628 | while (unmapStart > min_unmap) { | |
2629 | // Move currentWord/bitMask back by one bit | |
2630 | bitMask <<= 1; | |
2631 | if (bitMask == 0) { | |
2632 | if (--currentWord < buffer) | |
2633 | break; | |
2634 | bitMask = kLowBitInWordMask; | |
2635 | } | |
2636 | ||
2637 | if (*currentWord & SWAP_BE32(bitMask)) | |
2638 | break; // Found an allocated block. Stop searching. | |
2639 | --unmapStart; | |
2640 | ++unmapCount; | |
2641 | } | |
2642 | ||
2643 | // | |
2644 | // If the first block to free doesn't start on a word | |
2645 | // boundary in the bitmap, then treat that first word | |
2646 | // specially. | |
2647 | // | |
2648 | ||
2649 | currentWord = buffer + wordIndexInBlock; | |
2650 | wordsLeft = wordsPerBlock - wordIndexInBlock; | |
2651 | currentBit = startingBlock % kBitsPerWord; | |
2652 | if (currentBit != 0) { | |
2653 | bitMask = kAllBitsSetInWord >> currentBit; // turn off all bits before currentBit | |
2654 | numBits = kBitsPerWord - currentBit; // number of remaining bits in this word | |
2655 | if (numBits > numBlocks) { | |
2656 | numBits = numBlocks; // entire allocation is inside this one word | |
2657 | bitMask &= ~(kAllBitsSetInWord >> (currentBit + numBits)); // turn off bits after last | |
2658 | } | |
2659 | if ((do_validate == true) && | |
2660 | (*currentWord & SWAP_BE32 (bitMask)) != SWAP_BE32 (bitMask)) { | |
2661 | goto Corruption; | |
2662 | } | |
2663 | *currentWord &= SWAP_BE32 (~bitMask); // clear the bits in the bitmap | |
2664 | numBlocks -= numBits; // adjust number of blocks left to free | |
2665 | ||
2666 | ++currentWord; // move to next word | |
2667 | --wordsLeft; // one less word left in this block | |
2668 | } | |
2669 | ||
2670 | // | |
2671 | // Free whole words (32 blocks) at a time. | |
2672 | // | |
2673 | ||
2674 | while (numBlocks >= kBitsPerWord) { | |
2675 | if (wordsLeft == 0) { | |
2676 | // Read in the next bitmap block | |
2677 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block | |
2678 | ||
2679 | buffer = NULL; | |
2680 | err = ReleaseBitmapBlock(vcb, blockRef, true); | |
2681 | if (err != noErr) goto Exit; | |
2682 | ||
2683 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef, | |
2684 | HFS_ALLOC_IGNORE_RESERVED); | |
2685 | if (err != noErr) goto Exit; | |
2686 | // XXXdbg | |
2687 | if (hfsmp->jnl) { | |
2688 | journal_modify_block_start(hfsmp->jnl, blockRef); | |
2689 | } | |
2690 | ||
2691 | // Readjust currentWord and wordsLeft | |
2692 | currentWord = buffer; | |
2693 | wordsLeft = wordsPerBlock; | |
2694 | } | |
2695 | if ((do_validate == true) && | |
2696 | (*currentWord != SWAP_BE32 (kAllBitsSetInWord))) { | |
2697 | goto Corruption; | |
2698 | } | |
2699 | *currentWord = 0; // clear the entire word | |
2700 | numBlocks -= kBitsPerWord; | |
2701 | ||
2702 | ++currentWord; // move to next word | |
2703 | --wordsLeft; // one less word left in this block | |
2704 | } | |
2705 | ||
2706 | // | |
2707 | // Free any remaining blocks. | |
2708 | // | |
2709 | ||
2710 | if (numBlocks != 0) { | |
2711 | bitMask = ~(kAllBitsSetInWord >> numBlocks); // set first numBlocks bits | |
2712 | if (wordsLeft == 0) { | |
2713 | // Read in the next bitmap block | |
2714 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block | |
2715 | ||
2716 | buffer = NULL; | |
2717 | err = ReleaseBitmapBlock(vcb, blockRef, true); | |
2718 | if (err != noErr) goto Exit; | |
2719 | ||
2720 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef, | |
2721 | HFS_ALLOC_IGNORE_RESERVED); | |
2722 | if (err != noErr) goto Exit; | |
2723 | ||
2724 | // XXXdbg | |
2725 | if (hfsmp->jnl) { | |
2726 | journal_modify_block_start(hfsmp->jnl, blockRef); | |
2727 | } | |
2728 | ||
2729 | currentWord = buffer; | |
2730 | } | |
2731 | if ((do_validate == true) && | |
2732 | (*currentWord & SWAP_BE32 (bitMask)) != SWAP_BE32 (bitMask)) { | |
2733 | goto Corruption; | |
2734 | } | |
2735 | *currentWord &= SWAP_BE32 (~bitMask); // clear the bits in the bitmap | |
2736 | ||
2737 | // No need to update currentWord or wordsLeft | |
2738 | } | |
2739 | ||
2740 | // | |
2741 | // Look for a range of free blocks immediately after the range we just freed | |
2742 | // (up to the end of the current bitmap block). | |
2743 | // | |
2744 | wordIndexInBlock = ((startingBlock_in + numBlocks_in - 1) & (bitsPerBlock-1)) / kBitsPerWord; | |
2745 | wordsLeft = wordsPerBlock - wordIndexInBlock; | |
2746 | currentWord = buffer + wordIndexInBlock; | |
2747 | currentBit = (startingBlock_in + numBlocks_in - 1) % kBitsPerWord; | |
2748 | bitMask = kHighBitInWordMask >> currentBit; | |
2749 | while (unmapStart + unmapCount < max_unmap) { | |
2750 | // Move currentWord/bitMask/wordsLeft forward one bit | |
2751 | bitMask >>= 1; | |
2752 | if (bitMask == 0) { | |
2753 | if (--wordsLeft == 0) | |
2754 | break; | |
2755 | ++currentWord; | |
2756 | bitMask = kHighBitInWordMask; | |
2757 | } | |
2758 | ||
2759 | if (*currentWord & SWAP_BE32(bitMask)) | |
2760 | break; // Found an allocated block. Stop searching. | |
2761 | ++unmapCount; | |
2762 | } | |
2763 | ||
2764 | Exit: | |
2765 | ||
2766 | if (buffer) | |
2767 | (void)ReleaseBitmapBlock(vcb, blockRef, true); | |
2768 | return err; | |
2769 | ||
2770 | Corruption: | |
2771 | #if DEBUG | |
2772 | LFHFS_LOG(LEVEL_ERROR, "BlockMarkFreeInternal: blocks not allocated!"); | |
2773 | hfs_assert(0); | |
2774 | __builtin_unreachable(); | |
2775 | #else | |
2776 | LFHFS_LOG(LEVEL_ERROR, "BlockMarkFreeInternal() trying to free unallocated blocks on volume %s <%u, %u>\n", | |
2777 | vcb->vcbVN, startingBlock_in, numBlocks_in); | |
2778 | ||
2779 | hfs_mark_inconsistent(vcb, HFS_INCONSISTENCY_DETECTED); | |
2780 | err = EIO; | |
2781 | goto Exit; | |
2782 | #endif | |
2783 | } | |
2784 | ||
2785 | ||
2786 | /* | |
2787 | _______________________________________________________________________ | |
2788 | ||
2789 | Routine: BlockFindContiguous | |
2790 | ||
2791 | Function: Find a contiguous range of blocks that are free (bits | |
2792 | clear in the bitmap). If a contiguous range of the | |
2793 | minimum size can't be found, an error will be returned. | |
2794 | This is only needed to support the bitmap-scanning logic, | |
2795 | as the red-black tree should be able to do this by internally | |
2796 | searching its tree. | |
2797 | ||
2798 | Inputs: | |
2799 | vcb Pointer to volume where space is to be allocated | |
2800 | startingBlock Preferred first block of range | |
2801 | endingBlock Last possible block in range + 1 | |
2802 | minBlocks Minimum number of blocks needed. Must be > 0. | |
2803 | maxBlocks Maximum (ideal) number of blocks desired | |
2804 | useMetaZone OK to dip into metadata allocation zone | |
2805 | ||
2806 | Outputs: | |
2807 | actualStartBlock First block of range found, or 0 if error | |
2808 | actualNumBlocks Number of blocks found, or 0 if error | |
2809 | ||
2810 | Returns: | |
2811 | noErr Found at least minBlocks contiguous | |
2812 | dskFulErr No contiguous space found, or all less than minBlocks | |
2813 | _______________________________________________________________________ | |
2814 | */ | |
2815 | ||
2816 | static OSErr BlockFindContiguous( | |
2817 | ExtendedVCB *vcb, | |
2818 | u_int32_t startingBlock, | |
2819 | u_int32_t endingBlock, | |
2820 | u_int32_t minBlocks, | |
2821 | u_int32_t maxBlocks, | |
2822 | Boolean useMetaZone, | |
2823 | Boolean trustSummary, | |
2824 | u_int32_t *actualStartBlock, | |
2825 | u_int32_t *actualNumBlocks, | |
2826 | hfs_block_alloc_flags_t flags) | |
2827 | { | |
2828 | OSErr err; | |
2829 | register u_int32_t currentBlock; // Block we're currently looking at. | |
2830 | u_int32_t firstBlock; // First free block in current extent. | |
2831 | u_int32_t stopBlock; // If we get to this block, stop searching for first free block. | |
2832 | u_int32_t foundBlocks; // Number of contiguous free blocks in current extent. | |
2833 | u_int32_t *buffer = NULL; | |
2834 | register u_int32_t *currentWord; | |
2835 | register u_int32_t bitMask; | |
2836 | register u_int32_t wordsLeft; | |
2837 | register u_int32_t tempWord; | |
2838 | GenericLFBufPtr blockRef = 0; | |
2839 | u_int32_t wordsPerBlock; | |
2840 | struct hfsmount *hfsmp = (struct hfsmount*) vcb; | |
2841 | HFSPlusExtentDescriptor best = { 0, 0 }; | |
2842 | ||
2843 | /* | |
2844 | * When we're skipping the metadata zone and the start/end | |
2845 | * range overlaps with the metadata zone then adjust the | |
2846 | * start to be outside of the metadata zone. If the range | |
2847 | * is entirely inside the metadata zone then we can deny the | |
2848 | * request (dskFulErr). | |
2849 | */ | |
2850 | if (!useMetaZone && (vcb->hfs_flags & HFS_METADATA_ZONE)) { | |
2851 | if (startingBlock <= vcb->hfs_metazone_end) { | |
2852 | if (endingBlock > (vcb->hfs_metazone_end + 2)) | |
2853 | startingBlock = vcb->hfs_metazone_end + 1; | |
2854 | else | |
2855 | goto DiskFull; | |
2856 | } | |
2857 | } | |
2858 | ||
2859 | if ((endingBlock - startingBlock) < minBlocks) | |
2860 | { | |
2861 | // The set of blocks we're checking is smaller than the minimum number | |
2862 | // of blocks, so we couldn't possibly find a good range. | |
2863 | goto DiskFull; | |
2864 | } | |
2865 | ||
2866 | stopBlock = endingBlock - minBlocks + 1; | |
2867 | currentBlock = startingBlock; | |
2868 | firstBlock = 0; | |
2869 | ||
2870 | /* | |
2871 | * Skip over metadata blocks. | |
2872 | */ | |
2873 | if (!useMetaZone) | |
2874 | currentBlock = NextBitmapBlock(vcb, currentBlock); | |
2875 | ||
2876 | /* | |
2877 | * Use the summary table if we can. Skip over any totally | |
2878 | * allocated blocks. currentBlock should now point to the first | |
2879 | * block beyond the metadata zone if the metazone allocations are not | |
2880 | * allowed in this invocation. | |
2881 | */ | |
2882 | if ((trustSummary) && (hfsmp->hfs_flags & HFS_SUMMARY_TABLE)) { | |
2883 | uint32_t suggestion; | |
2884 | err = hfs_find_summary_free (hfsmp, currentBlock, &suggestion); | |
2885 | if (err && err != ENOSPC) | |
2886 | goto ErrorExit; | |
2887 | if (err == ENOSPC || suggestion >= stopBlock) | |
2888 | goto DiskFull; | |
2889 | currentBlock = suggestion; | |
2890 | } | |
2891 | ||
2892 | ||
2893 | // | |
2894 | // Pre-read the first bitmap block. | |
2895 | // | |
2896 | err = ReadBitmapBlock(vcb, currentBlock, &buffer, &blockRef, flags); | |
2897 | if ( err != noErr ) goto ErrorExit; | |
2898 | ||
2899 | // | |
2900 | // Figure out where currentBlock is within the buffer. | |
2901 | // | |
2902 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
2903 | ||
2904 | wordsLeft = (currentBlock / kBitsPerWord) & (wordsPerBlock-1); // Current index into buffer | |
2905 | currentWord = buffer + wordsLeft; | |
2906 | wordsLeft = wordsPerBlock - wordsLeft; | |
2907 | ||
2908 | uint32_t remaining = (hfsmp->freeBlocks - hfsmp->lockedBlocks | |
2909 | - (ISSET(flags, HFS_ALLOC_IGNORE_TENTATIVE) | |
2910 | ? 0 : hfsmp->tentativeBlocks)); | |
2911 | ||
2912 | /* | |
2913 | * This outer do-while loop is the main body of this function. Its job is | |
2914 | * to search through the blocks (until we hit 'stopBlock'), and iterate | |
2915 | * through swaths of allocated bitmap until it finds free regions. | |
2916 | */ | |
2917 | ||
2918 | do | |
2919 | { | |
2920 | foundBlocks = 0; | |
2921 | /* | |
2922 | * We will try and update the summary table as we search | |
2923 | * below. Note that we will never update the summary table | |
2924 | * for the first and last blocks that the summary table | |
2925 | * covers. Ideally, we should, but the benefits probably | |
2926 | * aren't that significant so we leave things alone for now. | |
2927 | */ | |
2928 | uint32_t summary_block_scan = 0; | |
2929 | /* | |
2930 | * Inner while loop 1: | |
2931 | * Look for free blocks, skipping over allocated ones. | |
2932 | * | |
2933 | * Initialization starts with checking the initial partial word | |
2934 | * if applicable. | |
2935 | */ | |
2936 | bitMask = currentBlock & kBitsWithinWordMask; | |
2937 | if (bitMask) | |
2938 | { | |
2939 | tempWord = SWAP_BE32(*currentWord); // Fetch the current word only once | |
2940 | bitMask = kHighBitInWordMask >> bitMask; | |
2941 | while (tempWord & bitMask) | |
2942 | { | |
2943 | bitMask >>= 1; | |
2944 | ++currentBlock; | |
2945 | } | |
2946 | ||
2947 | // Did we find an unused bit (bitMask != 0), or run out of bits (bitMask == 0)? | |
2948 | if (bitMask) | |
2949 | goto FoundUnused; | |
2950 | ||
2951 | // Didn't find any unused bits, so we're done with this word. | |
2952 | ++currentWord; | |
2953 | --wordsLeft; | |
2954 | } | |
2955 | ||
2956 | // | |
2957 | // Check whole words | |
2958 | // | |
2959 | while (currentBlock < stopBlock) | |
2960 | { | |
2961 | // See if it's time to read another block. | |
2962 | if (wordsLeft == 0) | |
2963 | { | |
2964 | buffer = NULL; | |
2965 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
2966 | /* | |
2967 | * If summary_block_scan is non-zero, then we must have | |
2968 | * pulled a bitmap file block into core, and scanned through | |
2969 | * the entire thing. Because we're in this loop, we are | |
2970 | * implicitly trusting that the bitmap didn't have any knowledge | |
2971 | * about this particular block. As a result, update the bitmap | |
2972 | * (lazily, now that we've scanned it) with our findings that | |
2973 | * this particular block is completely used up. | |
2974 | */ | |
2975 | if (summary_block_scan != 0) { | |
2976 | uint32_t summary_bit; | |
2977 | err = hfs_get_summary_index (hfsmp, summary_block_scan, &summary_bit); | |
2978 | if (err != noErr) goto ErrorExit; | |
2979 | hfs_set_summary (hfsmp, summary_bit, 1); | |
2980 | } | |
2981 | } | |
2982 | err = ReleaseBitmapBlock(vcb, blockRef, false); | |
2983 | if (err != noErr) goto ErrorExit; | |
2984 | ||
2985 | /* | |
2986 | * Skip over metadata blocks. | |
2987 | */ | |
2988 | if (!useMetaZone) { | |
2989 | currentBlock = NextBitmapBlock(vcb, currentBlock); | |
2990 | if (currentBlock >= stopBlock) { | |
2991 | goto LoopExit; | |
2992 | } | |
2993 | } | |
2994 | ||
2995 | /* Skip over fully allocated bitmap blocks if we can */ | |
2996 | if ((trustSummary) && (hfsmp->hfs_flags & HFS_SUMMARY_TABLE)) { | |
2997 | uint32_t suggestion; | |
2998 | err = hfs_find_summary_free (hfsmp, currentBlock, &suggestion); | |
2999 | if (err && err != ENOSPC) | |
3000 | goto ErrorExit; | |
3001 | if (err == ENOSPC || suggestion >= stopBlock) | |
3002 | goto LoopExit; | |
3003 | currentBlock = suggestion; | |
3004 | } | |
3005 | ||
3006 | err = ReadBitmapBlock(vcb, currentBlock, &buffer, &blockRef, flags); | |
3007 | if ( err != noErr ) goto ErrorExit; | |
3008 | ||
3009 | /* | |
3010 | * Set summary_block_scan to be the block we just read into the block cache. | |
3011 | * | |
3012 | * At this point, we've just read an allocation block worth of bitmap file | |
3013 | * into the buffer above, but we don't know if it is completely allocated or not. | |
3014 | * If we find that it is completely allocated/full then we will jump | |
3015 | * through this loop again and set the appropriate summary bit as fully allocated. | |
3016 | */ | |
3017 | summary_block_scan = currentBlock; | |
3018 | currentWord = buffer; | |
3019 | wordsLeft = wordsPerBlock; | |
3020 | } | |
3021 | ||
3022 | // See if any of the bits are clear | |
3023 | if ((tempWord = SWAP_BE32(*currentWord)) + 1) // non-zero if any bits were clear | |
3024 | { | |
3025 | // Figure out which bit is clear | |
3026 | bitMask = kHighBitInWordMask; | |
3027 | while (tempWord & bitMask) | |
3028 | { | |
3029 | bitMask >>= 1; | |
3030 | ++currentBlock; | |
3031 | } | |
3032 | ||
3033 | break; // Found the free bit; break out to FoundUnused. | |
3034 | } | |
3035 | ||
3036 | // Keep looking at the next word | |
3037 | currentBlock += kBitsPerWord; | |
3038 | ++currentWord; | |
3039 | --wordsLeft; | |
3040 | } | |
3041 | ||
3042 | FoundUnused: | |
3043 | // Make sure the unused bit is early enough to use | |
3044 | if (currentBlock >= stopBlock) | |
3045 | { | |
3046 | break; | |
3047 | } | |
3048 | ||
3049 | // Remember the start of the extent | |
3050 | firstBlock = currentBlock; | |
3051 | ||
3052 | ||
3053 | /* | |
3054 | * Inner while loop 2: | |
3055 | * We get here if we find a free block. Count the number | |
3056 | * of contiguous free blocks observed. | |
3057 | * | |
3058 | * Initialization starts with checking the initial partial word | |
3059 | * if applicable. | |
3060 | */ | |
3061 | bitMask = currentBlock & kBitsWithinWordMask; | |
3062 | if (bitMask) | |
3063 | { | |
3064 | tempWord = SWAP_BE32(*currentWord); // Fetch the current word only once | |
3065 | bitMask = kHighBitInWordMask >> bitMask; | |
3066 | while (bitMask && !(tempWord & bitMask)) | |
3067 | { | |
3068 | bitMask >>= 1; | |
3069 | ++currentBlock; | |
3070 | } | |
3071 | ||
3072 | // Did we find a used bit (bitMask != 0), or run out of bits (bitMask == 0)? | |
3073 | if (bitMask) | |
3074 | goto FoundUsed; | |
3075 | ||
3076 | // Didn't find any used bits, so we're done with this word. | |
3077 | ++currentWord; | |
3078 | --wordsLeft; | |
3079 | } | |
3080 | ||
3081 | // | |
3082 | // Check whole words | |
3083 | // | |
3084 | while (currentBlock < endingBlock) | |
3085 | { | |
3086 | // See if it's time to read another block. | |
3087 | if (wordsLeft == 0) | |
3088 | { | |
3089 | buffer = NULL; | |
3090 | err = ReleaseBitmapBlock(vcb, blockRef, false); | |
3091 | if (err != noErr) goto ErrorExit; | |
3092 | ||
3093 | /* | |
3094 | * Skip over metadata blocks. | |
3095 | */ | |
3096 | if (!useMetaZone) { | |
3097 | u_int32_t nextBlock; | |
3098 | ||
3099 | nextBlock = NextBitmapBlock(vcb, currentBlock); | |
3100 | if (nextBlock != currentBlock) { | |
3101 | goto LoopExit; /* allocation gap, so stop */ | |
3102 | } | |
3103 | } | |
3104 | ||
3105 | err = ReadBitmapBlock(vcb, currentBlock, &buffer, &blockRef, flags); | |
3106 | if ( err != noErr ) goto ErrorExit; | |
3107 | ||
3108 | currentWord = buffer; | |
3109 | wordsLeft = wordsPerBlock; | |
3110 | } | |
3111 | ||
3112 | // See if any of the bits are set | |
3113 | if ((tempWord = SWAP_BE32(*currentWord)) != 0) | |
3114 | { | |
3115 | // Figure out which bit is set | |
3116 | bitMask = kHighBitInWordMask; | |
3117 | while (!(tempWord & bitMask)) | |
3118 | { | |
3119 | bitMask >>= 1; | |
3120 | ++currentBlock; | |
3121 | } | |
3122 | ||
3123 | break; // Found the used bit; break out to FoundUsed. | |
3124 | } | |
3125 | ||
3126 | // Keep looking at the next word | |
3127 | currentBlock += kBitsPerWord; | |
3128 | ++currentWord; | |
3129 | --wordsLeft; | |
3130 | ||
3131 | // If we found at least maxBlocks, we can quit early. | |
3132 | if ((currentBlock - firstBlock) >= maxBlocks) | |
3133 | break; | |
3134 | } | |
3135 | ||
3136 | FoundUsed: | |
3137 | // Make sure we didn't run out of bitmap looking for a used block. | |
3138 | // If so, pin to the end of the bitmap. | |
3139 | if (currentBlock > endingBlock) | |
3140 | currentBlock = endingBlock; | |
3141 | ||
3142 | // Figure out how many contiguous free blocks there were. | |
3143 | // Pin the answer to maxBlocks. | |
3144 | foundBlocks = currentBlock - firstBlock; | |
3145 | if (foundBlocks > maxBlocks) | |
3146 | foundBlocks = maxBlocks; | |
3147 | ||
3148 | if (remaining) { | |
3149 | if (foundBlocks > remaining) { | |
3150 | LFHFS_LOG( LEVEL_DEBUG, "hfs: found more blocks than are indicated free!\n"); | |
3151 | remaining = UINT32_MAX; | |
3152 | } else | |
3153 | remaining -= foundBlocks; | |
3154 | } | |
3155 | ||
3156 | if (ISSET(flags, HFS_ALLOC_TRY_HARD)) { | |
3157 | if (foundBlocks > best.blockCount) { | |
3158 | best.startBlock = firstBlock; | |
3159 | best.blockCount = foundBlocks; | |
3160 | } | |
3161 | ||
3162 | if (foundBlocks >= maxBlocks || best.blockCount >= remaining) | |
3163 | break; | |
3164 | ||
3165 | /* | |
3166 | * Note that we will go ahead and add this free extent to our | |
3167 | * cache below but that's OK because we'll remove it again if we | |
3168 | * decide to use this extent. | |
3169 | */ | |
3170 | } else if (foundBlocks >= minBlocks) | |
3171 | break; // Found what we needed! | |
3172 | ||
3173 | /* | |
3174 | * We did not find the total blocks we were looking for, but | |
3175 | * add this free block run to our free extent cache list, if possible. | |
3176 | */ | |
3177 | ||
3178 | // If we're ignoring tentative ranges, we need to account for them here | |
3179 | if (ISSET(flags, HFS_ALLOC_IGNORE_TENTATIVE)) { | |
3180 | struct rl_entry free_extent = rl_make(firstBlock, firstBlock + foundBlocks - 1); | |
3181 | struct rl_entry *range;; | |
3182 | TAILQ_FOREACH(range, &hfsmp->hfs_reserved_ranges[HFS_TENTATIVE_BLOCKS], rl_link) { | |
3183 | rl_subtract(&free_extent, range); | |
3184 | if (rl_len(range) == 0) | |
3185 | break; | |
3186 | } | |
3187 | firstBlock = (uint32_t)free_extent.rl_start; | |
3188 | foundBlocks = (uint32_t)rl_len(&free_extent); | |
3189 | } | |
3190 | } while (currentBlock < stopBlock); | |
3191 | LoopExit: | |
3192 | ||
3193 | if (ISSET(flags, HFS_ALLOC_TRY_HARD)) { | |
3194 | firstBlock = best.startBlock; | |
3195 | foundBlocks = best.blockCount; | |
3196 | } | |
3197 | ||
3198 | // Return the outputs. | |
3199 | if (foundBlocks < minBlocks) | |
3200 | { | |
3201 | DiskFull: | |
3202 | err = dskFulErr; | |
3203 | ErrorExit: | |
3204 | *actualStartBlock = 0; | |
3205 | *actualNumBlocks = 0; | |
3206 | } | |
3207 | else | |
3208 | { | |
3209 | err = noErr; | |
3210 | *actualStartBlock = firstBlock; | |
3211 | *actualNumBlocks = foundBlocks; | |
3212 | /* | |
3213 | * Sanity check for overflow | |
3214 | */ | |
3215 | if ((firstBlock + foundBlocks) > vcb->allocLimit) { | |
3216 | LFHFS_LOG(LEVEL_ERROR, "blk allocation overflow on \"%s\" sb:0x%08x eb:0x%08x cb:0x%08x fb:0x%08x stop:0x%08x min:0x%08x found:0x%08x", | |
3217 | vcb->vcbVN, startingBlock, endingBlock, currentBlock, | |
3218 | firstBlock, stopBlock, minBlocks, foundBlocks); | |
3219 | hfs_assert(0); | |
3220 | } | |
3221 | } | |
3222 | ||
3223 | if (buffer) | |
3224 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
3225 | ||
3226 | return err; | |
3227 | } | |
3228 | ||
3229 | ||
3230 | /* | |
3231 | * Count number of bits set in the given 32-bit unsigned number | |
3232 | * | |
3233 | * Returns: | |
3234 | * Number of bits set | |
3235 | */ | |
3236 | static int num_bits_set(u_int32_t num) | |
3237 | { | |
3238 | return __builtin_popcount(num); | |
3239 | } | |
3240 | ||
3241 | /* | |
3242 | * For a given range of blocks, find the total number of blocks | |
3243 | * allocated. If 'stop_on_first' is true, it stops as soon as it | |
3244 | * encounters the first allocated block. This option is useful | |
3245 | * to determine if any block is allocated or not. | |
3246 | * | |
3247 | * Inputs: | |
3248 | * startingBlock First allocation block number of the range to be scanned. | |
3249 | * numBlocks Total number of blocks that need to be scanned. | |
3250 | * stop_on_first Stop the search after the first allocated block is found. | |
3251 | * | |
3252 | * Output: | |
3253 | * allocCount Total number of allocation blocks allocated in the given range. | |
3254 | * | |
3255 | * On error, it is the number of allocated blocks found | |
3256 | * before the function got an error. | |
3257 | * | |
3258 | * If 'stop_on_first' is set, | |
3259 | * allocCount = 1 if any allocated block was found. | |
3260 | * allocCount = 0 if no allocated block was found. | |
3261 | * | |
3262 | * Returns: | |
3263 | * 0 on success, non-zero on failure. | |
3264 | */ | |
3265 | static int | |
3266 | hfs_isallocated_internal(struct hfsmount *hfsmp, u_int32_t startingBlock, | |
3267 | u_int32_t numBlocks, Boolean stop_on_first, u_int32_t *allocCount) | |
3268 | { | |
3269 | u_int32_t *currentWord; // Pointer to current word within bitmap block | |
3270 | u_int32_t wordsLeft; // Number of words left in this bitmap block | |
3271 | u_int32_t bitMask; // Word with given bits already set (ready to test) | |
3272 | u_int32_t firstBit; // Bit index within word of first bit to allocate | |
3273 | u_int32_t numBits; // Number of bits in word to allocate | |
3274 | u_int32_t *buffer = NULL; | |
3275 | GenericLFBufPtr blockRef; | |
3276 | u_int32_t bitsPerBlock; | |
3277 | u_int32_t wordsPerBlock; | |
3278 | u_int32_t blockCount = 0; | |
3279 | int error; | |
3280 | ||
3281 | /* | |
3282 | * Pre-read the bitmap block containing the first word of allocation | |
3283 | */ | |
3284 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef, | |
3285 | HFS_ALLOC_IGNORE_TENTATIVE); | |
3286 | if (error) | |
3287 | goto JustReturn; | |
3288 | ||
3289 | /* | |
3290 | * Initialize currentWord, and wordsLeft. | |
3291 | */ | |
3292 | { | |
3293 | u_int32_t wordIndexInBlock; | |
3294 | ||
3295 | bitsPerBlock = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
3296 | wordsPerBlock = hfsmp->vcbVBMIOSize / kBytesPerWord; | |
3297 | ||
3298 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; | |
3299 | currentWord = buffer + wordIndexInBlock; | |
3300 | wordsLeft = wordsPerBlock - wordIndexInBlock; | |
3301 | } | |
3302 | ||
3303 | /* | |
3304 | * First test any non word aligned bits. | |
3305 | */ | |
3306 | firstBit = startingBlock % kBitsPerWord; | |
3307 | if (firstBit != 0) { | |
3308 | bitMask = kAllBitsSetInWord >> firstBit; | |
3309 | numBits = kBitsPerWord - firstBit; | |
3310 | if (numBits > numBlocks) { | |
3311 | numBits = numBlocks; | |
3312 | bitMask &= ~(kAllBitsSetInWord >> (firstBit + numBits)); | |
3313 | } | |
3314 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
3315 | if (stop_on_first) { | |
3316 | blockCount = 1; | |
3317 | goto Exit; | |
3318 | } | |
3319 | blockCount += num_bits_set(*currentWord & SWAP_BE32 (bitMask)); | |
3320 | } | |
3321 | numBlocks -= numBits; | |
3322 | ++currentWord; | |
3323 | --wordsLeft; | |
3324 | } | |
3325 | ||
3326 | /* | |
3327 | * Test whole words (32 blocks) at a time. | |
3328 | */ | |
3329 | while (numBlocks >= kBitsPerWord) { | |
3330 | if (wordsLeft == 0) { | |
3331 | /* Read in the next bitmap block. */ | |
3332 | startingBlock += bitsPerBlock; | |
3333 | ||
3334 | buffer = NULL; | |
3335 | error = ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3336 | if (error) goto Exit; | |
3337 | ||
3338 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef, | |
3339 | HFS_ALLOC_IGNORE_TENTATIVE); | |
3340 | if (error) goto Exit; | |
3341 | ||
3342 | /* Readjust currentWord and wordsLeft. */ | |
3343 | currentWord = buffer; | |
3344 | wordsLeft = wordsPerBlock; | |
3345 | } | |
3346 | if (*currentWord != 0) { | |
3347 | if (stop_on_first) { | |
3348 | blockCount = 1; | |
3349 | goto Exit; | |
3350 | } | |
3351 | blockCount += num_bits_set(*currentWord); | |
3352 | } | |
3353 | numBlocks -= kBitsPerWord; | |
3354 | ++currentWord; | |
3355 | --wordsLeft; | |
3356 | } | |
3357 | ||
3358 | /* | |
3359 | * Test any remaining blocks. | |
3360 | */ | |
3361 | if (numBlocks != 0) { | |
3362 | bitMask = ~(kAllBitsSetInWord >> numBlocks); | |
3363 | if (wordsLeft == 0) { | |
3364 | /* Read in the next bitmap block */ | |
3365 | startingBlock += bitsPerBlock; | |
3366 | ||
3367 | buffer = NULL; | |
3368 | error = ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3369 | if (error) goto Exit; | |
3370 | ||
3371 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef, | |
3372 | HFS_ALLOC_IGNORE_TENTATIVE); | |
3373 | if (error) goto Exit; | |
3374 | ||
3375 | currentWord = buffer; | |
3376 | } | |
3377 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
3378 | if (stop_on_first) { | |
3379 | blockCount = 1; | |
3380 | goto Exit; | |
3381 | } | |
3382 | blockCount += num_bits_set(*currentWord & SWAP_BE32 (bitMask)); | |
3383 | } | |
3384 | } | |
3385 | Exit: | |
3386 | if (buffer) { | |
3387 | (void)ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3388 | } | |
3389 | if (allocCount) { | |
3390 | *allocCount = blockCount; | |
3391 | } | |
3392 | ||
3393 | JustReturn: | |
3394 | ||
3395 | return (error); | |
3396 | } | |
3397 | ||
3398 | /* | |
3399 | * Count total number of blocks that are allocated in the given | |
3400 | * range from the bitmap. This is used to preflight total blocks | |
3401 | * that need to be relocated during volume resize. | |
3402 | * | |
3403 | * The journal or allocation file lock must be held. | |
3404 | * | |
3405 | * Returns: | |
3406 | * 0 on success, non-zero on failure. | |
3407 | * On failure, allocCount is zero. | |
3408 | */ | |
3409 | int | |
3410 | hfs_count_allocated(struct hfsmount *hfsmp, u_int32_t startBlock, | |
3411 | u_int32_t numBlocks, u_int32_t *allocCount) | |
3412 | { | |
3413 | return hfs_isallocated_internal(hfsmp, startBlock, numBlocks, false, allocCount); | |
3414 | } | |
3415 | ||
3416 | /* | |
3417 | * Test to see if any blocks in a range are allocated. | |
3418 | * | |
3419 | * Note: On error, this function returns 1, which means that | |
3420 | * one or more blocks in the range are allocated. This function | |
3421 | * is primarily used for volume resize and we do not want | |
3422 | * to report to the caller that the blocks are free when we | |
3423 | * were not able to deterministically find it out. So on error, | |
3424 | * we always report that the blocks are allocated. | |
3425 | * | |
3426 | * The journal or allocation file lock must be held. | |
3427 | * | |
3428 | * Returns | |
3429 | * 0 if all blocks in the range are free. | |
3430 | * 1 if blocks in the range are allocated, or there was an error. | |
3431 | */ | |
3432 | int | |
3433 | hfs_isallocated(struct hfsmount *hfsmp, u_int32_t startingBlock, u_int32_t numBlocks) | |
3434 | { | |
3435 | int error; | |
3436 | u_int32_t allocCount; | |
3437 | ||
3438 | error = hfs_isallocated_internal(hfsmp, startingBlock, numBlocks, true, &allocCount); | |
3439 | if (error) { | |
3440 | /* On error, we always say that the blocks are allocated | |
3441 | * so that volume resize does not return false success. | |
3442 | */ | |
3443 | return 1; | |
3444 | } else { | |
3445 | /* The function was deterministically able to find out | |
3446 | * if there was any block allocated or not. In that case, | |
3447 | * the value in allocCount is good enough to be returned | |
3448 | * back to the caller. | |
3449 | */ | |
3450 | return allocCount; | |
3451 | } | |
3452 | } | |
3453 | ||
3454 | /* | |
3455 | * CONFIG_HFS_RBTREE | |
3456 | * Check to see if the red-black tree is live. Allocation file lock must be held | |
3457 | * shared or exclusive to call this function. Note that we may call this even if | |
3458 | * HFS is built without activating the red-black tree code. | |
3459 | */ | |
3460 | int | |
3461 | hfs_isrbtree_active(struct hfsmount *hfsmp){ | |
3462 | ||
3463 | #pragma unused (hfsmp) | |
3464 | ||
3465 | /* Just return 0 for now */ | |
3466 | return 0; | |
3467 | } | |
3468 | ||
3469 | ||
3470 | ||
3471 | /* Summary Table Functions */ | |
3472 | /* | |
3473 | * hfs_check_summary: | |
3474 | * | |
3475 | * This function should be used to query the summary table to see if we can | |
3476 | * bypass a bitmap block or not when we're trying to find a free allocation block. | |
3477 | * | |
3478 | * | |
3479 | * Inputs: | |
3480 | * allocblock - allocation block number. Will be used to infer the correct summary bit. | |
3481 | * hfsmp -- filesystem in question. | |
3482 | * | |
3483 | * Output Arg: | |
3484 | * *freeblocks - set to 1 if we believe at least one free blocks in this vcbVBMIOSize | |
3485 | * page of bitmap file. | |
3486 | * | |
3487 | * | |
3488 | * Returns: | |
3489 | * 0 on success | |
3490 | * EINVAL on error | |
3491 | * | |
3492 | */ | |
3493 | ||
3494 | static int hfs_check_summary (struct hfsmount *hfsmp, uint32_t allocblock, uint32_t *freeblocks) { | |
3495 | ||
3496 | int err = EINVAL; | |
3497 | if (hfsmp->vcbVBMIOSize) { | |
3498 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
3499 | uint32_t index; | |
3500 | if (hfs_get_summary_index (hfsmp, allocblock, &index)) { | |
3501 | *freeblocks = 0; | |
3502 | return EINVAL; | |
3503 | } | |
3504 | ||
3505 | /* Ok, now that we have the bit index into the array, what byte is it in ? */ | |
3506 | uint32_t byteindex = index / kBitsPerByte; | |
3507 | uint8_t current_byte = hfsmp->hfs_summary_table[byteindex]; | |
3508 | uint8_t bit_in_byte = index % kBitsPerByte; | |
3509 | ||
3510 | if (current_byte & (1 << bit_in_byte)) { | |
3511 | /* | |
3512 | * We do not believe there is anything free in the | |
3513 | * entire vcbVBMIOSize'd block. | |
3514 | */ | |
3515 | *freeblocks = 0; | |
3516 | } | |
3517 | else { | |
3518 | /* Looks like there might be a free block here... */ | |
3519 | *freeblocks = 1; | |
3520 | } | |
3521 | } | |
3522 | err = 0; | |
3523 | } | |
3524 | ||
3525 | return err; | |
3526 | } | |
3527 | ||
3528 | /* | |
3529 | * hfs_release_summary | |
3530 | * | |
3531 | * Given an extent that is about to be de-allocated on-disk, determine the number | |
3532 | * of summary bitmap bits that need to be marked as 'potentially available'. | |
3533 | * Then go ahead and mark them as free. | |
3534 | * | |
3535 | * Inputs: | |
3536 | * hfsmp - hfs mount | |
3537 | * block - starting allocation block. | |
3538 | * length - length of the extent. | |
3539 | * | |
3540 | * Returns: | |
3541 | * EINVAL upon any errors. | |
3542 | */ | |
3543 | static int hfs_release_summary(struct hfsmount *hfsmp, uint32_t start_blk, uint32_t length) { | |
3544 | int err = EINVAL; | |
3545 | uint32_t end_blk = (start_blk + length) - 1; | |
3546 | ||
3547 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
3548 | /* Figure out what the starting / ending block's summary bits are */ | |
3549 | uint32_t start_bit; | |
3550 | uint32_t end_bit; | |
3551 | uint32_t current_bit; | |
3552 | ||
3553 | err = hfs_get_summary_index (hfsmp, start_blk, &start_bit); | |
3554 | if (err) { | |
3555 | goto release_err; | |
3556 | } | |
3557 | err = hfs_get_summary_index (hfsmp, end_blk, &end_bit); | |
3558 | if (err) { | |
3559 | goto release_err; | |
3560 | } | |
3561 | ||
3562 | if (ALLOC_DEBUG) { | |
3563 | if (start_bit > end_bit) { | |
3564 | LFHFS_LOG(LEVEL_ERROR, "hfs_release_summary: start > end!, %d %d ", start_bit, end_bit); | |
3565 | hfs_assert(0); | |
3566 | } | |
3567 | } | |
3568 | current_bit = start_bit; | |
3569 | while (current_bit <= end_bit) { | |
3570 | err = hfs_set_summary (hfsmp, current_bit, 0); | |
3571 | current_bit++; | |
3572 | } | |
3573 | } | |
3574 | ||
3575 | release_err: | |
3576 | return err; | |
3577 | } | |
3578 | ||
3579 | /* | |
3580 | * hfs_find_summary_free | |
3581 | * | |
3582 | * Given a allocation block as input, returns an allocation block number as output as a | |
3583 | * suggestion for where to start scanning the bitmap in order to find free blocks. It will | |
3584 | * determine the vcbVBMIOsize of the input allocation block, convert that into a summary | |
3585 | * bit, then keep iterating over the summary bits in order to find the first free one. | |
3586 | * | |
3587 | * Inputs: | |
3588 | * hfsmp - hfs mount | |
3589 | * block - starting allocation block | |
3590 | * newblock - output block as suggestion | |
3591 | * | |
3592 | * Returns: | |
3593 | * 0 on success | |
3594 | * ENOSPC if we could not find a free block | |
3595 | */ | |
3596 | ||
3597 | int hfs_find_summary_free (struct hfsmount *hfsmp, uint32_t block, uint32_t *newblock) { | |
3598 | ||
3599 | int err = ENOSPC; | |
3600 | uint32_t bit_index = 0; | |
3601 | uint32_t maybe_has_blocks = 0; | |
3602 | ||
3603 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
3604 | uint32_t byte_index; | |
3605 | uint8_t curbyte; | |
3606 | uint8_t bit_in_byte; | |
3607 | uint32_t summary_cap; | |
3608 | ||
3609 | /* | |
3610 | * We generate a cap for the summary search because the summary table | |
3611 | * always represents a full summary of the bitmap FILE, which may | |
3612 | * be way more bits than are necessary for the actual filesystem | |
3613 | * whose allocations are mapped by the bitmap. | |
3614 | * | |
3615 | * Compute how much of hfs_summary_size is useable for the given number | |
3616 | * of allocation blocks eligible on this FS. | |
3617 | */ | |
3618 | err = hfs_get_summary_index (hfsmp, hfsmp->allocLimit - 1, &summary_cap); | |
3619 | if (err) { | |
3620 | goto summary_exit; | |
3621 | } | |
3622 | ||
3623 | /* Check the starting block first */ | |
3624 | err = hfs_check_summary (hfsmp, block, &maybe_has_blocks); | |
3625 | if (err) { | |
3626 | goto summary_exit; | |
3627 | } | |
3628 | ||
3629 | if (maybe_has_blocks) { | |
3630 | /* | |
3631 | * It looks like the initial start block could have something. | |
3632 | * Short-circuit and just use that. | |
3633 | */ | |
3634 | *newblock = block; | |
3635 | goto summary_exit; | |
3636 | } | |
3637 | ||
3638 | /* | |
3639 | * OK, now we know that the first block was useless. | |
3640 | * Get the starting summary bit, and find it in the array | |
3641 | */ | |
3642 | maybe_has_blocks = 0; | |
3643 | err = hfs_get_summary_index (hfsmp, block, &bit_index); | |
3644 | if (err) { | |
3645 | goto summary_exit; | |
3646 | } | |
3647 | ||
3648 | /* Iterate until we find something. */ | |
3649 | while (bit_index <= summary_cap) { | |
3650 | byte_index = bit_index / kBitsPerByte; | |
3651 | curbyte = hfsmp->hfs_summary_table[byte_index]; | |
3652 | bit_in_byte = bit_index % kBitsPerByte; | |
3653 | ||
3654 | if (curbyte & (1 << bit_in_byte)) { | |
3655 | /* nothing here. increment and move on */ | |
3656 | bit_index++; | |
3657 | } | |
3658 | else { | |
3659 | /* | |
3660 | * found something! convert bit_index back into | |
3661 | * an allocation block for use. 'newblock' will now | |
3662 | * contain the proper allocation block # based on the bit | |
3663 | * index. | |
3664 | */ | |
3665 | err = hfs_get_summary_allocblock (hfsmp, bit_index, newblock); | |
3666 | if (err) { | |
3667 | goto summary_exit; | |
3668 | } | |
3669 | maybe_has_blocks = 1; | |
3670 | break; | |
3671 | } | |
3672 | } | |
3673 | ||
3674 | /* If our loop didn't find anything, set err to ENOSPC */ | |
3675 | if (maybe_has_blocks == 0) { | |
3676 | err = ENOSPC; | |
3677 | } | |
3678 | } | |
3679 | ||
3680 | /* If the summary table is not active for this mount, we'll just return ENOSPC */ | |
3681 | summary_exit: | |
3682 | if (maybe_has_blocks) { | |
3683 | err = 0; | |
3684 | } | |
3685 | ||
3686 | return err; | |
3687 | } | |
3688 | ||
3689 | /* | |
3690 | * hfs_get_summary_allocblock | |
3691 | * | |
3692 | * Convert a summary bit into an allocation block number to use to start searching for free blocks. | |
3693 | * | |
3694 | * Inputs: | |
3695 | * hfsmp - hfs mount | |
3696 | * summarybit - summmary bit index | |
3697 | * *alloc - allocation block number in the bitmap file. | |
3698 | * | |
3699 | * Output: | |
3700 | * 0 on success | |
3701 | * EINVAL on failure | |
3702 | */ | |
3703 | int hfs_get_summary_allocblock (struct hfsmount *hfsmp, uint32_t | |
3704 | summarybit, uint32_t *alloc) { | |
3705 | uint32_t bits_per_iosize = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
3706 | uint32_t allocblk; | |
3707 | ||
3708 | allocblk = summarybit * bits_per_iosize; | |
3709 | ||
3710 | if (allocblk >= hfsmp->totalBlocks) { | |
3711 | return EINVAL; | |
3712 | } | |
3713 | else { | |
3714 | *alloc = allocblk; | |
3715 | } | |
3716 | ||
3717 | return 0; | |
3718 | } | |
3719 | ||
3720 | ||
3721 | /* | |
3722 | * hfs_set_summary: | |
3723 | * | |
3724 | * This function should be used to manipulate the summary table | |
3725 | * | |
3726 | * The argument 'inuse' will set the value of the bit in question to one or zero | |
3727 | * depending on its value. | |
3728 | * | |
3729 | * Inputs: | |
3730 | * hfsmp - hfs mount | |
3731 | * summarybit - the bit index into the summary table to set/unset. | |
3732 | * inuse - the value to assign to the bit. | |
3733 | * | |
3734 | * Returns: | |
3735 | * 0 on success | |
3736 | * EINVAL on error | |
3737 | * | |
3738 | */ | |
3739 | ||
3740 | static int hfs_set_summary (struct hfsmount *hfsmp, uint32_t summarybit, uint32_t inuse) { | |
3741 | ||
3742 | int err = EINVAL; | |
3743 | if (hfsmp->vcbVBMIOSize) { | |
3744 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
3745 | ||
3746 | if (ALLOC_DEBUG) { | |
3747 | if (hfsmp->hfs_summary_table == NULL) { | |
3748 | LFHFS_LOG(LEVEL_ERROR, "hfs_set_summary: no table for %p ", hfsmp); | |
3749 | hfs_assert(0); | |
3750 | } | |
3751 | } | |
3752 | ||
3753 | /* Ok, now that we have the bit index into the array, what byte is it in ? */ | |
3754 | uint32_t byte_index = summarybit / kBitsPerByte; | |
3755 | uint8_t current_byte = hfsmp->hfs_summary_table[byte_index]; | |
3756 | uint8_t bit_in_byte = summarybit % kBitsPerByte; | |
3757 | ||
3758 | if (inuse) { | |
3759 | current_byte = (current_byte | (1 << bit_in_byte)); | |
3760 | } | |
3761 | else { | |
3762 | current_byte = (current_byte & ~(1 << bit_in_byte)); | |
3763 | } | |
3764 | ||
3765 | hfsmp->hfs_summary_table[byte_index] = current_byte; | |
3766 | } | |
3767 | err = 0; | |
3768 | } | |
3769 | ||
3770 | return err; | |
3771 | } | |
3772 | ||
3773 | ||
3774 | /* | |
3775 | * hfs_get_summary_index: | |
3776 | * | |
3777 | * This is a helper function which determines what summary bit represents the vcbVBMIOSize worth | |
3778 | * of IO against the bitmap file. | |
3779 | * | |
3780 | * Returns: | |
3781 | * 0 on success | |
3782 | * EINVAL on failure | |
3783 | */ | |
3784 | static int hfs_get_summary_index (struct hfsmount *hfsmp, uint32_t block, uint32_t* index) { | |
3785 | uint32_t summary_bit; | |
3786 | uint32_t bits_per_iosize; | |
3787 | int err = EINVAL; | |
3788 | ||
3789 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
3790 | /* Is the input block bigger than the total number of blocks? */ | |
3791 | if (block >= hfsmp->totalBlocks) { | |
3792 | return EINVAL; | |
3793 | } | |
3794 | ||
3795 | /* Is there even a vbmIOSize set? */ | |
3796 | if (hfsmp->vcbVBMIOSize == 0) { | |
3797 | return EINVAL; | |
3798 | } | |
3799 | ||
3800 | bits_per_iosize = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
3801 | ||
3802 | summary_bit = block / bits_per_iosize; | |
3803 | ||
3804 | *index = summary_bit; | |
3805 | err = 0; | |
3806 | } | |
3807 | ||
3808 | return err; | |
3809 | } | |
3810 | ||
3811 | /* | |
3812 | * hfs_init_summary | |
3813 | * | |
3814 | * From a given mount structure, compute how big the summary table should be for the given | |
3815 | * filesystem, then allocate and bzero the memory. | |
3816 | * | |
3817 | * Returns: | |
3818 | * 0 on success | |
3819 | * EINVAL on failure | |
3820 | */ | |
3821 | int | |
3822 | hfs_init_summary (struct hfsmount *hfsmp) { | |
3823 | ||
3824 | uint32_t summary_size; | |
3825 | uint32_t summary_size_bytes; | |
3826 | uint8_t *summary_table; | |
3827 | ||
3828 | if (hfsmp->hfs_allocation_cp == NULL) { | |
3829 | if (ALLOC_DEBUG) { | |
3830 | LFHFS_LOG(LEVEL_DEBUG, "hfs_init_summary: summary table cannot progress without a bitmap cnode! \n"); | |
3831 | } | |
3832 | return EINVAL; | |
3833 | } | |
3834 | /* | |
3835 | * The practical maximum size of the summary table is 16KB: | |
3836 | * | |
3837 | * (512MB maximum bitmap size / (4k -- min alloc block size)) / 8 bits/byte. | |
3838 | * | |
3839 | * HFS+ will allow filesystems with allocation block sizes smaller than 4k, but | |
3840 | * the end result is that we'll start to issue I/O in 2k or 1k sized chunks, which makes | |
3841 | * supporting this much worse. The math would instead look like this: | |
3842 | * (512MB / 2k) / 8 == 32k. | |
3843 | * | |
3844 | * So, we will disallow the summary table if the allocation block size is < 4k. | |
3845 | */ | |
3846 | ||
3847 | if (hfsmp->blockSize < HFS_MIN_SUMMARY_BLOCKSIZE) { | |
3848 | LFHFS_LOG(LEVEL_ERROR, "hfs_init_summary: summary table not allowed on FS with block size of %d\n", hfsmp->blockSize); | |
3849 | return EINVAL; | |
3850 | } | |
3851 | ||
3852 | summary_size = hfsmp->hfs_allocation_cp->c_blocks; | |
3853 | ||
3854 | if (ALLOC_DEBUG) { | |
3855 | LFHFS_LOG(LEVEL_DEBUG, "HFS Summary Table Initialization: Bitmap %u blocks\n", | |
3856 | hfsmp->hfs_allocation_cp->c_blocks); | |
3857 | } | |
3858 | ||
3859 | /* | |
3860 | * If the bitmap IO size is not the same as the allocation block size then | |
3861 | * then re-compute the number of summary bits necessary. Note that above, the | |
3862 | * the default size is the number of allocation blocks in the bitmap *FILE* | |
3863 | * (not the number of bits in the bitmap itself). If the allocation block size | |
3864 | * is large enough though, we may need to increase this. | |
3865 | */ | |
3866 | if (hfsmp->blockSize != hfsmp->vcbVBMIOSize) { | |
3867 | uint64_t lrg_size = (uint64_t) hfsmp->hfs_allocation_cp->c_blocks * (uint64_t) hfsmp->blockSize; | |
3868 | lrg_size = lrg_size / (uint64_t)hfsmp->vcbVBMIOSize; | |
3869 | ||
3870 | /* With a full bitmap and 64k-capped iosize chunks, this would be 64k */ | |
3871 | summary_size = (uint32_t) lrg_size; | |
3872 | } | |
3873 | ||
3874 | /* | |
3875 | * If the block size is the same as the IO Size, then the total number of blocks | |
3876 | * is already equal to the number of IO units, which is our number of summary bits. | |
3877 | */ | |
3878 | ||
3879 | summary_size_bytes = summary_size / kBitsPerByte; | |
3880 | /* Always add one byte, just in case we have a dangling number of bits */ | |
3881 | summary_size_bytes++; | |
3882 | ||
3883 | if (ALLOC_DEBUG) { | |
3884 | LFHFS_LOG(LEVEL_DEBUG, "HFS Summary Table: vcbVBMIOSize %d summary bits %d \n", hfsmp->vcbVBMIOSize, summary_size); | |
3885 | LFHFS_LOG(LEVEL_DEBUG, "HFS Summary Table Size (in bytes) %d \n", summary_size_bytes); | |
3886 | ||
3887 | ||
3888 | } | |
3889 | ||
3890 | /* Store the field in the mount point */ | |
3891 | hfsmp->hfs_summary_size = summary_size; | |
3892 | hfsmp->hfs_summary_bytes = summary_size_bytes; | |
3893 | ||
3894 | summary_table = hfs_mallocz(summary_size_bytes); | |
3895 | ||
3896 | /* enable the summary table */ | |
3897 | hfsmp->hfs_flags |= HFS_SUMMARY_TABLE; | |
3898 | hfsmp->hfs_summary_table = summary_table; | |
3899 | ||
3900 | if (ALLOC_DEBUG) { | |
3901 | if (hfsmp->hfs_summary_table == NULL) { | |
3902 | LFHFS_LOG(LEVEL_ERROR, "HFS Summary Init: no table for %p\n", hfsmp); | |
3903 | hfs_assert(0); | |
3904 | } | |
3905 | } | |
3906 | return 0; | |
3907 | } | |
3908 | ||
3909 | #if ALLOC_DEBUG | |
3910 | /* | |
3911 | * hfs_validate_summary | |
3912 | * | |
3913 | * Validation routine for the summary table. Debug-only function. | |
3914 | * | |
3915 | * Bitmap lock must be held. | |
3916 | * | |
3917 | */ | |
3918 | void hfs_validate_summary (struct hfsmount *hfsmp) { | |
3919 | uint32_t i; | |
3920 | int err; | |
3921 | ||
3922 | /* | |
3923 | * Iterate over all of the bits in the summary table, and verify if | |
3924 | * there really are free blocks in the pages that we believe may | |
3925 | * may contain free blocks. | |
3926 | */ | |
3927 | ||
3928 | if (hfsmp->hfs_summary_table == NULL) { | |
3929 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: No HFS summary table!"); | |
3930 | hfs_assert(0); | |
3931 | } | |
3932 | ||
3933 | /* 131072 bits == 16384 bytes. This is the theoretical max size of the summary table. we add 1 byte for slop */ | |
3934 | if (hfsmp->hfs_summary_size == 0 || hfsmp->hfs_summary_size > 131080) { | |
3935 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: Size is bad! %d", hfsmp->hfs_summary_size); | |
3936 | hfs_assert(0); | |
3937 | } | |
3938 | ||
3939 | if (hfsmp->vcbVBMIOSize == 0) { | |
3940 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: no VCB VBM IO Size !"); | |
3941 | hfs_assert(0); | |
3942 | } | |
3943 | ||
3944 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: summary validation beginning on %s\n", hfsmp->vcbVN); | |
3945 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: summary validation %d summary bits, %d summary blocks\n", hfsmp->hfs_summary_size, hfsmp->totalBlocks); | |
3946 | ||
3947 | /* iterate through all possible summary bits */ | |
3948 | for (i = 0; i < hfsmp->hfs_summary_size ; i++) { | |
3949 | ||
3950 | uint32_t bits_per_iosize = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
3951 | uint32_t byte_offset = hfsmp->vcbVBMIOSize * i; | |
3952 | ||
3953 | /* Compute the corresponding allocation block for the summary bit. */ | |
3954 | uint32_t alloc_block = i * bits_per_iosize; | |
3955 | ||
3956 | /* | |
3957 | * We use a uint32_t pointer here because it will speed up | |
3958 | * access to the real bitmap data on disk. | |
3959 | */ | |
3960 | uint32_t *block_data; | |
3961 | struct buf *bp; | |
3962 | int counter; | |
3963 | int counter_max; | |
3964 | int saw_free_bits = 0; | |
3965 | ||
3966 | /* Get the block */ | |
3967 | if ((err = ReadBitmapRange (hfsmp, byte_offset, hfsmp->vcbVBMIOSize, &block_data, &bp))) { | |
3968 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: error (%d) in ReadBitmapRange!", err); | |
3969 | hfs_assert(0); | |
3970 | } | |
3971 | ||
3972 | /* Query the status of the bit and then make sure we match */ | |
3973 | uint32_t maybe_has_free_blocks; | |
3974 | err = hfs_check_summary (hfsmp, alloc_block, &maybe_has_free_blocks); | |
3975 | if (err) { | |
3976 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: hfs_check_summary returned error (%d) ", err); | |
3977 | hfs_assert(0); | |
3978 | } | |
3979 | counter_max = hfsmp->vcbVBMIOSize / kBytesPerWord; | |
3980 | ||
3981 | for (counter = 0; counter < counter_max; counter++) { | |
3982 | uint32_t word = block_data[counter]; | |
3983 | ||
3984 | /* We assume that we'll not find any free bits here. */ | |
3985 | if (word != kAllBitsSetInWord) { | |
3986 | if (maybe_has_free_blocks) { | |
3987 | /* All done */ | |
3988 | saw_free_bits = 1; | |
3989 | break; | |
3990 | } else { | |
3991 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: hfs_check_summary saw free bits!"); | |
3992 | hfs_assert(0); | |
3993 | } | |
3994 | } | |
3995 | } | |
3996 | ||
3997 | if (maybe_has_free_blocks && (saw_free_bits == 0)) { | |
3998 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: did not see free bits !"); | |
3999 | hfs_assert(0); | |
4000 | } | |
4001 | ||
4002 | /* Release the block. */ | |
4003 | if ((err = ReleaseScanBitmapRange (bp))) { | |
4004 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: Error (%d) in ReleaseScanBitmapRange", err); | |
4005 | hfs_assert(0); | |
4006 | } | |
4007 | } | |
4008 | ||
4009 | LFHFS_LOG(LEVEL_ERROR, "hfs_validate_summary: summary validation completed successfully on %s\n", hfsmp->vcbVN); | |
4010 | return; | |
4011 | } | |
4012 | #endif | |
4013 | ||
4014 | /* | |
4015 | * hfs_alloc_scan_range: | |
4016 | * | |
4017 | * This function should be used to scan large ranges of the allocation bitmap | |
4018 | * at one time. It makes two key assumptions: | |
4019 | * | |
4020 | * 1) Bitmap lock is held during the duration of the call (exclusive) | |
4021 | * 2) There are no pages in the buffer cache for any of the bitmap | |
4022 | * blocks that we may encounter. It *MUST* be completely empty. | |
4023 | * | |
4024 | * The expected use case is when we are scanning the bitmap in full while we are | |
4025 | * still mounting the filesystem in order to issue TRIMs or build up the summary | |
4026 | * table for the mount point. It should be done after any potential journal replays | |
4027 | * are completed and their I/Os fully issued. | |
4028 | * | |
4029 | * The key reason for assumption (2) above is that this function will try to issue | |
4030 | * I/O against the bitmap file in chunks as large a possible -- essentially as | |
4031 | * much as the buffer layer will handle (1MB). Because the size of these I/Os | |
4032 | * is larger than what would be expected during normal runtime we must invalidate | |
4033 | * the buffers as soon as we are done with them so that they do not persist in | |
4034 | * the buffer cache for other threads to find, as they'll typically be doing | |
4035 | * allocation-block size I/Os instead. | |
4036 | * | |
4037 | * Input Args: | |
4038 | * hfsmp - hfs mount data structure | |
4039 | * startbit - allocation block # to start our scan. It must be aligned | |
4040 | * on a vcbVBMIOsize boundary. | |
4041 | * list - journal trim list data structure for issuing TRIMs | |
4042 | * | |
4043 | * Output Args: | |
4044 | * bitToScan - Return the next bit to scan if this function is called again. | |
4045 | * Caller will supply this into the next invocation | |
4046 | * of this call as 'startbit'. | |
4047 | */ | |
4048 | ||
4049 | static int hfs_alloc_scan_range(struct hfsmount *hfsmp, u_int32_t startbit, | |
4050 | u_int32_t *bitToScan, struct jnl_trim_list *list) { | |
4051 | ||
4052 | int error; | |
4053 | int readwrite = 1; | |
4054 | u_int32_t curAllocBlock; | |
4055 | GenericLFBufPtr blockRef = NULL; | |
4056 | u_int32_t *buffer = NULL; | |
4057 | u_int32_t free_offset = 0; //tracks the start of the current free range | |
4058 | u_int32_t size = 0; // tracks the length of the current free range. | |
4059 | u_int32_t iosize = 0; //how much io we should generate against the bitmap | |
4060 | u_int32_t byte_off; // byte offset into the bitmap file. | |
4061 | u_int32_t completed_size; // how much io was actually completed | |
4062 | u_int32_t last_bitmap_block; | |
4063 | u_int32_t current_word; | |
4064 | u_int32_t word_index = 0; | |
4065 | ||
4066 | /* summary table building */ | |
4067 | uint32_t summary_bit = 0; | |
4068 | uint32_t saw_free_blocks = 0; | |
4069 | uint32_t last_marked = 0; | |
4070 | ||
4071 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
4072 | readwrite = 0; | |
4073 | } | |
4074 | ||
4075 | /* | |
4076 | * Compute how much I/O we should generate here. | |
4077 | * hfs_scan_range_size will validate that the start bit | |
4078 | * converted into a byte offset into the bitmap file, | |
4079 | * is aligned on a VBMIOSize boundary. | |
4080 | */ | |
4081 | error = hfs_scan_range_size (hfsmp, startbit, &iosize); | |
4082 | if (error) { | |
4083 | if (ALLOC_DEBUG) { | |
4084 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: hfs_scan_range_size error %d\n", error); | |
4085 | hfs_assert(0); | |
4086 | } | |
4087 | return error; | |
4088 | } | |
4089 | ||
4090 | if (iosize < hfsmp->vcbVBMIOSize) { | |
4091 | if (ALLOC_DEBUG) { | |
4092 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: iosize too small! (iosize %d)\n", iosize); | |
4093 | hfs_assert(0); | |
4094 | } | |
4095 | return EINVAL; | |
4096 | } | |
4097 | ||
4098 | /* hfs_scan_range_size should have verified startbit. Convert it to bytes */ | |
4099 | byte_off = startbit / kBitsPerByte; | |
4100 | ||
4101 | /* | |
4102 | * When the journal replays blocks, it does so by writing directly to the disk | |
4103 | * device (bypassing any filesystem vnodes and such). When it finishes its I/Os | |
4104 | * it also immediately re-reads and invalidates the range covered by the bp so | |
4105 | * it does not leave anything lingering in the cache (for iosize reasons). | |
4106 | * | |
4107 | * As such, it is safe to do large I/Os here with ReadBitmapRange. | |
4108 | * | |
4109 | * NOTE: It is not recommended, but it is possible to call the function below | |
4110 | * on sections of the bitmap that may be in core already as long as the pages are not | |
4111 | * dirty. In that case, we'd notice that something starting at that | |
4112 | * logical block of the bitmap exists in the metadata cache, and we'd check | |
4113 | * if the iosize requested is the same as what was already allocated for it. | |
4114 | * Odds are pretty good we're going to request something larger. In that case, | |
4115 | * we just free the existing memory associated with the buf and reallocate a | |
4116 | * larger range. This function should immediately invalidate it as soon as we're | |
4117 | * done scanning, so this shouldn't cause any coherency issues. | |
4118 | */ | |
4119 | ||
4120 | error = ReadBitmapRange(hfsmp, byte_off, iosize, &buffer, &blockRef); | |
4121 | if (error) { | |
4122 | if (ALLOC_DEBUG) { | |
4123 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: start %d iosize %d ReadBitmapRange error %d\n", startbit, iosize, error); | |
4124 | hfs_assert(0); | |
4125 | } | |
4126 | return error; | |
4127 | } | |
4128 | ||
4129 | /* | |
4130 | * At this point, we have a giant wired buffer that represents some portion of | |
4131 | * the bitmap file that we want to analyze. We may not have gotten all 'iosize' | |
4132 | * bytes though, so clip our ending bit to what we actually read in. | |
4133 | */ | |
4134 | completed_size = blockRef->uValidBytes; | |
4135 | last_bitmap_block = completed_size * kBitsPerByte; | |
4136 | last_bitmap_block = last_bitmap_block + startbit; | |
4137 | ||
4138 | /* Cap the last block to the total number of blocks if required */ | |
4139 | if (last_bitmap_block > hfsmp->totalBlocks) { | |
4140 | last_bitmap_block = hfsmp->totalBlocks; | |
4141 | } | |
4142 | ||
4143 | /* curAllocBlock represents the logical block we're analyzing. */ | |
4144 | curAllocBlock = startbit; | |
4145 | word_index = 0; | |
4146 | size = 0; | |
4147 | ||
4148 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
4149 | if (hfs_get_summary_index (hfsmp, startbit, &summary_bit)) { | |
4150 | error = EINVAL; | |
4151 | if (ALLOC_DEBUG) { | |
4152 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: Could not acquire summary index for %u", startbit); | |
4153 | hfs_assert(0); | |
4154 | } | |
4155 | return error; | |
4156 | } | |
4157 | /* | |
4158 | * summary_bit should now be set to the summary bit corresponding to | |
4159 | * the allocation block of the first bit that we're supposed to scan | |
4160 | */ | |
4161 | } | |
4162 | saw_free_blocks = 0; | |
4163 | ||
4164 | while (curAllocBlock < last_bitmap_block) { | |
4165 | u_int32_t bit; | |
4166 | ||
4167 | /* Update the summary table as needed */ | |
4168 | if (hfsmp->hfs_flags & HFS_SUMMARY_TABLE) { | |
4169 | if (ALLOC_DEBUG) { | |
4170 | if (hfsmp->hfs_summary_table == NULL) { | |
4171 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: no summary table!"); | |
4172 | hfs_assert(0); | |
4173 | } | |
4174 | } | |
4175 | ||
4176 | uint32_t temp_summary; | |
4177 | error = hfs_get_summary_index (hfsmp, curAllocBlock, &temp_summary); | |
4178 | if (error) { | |
4179 | if (ALLOC_DEBUG) { | |
4180 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: could not get summary index for %u", curAllocBlock); | |
4181 | hfs_assert(0); | |
4182 | } | |
4183 | return EINVAL; | |
4184 | } | |
4185 | ||
4186 | if (ALLOC_DEBUG) { | |
4187 | if (temp_summary < summary_bit) { | |
4188 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: backwards summary bit?\n"); | |
4189 | hfs_assert(0); | |
4190 | } | |
4191 | } | |
4192 | ||
4193 | /* | |
4194 | * If temp_summary is greater than summary_bit, then this | |
4195 | * means that the next allocation block crosses a vcbVBMIOSize boundary | |
4196 | * and we should treat this range of on-disk data as part of a new summary | |
4197 | * bit. | |
4198 | */ | |
4199 | if (temp_summary > summary_bit) { | |
4200 | if (saw_free_blocks == 0) { | |
4201 | /* Mark the bit as totally consumed in the summary table */ | |
4202 | hfs_set_summary (hfsmp, summary_bit, 1); | |
4203 | } | |
4204 | else { | |
4205 | /* Mark the bit as potentially free in summary table */ | |
4206 | hfs_set_summary (hfsmp, summary_bit, 0); | |
4207 | } | |
4208 | last_marked = summary_bit; | |
4209 | /* | |
4210 | * Any time we set the summary table, update our counter which tracks | |
4211 | * what the last bit that was fully marked in the summary table. | |
4212 | * | |
4213 | * Then reset our marker which says we haven't seen a free bit yet. | |
4214 | */ | |
4215 | saw_free_blocks = 0; | |
4216 | summary_bit = temp_summary; | |
4217 | } | |
4218 | } /* End summary table conditions */ | |
4219 | ||
4220 | current_word = SWAP_BE32(buffer[word_index]); | |
4221 | /* Iterate through the word 1 bit at a time... */ | |
4222 | for (bit = 0 ; bit < kBitsPerWord ; bit++, curAllocBlock++) { | |
4223 | if (curAllocBlock >= last_bitmap_block) { | |
4224 | break; | |
4225 | } | |
4226 | u_int32_t allocated = (current_word & (kHighBitInWordMask >> bit)); | |
4227 | ||
4228 | if (allocated) { | |
4229 | if (size != 0) { | |
4230 | if (readwrite) { | |
4231 | /* Insert the previously tracked range of free blocks to the trim list */ | |
4232 | hfs_track_unmap_blocks (hfsmp, free_offset, size, list); | |
4233 | } | |
4234 | add_free_extent_cache (hfsmp, free_offset, size); | |
4235 | size = 0; | |
4236 | free_offset = 0; | |
4237 | } | |
4238 | } | |
4239 | else { | |
4240 | /* Not allocated */ | |
4241 | size++; | |
4242 | if (free_offset == 0) { | |
4243 | /* Start a new run of free spcae at curAllocBlock */ | |
4244 | free_offset = curAllocBlock; | |
4245 | } | |
4246 | if (saw_free_blocks == 0) { | |
4247 | saw_free_blocks = 1; | |
4248 | } | |
4249 | } | |
4250 | } /* end for loop iterating through the word */ | |
4251 | ||
4252 | if (curAllocBlock < last_bitmap_block) { | |
4253 | word_index++; | |
4254 | } | |
4255 | ||
4256 | } /* End while loop (iterates through last_bitmap_block) */ | |
4257 | ||
4258 | ||
4259 | /* | |
4260 | * We've (potentially) completed our pass through this region of bitmap, | |
4261 | * but one thing we may not have done is updated that last summary bit for | |
4262 | * the last page we scanned, because we would have never transitioned across | |
4263 | * a vcbVBMIOSize boundary again. Check for that and update the last bit | |
4264 | * as needed. | |
4265 | * | |
4266 | * Note that 'last_bitmap_block' is *not* inclusive WRT the very last bit in the bitmap | |
4267 | * for the region of bitmap on-disk that we were scanning. (it is one greater). | |
4268 | */ | |
4269 | if ((curAllocBlock >= last_bitmap_block) && | |
4270 | (hfsmp->hfs_flags & HFS_SUMMARY_TABLE)) { | |
4271 | uint32_t temp_summary; | |
4272 | /* temp_block should be INSIDE the region we just scanned, so subtract 1 */ | |
4273 | uint32_t temp_block = last_bitmap_block - 1; | |
4274 | error = hfs_get_summary_index (hfsmp, temp_block, &temp_summary); | |
4275 | if (error) { | |
4276 | if (ALLOC_DEBUG) { | |
4277 | LFHFS_LOG(LEVEL_ERROR, "hfs_alloc_scan_range: end bit curAllocBlock %u, last_bitmap_block %u", curAllocBlock, last_bitmap_block); | |
4278 | hfs_assert(0); | |
4279 | } | |
4280 | return EINVAL; | |
4281 | } | |
4282 | ||
4283 | /* Did we already update this in the table? */ | |
4284 | if (temp_summary > last_marked) { | |
4285 | if (saw_free_blocks == 0) { | |
4286 | hfs_set_summary (hfsmp, temp_summary, 1); | |
4287 | } | |
4288 | else { | |
4289 | hfs_set_summary (hfsmp, temp_summary, 0); | |
4290 | } | |
4291 | } | |
4292 | } | |
4293 | ||
4294 | /* | |
4295 | * We may have been tracking a range of free blocks that hasn't been inserted yet. | |
4296 | * Keep the logic for the TRIM and free extent separate from that of the summary | |
4297 | * table management even though they are closely linked. | |
4298 | */ | |
4299 | if (size != 0) { | |
4300 | if (readwrite) { | |
4301 | hfs_track_unmap_blocks (hfsmp, free_offset, size, list); | |
4302 | } | |
4303 | add_free_extent_cache (hfsmp, free_offset, size); | |
4304 | } | |
4305 | ||
4306 | /* | |
4307 | * curAllocBlock represents the next block we need to scan when we return | |
4308 | * to this function. | |
4309 | */ | |
4310 | *bitToScan = curAllocBlock; | |
4311 | ReleaseScanBitmapRange(blockRef); | |
4312 | ||
4313 | return 0; | |
4314 | ||
4315 | } | |
4316 | ||
4317 | ||
4318 | ||
4319 | /* | |
4320 | * Compute the maximum I/O size to generate against the bitmap file | |
4321 | * Will attempt to generate at LEAST VBMIOsize I/Os for interior ranges of the bitmap. | |
4322 | * | |
4323 | * Inputs: | |
4324 | * hfsmp -- hfsmount to look at | |
4325 | * bitmap_off -- bit offset into the bitmap file | |
4326 | * | |
4327 | * Outputs: | |
4328 | * iosize -- iosize to generate. | |
4329 | * | |
4330 | * Returns: | |
4331 | * 0 on success; EINVAL otherwise | |
4332 | */ | |
4333 | static int hfs_scan_range_size (struct hfsmount *hfsmp, uint32_t bitmap_st, uint32_t *iosize) { | |
4334 | ||
4335 | /* | |
4336 | * The maximum bitmap size is 512MB regardless of ABN size, so we can get away | |
4337 | * with 32 bit math in this function. | |
4338 | */ | |
4339 | ||
4340 | uint32_t bitmap_len; | |
4341 | uint32_t remaining_bitmap; | |
4342 | uint32_t target_iosize; | |
4343 | uint32_t bitmap_off; | |
4344 | ||
4345 | /* Is this bit index not word aligned? If so, immediately fail. */ | |
4346 | if (bitmap_st % kBitsPerWord) { | |
4347 | if (ALLOC_DEBUG) { | |
4348 | LFHFS_LOG(LEVEL_ERROR, "hfs_scan_range_size: unaligned start bit! bitmap_st %d \n", bitmap_st); | |
4349 | hfs_assert(0); | |
4350 | } | |
4351 | return EINVAL; | |
4352 | } | |
4353 | ||
4354 | /* bitmap_off is in bytes, not allocation blocks/bits */ | |
4355 | bitmap_off = bitmap_st / kBitsPerByte; | |
4356 | ||
4357 | if ((hfsmp->totalBlocks <= bitmap_st) || (bitmap_off > (512 * 1024 * 1024))) { | |
4358 | if (ALLOC_DEBUG) { | |
4359 | LFHFS_LOG(LEVEL_ERROR, "hfs_scan_range_size: invalid start! bitmap_st %d, bitmap_off %d\n", bitmap_st, bitmap_off); | |
4360 | hfs_assert(0); | |
4361 | } | |
4362 | return EINVAL; | |
4363 | } | |
4364 | ||
4365 | /* | |
4366 | * Also invalid if it's not at least aligned to HFS bitmap logical | |
4367 | * block boundaries. We don't have to emit an iosize that's an | |
4368 | * exact multiple of the VBMIOSize, but it must start on such | |
4369 | * a boundary. | |
4370 | * | |
4371 | * The vcbVBMIOSize may be SMALLER than the allocation block size | |
4372 | * on a FS with giant allocation blocks, but it will never be | |
4373 | * greater than it, so it should be safe to start I/O | |
4374 | * aligned on a VBMIOsize boundary. | |
4375 | */ | |
4376 | if (bitmap_off & (hfsmp->vcbVBMIOSize - 1)) { | |
4377 | if (ALLOC_DEBUG) { | |
4378 | LFHFS_LOG(LEVEL_ERROR, "hfs_scan_range_size: unaligned start! bitmap_off %d\n", bitmap_off); | |
4379 | hfs_assert(0); | |
4380 | } | |
4381 | return EINVAL; | |
4382 | } | |
4383 | ||
4384 | /* | |
4385 | * Generate the total bitmap file length in bytes, then round up | |
4386 | * that value to the end of the last allocation block, if needed (It | |
4387 | * will probably be needed). We won't scan past the last actual | |
4388 | * allocation block. | |
4389 | * | |
4390 | * Unless we're completing the bitmap scan (or bitmap < 1MB), we | |
4391 | * have to complete the I/O on VBMIOSize boundaries, but we can only read | |
4392 | * up until the end of the bitmap file. | |
4393 | */ | |
4394 | bitmap_len = roundup(hfsmp->totalBlocks, hfsmp->blockSize * 8) / 8; | |
4395 | ||
4396 | remaining_bitmap = bitmap_len - bitmap_off; | |
4397 | ||
4398 | /* | |
4399 | * io size is the MIN of the maximum I/O we can generate or the | |
4400 | * remaining amount of bitmap. | |
4401 | */ | |
4402 | target_iosize = MIN((MAXBSIZE), remaining_bitmap); | |
4403 | *iosize = target_iosize; | |
4404 | ||
4405 | return 0; | |
4406 | } | |
4407 | ||
4408 | /* | |
4409 | * Remove an extent from the list of free extents. | |
4410 | * | |
4411 | * This is a low-level routine. It does not handle overlaps or splitting; | |
4412 | * that is the responsibility of the caller. The input extent must exactly | |
4413 | * match an extent already in the list; it will be removed, and any following | |
4414 | * extents in the list will be shifted up. | |
4415 | * | |
4416 | * Inputs: | |
4417 | * startBlock - Start of extent to remove | |
4418 | * blockCount - Number of blocks in extent to remove | |
4419 | * | |
4420 | * Result: | |
4421 | * The index of the extent that was removed. | |
4422 | */ | |
4423 | static void remove_free_extent_list(struct hfsmount *hfsmp, int index) | |
4424 | { | |
4425 | if (index < 0 || (uint32_t)index >= hfsmp->vcbFreeExtCnt) { | |
4426 | if (ALLOC_DEBUG) | |
4427 | { | |
4428 | LFHFS_LOG(LEVEL_ERROR, "remove_free_extent_list: %p: index (%d) out of range (0, %u)", hfsmp, index, hfsmp->vcbFreeExtCnt); | |
4429 | hfs_assert(0); | |
4430 | } | |
4431 | else | |
4432 | LFHFS_LOG(LEVEL_ERROR, "remove_free_extent_list: %p: index (%d) out of range (0, %u)", hfsmp, index, hfsmp->vcbFreeExtCnt); | |
4433 | return; | |
4434 | } | |
4435 | int shift_count = hfsmp->vcbFreeExtCnt - index - 1; | |
4436 | if (shift_count > 0) { | |
4437 | memmove(&hfsmp->vcbFreeExt[index], &hfsmp->vcbFreeExt[index+1], shift_count * sizeof(hfsmp->vcbFreeExt[0])); | |
4438 | } | |
4439 | hfsmp->vcbFreeExtCnt--; | |
4440 | } | |
4441 | ||
4442 | ||
4443 | /* | |
4444 | * Add an extent to the list of free extents. | |
4445 | * | |
4446 | * This is a low-level routine. It does not handle overlaps or coalescing; | |
4447 | * that is the responsibility of the caller. This routine *does* make | |
4448 | * sure that the extent it is adding is inserted in the correct location. | |
4449 | * If the list is full, this routine will handle either removing the last | |
4450 | * extent in the list to make room for the new extent, or ignoring the | |
4451 | * new extent if it is "worse" than the last extent in the list. | |
4452 | * | |
4453 | * Inputs: | |
4454 | * startBlock - Start of extent to add | |
4455 | * blockCount - Number of blocks in extent to add | |
4456 | * | |
4457 | * Result: | |
4458 | * The index where the extent that was inserted, or kMaxFreeExtents | |
4459 | * if the extent was not inserted (the list was full, and the extent | |
4460 | * being added was "worse" than everything in the list). | |
4461 | */ | |
4462 | static int add_free_extent_list(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount) | |
4463 | { | |
4464 | uint32_t i; | |
4465 | ||
4466 | /* ALLOC_DEBUG: Make sure no extents in the list overlap or are contiguous with the input extent. */ | |
4467 | if (ALLOC_DEBUG) { | |
4468 | uint32_t endBlock = startBlock + blockCount; | |
4469 | for (i = 0; i < hfsmp->vcbFreeExtCnt; ++i) { | |
4470 | if (endBlock < hfsmp->vcbFreeExt[i].startBlock || | |
4471 | startBlock > (hfsmp->vcbFreeExt[i].startBlock + hfsmp->vcbFreeExt[i].blockCount)) { | |
4472 | continue; | |
4473 | } | |
4474 | LFHFS_LOG(LEVEL_ERROR, "add_free_extent_list: extent(%u %u) overlaps existing extent (%u %u) at index %d", | |
4475 | startBlock, blockCount, hfsmp->vcbFreeExt[i].startBlock, hfsmp->vcbFreeExt[i].blockCount, i); | |
4476 | hfs_assert(0); | |
4477 | } | |
4478 | } | |
4479 | ||
4480 | /* Figure out what index the new extent should be inserted at. */ | |
4481 | for (i = 0; i < hfsmp->vcbFreeExtCnt; ++i) { | |
4482 | /* The list is sorted by decreasing size. */ | |
4483 | if (blockCount > hfsmp->vcbFreeExt[i].blockCount) { | |
4484 | break; | |
4485 | } | |
4486 | } | |
4487 | ||
4488 | /* When we get here, i is the index where the extent should be inserted. */ | |
4489 | if (i == kMaxFreeExtents) { | |
4490 | /* | |
4491 | * The new extent is worse than anything already in the list, | |
4492 | * and the list is full, so just ignore the extent to be added. | |
4493 | */ | |
4494 | return i; | |
4495 | } | |
4496 | ||
4497 | /* | |
4498 | * Grow the list (if possible) to make room for an insert. | |
4499 | */ | |
4500 | if (hfsmp->vcbFreeExtCnt < kMaxFreeExtents) | |
4501 | hfsmp->vcbFreeExtCnt++; | |
4502 | ||
4503 | /* | |
4504 | * If we'll be keeping any extents after the insert position, then shift them. | |
4505 | */ | |
4506 | int shift_count = hfsmp->vcbFreeExtCnt - i - 1; | |
4507 | if (shift_count > 0) { | |
4508 | memmove(&hfsmp->vcbFreeExt[i+1], &hfsmp->vcbFreeExt[i], shift_count * sizeof(hfsmp->vcbFreeExt[0])); | |
4509 | } | |
4510 | ||
4511 | /* Finally, store the new extent at its correct position. */ | |
4512 | hfsmp->vcbFreeExt[i].startBlock = startBlock; | |
4513 | hfsmp->vcbFreeExt[i].blockCount = blockCount; | |
4514 | return i; | |
4515 | } | |
4516 | ||
4517 | ||
4518 | /* | |
4519 | * Remove an entry from free extent cache after it has been allocated. | |
4520 | * | |
4521 | * This is a high-level routine. It handles removing a portion of a | |
4522 | * cached extent, potentially splitting it into two (if the cache was | |
4523 | * already full, throwing away the extent that would sort last). It | |
4524 | * also handles removing an extent that overlaps multiple extents in | |
4525 | * the cache. | |
4526 | * | |
4527 | * Inputs: | |
4528 | * hfsmp - mount point structure | |
4529 | * startBlock - starting block of the extent to be removed. | |
4530 | * blockCount - number of blocks of the extent to be removed. | |
4531 | */ | |
4532 | static void remove_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount) | |
4533 | { | |
4534 | u_int32_t i, insertedIndex; | |
4535 | u_int32_t currentStart, currentEnd, endBlock; | |
4536 | int extentsRemoved = 0; | |
4537 | ||
4538 | endBlock = startBlock + blockCount; | |
4539 | ||
4540 | lf_lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4541 | ||
4542 | /* | |
4543 | * Iterate over all of the extents in the free extent cache, removing or | |
4544 | * updating any entries that overlap with the input extent. | |
4545 | */ | |
4546 | for (i = 0; i < hfsmp->vcbFreeExtCnt; ++i) { | |
4547 | currentStart = hfsmp->vcbFreeExt[i].startBlock; | |
4548 | currentEnd = currentStart + hfsmp->vcbFreeExt[i].blockCount; | |
4549 | ||
4550 | /* | |
4551 | * If the current extent is entirely before or entirely after the | |
4552 | * the extent to be removed, then we keep it as-is. | |
4553 | */ | |
4554 | if (currentEnd <= startBlock || currentStart >= endBlock) { | |
4555 | continue; | |
4556 | } | |
4557 | ||
4558 | /* | |
4559 | * If the extent being removed entirely contains the current extent, | |
4560 | * then remove the current extent. | |
4561 | */ | |
4562 | if (startBlock <= currentStart && endBlock >= currentEnd) { | |
4563 | remove_free_extent_list(hfsmp, i); | |
4564 | ||
4565 | /* | |
4566 | * We just removed the extent at index i. The extent at | |
4567 | * index i+1 just got shifted to index i. So decrement i | |
4568 | * to undo the loop's "++i", and the next iteration will | |
4569 | * examine index i again, which contains the next extent | |
4570 | * in the list. | |
4571 | */ | |
4572 | --i; | |
4573 | ++extentsRemoved; | |
4574 | continue; | |
4575 | } | |
4576 | ||
4577 | /* | |
4578 | * If the extent being removed is strictly "in the middle" of the | |
4579 | * current extent, then we need to split the current extent into | |
4580 | * two discontiguous extents (the "head" and "tail"). The good | |
4581 | * news is that we don't need to examine any other extents in | |
4582 | * the list. | |
4583 | */ | |
4584 | if (startBlock > currentStart && endBlock < currentEnd) { | |
4585 | remove_free_extent_list(hfsmp, i); | |
4586 | add_free_extent_list(hfsmp, currentStart, startBlock - currentStart); | |
4587 | add_free_extent_list(hfsmp, endBlock, currentEnd - endBlock); | |
4588 | break; | |
4589 | } | |
4590 | ||
4591 | /* | |
4592 | * The only remaining possibility is that the extent to be removed | |
4593 | * overlaps the start or end (but not both!) of the current extent. | |
4594 | * So we need to replace the current extent with a shorter one. | |
4595 | * | |
4596 | * The only tricky part is that the updated extent might be at a | |
4597 | * different index than the original extent. If the updated extent | |
4598 | * was inserted after the current extent, then we need to re-examine | |
4599 | * the entry at index i, since it now contains the extent that was | |
4600 | * previously at index i+1. If the updated extent was inserted | |
4601 | * before or at the same index as the removed extent, then the | |
4602 | * following extents haven't changed position. | |
4603 | */ | |
4604 | remove_free_extent_list(hfsmp, i); | |
4605 | if (startBlock > currentStart) { | |
4606 | /* Remove the tail of the current extent. */ | |
4607 | insertedIndex = add_free_extent_list(hfsmp, currentStart, startBlock - currentStart); | |
4608 | } else { | |
4609 | /* Remove the head of the current extent. */ | |
4610 | insertedIndex = add_free_extent_list(hfsmp, endBlock, currentEnd - endBlock); | |
4611 | } | |
4612 | if (insertedIndex > i) { | |
4613 | --i; /* Undo the "++i" in the loop, so we examine the entry at index i again. */ | |
4614 | } | |
4615 | } | |
4616 | ||
4617 | lf_lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4618 | sanity_check_free_ext(hfsmp, 0); | |
4619 | ||
4620 | return; | |
4621 | } | |
4622 | ||
4623 | ||
4624 | /* | |
4625 | * Add an entry to free extent cache after it has been deallocated. | |
4626 | * | |
4627 | * This is a high-level routine. It will merge overlapping or contiguous | |
4628 | * extents into a single, larger extent. | |
4629 | * | |
4630 | * If the extent provided has blocks beyond current allocLimit, it is | |
4631 | * clipped to allocLimit (so that we won't accidentally find and allocate | |
4632 | * space beyond allocLimit). | |
4633 | * | |
4634 | * Inputs: | |
4635 | * hfsmp - mount point structure | |
4636 | * startBlock - starting block of the extent to be removed. | |
4637 | * blockCount - number of blocks of the extent to be removed. | |
4638 | * | |
4639 | * Returns: | |
4640 | * true - if the extent was added successfully to the list | |
4641 | * false - if the extent was not added to the list, maybe because | |
4642 | * the extent was beyond allocLimit, or is not best | |
4643 | * candidate to be put in the cache. | |
4644 | */ | |
4645 | static Boolean add_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount) | |
4646 | { | |
4647 | Boolean retval = false; | |
4648 | uint32_t endBlock; | |
4649 | uint32_t currentEnd; | |
4650 | uint32_t i; | |
4651 | ||
4652 | #if DEBUG | |
4653 | for (i = 0; i < 2; ++i) { | |
4654 | struct rl_entry *range; | |
4655 | TAILQ_FOREACH(range, &hfsmp->hfs_reserved_ranges[i], rl_link) { | |
4656 | hfs_assert(rl_overlap(range, startBlock, | |
4657 | startBlock + blockCount - 1) == RL_NOOVERLAP); | |
4658 | } | |
4659 | } | |
4660 | #endif | |
4661 | ||
4662 | /* No need to add extent that is beyond current allocLimit */ | |
4663 | if (startBlock >= hfsmp->allocLimit) { | |
4664 | goto out_not_locked; | |
4665 | } | |
4666 | ||
4667 | /* If end of the free extent is beyond current allocLimit, clip the extent */ | |
4668 | if ((startBlock + blockCount) > hfsmp->allocLimit) { | |
4669 | blockCount = hfsmp->allocLimit - startBlock; | |
4670 | } | |
4671 | ||
4672 | lf_lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4673 | ||
4674 | /* | |
4675 | * Make a pass through the free extent cache, looking for known extents that | |
4676 | * overlap or are contiguous with the extent to be added. We'll remove those | |
4677 | * extents from the cache, and incorporate them into the new extent to be added. | |
4678 | */ | |
4679 | endBlock = startBlock + blockCount; | |
4680 | for (i=0; i < hfsmp->vcbFreeExtCnt; ++i) { | |
4681 | currentEnd = hfsmp->vcbFreeExt[i].startBlock + hfsmp->vcbFreeExt[i].blockCount; | |
4682 | if (hfsmp->vcbFreeExt[i].startBlock > endBlock || currentEnd < startBlock) { | |
4683 | /* Extent i does not overlap and is not contiguous, so keep it. */ | |
4684 | continue; | |
4685 | } else { | |
4686 | /* We need to remove extent i and combine it with the input extent. */ | |
4687 | if (hfsmp->vcbFreeExt[i].startBlock < startBlock) | |
4688 | startBlock = hfsmp->vcbFreeExt[i].startBlock; | |
4689 | if (currentEnd > endBlock) | |
4690 | endBlock = currentEnd; | |
4691 | ||
4692 | remove_free_extent_list(hfsmp, i); | |
4693 | /* | |
4694 | * We just removed the extent at index i. The extent at | |
4695 | * index i+1 just got shifted to index i. So decrement i | |
4696 | * to undo the loop's "++i", and the next iteration will | |
4697 | * examine index i again, which contains the next extent | |
4698 | * in the list. | |
4699 | */ | |
4700 | --i; | |
4701 | } | |
4702 | } | |
4703 | add_free_extent_list(hfsmp, startBlock, endBlock - startBlock); | |
4704 | ||
4705 | lf_lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4706 | ||
4707 | out_not_locked: | |
4708 | sanity_check_free_ext(hfsmp, 0); | |
4709 | ||
4710 | return retval; | |
4711 | } | |
4712 | ||
4713 | /* Debug function to check if the free extent cache is good or not */ | |
4714 | static void sanity_check_free_ext(struct hfsmount *hfsmp, int check_allocated) | |
4715 | { | |
4716 | u_int32_t i, j; | |
4717 | ||
4718 | /* Do not do anything if debug is not on */ | |
4719 | if (ALLOC_DEBUG == 0) { | |
4720 | return; | |
4721 | } | |
4722 | ||
4723 | lf_lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4724 | ||
4725 | if (hfsmp->vcbFreeExtCnt > kMaxFreeExtents) | |
4726 | { | |
4727 | LFHFS_LOG(LEVEL_ERROR, "sanity_check_free_ext: free extent count (%u) is too large", hfsmp->vcbFreeExtCnt); | |
4728 | } | |
4729 | ||
4730 | /* | |
4731 | * Iterate the Free extent cache and ensure no entries are bogus or refer to | |
4732 | * allocated blocks. | |
4733 | */ | |
4734 | for(i=0; i < hfsmp->vcbFreeExtCnt; i++) { | |
4735 | u_int32_t start, nblocks; | |
4736 | ||
4737 | start = hfsmp->vcbFreeExt[i].startBlock; | |
4738 | nblocks = hfsmp->vcbFreeExt[i].blockCount; | |
4739 | ||
4740 | /* Check if any of the blocks in free extent cache are allocated. | |
4741 | * This should not be enabled always because it might take | |
4742 | * very long for large extents that get added to the list. | |
4743 | * | |
4744 | * We have to drop vcbFreeExtLock while we call hfs_isallocated | |
4745 | * because it is going to do I/O. Note that the free extent | |
4746 | * cache could change. That's a risk we take when using this | |
4747 | * debugging code. (Another alternative would be to try to | |
4748 | * detect when the free extent cache changed, and perhaps | |
4749 | * restart if the list changed while we dropped the lock.) | |
4750 | */ | |
4751 | if (check_allocated) { | |
4752 | lf_lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4753 | if (hfs_isallocated(hfsmp, start, nblocks)) { | |
4754 | LFHFS_LOG(LEVEL_ERROR, "sanity_check_free_ext: slot %d:(%u,%u) in the free extent array is allocated\n", | |
4755 | i, start, nblocks); | |
4756 | hfs_assert(0); | |
4757 | } | |
4758 | lf_lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4759 | } | |
4760 | ||
4761 | /* Check if any part of the extent is beyond allocLimit */ | |
4762 | if ((start > hfsmp->allocLimit) || ((start + nblocks) > hfsmp->allocLimit)) { | |
4763 | LFHFS_LOG(LEVEL_ERROR, "sanity_check_free_ext: slot %d:(%u,%u) in the free extent array is beyond allocLimit=%u\n", | |
4764 | i, start, nblocks, hfsmp->allocLimit); | |
4765 | hfs_assert(0); | |
4766 | } | |
4767 | ||
4768 | /* Check if there are any duplicate start blocks */ | |
4769 | for(j=i+1; j < hfsmp->vcbFreeExtCnt; j++) { | |
4770 | if (start == hfsmp->vcbFreeExt[j].startBlock) { | |
4771 | LFHFS_LOG(LEVEL_ERROR, "sanity_check_free_ext: slot %d:(%u,%u) and %d:(%u,%u) are duplicate\n", | |
4772 | i, start, nblocks, j, hfsmp->vcbFreeExt[j].startBlock, | |
4773 | hfsmp->vcbFreeExt[j].blockCount); | |
4774 | hfs_assert(0); | |
4775 | } | |
4776 | } | |
4777 | ||
4778 | /* Check if the entries are out of order */ | |
4779 | if ((i+1) != hfsmp->vcbFreeExtCnt) { | |
4780 | /* normally sorted by block count (descending) */ | |
4781 | if (hfsmp->vcbFreeExt[i].blockCount < hfsmp->vcbFreeExt[i+1].blockCount) { | |
4782 | LFHFS_LOG(LEVEL_ERROR, "sanity_check_free_ext: %d:(%u,%u) and %d:(%u,%u) are out of order\n", | |
4783 | i, start, nblocks, i+1, hfsmp->vcbFreeExt[i+1].startBlock, | |
4784 | hfsmp->vcbFreeExt[i+1].blockCount); | |
4785 | hfs_assert(0); | |
4786 | } | |
4787 | } | |
4788 | } | |
4789 | lf_lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4790 | } |