+/*
+ * Copyright (c) 2008 Apple Inc. All rights reserved.
+ *
+ * @APPLE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this
+ * file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_LICENSE_HEADER_END@
+ */
+
+/*
+Portions derived from:
+
+--------------------------------------------------------------------
+lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
+hash(), hash2(), hash3, and mix() are externally useful functions.
+Routines to test the hash are included if SELF_TEST is defined.
+You can use this free for any purpose. It has no warranty.
+--------------------------------------------------------------------
+
+------------------------------------------------------------------------------
+perfect.c: code to generate code for a hash for perfect hashing.
+(c) Bob Jenkins, September 1996, December 1999
+You may use this code in any way you wish, and it is free. No warranty.
+I hereby place this in the public domain.
+Source is http://burtleburtle.net/bob/c/perfect.c
+------------------------------------------------------------------------------
+*/
+
+/*
+ * objc-selopt.h
+ * Interface between libobjc and dyld
+ * for selector uniquing in the dyld shared cache.
+ *
+ * When building the shared cache, dyld locates all selectors and selector
+ * references in the cached images. It builds a perfect hash table out of
+ * them and writes the table into the shared cache copy of libobjc.
+ * libobjc then uses that table as the builtin selector list.
+ *
+ * Versioning
+ * The table has a version number. dyld and objc can both ignore the table
+ * if the other used the wrong version number.
+ *
+ * Completeness
+ * Not all libraries are in the shared cache. Libraries that are in the
+ * shared cache and were optimized are specially marked. Libraries on
+ * disk never include those marks.
+ *
+ * Coherency
+ * Libraries optimized in the shared cache can be replaced by unoptimized
+ * copies from disk when loaded. The copy from disk is not marked and will
+ * be fixed up by libobjc. The shared cache copy is still mapped into the
+ * process, so the table can point to cstring data in that library's part
+ * of the shared cache without trouble.
+ *
+ * Atomicity
+ * dyld writes the table itself last. If dyld marks some metadata as
+ * updated but then fails to write a table for some reason, libobjc
+ * fixes up all metadata as if it were not marked.
+ */
+
+#ifndef _OBJC_SELOPT_H
+#define _OBJC_SELOPT_H
+
+/*
+ DO NOT INCLUDE ANY objc HEADERS HERE
+ dyld USES THIS FILE AND CANNOT SEE THEM
+*/
+#include <stdint.h>
+#include <stdlib.h>
+#ifdef SELOPT_WRITE
+#include <ext/hash_map>
+#endif
+/*
+ DO NOT INCLUDE ANY objc HEADERS HERE
+ dyld USES THIS FILE AND CANNOT SEE THEM
+*/
+
+#ifndef STATIC_ASSERT
+# define STATIC_ASSERT(x) _STATIC_ASSERT2(x, __LINE__)
+# define _STATIC_ASSERT2(x, line) _STATIC_ASSERT3(x, line)
+# define _STATIC_ASSERT3(x, line) \
+ typedef struct { \
+ int _static_assert[(x) ? 0 : -1]; \
+ } _static_assert_ ## line __attribute__((unavailable))
+#endif
+
+#define SELOPT_DEBUG 0
+
+#define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
+#define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
+
+namespace objc_opt {
+
+typedef int32_t objc_stringhash_offset_t;
+typedef uint8_t objc_stringhash_check_t;
+
+#ifdef SELOPT_WRITE
+
+// Perfect hash code is at the end of this file.
+
+struct perfect_hash {
+ uint32_t capacity;
+ uint32_t occupied;
+ uint32_t shift;
+ uint32_t mask;
+ uint64_t salt;
+
+ uint32_t scramble[256];
+ uint8_t *tab; // count == mask+1; free with delete[]
+
+ perfect_hash() : tab(0) { }
+
+ ~perfect_hash() { if (tab) delete[] tab; }
+};
+
+struct eqstr {
+ bool operator()(const char* s1, const char* s2) const {
+ return strcmp(s1, s2) == 0;
+ }
+};
+
+// cstring => cstring's vmaddress
+// (used for selector names and class names)
+typedef __gnu_cxx::hash_map<const char *, uint64_t, __gnu_cxx::hash<const char *>, eqstr> string_map;
+
+// class name => (class vmaddress, header_info vmaddress)
+typedef __gnu_cxx::hash_multimap<const char *, std::pair<uint64_t, uint64_t>, __gnu_cxx::hash<const char *>, eqstr> class_map;
+
+static perfect_hash make_perfect(const string_map& strings);
+
+#endif
+
+static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level);
+
+// Precomputed perfect hash table of strings.
+// Base class for precomputed selector table and class table.
+// Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
+struct objc_stringhash_t {
+ uint32_t capacity;
+ uint32_t occupied;
+ uint32_t shift;
+ uint32_t mask;
+ uint32_t zero;
+ uint32_t unused; // alignment pad
+ uint64_t salt;
+
+ uint32_t scramble[256];
+ uint8_t tab[0]; /* tab[mask+1] (always power-of-2) */
+ // uint8_t checkbytes[capacity]; /* check byte for each string */
+ // int32_t offsets[capacity]; /* offsets from &capacity to cstrings */
+
+ objc_stringhash_check_t *checkbytes() { return (objc_stringhash_check_t *)&tab[mask+1]; }
+ const objc_stringhash_check_t *checkbytes() const { return (const objc_stringhash_check_t *)&tab[mask+1]; }
+
+ objc_stringhash_offset_t *offsets() { return (objc_stringhash_offset_t *)&checkbytes()[capacity]; }
+ const objc_stringhash_offset_t *offsets() const { return (const objc_stringhash_offset_t *)&checkbytes()[capacity]; }
+
+ uint32_t hash(const char *key) const
+ {
+ uint64_t val = lookup8((uint8_t*)key, strlen(key), salt);
+ uint32_t index = (uint32_t)(val>>shift) ^ scramble[tab[val&mask]];
+ return index;
+ }
+
+ // The check bytes areused to reject strings that aren't in the table
+ // without paging in the table's cstring data. This checkbyte calculation
+ // catches 4785/4815 rejects when launching Safari; a perfect checkbyte
+ // would catch 4796/4815.
+ objc_stringhash_check_t checkbyte(const char *key) const
+ {
+ return
+ ((key[0] & 0x7) << 5)
+ |
+ (strlen(key) & 0x1f);
+ }
+
+#define INDEX_NOT_FOUND (~(uint32_t)0)
+
+ uint32_t getIndex(const char *key) const
+ {
+ uint32_t h = hash(key);
+
+ // Use check byte to reject without paging in the table's cstrings
+ objc_stringhash_check_t h_check = checkbytes()[h];
+ objc_stringhash_check_t key_check = checkbyte(key);
+ bool check_fail = (h_check != key_check);
+#if ! SELOPT_DEBUG
+ if (check_fail) return INDEX_NOT_FOUND;
+#endif
+
+ const char *result = (const char *)this + offsets()[h];
+ if (0 != strcmp(key, result)) return INDEX_NOT_FOUND;
+
+#if SELOPT_DEBUG
+ if (check_fail) abort();
+#endif
+
+ return h;
+ }
+
+#ifdef SELOPT_WRITE
+
+ size_t size()
+ {
+ return sizeof(objc_stringhash_t)
+ + mask+1
+ + capacity * sizeof(objc_stringhash_check_t)
+ + capacity * sizeof(objc_stringhash_offset_t);
+ }
+
+ void byteswap(bool little_endian)
+ {
+ // tab and checkbytes are arrays of bytes, no swap needed
+ for (uint32_t i = 0; i < 256; i++) {
+ S32(scramble[i]);
+ }
+ objc_stringhash_offset_t *o = offsets();
+ for (uint32_t i = 0; i < capacity; i++) {
+ S32(o[i]);
+ }
+
+ S32(capacity);
+ S32(occupied);
+ S32(shift);
+ S32(mask);
+ S32(zero);
+ S64(salt);
+ }
+
+ const char *write(uint64_t base, size_t remaining, string_map& strings)
+ {
+ if (sizeof(objc_stringhash_t) > remaining) {
+ return "selector section too small (metadata not optimized)";
+ }
+
+ if (strings.size() == 0) {
+ bzero(this, sizeof(objc_stringhash_t));
+ return NULL;
+ }
+
+ perfect_hash phash = make_perfect(strings);
+ if (phash.capacity == 0) {
+ return "perfect hash failed (metadata not optimized)";
+ }
+
+ // Set header
+ capacity = phash.capacity;
+ occupied = phash.occupied;
+ shift = phash.shift;
+ mask = phash.mask;
+ zero = 0;
+ unused = 0;
+ salt = phash.salt;
+
+ if (size() > remaining) {
+ return "selector section too small (metadata not optimized)";
+ }
+
+ // Set hash data
+ for (uint32_t i = 0; i < 256; i++) {
+ scramble[i] = phash.scramble[i];
+ }
+ for (uint32_t i = 0; i < phash.mask+1; i++) {
+ tab[i] = phash.tab[i];
+ }
+
+ // Set offsets to ""
+ for (uint32_t i = 0; i < phash.capacity; i++) {
+ offsets()[i] =
+ (objc_stringhash_offset_t)offsetof(objc_stringhash_t, zero);
+ }
+ // Set checkbytes to 0
+ for (uint32_t i = 0; i < phash.capacity; i++) {
+ checkbytes()[i] = 0;
+ }
+
+ // Set real string offsets and checkbytes
+# define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
+ string_map::const_iterator s;
+ for (s = strings.begin(); s != strings.end(); ++s) {
+ int64_t offset = s->second - base;
+ if ((offset<<SHIFT)>>SHIFT != offset) {
+ return "selector offset too big (metadata not optimized)";
+ }
+
+ uint32_t h = hash(s->first);
+ offsets()[h] = (objc_stringhash_offset_t)offset;
+ checkbytes()[h] = checkbyte(s->first);
+ }
+# undef SHIFT
+
+ return NULL;
+ }
+
+// SELOPT_WRITE
+#endif
+};
+
+
+// Precomputed selector table.
+// Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
+struct objc_selopt_t : objc_stringhash_t {
+ const char *get(const char *key) const
+ {
+ uint32_t h = getIndex(key);
+ if (h == INDEX_NOT_FOUND) return NULL;
+
+ return (const char *)this + offsets()[h];
+ }
+};
+
+// Precomputed class list.
+// Edit objc-sel-table.s and OPT_INITIALIZER if you change these structures.
+
+struct objc_classheader_t {
+ objc_stringhash_offset_t clsOffset;
+ objc_stringhash_offset_t hiOffset;
+
+ // For duplicate class names:
+ // clsOffset = count<<1 | 1
+ // duplicated classes are duplicateOffsets[hiOffset..hiOffset+count-1]
+ bool isDuplicate() const { return clsOffset & 1; }
+ uint32_t duplicateCount() const { return clsOffset >> 1; }
+ uint32_t duplicateIndex() const { return hiOffset; }
+};
+
+
+struct objc_clsopt_t : objc_stringhash_t {
+ // ...objc_stringhash_t fields...
+ // objc_classheader_t classOffsets[capacity]; /* offsets from &capacity to class_t and header_info */
+ // uint32_t duplicateCount;
+ // objc_classheader_t duplicateOffsets[duplicatedClasses];
+
+ objc_classheader_t *classOffsets() { return (objc_classheader_t *)&offsets()[capacity]; }
+ const objc_classheader_t *classOffsets() const { return (const objc_classheader_t *)&offsets()[capacity]; }
+
+ uint32_t& duplicateCount() { return *(uint32_t *)&classOffsets()[capacity]; }
+ const uint32_t& duplicateCount() const { return *(const uint32_t *)&classOffsets()[capacity]; }
+
+ objc_classheader_t *duplicateOffsets() { return (objc_classheader_t *)(&duplicateCount()+1); }
+ const objc_classheader_t *duplicateOffsets() const { return (const objc_classheader_t *)(&duplicateCount()+1); }
+
+ // 0/NULL/NULL: not found
+ // 1/ptr/ptr: found exactly one
+ // n/NULL/NULL: found N - use getClassesAndHeaders() instead
+ uint32_t getClassAndHeader(const char *key, void*& cls, void*& hi) const
+ {
+ uint32_t h = getIndex(key);
+ if (h == INDEX_NOT_FOUND) {
+ cls = NULL;
+ hi = NULL;
+ return 0;
+ }
+
+ const objc_classheader_t& clshi = classOffsets()[h];
+ if (! clshi.isDuplicate()) {
+ // class appears in exactly one header
+ cls = (void *)((const char *)this + clshi.clsOffset);
+ hi = (void *)((const char *)this + clshi.hiOffset);
+ return 1;
+ }
+ else {
+ // class appears in more than one header - use getClassesAndHeaders
+ cls = NULL;
+ hi = NULL;
+ return clshi.duplicateCount();
+ }
+ }
+
+ void getClassesAndHeaders(const char *key, void **cls, void **hi) const
+ {
+ uint32_t h = getIndex(key);
+ if (h == INDEX_NOT_FOUND) return;
+
+ const objc_classheader_t& clshi = classOffsets()[h];
+ if (! clshi.isDuplicate()) {
+ // class appears in exactly one header
+ cls[0] = (void *)((const char *)this + clshi.clsOffset);
+ hi[0] = (void *)((const char *)this + clshi.hiOffset);
+ }
+ else {
+ // class appears in more than one header
+ uint32_t count = clshi.duplicateCount();
+ const objc_classheader_t *list =
+ &duplicateOffsets()[clshi.duplicateIndex()];
+ for (uint32_t i = 0; i < count; i++) {
+ cls[i] = (void *)((const char *)this + list[i].clsOffset);
+ hi[i] = (void *)((const char *)this + list[i].hiOffset);
+ }
+ }
+ }
+
+#ifdef SELOPT_WRITE
+
+ size_t size()
+ {
+ return
+ objc_stringhash_t::size()
+ + capacity * sizeof(objc_classheader_t)
+ + sizeof(duplicateCount())
+ + duplicateCount() * sizeof(objc_classheader_t);
+ }
+
+ void byteswap(bool little_endian)
+ {
+ objc_classheader_t *o;
+
+ o = classOffsets();
+ for (uint32_t i = 0; i < capacity; i++) {
+ S32(o[i].clsOffset);
+ S32(o[i].hiOffset);
+ }
+
+ o = duplicateOffsets();
+ for (uint32_t i = 0; i < duplicateCount(); i++) {
+ S32(o[i].clsOffset);
+ S32(o[i].hiOffset);
+ }
+
+ S32(duplicateCount());
+
+ objc_stringhash_t::byteswap(little_endian);
+ }
+
+ const char *write(uint64_t base, size_t remaining,
+ string_map& strings, class_map& classes, bool verbose)
+ {
+ const char *err;
+ err = objc_stringhash_t::write(base, remaining, strings);
+ if (err) return err;
+
+ if (size() > remaining) {
+ return "selector section too small (metadata not optimized)";
+ }
+
+ // Set class offsets to &zero
+ objc_stringhash_offset_t zeroOffset =
+ (objc_stringhash_offset_t)offsetof(objc_stringhash_t, zero);
+ for (uint32_t i = 0; i < capacity; i++) {
+ classOffsets()[i].clsOffset = zeroOffset;
+ classOffsets()[i].hiOffset = zeroOffset;
+ }
+
+ // Set real class offsets
+# define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
+ class_map::const_iterator c;
+ for (c = classes.begin(); c != classes.end(); ++c) {
+ uint32_t h = getIndex(c->first);
+ if (h == INDEX_NOT_FOUND) {
+ return "class list busted (metadata not optimized)";
+ }
+
+ if (classOffsets()[h].clsOffset != zeroOffset) {
+ // already did this class
+ continue;
+ }
+
+ uint32_t count = classes.count(c->first);
+ if (count == 1) {
+ // only one class with this name
+
+ int64_t coff = c->second.first - base;
+ int64_t hoff = c->second.second - base;
+ if ((coff<<SHIFT)>>SHIFT != coff) {
+ return "class offset too big (metadata not optimized)";
+ }
+ if ((hoff<<SHIFT)>>SHIFT != hoff) {
+ return "header offset too big (metadata not optimized)";
+ }
+
+ classOffsets()[h].clsOffset = (objc_stringhash_offset_t)coff;
+ classOffsets()[h].hiOffset = (objc_stringhash_offset_t)hoff;
+ }
+ else {
+ // class name has duplicates - write them all now
+ if (verbose) {
+ fprintf(stderr, "update_dyld_shared_cache: %u duplicates of Objective-C class %s\n", count, c->first);
+ }
+
+ uint32_t dest = duplicateCount();
+ duplicateCount() += count;
+ if (size() > remaining) {
+ return "selector section too small (metadata not optimized)";
+ }
+
+ // classOffsets() instead contains count and array index
+ classOffsets()[h].clsOffset = count*2 + 1;
+ classOffsets()[h].hiOffset = dest;
+
+ std::pair<class_map::const_iterator, class_map::const_iterator>
+ duplicates = classes.equal_range(c->first);
+ class_map::const_iterator dup;
+ for (dup = duplicates.first; dup != duplicates.second; ++dup) {
+ int64_t coff = dup->second.first - base;
+ int64_t hoff = dup->second.second - base;
+ if ((coff<<SHIFT)>>SHIFT != coff) {
+ return "class offset too big (metadata not optimized)";
+ }
+ if ((hoff<<SHIFT)>>SHIFT != hoff) {
+ return "header offset too big (metadata not optimized)";
+ }
+
+ duplicateOffsets()[dest].clsOffset = (objc_stringhash_offset_t)coff;
+ duplicateOffsets()[dest].hiOffset = (objc_stringhash_offset_t)hoff;
+ dest++;
+ }
+ }
+ }
+# undef SHIFT
+
+ return NULL;
+ }
+
+// SELOPT_WRITE
+#endif
+};
+
+// Precomputed image list.
+struct objc_headeropt_t;
+
+// Precomputed class list.
+struct objc_clsopt_t;
+
+// Edit objc-sel-table.s if you change this value.
+enum { VERSION = 12 };
+
+// Top-level optimization structure.
+// Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
+struct objc_opt_t {
+ uint32_t version;
+ int32_t selopt_offset;
+ int32_t headeropt_offset;
+ int32_t clsopt_offset;
+
+ const objc_selopt_t* selopt() const {
+ if (selopt_offset == 0) return NULL;
+ return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
+ }
+ objc_selopt_t* selopt() {
+ if (selopt_offset == 0) return NULL;
+ return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
+ }
+
+ struct objc_headeropt_t* headeropt() const {
+ if (headeropt_offset == 0) return NULL;
+ return (struct objc_headeropt_t *)((uint8_t *)this + headeropt_offset);
+ }
+
+ struct objc_clsopt_t* clsopt() const {
+ if (clsopt_offset == 0) return NULL;
+ return (objc_clsopt_t *)((uint8_t *)this + clsopt_offset);
+ }
+};
+
+// sizeof(objc_opt_t) must be pointer-aligned
+STATIC_ASSERT(sizeof(objc_opt_t) % sizeof(void*) == 0);
+
+// Initializer for empty opt of type uint32_t[].
+#define X8(x) x, x, x, x, x, x, x, x
+#define X64(x) X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x)
+#define X256(x) X64(x), X64(x), X64(x), X64(x)
+#define OPT_INITIALIZER { \
+ /* objc_opt_t */ \
+ objc_opt::VERSION, 16, 0, 0, \
+ /* objc_selopt_t */ \
+ 4, 4, 63, 3, 0, 0, 0,0, X256(0), 0, 0, 16, 16, 16, 16 \
+ /* no objc_headeropt_t */ \
+ /* no objc_clsopt_t */ \
+}
+
+
+/*
+--------------------------------------------------------------------
+mix -- mix 3 64-bit values reversibly.
+mix() takes 48 machine instructions, but only 24 cycles on a superscalar
+ machine (like Intel's new MMX architecture). It requires 4 64-bit
+ registers for 4::2 parallelism.
+All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
+ (a,b,c), and all deltas of bottom bits were tested. All deltas were
+ tested both on random keys and on keys that were nearly all zero.
+ These deltas all cause every bit of c to change between 1/3 and 2/3
+ of the time (well, only 113/400 to 287/400 of the time for some
+ 2-bit delta). These deltas all cause at least 80 bits to change
+ among (a,b,c) when the mix is run either forward or backward (yes it
+ is reversible).
+This implies that a hash using mix64 has no funnels. There may be
+ characteristics with 3-bit deltas or bigger, I didn't test for
+ those.
+--------------------------------------------------------------------
+*/
+#define mix64(a,b,c) \
+{ \
+ a -= b; a -= c; a ^= (c>>43); \
+ b -= c; b -= a; b ^= (a<<9); \
+ c -= a; c -= b; c ^= (b>>8); \
+ a -= b; a -= c; a ^= (c>>38); \
+ b -= c; b -= a; b ^= (a<<23); \
+ c -= a; c -= b; c ^= (b>>5); \
+ a -= b; a -= c; a ^= (c>>35); \
+ b -= c; b -= a; b ^= (a<<49); \
+ c -= a; c -= b; c ^= (b>>11); \
+ a -= b; a -= c; a ^= (c>>12); \
+ b -= c; b -= a; b ^= (a<<18); \
+ c -= a; c -= b; c ^= (b>>22); \
+}
+
+/*
+--------------------------------------------------------------------
+hash() -- hash a variable-length key into a 64-bit value
+ k : the key (the unaligned variable-length array of bytes)
+ len : the length of the key, counting by bytes
+ level : can be any 8-byte value
+Returns a 64-bit value. Every bit of the key affects every bit of
+the return value. No funnels. Every 1-bit and 2-bit delta achieves
+avalanche. About 41+5len instructions.
+
+The best hash table sizes are powers of 2. There is no need to do
+mod a prime (mod is sooo slow!). If you need less than 64 bits,
+use a bitmask. For example, if you need only 10 bits, do
+ h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (uint8_t **)k, do it like this:
+ for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
+
+By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may
+use this code any way you wish, private, educational, or commercial,
+but I would appreciate if you give me credit.
+
+See http://burtleburtle.net/bob/hash/evahash.html
+Use for hash table lookup, or anything where one collision in 2^^64
+is acceptable. Do NOT use for cryptographic purposes.
+--------------------------------------------------------------------
+*/
+
+static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level)
+// uint8_t *k; /* the key */
+// uint64_t length; /* the length of the key */
+// uint64_t level; /* the previous hash, or an arbitrary value */
+{
+ uint64_t a,b,c;
+ size_t len;
+
+ /* Set up the internal state */
+ len = length;
+ a = b = level; /* the previous hash value */
+ c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
+
+ /*---------------------------------------- handle most of the key */
+ while (len >= 24)
+ {
+ a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
+ +((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
+ b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
+ +((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
+ c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
+ +((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
+ mix64(a,b,c);
+ k += 24; len -= 24;
+ }
+
+ /*------------------------------------- handle the last 23 bytes */
+ c += length;
+ switch(len) /* all the case statements fall through */
+ {
+ case 23: c+=((uint64_t)k[22]<<56);
+ case 22: c+=((uint64_t)k[21]<<48);
+ case 21: c+=((uint64_t)k[20]<<40);
+ case 20: c+=((uint64_t)k[19]<<32);
+ case 19: c+=((uint64_t)k[18]<<24);
+ case 18: c+=((uint64_t)k[17]<<16);
+ case 17: c+=((uint64_t)k[16]<<8);
+ /* the first byte of c is reserved for the length */
+ case 16: b+=((uint64_t)k[15]<<56);
+ case 15: b+=((uint64_t)k[14]<<48);
+ case 14: b+=((uint64_t)k[13]<<40);
+ case 13: b+=((uint64_t)k[12]<<32);
+ case 12: b+=((uint64_t)k[11]<<24);
+ case 11: b+=((uint64_t)k[10]<<16);
+ case 10: b+=((uint64_t)k[ 9]<<8);
+ case 9: b+=((uint64_t)k[ 8]);
+ case 8: a+=((uint64_t)k[ 7]<<56);
+ case 7: a+=((uint64_t)k[ 6]<<48);
+ case 6: a+=((uint64_t)k[ 5]<<40);
+ case 5: a+=((uint64_t)k[ 4]<<32);
+ case 4: a+=((uint64_t)k[ 3]<<24);
+ case 3: a+=((uint64_t)k[ 2]<<16);
+ case 2: a+=((uint64_t)k[ 1]<<8);
+ case 1: a+=((uint64_t)k[ 0]);
+ /* case 0: nothing left to add */
+ }
+ mix64(a,b,c);
+ /*-------------------------------------------- report the result */
+ return c;
+}
+
+
+#ifdef SELOPT_WRITE
+
+/*
+------------------------------------------------------------------------------
+This generates a minimal perfect hash function. That means, given a
+set of n keys, this determines a hash function that maps each of
+those keys into a value in 0..n-1 with no collisions.
+
+The perfect hash function first uses a normal hash function on the key
+to determine (a,b) such that the pair (a,b) is distinct for all
+keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
+tab[] is an array of 1-byte values and scramble[] is a 256-term array of
+2-byte or 4-byte values. If there are n keys, the length of tab[] is a
+power of two between n/3 and n.
+
+I found the idea of computing distinct (a,b) values in "Practical minimal
+perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
+Communications of the ACM, January 1992. They found the idea in Chichelli
+(CACM Jan 1980). Beyond that, our methods differ.
+
+The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
+0..*blen*-1. A fast hash function determines both a and b
+simultaneously. Any decent hash function is likely to produce
+hashes so that (a,b) is distinct for all pairs. I try the hash
+using different values of *salt* until all pairs are distinct.
+
+The final hash is (a XOR scramble[tab[b]]). *scramble* is a
+predetermined mapping of 0..255 into 0..smax-1. *tab* is an
+array that we fill in in such a way as to make the hash perfect.
+
+First we fill in all values of *tab* that are used by more than one
+key. We try all possible values for each position until one works.
+
+This leaves m unmapped keys and m values that something could hash to.
+If you treat unmapped keys as lefthand nodes and unused hash values
+as righthand nodes, and draw a line connecting each key to each hash
+value it could map to, you get a bipartite graph. We attempt to
+find a perfect matching in this graph. If we succeed, we have
+determined a perfect hash for the whole set of keys.
+
+*scramble* is used because (a^tab[i]) clusters keys around *a*.
+------------------------------------------------------------------------------
+*/
+
+typedef uint64_t ub8;
+#define UB8MAXVAL 0xffffffffffffffffLL
+#define UB8BITS 64
+typedef uint32_t ub4;
+#define UB4MAXVAL 0xffffffff
+#define UB4BITS 32
+typedef uint16_t ub2;
+#define UB2MAXVAL 0xffff
+#define UB2BITS 16
+typedef uint8_t ub1;
+#define UB1MAXVAL 0xff
+#define UB1BITS 8
+
+#define TRUE 1
+#define FALSE 0
+
+#define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
+#define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
+#define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
+
+
+/* representation of a key */
+struct key
+{
+ ub1 *name_k; /* the actual key */
+ ub4 len_k; /* the length of the actual key */
+ ub4 hash_k; /* the initial hash value for this key */
+/* beyond this point is mapping-dependent */
+ ub4 a_k; /* a, of the key maps to (a,b) */
+ ub4 b_k; /* b, of the key maps to (a,b) */
+ struct key *nextb_k; /* next key with this b */
+};
+typedef struct key key;
+
+/* things indexed by b of original (a,b) pair */
+struct bstuff
+{
+ ub2 val_b; /* hash=a^tabb[b].val_b */
+ key *list_b; /* tabb[i].list_b is list of keys with b==i */
+ ub4 listlen_b; /* length of list_b */
+ ub4 water_b; /* high watermark of who has visited this map node */
+};
+typedef struct bstuff bstuff;
+
+/* things indexed by final hash value */
+struct hstuff
+{
+ key *key_h; /* tabh[i].key_h is the key with a hash of i */
+};
+typedef struct hstuff hstuff;
+
+/* things indexed by queue position */
+struct qstuff
+{
+ bstuff *b_q; /* b that currently occupies this hash */
+ ub4 parent_q; /* queue position of parent that could use this hash */
+ ub2 newval_q; /* what to change parent tab[b] to to use this hash */
+ ub2 oldval_q; /* original value of tab[b] */
+};
+typedef struct qstuff qstuff;
+
+
+/*
+------------------------------------------------------------------------------
+Find the mapping that will produce a perfect hash
+------------------------------------------------------------------------------
+*/
+
+/* return the ceiling of the log (base 2) of val */
+static ub4 log2u(ub4 val)
+{
+ ub4 i;
+ for (i=0; ((ub4)1<<i) < val; ++i)
+ ;
+ return i;
+}
+
+/* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
+/* permute(0)=0. This is intended and useful. */
+static ub4 permute(ub4 x, ub4 nbits)
+// ub4 x; /* input, a value in some range */
+// ub4 nbits; /* input, number of bits in range */
+{
+ int i;
+ int mask = ((ub4)1<<nbits)-1; /* all ones */
+ int const2 = 1+nbits/2;
+ int const3 = 1+nbits/3;
+ int const4 = 1+nbits/4;
+ int const5 = 1+nbits/5;
+ for (i=0; i<20; ++i)
+ {
+ x = (x+(x<<const2)) & mask;
+ x = (x^(x>>const3));
+ x = (x+(x<<const4)) & mask;
+ x = (x^(x>>const5));
+ }
+ return x;
+}
+
+/* initialize scramble[] with distinct random values in 0..smax-1 */
+static void scrambleinit(ub4 *scramble, ub4 smax)
+// ub4 *scramble; /* hash is a^scramble[tab[b]] */
+// ub4 smax; /* scramble values should be in 0..smax-1 */
+{
+ ub4 i;
+
+ /* fill scramble[] with distinct random integers in 0..smax-1 */
+ for (i=0; i<SCRAMBLE_LEN; ++i)
+ {
+ scramble[i] = permute(i, log2u(smax));
+ }
+}
+
+
+/*
+ * put keys in tabb according to key->b_k
+ * check if the initial hash might work
+ */
+static int inittab(bstuff *tabb, ub4 blen, key *keys, ub4 nkeys, int complete)
+// bstuff *tabb; /* output, list of keys with b for (a,b) */
+// ub4 blen; /* length of tabb */
+// key *keys; /* list of keys already hashed */
+// int complete; /* TRUE means to complete init despite collisions */
+{
+ int nocollision = TRUE;
+ ub4 i;
+
+ memset((void *)tabb, 0, (size_t)(sizeof(bstuff)*blen));
+
+ /* Two keys with the same (a,b) guarantees a collision */
+ for (i = 0; i < nkeys; i++) {
+ key *mykey = keys+i;
+ key *otherkey;
+
+ for (otherkey=tabb[mykey->b_k].list_b;
+ otherkey;
+ otherkey=otherkey->nextb_k)
+ {
+ if (mykey->a_k == otherkey->a_k)
+ {
+ nocollision = FALSE;
+ if (!complete)
+ return FALSE;
+ }
+ }
+ ++tabb[mykey->b_k].listlen_b;
+ mykey->nextb_k = tabb[mykey->b_k].list_b;
+ tabb[mykey->b_k].list_b = mykey;
+ }
+
+ /* no two keys have the same (a,b) pair */
+ return nocollision;
+}
+
+
+/* Do the initial hash for normal mode (use lookup and checksum) */
+static void initnorm(key *keys, ub4 nkeys, ub4 alen, ub4 blen, ub4 smax, ub8 salt)
+// key *keys; /* list of all keys */
+// ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
+// ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
+// ub4 smax; /* maximum range of computable hash values */
+// ub4 salt; /* used to initialize the hash function */
+// gencode *final; /* output, code for the final hash */
+{
+ ub4 loga = log2u(alen); /* log based 2 of blen */
+ ub4 i;
+ for (i = 0; i < nkeys; i++) {
+ key *mykey = keys+i;
+ ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
+ mykey->a_k = (loga > 0) ? hash>>(UB8BITS-loga) : 0;
+ mykey->b_k = (blen > 1) ? hash&(blen-1) : 0;
+ }
+}
+
+
+/* Try to apply an augmenting list */
+static int apply(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 tail, int rollback)
+// bstuff *tabb;
+// hstuff *tabh;
+// qstuff *tabq;
+// ub4 blen;
+// ub4 *scramble;
+// ub4 tail;
+// int rollback; /* FALSE applies augmenting path, TRUE rolls back */
+{
+ ub4 hash;
+ key *mykey;
+ bstuff *pb;
+ ub4 child;
+ ub4 parent;
+ ub4 stabb; /* scramble[tab[b]] */
+
+ /* walk from child to parent */
+ for (child=tail-1; child; child=parent)
+ {
+ parent = tabq[child].parent_q; /* find child's parent */
+ pb = tabq[parent].b_q; /* find parent's list of siblings */
+
+ /* erase old hash values */
+ stabb = scramble[pb->val_b];
+ for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
+ {
+ hash = mykey->a_k^stabb;
+ if (mykey == tabh[hash].key_h)
+ { /* erase hash for all of child's siblings */
+ tabh[hash].key_h = (key *)0;
+ }
+ }
+
+ /* change pb->val_b, which will change the hashes of all parent siblings */
+ pb->val_b = (rollback ? tabq[child].oldval_q : tabq[child].newval_q);
+
+ /* set new hash values */
+ stabb = scramble[pb->val_b];
+ for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
+ {
+ hash = mykey->a_k^stabb;
+ if (rollback)
+ {
+ if (parent == 0) continue; /* root never had a hash */
+ }
+ else if (tabh[hash].key_h)
+ {
+ /* very rare: roll back any changes */
+ apply(tabb, tabh, tabq, blen, scramble, tail, TRUE);
+ return FALSE; /* failure, collision */
+ }
+ tabh[hash].key_h = mykey;
+ }
+ }
+ return TRUE;
+}
+
+
+/*
+-------------------------------------------------------------------------------
+augment(): Add item to the mapping.
+
+Construct a spanning tree of *b*s with *item* as root, where each
+parent can have all its hashes changed (by some new val_b) with
+at most one collision, and each child is the b of that collision.
+
+I got this from Tarjan's "Data Structures and Network Algorithms". The
+path from *item* to a *b* that can be remapped with no collision is
+an "augmenting path". Change values of tab[b] along the path so that
+the unmapped key gets mapped and the unused hash value gets used.
+
+Assuming 1 key per b, if m out of n hash values are still unused,
+you should expect the transitive closure to cover n/m nodes before
+an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
+this approach to take about nlogn time to map all single-key b's.
+-------------------------------------------------------------------------------
+*/
+static int augment(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 smax, bstuff *item, ub4 nkeys,
+ ub4 highwater)
+// bstuff *tabb; /* stuff indexed by b */
+// hstuff *tabh; /* which key is associated with which hash, indexed by hash */
+// qstuff *tabq; /* queue of *b* values, this is the spanning tree */
+// ub4 blen; /* length of tabb */
+// ub4 *scramble; /* final hash is a^scramble[tab[b]] */
+// ub4 smax; /* highest value in scramble */
+// bstuff *item; /* &tabb[b] for the b to be mapped */
+// ub4 nkeys; /* final hash must be in 0..nkeys-1 */
+// ub4 highwater; /* a value higher than any now in tabb[].water_b */
+{
+ ub4 q; /* current position walking through the queue */
+ ub4 tail; /* tail of the queue. 0 is the head of the queue. */
+ ub4 limit=UB1MAXVAL+1;
+ ub4 highhash = smax;
+
+ /* initialize the root of the spanning tree */
+ tabq[0].b_q = item;
+ tail = 1;
+
+ /* construct the spanning tree by walking the queue, add children to tail */
+ for (q=0; q<tail; ++q)
+ {
+ bstuff *myb = tabq[q].b_q; /* the b for this node */
+ ub4 i; /* possible value for myb->val_b */
+
+ if (q == 1)
+ break; /* don't do transitive closure */
+
+ for (i=0; i<limit; ++i)
+ {
+ bstuff *childb = (bstuff *)0; /* the b that this i maps to */
+ key *mykey; /* for walking through myb's keys */
+
+ for (mykey = myb->list_b; mykey; mykey=mykey->nextb_k)
+ {
+ key *childkey;
+ ub4 hash = mykey->a_k^scramble[i];
+
+ if (hash >= highhash) break; /* out of bounds */
+ childkey = tabh[hash].key_h;
+
+ if (childkey)
+ {
+ bstuff *hitb = &tabb[childkey->b_k];
+
+ if (childb)
+ {
+ if (childb != hitb) break; /* hit at most one child b */
+ }
+ else
+ {
+ childb = hitb; /* remember this as childb */
+ if (childb->water_b == highwater) break; /* already explored */
+ }
+ }
+ }
+ if (mykey) continue; /* myb with i has multiple collisions */
+
+ /* add childb to the queue of reachable things */
+ if (childb) childb->water_b = highwater;
+ tabq[tail].b_q = childb;
+ tabq[tail].newval_q = i; /* how to make parent (myb) use this hash */
+ tabq[tail].oldval_q = myb->val_b; /* need this for rollback */
+ tabq[tail].parent_q = q;
+ ++tail;
+
+ if (!childb)
+ { /* found an *i* with no collisions? */
+ /* try to apply the augmenting path */
+ if (apply(tabb, tabh, tabq, blen, scramble, tail, FALSE))
+ return TRUE; /* success, item was added to the perfect hash */
+
+ --tail; /* don't know how to handle such a child! */
+ }
+ }
+ }
+ return FALSE;
+}
+
+
+/* find a mapping that makes this a perfect hash */
+static int perfect(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 smax, ub4 *scramble, ub4 nkeys)
+{
+ ub4 maxkeys; /* maximum number of keys for any b */
+ ub4 i, j;
+
+#if SELOPT_DEBUG
+ fprintf(stderr, " blen %d smax %d nkeys %d\n", blen, smax, nkeys);
+#endif
+
+ /* clear any state from previous attempts */
+ memset((void *)tabh, 0, sizeof(hstuff)*smax);
+ memset((void *)tabq, 0, sizeof(qstuff)*(blen+1));
+
+ for (maxkeys=0,i=0; i<blen; ++i)
+ if (tabb[i].listlen_b > maxkeys)
+ maxkeys = tabb[i].listlen_b;
+
+ /* In descending order by number of keys, map all *b*s */
+ for (j=maxkeys; j>0; --j)
+ for (i=0; i<blen; ++i)
+ if (tabb[i].listlen_b == j)
+ if (!augment(tabb, tabh, tabq, blen, scramble, smax, &tabb[i], nkeys,
+ i+1))
+ {
+ return FALSE;
+ }
+
+ /* Success! We found a perfect hash of all keys into 0..nkeys-1. */
+ return TRUE;
+}
+
+
+/* guess initial values for alen and blen */
+static void initalen(ub4 *alen, ub4 *blen, ub4 smax, ub4 nkeys)
+// ub4 *alen; /* output, initial alen */
+// ub4 *blen; /* output, initial blen */
+// ub4 smax; /* input, power of two greater or equal to max hash value */
+// ub4 nkeys; /* number of keys being hashed */
+{
+ /*
+ * Find initial *alen, *blen
+ * Initial alen and blen values were found empirically. Some factors:
+ *
+ * If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
+ *
+ * alen and blen must be powers of 2 because the values in 0..alen-1 and
+ * 0..blen-1 are produced by applying a bitmask to the initial hash function.
+ *
+ * alen must be less than smax, in fact less than nkeys, because otherwise
+ * there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
+ * all the *a*s associated with a given *b*, so there would be no legal
+ * value to assign to tab[b]. This only matters when we're doing a minimal
+ * perfect hash.
+ *
+ * It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
+ * and alen*blen = smax*smax/32.
+ *
+ * Values of blen less than smax/4 never work, and smax/2 always works.
+ *
+ * We want blen as small as possible because it is the number of bytes in
+ * the huge array we must create for the perfect hash.
+ *
+ * When nkey <= smax*(5/8), blen=smax/4 works much more often with
+ * alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
+ * doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
+ * has something to do with 5/8 = 1/8 * 5. For example examine 80000,
+ * 85000, and 90000 keys with different values of alen. This only matters
+ * if we're doing a minimal perfect hash.
+ *
+ * When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
+ * Bigger than that it must produce two integers, which increases the
+ * cost of the hash per character hashed.
+ */
+ *alen = smax; /* no reason to restrict alen to smax/2 */
+ *blen = ((nkeys <= smax*0.6) ? smax/16 :
+ (nkeys <= smax*0.8) ? smax/8 : smax/4);
+
+ if (*alen < 1) *alen = 1;
+ if (*blen < 1) *blen = 1;
+
+#if SELOPT_DEBUG
+ fprintf(stderr, "alen %d blen %d smax %d nkeys %d\n", *alen, *blen, smax, nkeys);
+#endif
+}
+
+/*
+** Try to find a perfect hash function.
+** Return the successful initializer for the initial hash.
+** Return 0 if no perfect hash could be found.
+*/
+static int findhash(bstuff **tabb, ub4 *alen, ub4 *blen, ub8 *salt,
+ ub4 *scramble, ub4 smax, key *keys, ub4 nkeys)
+// bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
+// ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
+// ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
+// ub4 *salt; /* output, initializes initial hash */
+// ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
+// ub4 smax; /* input, scramble[i] in 0..smax-1 */
+// key *keys; /* input, keys to hash */
+// ub4 nkeys; /* input, number of keys being hashed */
+{
+ ub4 bad_initkey; /* how many times did initkey fail? */
+ ub4 bad_perfect; /* how many times did perfect fail? */
+ ub4 si; /* trial initializer for initial hash */
+ ub4 maxalen;
+ hstuff *tabh; /* table of keys indexed by hash value */
+ qstuff *tabq; /* table of stuff indexed by queue value, used by augment */
+
+ /* guess initial values for alen and blen */
+ initalen(alen, blen, smax, nkeys);
+
+ scrambleinit(scramble, smax);
+
+ maxalen = smax;
+
+ /* allocate working memory */
+ *tabb = new bstuff[*blen];
+ tabq = new qstuff[*blen+1];
+ tabh = new hstuff[smax];
+
+ /* Actually find the perfect hash */
+ *salt = 0;
+ bad_initkey = 0;
+ bad_perfect = 0;
+ for (si=1; ; ++si)
+ {
+ ub4 rslinit;
+ /* Try to find distinct (A,B) for all keys */
+ *salt = si * 0x9e3779b97f4a7c13LL; /* golden ratio (arbitrary value) */
+ initnorm(keys, nkeys, *alen, *blen, smax, *salt);
+ rslinit = inittab(*tabb, *blen, keys, nkeys, FALSE);
+ if (rslinit == 0)
+ {
+ /* didn't find distinct (a,b) */
+ if (++bad_initkey >= RETRY_INITKEY)
+ {
+ /* Try to put more bits in (A,B) to make distinct (A,B) more likely */
+ if (*alen < maxalen)
+ {
+ *alen *= 2;
+ }
+ else if (*blen < smax)
+ {
+ *blen *= 2;
+ delete[] tabq;
+ delete[] *tabb;
+ *tabb = new bstuff[*blen];
+ tabq = new qstuff[*blen+1];
+ }
+ bad_initkey = 0;
+ bad_perfect = 0;
+ }
+ continue; /* two keys have same (a,b) pair */
+ }
+
+ /* Given distinct (A,B) for all keys, build a perfect hash */
+ if (!perfect(*tabb, tabh, tabq, *blen, smax, scramble, nkeys))
+ {
+ if (++bad_perfect >= RETRY_PERFECT)
+ {
+ if (*blen < smax)
+ {
+ *blen *= 2;
+ delete[] *tabb;
+ delete[] tabq;
+ *tabb = new bstuff[*blen];
+ tabq = new qstuff[*blen+1];
+ --si; /* we know this salt got distinct (A,B) */
+ }
+ else
+ {
+ return 0;
+ }
+ bad_perfect = 0;
+ }
+ continue;
+ }
+
+ break;
+ }
+
+ /* free working memory */
+ delete[] tabh;
+ delete[] tabq;
+
+ return 1;
+}
+
+/*
+------------------------------------------------------------------------------
+Input/output type routines
+------------------------------------------------------------------------------
+*/
+
+/* get the list of keys */
+static void getkeys(key **keys, ub4 *nkeys, const string_map& strings)
+{
+ key *buf = new key[strings.size()];
+ size_t i;
+ string_map::const_iterator s;
+ for (i = 0, s = strings.begin(); s != strings.end(); ++s, ++i) {
+ key *mykey = buf+i;
+ mykey->name_k = (ub1 *)s->first;
+ mykey->len_k = (ub4)strlen(s->first);
+ }
+ *keys = buf;
+ *nkeys = strings.size();
+}
+
+
+static perfect_hash
+make_perfect(const string_map& strings)
+{
+ ub4 nkeys; /* number of keys */
+ key *keys; /* head of list of keys */
+ bstuff *tab; /* table indexed by b */
+ ub4 smax; /* scramble[] values in 0..smax-1, a power of 2 */
+ ub4 alen; /* a in 0..alen-1, a power of 2 */
+ ub4 blen; /* b in 0..blen-1, a power of 2 */
+ ub8 salt; /* a parameter to the hash function */
+ ub4 scramble[SCRAMBLE_LEN]; /* used in final hash function */
+ int ok;
+ int i;
+ perfect_hash result;
+
+ /* read in the list of keywords */
+ getkeys(&keys, &nkeys, strings);
+
+ /* find the hash */
+ smax = ((ub4)1<<log2u(nkeys));
+ ok = findhash(&tab, &alen, &blen, &salt,
+ scramble, smax, keys, nkeys);
+ if (!ok) {
+ smax = 2 * ((ub4)1<<log2u(nkeys));
+ ok = findhash(&tab, &alen, &blen, &salt,
+ scramble, smax, keys, nkeys);
+ }
+ if (!ok) {
+ bzero(&result, sizeof(result));
+ } else {
+ /* build the tables */
+ result.capacity = smax;
+ result.occupied = nkeys;
+ result.shift = UB8BITS - log2u(alen);
+ result.mask = blen - 1;
+ result.salt = salt;
+
+ result.tab = new uint8_t[blen];
+ for (i = 0; i < blen; i++) {
+ result.tab[i] = tab[i].val_b;
+ }
+ for (i = 0; i < 256; i++) {
+ result.scramble[i] = scramble[i];
+ }
+ }
+
+ delete[] keys;
+ delete[] tab;
+
+ return result;
+}
+
+// SELOPT_WRITE
+#endif
+
+// namespace objc_selopt
+};
+
+#undef S32
+#undef S64
+
+#endif