]> git.saurik.com Git - apple/dyld.git/blob - include/objc-shared-cache.h
d2a27dfe607c4067c0a9b76fea967293274f5c86
[apple/dyld.git] / include / objc-shared-cache.h
1 /*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 /*
25 Portions derived from:
26
27 --------------------------------------------------------------------
28 lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
29 hash(), hash2(), hash3, and mix() are externally useful functions.
30 Routines to test the hash are included if SELF_TEST is defined.
31 You can use this free for any purpose. It has no warranty.
32 --------------------------------------------------------------------
33
34 ------------------------------------------------------------------------------
35 perfect.c: code to generate code for a hash for perfect hashing.
36 (c) Bob Jenkins, September 1996, December 1999
37 You may use this code in any way you wish, and it is free. No warranty.
38 I hereby place this in the public domain.
39 Source is http://burtleburtle.net/bob/c/perfect.c
40 ------------------------------------------------------------------------------
41 */
42
43 /*
44 * objc-selopt.h
45 * Interface between libobjc and dyld
46 * for selector uniquing in the dyld shared cache.
47 *
48 * When building the shared cache, dyld locates all selectors and selector
49 * references in the cached images. It builds a perfect hash table out of
50 * them and writes the table into the shared cache copy of libobjc.
51 * libobjc then uses that table as the builtin selector list.
52 *
53 * Versioning
54 * The table has a version number. dyld and objc can both ignore the table
55 * if the other used the wrong version number.
56 *
57 * Completeness
58 * Not all libraries are in the shared cache. Libraries that are in the
59 * shared cache and were optimized are specially marked. Libraries on
60 * disk never include those marks.
61 *
62 * Coherency
63 * Libraries optimized in the shared cache can be replaced by unoptimized
64 * copies from disk when loaded. The copy from disk is not marked and will
65 * be fixed up by libobjc. The shared cache copy is still mapped into the
66 * process, so the table can point to cstring data in that library's part
67 * of the shared cache without trouble.
68 *
69 * Atomicity
70 * dyld writes the table itself last. If dyld marks some metadata as
71 * updated but then fails to write a table for some reason, libobjc
72 * fixes up all metadata as if it were not marked.
73 */
74
75 #ifndef _OBJC_SELOPT_H
76 #define _OBJC_SELOPT_H
77
78 /*
79 DO NOT INCLUDE ANY objc HEADERS HERE
80 dyld USES THIS FILE AND CANNOT SEE THEM
81 */
82 #include <stdint.h>
83 #include <stdlib.h>
84 #ifdef SELOPT_WRITE
85 #include <unordered_map>
86 #endif
87 /*
88 DO NOT INCLUDE ANY objc HEADERS HERE
89 dyld USES THIS FILE AND CANNOT SEE THEM
90 */
91
92 #ifndef STATIC_ASSERT
93 # define STATIC_ASSERT(x) _STATIC_ASSERT2(x, __LINE__)
94 # define _STATIC_ASSERT2(x, line) _STATIC_ASSERT3(x, line)
95 # define _STATIC_ASSERT3(x, line) \
96 typedef struct { \
97 int _static_assert[(x) ? 0 : -1]; \
98 } _static_assert_ ## line __attribute__((unavailable))
99 #endif
100
101 #define SELOPT_DEBUG 0
102
103 #define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
104 #define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
105
106 namespace objc_opt {
107
108 typedef int32_t objc_stringhash_offset_t;
109 typedef uint8_t objc_stringhash_check_t;
110
111 static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level);
112
113 #ifdef SELOPT_WRITE
114
115 // Perfect hash code is at the end of this file.
116
117 struct perfect_hash {
118 uint32_t capacity;
119 uint32_t occupied;
120 uint32_t shift;
121 uint32_t mask;
122 uint64_t salt;
123
124 uint32_t scramble[256];
125 uint8_t *tab; // count == mask+1; free with delete[]
126
127 perfect_hash() : tab(0) { }
128
129 ~perfect_hash() { if (tab) delete[] tab; }
130 };
131
132 struct eqstr {
133 bool operator()(const char* s1, const char* s2) const {
134 return strcmp(s1, s2) == 0;
135 }
136 };
137
138 struct hashstr {
139 size_t operator()(const char *s) const {
140 return (size_t)lookup8((uint8_t *)s, strlen(s), 0);
141 }
142 };
143
144 // cstring => cstring's vmaddress
145 // (used for selector names and class names)
146 typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> string_map;
147
148 // protocol name => protocol vmaddress
149 typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> protocol_map;
150
151 // class name => (class vmaddress, header_info vmaddress)
152 typedef std::unordered_multimap<const char *, std::pair<uint64_t, uint64_t>, hashstr, eqstr> class_map;
153
154 static perfect_hash make_perfect(const string_map& strings);
155
156 #endif
157
158
159 // Precomputed perfect hash table of strings.
160 // Base class for precomputed selector table and class table.
161 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
162 struct objc_stringhash_t {
163 uint32_t capacity;
164 uint32_t occupied;
165 uint32_t shift;
166 uint32_t mask;
167 uint32_t unused1; // was zero
168 uint32_t unused2; // alignment pad
169 uint64_t salt;
170
171 uint32_t scramble[256];
172 uint8_t tab[0]; /* tab[mask+1] (always power-of-2) */
173 // uint8_t checkbytes[capacity]; /* check byte for each string */
174 // int32_t offsets[capacity]; /* offsets from &capacity to cstrings */
175
176 objc_stringhash_check_t *checkbytes() { return (objc_stringhash_check_t *)&tab[mask+1]; }
177 const objc_stringhash_check_t *checkbytes() const { return (const objc_stringhash_check_t *)&tab[mask+1]; }
178
179 objc_stringhash_offset_t *offsets() { return (objc_stringhash_offset_t *)&checkbytes()[capacity]; }
180 const objc_stringhash_offset_t *offsets() const { return (const objc_stringhash_offset_t *)&checkbytes()[capacity]; }
181
182 uint32_t hash(const char *key, size_t keylen) const
183 {
184 uint64_t val = lookup8((uint8_t*)key, keylen, salt);
185 uint32_t index = (uint32_t)(val>>shift) ^ scramble[tab[val&mask]];
186 return index;
187 }
188
189 uint32_t hash(const char *key) const
190 {
191 return hash(key, strlen(key));
192 }
193
194 // The check bytes areused to reject strings that aren't in the table
195 // without paging in the table's cstring data. This checkbyte calculation
196 // catches 4785/4815 rejects when launching Safari; a perfect checkbyte
197 // would catch 4796/4815.
198 objc_stringhash_check_t checkbyte(const char *key, size_t keylen) const
199 {
200 return
201 ((key[0] & 0x7) << 5)
202 |
203 ((uint8_t)keylen & 0x1f);
204 }
205
206 objc_stringhash_check_t checkbyte(const char *key) const
207 {
208 return checkbyte(key, strlen(key));
209 }
210
211
212 #define INDEX_NOT_FOUND (~(uint32_t)0)
213
214 uint32_t getIndex(const char *key) const
215 {
216 size_t keylen = strlen(key);
217 uint32_t h = hash(key, keylen);
218
219 // Use check byte to reject without paging in the table's cstrings
220 objc_stringhash_check_t h_check = checkbytes()[h];
221 objc_stringhash_check_t key_check = checkbyte(key, keylen);
222 bool check_fail = (h_check != key_check);
223 #if ! SELOPT_DEBUG
224 if (check_fail) return INDEX_NOT_FOUND;
225 #endif
226
227 objc_stringhash_offset_t offset = offsets()[h];
228 if (offset == 0) return INDEX_NOT_FOUND;
229 const char *result = (const char *)this + offset;
230 if (0 != strcmp(key, result)) return INDEX_NOT_FOUND;
231
232 #if SELOPT_DEBUG
233 if (check_fail) abort();
234 #endif
235
236 return h;
237 }
238
239 #ifdef SELOPT_WRITE
240
241 size_t size()
242 {
243 return sizeof(objc_stringhash_t)
244 + mask+1
245 + capacity * sizeof(objc_stringhash_check_t)
246 + capacity * sizeof(objc_stringhash_offset_t);
247 }
248
249 void byteswap(bool little_endian)
250 {
251 // tab and checkbytes are arrays of bytes, no swap needed
252 for (uint32_t i = 0; i < 256; i++) {
253 S32(scramble[i]);
254 }
255 objc_stringhash_offset_t *o = offsets();
256 for (uint32_t i = 0; i < capacity; i++) {
257 S32(o[i]);
258 }
259
260 S32(capacity);
261 S32(occupied);
262 S32(shift);
263 S32(mask);
264 S64(salt);
265 }
266
267 const char *write(uint64_t base, size_t remaining, string_map& strings)
268 {
269 if (sizeof(objc_stringhash_t) > remaining) {
270 return "selector section too small (metadata not optimized)";
271 }
272
273 if (strings.size() == 0) {
274 bzero(this, sizeof(objc_stringhash_t));
275 return NULL;
276 }
277
278 perfect_hash phash = make_perfect(strings);
279 if (phash.capacity == 0) {
280 return "perfect hash failed (metadata not optimized)";
281 }
282
283 // Set header
284 capacity = phash.capacity;
285 occupied = phash.occupied;
286 shift = phash.shift;
287 mask = phash.mask;
288 unused1 = 0;
289 unused2 = 0;
290 salt = phash.salt;
291
292 if (size() > remaining) {
293 return "selector section too small (metadata not optimized)";
294 }
295
296 // Set hash data
297 for (uint32_t i = 0; i < 256; i++) {
298 scramble[i] = phash.scramble[i];
299 }
300 for (uint32_t i = 0; i < phash.mask+1; i++) {
301 tab[i] = phash.tab[i];
302 }
303
304 // Set offsets to 0
305 for (uint32_t i = 0; i < phash.capacity; i++) {
306 offsets()[i] = 0;
307 }
308 // Set checkbytes to 0
309 for (uint32_t i = 0; i < phash.capacity; i++) {
310 checkbytes()[i] = 0;
311 }
312
313 // Set real string offsets and checkbytes
314 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
315 string_map::const_iterator s;
316 for (s = strings.begin(); s != strings.end(); ++s) {
317 int64_t offset = s->second - base;
318 if ((offset<<SHIFT)>>SHIFT != offset) {
319 return "selector offset too big (metadata not optimized)";
320 }
321
322 uint32_t h = hash(s->first);
323 offsets()[h] = (objc_stringhash_offset_t)offset;
324 checkbytes()[h] = checkbyte(s->first);
325 }
326 # undef SHIFT
327
328 return NULL;
329 }
330
331 // SELOPT_WRITE
332 #endif
333 };
334
335
336 // Precomputed selector table.
337 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
338 struct objc_selopt_t : objc_stringhash_t {
339 const char *get(const char *key) const
340 {
341 uint32_t h = getIndex(key);
342 if (h == INDEX_NOT_FOUND) return NULL;
343
344 return (const char *)this + offsets()[h];
345 }
346 };
347
348 // Precomputed class list.
349 // Edit objc-sel-table.s and OPT_INITIALIZER if you change these structures.
350
351 struct objc_classheader_t {
352 objc_stringhash_offset_t clsOffset;
353 objc_stringhash_offset_t hiOffset;
354
355 // For duplicate class names:
356 // clsOffset = count<<1 | 1
357 // duplicated classes are duplicateOffsets[hiOffset..hiOffset+count-1]
358 bool isDuplicate() const { return clsOffset & 1; }
359 uint32_t duplicateCount() const { return clsOffset >> 1; }
360 uint32_t duplicateIndex() const { return hiOffset; }
361 };
362
363
364 struct objc_clsopt_t : objc_stringhash_t {
365 // ...objc_stringhash_t fields...
366 // objc_classheader_t classOffsets[capacity]; /* offsets from &capacity to class_t and header_info */
367 // uint32_t duplicateCount;
368 // objc_classheader_t duplicateOffsets[duplicatedClasses];
369
370 objc_classheader_t *classOffsets() { return (objc_classheader_t *)&offsets()[capacity]; }
371 const objc_classheader_t *classOffsets() const { return (const objc_classheader_t *)&offsets()[capacity]; }
372
373 uint32_t& duplicateCount() { return *(uint32_t *)&classOffsets()[capacity]; }
374 const uint32_t& duplicateCount() const { return *(const uint32_t *)&classOffsets()[capacity]; }
375
376 objc_classheader_t *duplicateOffsets() { return (objc_classheader_t *)(&duplicateCount()+1); }
377 const objc_classheader_t *duplicateOffsets() const { return (const objc_classheader_t *)(&duplicateCount()+1); }
378
379 // 0/NULL/NULL: not found
380 // 1/ptr/ptr: found exactly one
381 // n/NULL/NULL: found N - use getClassesAndHeaders() instead
382 uint32_t getClassAndHeader(const char *key, void*& cls, void*& hi) const
383 {
384 uint32_t h = getIndex(key);
385 if (h == INDEX_NOT_FOUND) {
386 cls = NULL;
387 hi = NULL;
388 return 0;
389 }
390
391 const objc_classheader_t& clshi = classOffsets()[h];
392 if (! clshi.isDuplicate()) {
393 // class appears in exactly one header
394 cls = (void *)((const char *)this + clshi.clsOffset);
395 hi = (void *)((const char *)this + clshi.hiOffset);
396 return 1;
397 }
398 else {
399 // class appears in more than one header - use getClassesAndHeaders
400 cls = NULL;
401 hi = NULL;
402 return clshi.duplicateCount();
403 }
404 }
405
406 void getClassesAndHeaders(const char *key, void **cls, void **hi) const
407 {
408 uint32_t h = getIndex(key);
409 if (h == INDEX_NOT_FOUND) return;
410
411 const objc_classheader_t& clshi = classOffsets()[h];
412 if (! clshi.isDuplicate()) {
413 // class appears in exactly one header
414 cls[0] = (void *)((const char *)this + clshi.clsOffset);
415 hi[0] = (void *)((const char *)this + clshi.hiOffset);
416 }
417 else {
418 // class appears in more than one header
419 uint32_t count = clshi.duplicateCount();
420 const objc_classheader_t *list =
421 &duplicateOffsets()[clshi.duplicateIndex()];
422 for (uint32_t i = 0; i < count; i++) {
423 cls[i] = (void *)((const char *)this + list[i].clsOffset);
424 hi[i] = (void *)((const char *)this + list[i].hiOffset);
425 }
426 }
427 }
428
429 #ifdef SELOPT_WRITE
430
431 size_t size()
432 {
433 return
434 objc_stringhash_t::size()
435 + capacity * sizeof(objc_classheader_t)
436 + sizeof(duplicateCount())
437 + duplicateCount() * sizeof(objc_classheader_t);
438 }
439
440 void byteswap(bool little_endian)
441 {
442 objc_classheader_t *o;
443
444 o = classOffsets();
445 for (uint32_t i = 0; i < capacity; i++) {
446 S32(o[i].clsOffset);
447 S32(o[i].hiOffset);
448 }
449
450 o = duplicateOffsets();
451 for (uint32_t i = 0; i < duplicateCount(); i++) {
452 S32(o[i].clsOffset);
453 S32(o[i].hiOffset);
454 }
455
456 S32(duplicateCount());
457
458 objc_stringhash_t::byteswap(little_endian);
459 }
460
461 const char *write(uint64_t base, size_t remaining,
462 string_map& strings, class_map& classes, bool verbose)
463 {
464 const char *err;
465 err = objc_stringhash_t::write(base, remaining, strings);
466 if (err) return err;
467
468 if (size() > remaining) {
469 return "selector section too small (metadata not optimized)";
470 }
471
472 // Set class offsets to 0
473 for (uint32_t i = 0; i < capacity; i++) {
474 classOffsets()[i].clsOffset = 0;
475 classOffsets()[i].hiOffset = 0;
476 }
477
478 // Set real class offsets
479 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
480 class_map::const_iterator c;
481 for (c = classes.begin(); c != classes.end(); ++c) {
482 uint32_t h = getIndex(c->first);
483 if (h == INDEX_NOT_FOUND) {
484 return "class list busted (metadata not optimized)";
485 }
486
487 if (classOffsets()[h].clsOffset != 0) {
488 // already did this class
489 continue;
490 }
491
492 uint32_t count = classes.count(c->first);
493 if (count == 1) {
494 // only one class with this name
495
496 int64_t coff = c->second.first - base;
497 int64_t hoff = c->second.second - base;
498 if ((coff<<SHIFT)>>SHIFT != coff) {
499 return "class offset too big (metadata not optimized)";
500 }
501 if ((hoff<<SHIFT)>>SHIFT != hoff) {
502 return "header offset too big (metadata not optimized)";
503 }
504
505 classOffsets()[h].clsOffset = (objc_stringhash_offset_t)coff;
506 classOffsets()[h].hiOffset = (objc_stringhash_offset_t)hoff;
507 }
508 else {
509 // class name has duplicates - write them all now
510 if (verbose) {
511 fprintf(stderr, "update_dyld_shared_cache: %u duplicates of Objective-C class %s\n", count, c->first);
512 }
513
514 uint32_t dest = duplicateCount();
515 duplicateCount() += count;
516 if (size() > remaining) {
517 return "selector section too small (metadata not optimized)";
518 }
519
520 // classOffsets() instead contains count and array index
521 classOffsets()[h].clsOffset = count*2 + 1;
522 classOffsets()[h].hiOffset = dest;
523
524 std::pair<class_map::const_iterator, class_map::const_iterator>
525 duplicates = classes.equal_range(c->first);
526 class_map::const_iterator dup;
527 for (dup = duplicates.first; dup != duplicates.second; ++dup) {
528 int64_t coff = dup->second.first - base;
529 int64_t hoff = dup->second.second - base;
530 if ((coff<<SHIFT)>>SHIFT != coff) {
531 return "class offset too big (metadata not optimized)";
532 }
533 if ((hoff<<SHIFT)>>SHIFT != hoff) {
534 return "header offset too big (metadata not optimized)";
535 }
536
537 duplicateOffsets()[dest].clsOffset = (objc_stringhash_offset_t)coff;
538 duplicateOffsets()[dest].hiOffset = (objc_stringhash_offset_t)hoff;
539 dest++;
540 }
541 }
542 }
543 # undef SHIFT
544
545 return NULL;
546 }
547
548 // SELOPT_WRITE
549 #endif
550 };
551
552
553
554 struct objc_protocolopt_t : objc_stringhash_t {
555 // ...objc_stringhash_t fields...
556 // uint32_t protocolOffsets[capacity]; /* offsets from &capacity to protocol_t */
557
558 objc_stringhash_offset_t *protocolOffsets() { return (objc_stringhash_offset_t *)&offsets()[capacity]; }
559 const objc_stringhash_offset_t *protocolOffsets() const { return (const objc_stringhash_offset_t *)&offsets()[capacity]; }
560
561 void* getProtocol(const char *key) const
562 {
563 uint32_t h = getIndex(key);
564 if (h == INDEX_NOT_FOUND) {
565 return NULL;
566 }
567
568 return (void *)((const char *)this + protocolOffsets()[h]);
569 }
570
571 #ifdef SELOPT_WRITE
572
573 size_t size()
574 {
575 return
576 objc_stringhash_t::size() + capacity * sizeof(objc_stringhash_offset_t);
577 }
578
579 void byteswap(bool little_endian)
580 {
581 objc_stringhash_offset_t *o;
582
583 o = protocolOffsets();
584 for (objc_stringhash_offset_t i = 0; i < capacity; i++) {
585 S32(o[i]);
586 }
587
588 objc_stringhash_t::byteswap(little_endian);
589 }
590
591 const char *write(uint64_t base, size_t remaining,
592 string_map& strings, protocol_map& protocols,
593 bool verbose)
594 {
595 const char *err;
596 err = objc_stringhash_t::write(base, remaining, strings);
597 if (err) return err;
598
599 if (size() > remaining) {
600 return "selector section too small (metadata not optimized)";
601 }
602
603 // Set protocol offsets to 0
604 for (uint32_t i = 0; i < capacity; i++) {
605 protocolOffsets()[i] = 0;
606 }
607
608 // Set real protocol offsets
609 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
610 protocol_map::const_iterator c;
611 for (c = protocols.begin(); c != protocols.end(); ++c) {
612 uint32_t h = getIndex(c->first);
613 if (h == INDEX_NOT_FOUND) {
614 return "protocol list busted (metadata not optimized)";
615 }
616
617 int64_t offset = c->second - base;
618 if ((offset<<SHIFT)>>SHIFT != offset) {
619 return "protocol offset too big (metadata not optimized)";
620 }
621
622 protocolOffsets()[h] = (objc_stringhash_offset_t)offset;
623 }
624 # undef SHIFT
625
626 return NULL;
627 }
628
629 // SELOPT_WRITE
630 #endif
631 };
632
633
634 // Precomputed image list.
635 struct objc_headeropt_t;
636
637 // Precomputed class list.
638 struct objc_clsopt_t;
639
640 // Edit objc-sel-table.s if you change this value.
641 enum { VERSION = 13 };
642
643 // Top-level optimization structure.
644 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
645 struct alignas(alignof(void*)) objc_opt_t {
646 uint32_t version;
647 int32_t selopt_offset;
648 int32_t headeropt_offset;
649 int32_t clsopt_offset;
650 int32_t protocolopt_offset;
651
652 const objc_selopt_t* selopt() const {
653 if (selopt_offset == 0) return NULL;
654 return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
655 }
656 objc_selopt_t* selopt() {
657 if (selopt_offset == 0) return NULL;
658 return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
659 }
660
661 struct objc_headeropt_t* headeropt() const {
662 if (headeropt_offset == 0) return NULL;
663 return (struct objc_headeropt_t *)((uint8_t *)this + headeropt_offset);
664 }
665
666 struct objc_clsopt_t* clsopt() const {
667 if (clsopt_offset == 0) return NULL;
668 return (objc_clsopt_t *)((uint8_t *)this + clsopt_offset);
669 }
670
671 struct objc_protocolopt_t* protocolopt() const {
672 if (protocolopt_offset == 0) return NULL;
673 return (objc_protocolopt_t *)((uint8_t *)this + protocolopt_offset);
674 }
675 };
676
677 // sizeof(objc_opt_t) must be pointer-aligned
678 STATIC_ASSERT(sizeof(objc_opt_t) % sizeof(void*) == 0);
679
680 // Initializer for empty opt of type uint32_t[].
681 #define X8(x) x, x, x, x, x, x, x, x
682 #define X64(x) X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x)
683 #define X256(x) X64(x), X64(x), X64(x), X64(x)
684 #define OPT_INITIALIZER { \
685 /* objc_opt_t */ \
686 objc_opt::VERSION, 16, 0, 0, \
687 /* objc_selopt_t */ \
688 4, 4, 63, 3, 0, 0, 0,0, X256(0), 0, 0, 16, 16, 16, 16 \
689 /* no objc_headeropt_t */ \
690 /* no objc_clsopt_t */ \
691 /* no objc_protocolopt_t */ \
692 }
693
694
695 // List of offsets in libobjc that the shared cache optimization needs to use.
696 template <typename T>
697 struct objc_opt_pointerlist_tt {
698 T protocolClass;
699 };
700 typedef struct objc_opt_pointerlist_tt<uintptr_t> objc_opt_pointerlist_t;
701
702
703 /*
704 --------------------------------------------------------------------
705 mix -- mix 3 64-bit values reversibly.
706 mix() takes 48 machine instructions, but only 24 cycles on a superscalar
707 machine (like Intel's new MMX architecture). It requires 4 64-bit
708 registers for 4::2 parallelism.
709 All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
710 (a,b,c), and all deltas of bottom bits were tested. All deltas were
711 tested both on random keys and on keys that were nearly all zero.
712 These deltas all cause every bit of c to change between 1/3 and 2/3
713 of the time (well, only 113/400 to 287/400 of the time for some
714 2-bit delta). These deltas all cause at least 80 bits to change
715 among (a,b,c) when the mix is run either forward or backward (yes it
716 is reversible).
717 This implies that a hash using mix64 has no funnels. There may be
718 characteristics with 3-bit deltas or bigger, I didn't test for
719 those.
720 --------------------------------------------------------------------
721 */
722 #define mix64(a,b,c) \
723 { \
724 a -= b; a -= c; a ^= (c>>43); \
725 b -= c; b -= a; b ^= (a<<9); \
726 c -= a; c -= b; c ^= (b>>8); \
727 a -= b; a -= c; a ^= (c>>38); \
728 b -= c; b -= a; b ^= (a<<23); \
729 c -= a; c -= b; c ^= (b>>5); \
730 a -= b; a -= c; a ^= (c>>35); \
731 b -= c; b -= a; b ^= (a<<49); \
732 c -= a; c -= b; c ^= (b>>11); \
733 a -= b; a -= c; a ^= (c>>12); \
734 b -= c; b -= a; b ^= (a<<18); \
735 c -= a; c -= b; c ^= (b>>22); \
736 }
737
738 /*
739 --------------------------------------------------------------------
740 hash() -- hash a variable-length key into a 64-bit value
741 k : the key (the unaligned variable-length array of bytes)
742 len : the length of the key, counting by bytes
743 level : can be any 8-byte value
744 Returns a 64-bit value. Every bit of the key affects every bit of
745 the return value. No funnels. Every 1-bit and 2-bit delta achieves
746 avalanche. About 41+5len instructions.
747
748 The best hash table sizes are powers of 2. There is no need to do
749 mod a prime (mod is sooo slow!). If you need less than 64 bits,
750 use a bitmask. For example, if you need only 10 bits, do
751 h = (h & hashmask(10));
752 In which case, the hash table should have hashsize(10) elements.
753
754 If you are hashing n strings (uint8_t **)k, do it like this:
755 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
756
757 By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may
758 use this code any way you wish, private, educational, or commercial,
759 but I would appreciate if you give me credit.
760
761 See http://burtleburtle.net/bob/hash/evahash.html
762 Use for hash table lookup, or anything where one collision in 2^^64
763 is acceptable. Do NOT use for cryptographic purposes.
764 --------------------------------------------------------------------
765 */
766
767 static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level)
768 // uint8_t *k; /* the key */
769 // uint64_t length; /* the length of the key */
770 // uint64_t level; /* the previous hash, or an arbitrary value */
771 {
772 uint64_t a,b,c;
773 size_t len;
774
775 /* Set up the internal state */
776 len = length;
777 a = b = level; /* the previous hash value */
778 c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
779
780 /*---------------------------------------- handle most of the key */
781 while (len >= 24)
782 {
783 a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
784 +((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
785 b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
786 +((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
787 c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
788 +((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
789 mix64(a,b,c);
790 k += 24; len -= 24;
791 }
792
793 /*------------------------------------- handle the last 23 bytes */
794 c += length;
795 switch(len) /* all the case statements fall through */
796 {
797 case 23: c+=((uint64_t)k[22]<<56);
798 case 22: c+=((uint64_t)k[21]<<48);
799 case 21: c+=((uint64_t)k[20]<<40);
800 case 20: c+=((uint64_t)k[19]<<32);
801 case 19: c+=((uint64_t)k[18]<<24);
802 case 18: c+=((uint64_t)k[17]<<16);
803 case 17: c+=((uint64_t)k[16]<<8);
804 /* the first byte of c is reserved for the length */
805 case 16: b+=((uint64_t)k[15]<<56);
806 case 15: b+=((uint64_t)k[14]<<48);
807 case 14: b+=((uint64_t)k[13]<<40);
808 case 13: b+=((uint64_t)k[12]<<32);
809 case 12: b+=((uint64_t)k[11]<<24);
810 case 11: b+=((uint64_t)k[10]<<16);
811 case 10: b+=((uint64_t)k[ 9]<<8);
812 case 9: b+=((uint64_t)k[ 8]);
813 case 8: a+=((uint64_t)k[ 7]<<56);
814 case 7: a+=((uint64_t)k[ 6]<<48);
815 case 6: a+=((uint64_t)k[ 5]<<40);
816 case 5: a+=((uint64_t)k[ 4]<<32);
817 case 4: a+=((uint64_t)k[ 3]<<24);
818 case 3: a+=((uint64_t)k[ 2]<<16);
819 case 2: a+=((uint64_t)k[ 1]<<8);
820 case 1: a+=((uint64_t)k[ 0]);
821 /* case 0: nothing left to add */
822 }
823 mix64(a,b,c);
824 /*-------------------------------------------- report the result */
825 return c;
826 }
827
828
829 #ifdef SELOPT_WRITE
830
831 /*
832 ------------------------------------------------------------------------------
833 This generates a minimal perfect hash function. That means, given a
834 set of n keys, this determines a hash function that maps each of
835 those keys into a value in 0..n-1 with no collisions.
836
837 The perfect hash function first uses a normal hash function on the key
838 to determine (a,b) such that the pair (a,b) is distinct for all
839 keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
840 tab[] is an array of 1-byte values and scramble[] is a 256-term array of
841 2-byte or 4-byte values. If there are n keys, the length of tab[] is a
842 power of two between n/3 and n.
843
844 I found the idea of computing distinct (a,b) values in "Practical minimal
845 perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
846 Communications of the ACM, January 1992. They found the idea in Chichelli
847 (CACM Jan 1980). Beyond that, our methods differ.
848
849 The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
850 0..*blen*-1. A fast hash function determines both a and b
851 simultaneously. Any decent hash function is likely to produce
852 hashes so that (a,b) is distinct for all pairs. I try the hash
853 using different values of *salt* until all pairs are distinct.
854
855 The final hash is (a XOR scramble[tab[b]]). *scramble* is a
856 predetermined mapping of 0..255 into 0..smax-1. *tab* is an
857 array that we fill in in such a way as to make the hash perfect.
858
859 First we fill in all values of *tab* that are used by more than one
860 key. We try all possible values for each position until one works.
861
862 This leaves m unmapped keys and m values that something could hash to.
863 If you treat unmapped keys as lefthand nodes and unused hash values
864 as righthand nodes, and draw a line connecting each key to each hash
865 value it could map to, you get a bipartite graph. We attempt to
866 find a perfect matching in this graph. If we succeed, we have
867 determined a perfect hash for the whole set of keys.
868
869 *scramble* is used because (a^tab[i]) clusters keys around *a*.
870 ------------------------------------------------------------------------------
871 */
872
873 typedef uint64_t ub8;
874 #define UB8MAXVAL 0xffffffffffffffffLL
875 #define UB8BITS 64
876 typedef uint32_t ub4;
877 #define UB4MAXVAL 0xffffffff
878 #define UB4BITS 32
879 typedef uint16_t ub2;
880 #define UB2MAXVAL 0xffff
881 #define UB2BITS 16
882 typedef uint8_t ub1;
883 #define UB1MAXVAL 0xff
884 #define UB1BITS 8
885
886 #define TRUE 1
887 #define FALSE 0
888
889 #define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
890 #define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
891 #define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
892
893
894 /* representation of a key */
895 struct key
896 {
897 ub1 *name_k; /* the actual key */
898 ub4 len_k; /* the length of the actual key */
899 ub4 hash_k; /* the initial hash value for this key */
900 /* beyond this point is mapping-dependent */
901 ub4 a_k; /* a, of the key maps to (a,b) */
902 ub4 b_k; /* b, of the key maps to (a,b) */
903 struct key *nextb_k; /* next key with this b */
904 };
905 typedef struct key key;
906
907 /* things indexed by b of original (a,b) pair */
908 struct bstuff
909 {
910 ub2 val_b; /* hash=a^tabb[b].val_b */
911 key *list_b; /* tabb[i].list_b is list of keys with b==i */
912 ub4 listlen_b; /* length of list_b */
913 ub4 water_b; /* high watermark of who has visited this map node */
914 };
915 typedef struct bstuff bstuff;
916
917 /* things indexed by final hash value */
918 struct hstuff
919 {
920 key *key_h; /* tabh[i].key_h is the key with a hash of i */
921 };
922 typedef struct hstuff hstuff;
923
924 /* things indexed by queue position */
925 struct qstuff
926 {
927 bstuff *b_q; /* b that currently occupies this hash */
928 ub4 parent_q; /* queue position of parent that could use this hash */
929 ub2 newval_q; /* what to change parent tab[b] to to use this hash */
930 ub2 oldval_q; /* original value of tab[b] */
931 };
932 typedef struct qstuff qstuff;
933
934
935 /*
936 ------------------------------------------------------------------------------
937 Find the mapping that will produce a perfect hash
938 ------------------------------------------------------------------------------
939 */
940
941 /* return the ceiling of the log (base 2) of val */
942 static ub4 log2u(ub4 val)
943 {
944 ub4 i;
945 for (i=0; ((ub4)1<<i) < val; ++i)
946 ;
947 return i;
948 }
949
950 /* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
951 /* permute(0)=0. This is intended and useful. */
952 static ub4 permute(ub4 x, ub4 nbits)
953 // ub4 x; /* input, a value in some range */
954 // ub4 nbits; /* input, number of bits in range */
955 {
956 int i;
957 int mask = ((ub4)1<<nbits)-1; /* all ones */
958 int const2 = 1+nbits/2;
959 int const3 = 1+nbits/3;
960 int const4 = 1+nbits/4;
961 int const5 = 1+nbits/5;
962 for (i=0; i<20; ++i)
963 {
964 x = (x+(x<<const2)) & mask;
965 x = (x^(x>>const3));
966 x = (x+(x<<const4)) & mask;
967 x = (x^(x>>const5));
968 }
969 return x;
970 }
971
972 /* initialize scramble[] with distinct random values in 0..smax-1 */
973 static void scrambleinit(ub4 *scramble, ub4 smax)
974 // ub4 *scramble; /* hash is a^scramble[tab[b]] */
975 // ub4 smax; /* scramble values should be in 0..smax-1 */
976 {
977 ub4 i;
978
979 /* fill scramble[] with distinct random integers in 0..smax-1 */
980 for (i=0; i<SCRAMBLE_LEN; ++i)
981 {
982 scramble[i] = permute(i, log2u(smax));
983 }
984 }
985
986
987 /*
988 * put keys in tabb according to key->b_k
989 * check if the initial hash might work
990 */
991 static int inittab(bstuff *tabb, ub4 blen, key *keys, ub4 nkeys, int complete)
992 // bstuff *tabb; /* output, list of keys with b for (a,b) */
993 // ub4 blen; /* length of tabb */
994 // key *keys; /* list of keys already hashed */
995 // int complete; /* TRUE means to complete init despite collisions */
996 {
997 int nocollision = TRUE;
998 ub4 i;
999
1000 memset((void *)tabb, 0, (size_t)(sizeof(bstuff)*blen));
1001
1002 /* Two keys with the same (a,b) guarantees a collision */
1003 for (i = 0; i < nkeys; i++) {
1004 key *mykey = keys+i;
1005 key *otherkey;
1006
1007 for (otherkey=tabb[mykey->b_k].list_b;
1008 otherkey;
1009 otherkey=otherkey->nextb_k)
1010 {
1011 if (mykey->a_k == otherkey->a_k)
1012 {
1013 nocollision = FALSE;
1014 if (!complete)
1015 return FALSE;
1016 }
1017 }
1018 ++tabb[mykey->b_k].listlen_b;
1019 mykey->nextb_k = tabb[mykey->b_k].list_b;
1020 tabb[mykey->b_k].list_b = mykey;
1021 }
1022
1023 /* no two keys have the same (a,b) pair */
1024 return nocollision;
1025 }
1026
1027
1028 /* Do the initial hash for normal mode (use lookup and checksum) */
1029 static void initnorm(key *keys, ub4 nkeys, ub4 alen, ub4 blen, ub4 smax, ub8 salt)
1030 // key *keys; /* list of all keys */
1031 // ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
1032 // ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
1033 // ub4 smax; /* maximum range of computable hash values */
1034 // ub4 salt; /* used to initialize the hash function */
1035 // gencode *final; /* output, code for the final hash */
1036 {
1037 ub4 loga = log2u(alen); /* log based 2 of blen */
1038 ub4 i;
1039 for (i = 0; i < nkeys; i++) {
1040 key *mykey = keys+i;
1041 ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
1042 mykey->a_k = (loga > 0) ? hash>>(UB8BITS-loga) : 0;
1043 mykey->b_k = (blen > 1) ? hash&(blen-1) : 0;
1044 }
1045 }
1046
1047
1048 /* Try to apply an augmenting list */
1049 static int apply(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 tail, int rollback)
1050 // bstuff *tabb;
1051 // hstuff *tabh;
1052 // qstuff *tabq;
1053 // ub4 blen;
1054 // ub4 *scramble;
1055 // ub4 tail;
1056 // int rollback; /* FALSE applies augmenting path, TRUE rolls back */
1057 {
1058 ub4 hash;
1059 key *mykey;
1060 bstuff *pb;
1061 ub4 child;
1062 ub4 parent;
1063 ub4 stabb; /* scramble[tab[b]] */
1064
1065 /* walk from child to parent */
1066 for (child=tail-1; child; child=parent)
1067 {
1068 parent = tabq[child].parent_q; /* find child's parent */
1069 pb = tabq[parent].b_q; /* find parent's list of siblings */
1070
1071 /* erase old hash values */
1072 stabb = scramble[pb->val_b];
1073 for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
1074 {
1075 hash = mykey->a_k^stabb;
1076 if (mykey == tabh[hash].key_h)
1077 { /* erase hash for all of child's siblings */
1078 tabh[hash].key_h = (key *)0;
1079 }
1080 }
1081
1082 /* change pb->val_b, which will change the hashes of all parent siblings */
1083 pb->val_b = (rollback ? tabq[child].oldval_q : tabq[child].newval_q);
1084
1085 /* set new hash values */
1086 stabb = scramble[pb->val_b];
1087 for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
1088 {
1089 hash = mykey->a_k^stabb;
1090 if (rollback)
1091 {
1092 if (parent == 0) continue; /* root never had a hash */
1093 }
1094 else if (tabh[hash].key_h)
1095 {
1096 /* very rare: roll back any changes */
1097 apply(tabb, tabh, tabq, blen, scramble, tail, TRUE);
1098 return FALSE; /* failure, collision */
1099 }
1100 tabh[hash].key_h = mykey;
1101 }
1102 }
1103 return TRUE;
1104 }
1105
1106
1107 /*
1108 -------------------------------------------------------------------------------
1109 augment(): Add item to the mapping.
1110
1111 Construct a spanning tree of *b*s with *item* as root, where each
1112 parent can have all its hashes changed (by some new val_b) with
1113 at most one collision, and each child is the b of that collision.
1114
1115 I got this from Tarjan's "Data Structures and Network Algorithms". The
1116 path from *item* to a *b* that can be remapped with no collision is
1117 an "augmenting path". Change values of tab[b] along the path so that
1118 the unmapped key gets mapped and the unused hash value gets used.
1119
1120 Assuming 1 key per b, if m out of n hash values are still unused,
1121 you should expect the transitive closure to cover n/m nodes before
1122 an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
1123 this approach to take about nlogn time to map all single-key b's.
1124 -------------------------------------------------------------------------------
1125 */
1126 static int augment(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 smax, bstuff *item, ub4 nkeys,
1127 ub4 highwater)
1128 // bstuff *tabb; /* stuff indexed by b */
1129 // hstuff *tabh; /* which key is associated with which hash, indexed by hash */
1130 // qstuff *tabq; /* queue of *b* values, this is the spanning tree */
1131 // ub4 blen; /* length of tabb */
1132 // ub4 *scramble; /* final hash is a^scramble[tab[b]] */
1133 // ub4 smax; /* highest value in scramble */
1134 // bstuff *item; /* &tabb[b] for the b to be mapped */
1135 // ub4 nkeys; /* final hash must be in 0..nkeys-1 */
1136 // ub4 highwater; /* a value higher than any now in tabb[].water_b */
1137 {
1138 ub4 q; /* current position walking through the queue */
1139 ub4 tail; /* tail of the queue. 0 is the head of the queue. */
1140 ub4 limit=UB1MAXVAL+1;
1141 ub4 highhash = smax;
1142
1143 /* initialize the root of the spanning tree */
1144 tabq[0].b_q = item;
1145 tail = 1;
1146
1147 /* construct the spanning tree by walking the queue, add children to tail */
1148 for (q=0; q<tail; ++q)
1149 {
1150 bstuff *myb = tabq[q].b_q; /* the b for this node */
1151 ub4 i; /* possible value for myb->val_b */
1152
1153 if (q == 1)
1154 break; /* don't do transitive closure */
1155
1156 for (i=0; i<limit; ++i)
1157 {
1158 bstuff *childb = (bstuff *)0; /* the b that this i maps to */
1159 key *mykey; /* for walking through myb's keys */
1160
1161 for (mykey = myb->list_b; mykey; mykey=mykey->nextb_k)
1162 {
1163 key *childkey;
1164 ub4 hash = mykey->a_k^scramble[i];
1165
1166 if (hash >= highhash) break; /* out of bounds */
1167 childkey = tabh[hash].key_h;
1168
1169 if (childkey)
1170 {
1171 bstuff *hitb = &tabb[childkey->b_k];
1172
1173 if (childb)
1174 {
1175 if (childb != hitb) break; /* hit at most one child b */
1176 }
1177 else
1178 {
1179 childb = hitb; /* remember this as childb */
1180 if (childb->water_b == highwater) break; /* already explored */
1181 }
1182 }
1183 }
1184 if (mykey) continue; /* myb with i has multiple collisions */
1185
1186 /* add childb to the queue of reachable things */
1187 if (childb) childb->water_b = highwater;
1188 tabq[tail].b_q = childb;
1189 tabq[tail].newval_q = i; /* how to make parent (myb) use this hash */
1190 tabq[tail].oldval_q = myb->val_b; /* need this for rollback */
1191 tabq[tail].parent_q = q;
1192 ++tail;
1193
1194 if (!childb)
1195 { /* found an *i* with no collisions? */
1196 /* try to apply the augmenting path */
1197 if (apply(tabb, tabh, tabq, blen, scramble, tail, FALSE))
1198 return TRUE; /* success, item was added to the perfect hash */
1199
1200 --tail; /* don't know how to handle such a child! */
1201 }
1202 }
1203 }
1204 return FALSE;
1205 }
1206
1207
1208 /* find a mapping that makes this a perfect hash */
1209 static int perfect(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 smax, ub4 *scramble, ub4 nkeys)
1210 {
1211 ub4 maxkeys; /* maximum number of keys for any b */
1212 ub4 i, j;
1213
1214 #if SELOPT_DEBUG
1215 fprintf(stderr, " blen %d smax %d nkeys %d\n", blen, smax, nkeys);
1216 #endif
1217
1218 /* clear any state from previous attempts */
1219 memset((void *)tabh, 0, sizeof(hstuff)*smax);
1220 memset((void *)tabq, 0, sizeof(qstuff)*(blen+1));
1221
1222 for (maxkeys=0,i=0; i<blen; ++i)
1223 if (tabb[i].listlen_b > maxkeys)
1224 maxkeys = tabb[i].listlen_b;
1225
1226 /* In descending order by number of keys, map all *b*s */
1227 for (j=maxkeys; j>0; --j)
1228 for (i=0; i<blen; ++i)
1229 if (tabb[i].listlen_b == j)
1230 if (!augment(tabb, tabh, tabq, blen, scramble, smax, &tabb[i], nkeys,
1231 i+1))
1232 {
1233 return FALSE;
1234 }
1235
1236 /* Success! We found a perfect hash of all keys into 0..nkeys-1. */
1237 return TRUE;
1238 }
1239
1240
1241 /* guess initial values for alen and blen */
1242 static void initalen(ub4 *alen, ub4 *blen, ub4 smax, ub4 nkeys)
1243 // ub4 *alen; /* output, initial alen */
1244 // ub4 *blen; /* output, initial blen */
1245 // ub4 smax; /* input, power of two greater or equal to max hash value */
1246 // ub4 nkeys; /* number of keys being hashed */
1247 {
1248 /*
1249 * Find initial *alen, *blen
1250 * Initial alen and blen values were found empirically. Some factors:
1251 *
1252 * If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
1253 *
1254 * alen and blen must be powers of 2 because the values in 0..alen-1 and
1255 * 0..blen-1 are produced by applying a bitmask to the initial hash function.
1256 *
1257 * alen must be less than smax, in fact less than nkeys, because otherwise
1258 * there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
1259 * all the *a*s associated with a given *b*, so there would be no legal
1260 * value to assign to tab[b]. This only matters when we're doing a minimal
1261 * perfect hash.
1262 *
1263 * It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
1264 * and alen*blen = smax*smax/32.
1265 *
1266 * Values of blen less than smax/4 never work, and smax/2 always works.
1267 *
1268 * We want blen as small as possible because it is the number of bytes in
1269 * the huge array we must create for the perfect hash.
1270 *
1271 * When nkey <= smax*(5/8), blen=smax/4 works much more often with
1272 * alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
1273 * doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
1274 * has something to do with 5/8 = 1/8 * 5. For example examine 80000,
1275 * 85000, and 90000 keys with different values of alen. This only matters
1276 * if we're doing a minimal perfect hash.
1277 *
1278 * When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
1279 * Bigger than that it must produce two integers, which increases the
1280 * cost of the hash per character hashed.
1281 */
1282 *alen = smax; /* no reason to restrict alen to smax/2 */
1283 *blen = ((nkeys <= smax*0.6) ? smax/16 :
1284 (nkeys <= smax*0.8) ? smax/8 : smax/4);
1285
1286 if (*alen < 1) *alen = 1;
1287 if (*blen < 1) *blen = 1;
1288
1289 #if SELOPT_DEBUG
1290 fprintf(stderr, "alen %d blen %d smax %d nkeys %d\n", *alen, *blen, smax, nkeys);
1291 #endif
1292 }
1293
1294 /*
1295 ** Try to find a perfect hash function.
1296 ** Return the successful initializer for the initial hash.
1297 ** Return 0 if no perfect hash could be found.
1298 */
1299 static int findhash(bstuff **tabb, ub4 *alen, ub4 *blen, ub8 *salt,
1300 ub4 *scramble, ub4 smax, key *keys, ub4 nkeys)
1301 // bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
1302 // ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
1303 // ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
1304 // ub4 *salt; /* output, initializes initial hash */
1305 // ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
1306 // ub4 smax; /* input, scramble[i] in 0..smax-1 */
1307 // key *keys; /* input, keys to hash */
1308 // ub4 nkeys; /* input, number of keys being hashed */
1309 {
1310 ub4 bad_initkey; /* how many times did initkey fail? */
1311 ub4 bad_perfect; /* how many times did perfect fail? */
1312 ub4 si; /* trial initializer for initial hash */
1313 ub4 maxalen;
1314 hstuff *tabh; /* table of keys indexed by hash value */
1315 qstuff *tabq; /* table of stuff indexed by queue value, used by augment */
1316
1317 /* guess initial values for alen and blen */
1318 initalen(alen, blen, smax, nkeys);
1319
1320 scrambleinit(scramble, smax);
1321
1322 maxalen = smax;
1323
1324 /* allocate working memory */
1325 *tabb = new bstuff[*blen];
1326 tabq = new qstuff[*blen+1];
1327 tabh = new hstuff[smax];
1328
1329 /* Actually find the perfect hash */
1330 *salt = 0;
1331 bad_initkey = 0;
1332 bad_perfect = 0;
1333 for (si=1; ; ++si)
1334 {
1335 ub4 rslinit;
1336 /* Try to find distinct (A,B) for all keys */
1337 *salt = si * 0x9e3779b97f4a7c13LL; /* golden ratio (arbitrary value) */
1338 initnorm(keys, nkeys, *alen, *blen, smax, *salt);
1339 rslinit = inittab(*tabb, *blen, keys, nkeys, FALSE);
1340 if (rslinit == 0)
1341 {
1342 /* didn't find distinct (a,b) */
1343 if (++bad_initkey >= RETRY_INITKEY)
1344 {
1345 /* Try to put more bits in (A,B) to make distinct (A,B) more likely */
1346 if (*alen < maxalen)
1347 {
1348 *alen *= 2;
1349 }
1350 else if (*blen < smax)
1351 {
1352 *blen *= 2;
1353 delete[] tabq;
1354 delete[] *tabb;
1355 *tabb = new bstuff[*blen];
1356 tabq = new qstuff[*blen+1];
1357 }
1358 bad_initkey = 0;
1359 bad_perfect = 0;
1360 }
1361 continue; /* two keys have same (a,b) pair */
1362 }
1363
1364 /* Given distinct (A,B) for all keys, build a perfect hash */
1365 if (!perfect(*tabb, tabh, tabq, *blen, smax, scramble, nkeys))
1366 {
1367 if (++bad_perfect >= RETRY_PERFECT)
1368 {
1369 if (*blen < smax)
1370 {
1371 *blen *= 2;
1372 delete[] *tabb;
1373 delete[] tabq;
1374 *tabb = new bstuff[*blen];
1375 tabq = new qstuff[*blen+1];
1376 --si; /* we know this salt got distinct (A,B) */
1377 }
1378 else
1379 {
1380 return 0;
1381 }
1382 bad_perfect = 0;
1383 }
1384 continue;
1385 }
1386
1387 break;
1388 }
1389
1390 /* free working memory */
1391 delete[] tabh;
1392 delete[] tabq;
1393
1394 return 1;
1395 }
1396
1397 /*
1398 ------------------------------------------------------------------------------
1399 Input/output type routines
1400 ------------------------------------------------------------------------------
1401 */
1402
1403 /* get the list of keys */
1404 static void getkeys(key **keys, ub4 *nkeys, const string_map& strings)
1405 {
1406 key *buf = new key[strings.size()];
1407 size_t i;
1408 string_map::const_iterator s;
1409 for (i = 0, s = strings.begin(); s != strings.end(); ++s, ++i) {
1410 key *mykey = buf+i;
1411 mykey->name_k = (ub1 *)s->first;
1412 mykey->len_k = (ub4)strlen(s->first);
1413 }
1414 *keys = buf;
1415 *nkeys = strings.size();
1416 }
1417
1418
1419 static perfect_hash
1420 make_perfect(const string_map& strings)
1421 {
1422 ub4 nkeys; /* number of keys */
1423 key *keys; /* head of list of keys */
1424 bstuff *tab; /* table indexed by b */
1425 ub4 smax; /* scramble[] values in 0..smax-1, a power of 2 */
1426 ub4 alen; /* a in 0..alen-1, a power of 2 */
1427 ub4 blen; /* b in 0..blen-1, a power of 2 */
1428 ub8 salt; /* a parameter to the hash function */
1429 ub4 scramble[SCRAMBLE_LEN]; /* used in final hash function */
1430 int ok;
1431 int i;
1432 perfect_hash result;
1433
1434 /* read in the list of keywords */
1435 getkeys(&keys, &nkeys, strings);
1436
1437 /* find the hash */
1438 smax = ((ub4)1<<log2u(nkeys));
1439 ok = findhash(&tab, &alen, &blen, &salt,
1440 scramble, smax, keys, nkeys);
1441 if (!ok) {
1442 smax = 2 * ((ub4)1<<log2u(nkeys));
1443 ok = findhash(&tab, &alen, &blen, &salt,
1444 scramble, smax, keys, nkeys);
1445 }
1446 if (!ok) {
1447 bzero(&result, sizeof(result));
1448 } else {
1449 /* build the tables */
1450 result.capacity = smax;
1451 result.occupied = nkeys;
1452 result.shift = UB8BITS - log2u(alen);
1453 result.mask = blen - 1;
1454 result.salt = salt;
1455
1456 result.tab = new uint8_t[blen];
1457 for (i = 0; i < blen; i++) {
1458 result.tab[i] = tab[i].val_b;
1459 }
1460 for (i = 0; i < 256; i++) {
1461 result.scramble[i] = scramble[i];
1462 }
1463 }
1464
1465 delete[] keys;
1466 delete[] tab;
1467
1468 return result;
1469 }
1470
1471 // SELOPT_WRITE
1472 #endif
1473
1474 // namespace objc_selopt
1475 };
1476
1477 #undef S32
1478 #undef S64
1479
1480 #endif