2 * Copyright (c) 2008 Apple Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
21 * @APPLE_LICENSE_HEADER_END@
25 Portions derived from:
27 --------------------------------------------------------------------
28 lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
29 hash(), hash2(), hash3, and mix() are externally useful functions.
30 Routines to test the hash are included if SELF_TEST is defined.
31 You can use this free for any purpose. It has no warranty.
32 --------------------------------------------------------------------
34 ------------------------------------------------------------------------------
35 perfect.c: code to generate code for a hash for perfect hashing.
36 (c) Bob Jenkins, September 1996, December 1999
37 You may use this code in any way you wish, and it is free. No warranty.
38 I hereby place this in the public domain.
39 Source is http://burtleburtle.net/bob/c/perfect.c
40 ------------------------------------------------------------------------------
45 * Interface between libobjc and dyld
46 * for selector uniquing in the dyld shared cache.
48 * When building the shared cache, dyld locates all selectors and selector
49 * references in the cached images. It builds a perfect hash table out of
50 * them and writes the table into the shared cache copy of libobjc.
51 * libobjc then uses that table as the builtin selector list.
54 * The table has a version number. dyld and objc can both ignore the table
55 * if the other used the wrong version number.
58 * Not all libraries are in the shared cache. Libraries that are in the
59 * shared cache and were optimized are specially marked. Libraries on
60 * disk never include those marks.
63 * Libraries optimized in the shared cache can be replaced by unoptimized
64 * copies from disk when loaded. The copy from disk is not marked and will
65 * be fixed up by libobjc. The shared cache copy is still mapped into the
66 * process, so the table can point to cstring data in that library's part
67 * of the shared cache without trouble.
70 * dyld writes the table itself last. If dyld marks some metadata as
71 * updated but then fails to write a table for some reason, libobjc
72 * fixes up all metadata as if it were not marked.
75 #ifndef _OBJC_SELOPT_H
76 #define _OBJC_SELOPT_H
79 DO NOT INCLUDE ANY objc HEADERS HERE
80 dyld USES THIS FILE AND CANNOT SEE THEM
85 #include <unordered_map>
88 DO NOT INCLUDE ANY objc HEADERS HERE
89 dyld USES THIS FILE AND CANNOT SEE THEM
93 # define STATIC_ASSERT(x) _STATIC_ASSERT2(x, __LINE__)
94 # define _STATIC_ASSERT2(x, line) _STATIC_ASSERT3(x, line)
95 # define _STATIC_ASSERT3(x, line) \
97 int _static_assert[(x) ? 0 : -1]; \
98 } _static_assert_ ## line __attribute__((unavailable))
101 #define SELOPT_DEBUG 0
103 #define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
104 #define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
108 typedef int32_t objc_stringhash_offset_t
;
109 typedef uint8_t objc_stringhash_check_t
;
111 static uint64_t lookup8( uint8_t *k
, size_t length
, uint64_t level
);
115 // Perfect hash code is at the end of this file.
117 struct perfect_hash
{
124 uint32_t scramble
[256];
125 uint8_t *tab
; // count == mask+1; free with delete[]
127 perfect_hash() : tab(0) { }
129 ~perfect_hash() { if (tab
) delete[] tab
; }
133 bool operator()(const char* s1
, const char* s2
) const {
134 return strcmp(s1
, s2
) == 0;
139 size_t operator()(const char *s
) const {
140 return (size_t)lookup8((uint8_t *)s
, strlen(s
), 0);
144 // cstring => cstring's vmaddress
145 // (used for selector names and class names)
146 typedef std::unordered_map
<const char *, uint64_t, hashstr
, eqstr
> string_map
;
148 // protocol name => protocol vmaddress
149 typedef std::unordered_map
<const char *, uint64_t, hashstr
, eqstr
> protocol_map
;
151 // class name => (class vmaddress, header_info vmaddress)
152 typedef std::unordered_multimap
<const char *, std::pair
<uint64_t, uint64_t>, hashstr
, eqstr
> class_map
;
154 static perfect_hash
make_perfect(const string_map
& strings
);
159 // Precomputed perfect hash table of strings.
160 // Base class for precomputed selector table and class table.
161 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
162 struct objc_stringhash_t
{
167 uint32_t unused1
; // was zero
168 uint32_t unused2
; // alignment pad
171 uint32_t scramble
[256];
172 uint8_t tab
[0]; /* tab[mask+1] (always power-of-2) */
173 // uint8_t checkbytes[capacity]; /* check byte for each string */
174 // int32_t offsets[capacity]; /* offsets from &capacity to cstrings */
176 objc_stringhash_check_t
*checkbytes() { return (objc_stringhash_check_t
*)&tab
[mask
+1]; }
177 const objc_stringhash_check_t
*checkbytes() const { return (const objc_stringhash_check_t
*)&tab
[mask
+1]; }
179 objc_stringhash_offset_t
*offsets() { return (objc_stringhash_offset_t
*)&checkbytes()[capacity
]; }
180 const objc_stringhash_offset_t
*offsets() const { return (const objc_stringhash_offset_t
*)&checkbytes()[capacity
]; }
182 uint32_t hash(const char *key
, size_t keylen
) const
184 uint64_t val
= lookup8((uint8_t*)key
, keylen
, salt
);
185 uint32_t index
= (uint32_t)(val
>>shift
) ^ scramble
[tab
[val
&mask
]];
189 uint32_t hash(const char *key
) const
191 return hash(key
, strlen(key
));
194 // The check bytes areused to reject strings that aren't in the table
195 // without paging in the table's cstring data. This checkbyte calculation
196 // catches 4785/4815 rejects when launching Safari; a perfect checkbyte
197 // would catch 4796/4815.
198 objc_stringhash_check_t
checkbyte(const char *key
, size_t keylen
) const
201 ((key
[0] & 0x7) << 5)
203 ((uint8_t)keylen
& 0x1f);
206 objc_stringhash_check_t
checkbyte(const char *key
) const
208 return checkbyte(key
, strlen(key
));
212 #define INDEX_NOT_FOUND (~(uint32_t)0)
214 uint32_t getIndex(const char *key
) const
216 size_t keylen
= strlen(key
);
217 uint32_t h
= hash(key
, keylen
);
219 // Use check byte to reject without paging in the table's cstrings
220 objc_stringhash_check_t h_check
= checkbytes()[h
];
221 objc_stringhash_check_t key_check
= checkbyte(key
, keylen
);
222 bool check_fail
= (h_check
!= key_check
);
224 if (check_fail
) return INDEX_NOT_FOUND
;
227 objc_stringhash_offset_t offset
= offsets()[h
];
228 if (offset
== 0) return INDEX_NOT_FOUND
;
229 const char *result
= (const char *)this + offset
;
230 if (0 != strcmp(key
, result
)) return INDEX_NOT_FOUND
;
233 if (check_fail
) abort();
243 return sizeof(objc_stringhash_t
)
245 + capacity
* sizeof(objc_stringhash_check_t
)
246 + capacity
* sizeof(objc_stringhash_offset_t
);
249 void byteswap(bool little_endian
)
251 // tab and checkbytes are arrays of bytes, no swap needed
252 for (uint32_t i
= 0; i
< 256; i
++) {
255 objc_stringhash_offset_t
*o
= offsets();
256 for (uint32_t i
= 0; i
< capacity
; i
++) {
267 const char *write(uint64_t base
, size_t remaining
, string_map
& strings
)
269 if (sizeof(objc_stringhash_t
) > remaining
) {
270 return "selector section too small (metadata not optimized)";
273 if (strings
.size() == 0) {
274 bzero(this, sizeof(objc_stringhash_t
));
278 perfect_hash phash
= make_perfect(strings
);
279 if (phash
.capacity
== 0) {
280 return "perfect hash failed (metadata not optimized)";
284 capacity
= phash
.capacity
;
285 occupied
= phash
.occupied
;
292 if (size() > remaining
) {
293 return "selector section too small (metadata not optimized)";
297 for (uint32_t i
= 0; i
< 256; i
++) {
298 scramble
[i
] = phash
.scramble
[i
];
300 for (uint32_t i
= 0; i
< phash
.mask
+1; i
++) {
301 tab
[i
] = phash
.tab
[i
];
305 for (uint32_t i
= 0; i
< phash
.capacity
; i
++) {
308 // Set checkbytes to 0
309 for (uint32_t i
= 0; i
< phash
.capacity
; i
++) {
313 // Set real string offsets and checkbytes
314 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
315 string_map::const_iterator s
;
316 for (s
= strings
.begin(); s
!= strings
.end(); ++s
) {
317 int64_t offset
= s
->second
- base
;
318 if ((offset
<<SHIFT
)>>SHIFT
!= offset
) {
319 return "selector offset too big (metadata not optimized)";
322 uint32_t h
= hash(s
->first
);
323 offsets()[h
] = (objc_stringhash_offset_t
)offset
;
324 checkbytes()[h
] = checkbyte(s
->first
);
336 // Precomputed selector table.
337 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
338 struct objc_selopt_t
: objc_stringhash_t
{
339 const char *get(const char *key
) const
341 uint32_t h
= getIndex(key
);
342 if (h
== INDEX_NOT_FOUND
) return NULL
;
344 return (const char *)this + offsets()[h
];
348 // Precomputed class list.
349 // Edit objc-sel-table.s and OPT_INITIALIZER if you change these structures.
351 struct objc_classheader_t
{
352 objc_stringhash_offset_t clsOffset
;
353 objc_stringhash_offset_t hiOffset
;
355 // For duplicate class names:
356 // clsOffset = count<<1 | 1
357 // duplicated classes are duplicateOffsets[hiOffset..hiOffset+count-1]
358 bool isDuplicate() const { return clsOffset
& 1; }
359 uint32_t duplicateCount() const { return clsOffset
>> 1; }
360 uint32_t duplicateIndex() const { return hiOffset
; }
364 struct objc_clsopt_t
: objc_stringhash_t
{
365 // ...objc_stringhash_t fields...
366 // objc_classheader_t classOffsets[capacity]; /* offsets from &capacity to class_t and header_info */
367 // uint32_t duplicateCount;
368 // objc_classheader_t duplicateOffsets[duplicatedClasses];
370 objc_classheader_t
*classOffsets() { return (objc_classheader_t
*)&offsets()[capacity
]; }
371 const objc_classheader_t
*classOffsets() const { return (const objc_classheader_t
*)&offsets()[capacity
]; }
373 uint32_t& duplicateCount() { return *(uint32_t *)&classOffsets()[capacity
]; }
374 const uint32_t& duplicateCount() const { return *(const uint32_t *)&classOffsets()[capacity
]; }
376 objc_classheader_t
*duplicateOffsets() { return (objc_classheader_t
*)(&duplicateCount()+1); }
377 const objc_classheader_t
*duplicateOffsets() const { return (const objc_classheader_t
*)(&duplicateCount()+1); }
379 // 0/NULL/NULL: not found
380 // 1/ptr/ptr: found exactly one
381 // n/NULL/NULL: found N - use getClassesAndHeaders() instead
382 uint32_t getClassAndHeader(const char *key
, void*& cls
, void*& hi
) const
384 uint32_t h
= getIndex(key
);
385 if (h
== INDEX_NOT_FOUND
) {
391 const objc_classheader_t
& clshi
= classOffsets()[h
];
392 if (! clshi
.isDuplicate()) {
393 // class appears in exactly one header
394 cls
= (void *)((const char *)this + clshi
.clsOffset
);
395 hi
= (void *)((const char *)this + clshi
.hiOffset
);
399 // class appears in more than one header - use getClassesAndHeaders
402 return clshi
.duplicateCount();
406 void getClassesAndHeaders(const char *key
, void **cls
, void **hi
) const
408 uint32_t h
= getIndex(key
);
409 if (h
== INDEX_NOT_FOUND
) return;
411 const objc_classheader_t
& clshi
= classOffsets()[h
];
412 if (! clshi
.isDuplicate()) {
413 // class appears in exactly one header
414 cls
[0] = (void *)((const char *)this + clshi
.clsOffset
);
415 hi
[0] = (void *)((const char *)this + clshi
.hiOffset
);
418 // class appears in more than one header
419 uint32_t count
= clshi
.duplicateCount();
420 const objc_classheader_t
*list
=
421 &duplicateOffsets()[clshi
.duplicateIndex()];
422 for (uint32_t i
= 0; i
< count
; i
++) {
423 cls
[i
] = (void *)((const char *)this + list
[i
].clsOffset
);
424 hi
[i
] = (void *)((const char *)this + list
[i
].hiOffset
);
434 objc_stringhash_t::size()
435 + capacity
* sizeof(objc_classheader_t
)
436 + sizeof(duplicateCount())
437 + duplicateCount() * sizeof(objc_classheader_t
);
440 void byteswap(bool little_endian
)
442 objc_classheader_t
*o
;
445 for (uint32_t i
= 0; i
< capacity
; i
++) {
450 o
= duplicateOffsets();
451 for (uint32_t i
= 0; i
< duplicateCount(); i
++) {
456 S32(duplicateCount());
458 objc_stringhash_t::byteswap(little_endian
);
461 const char *write(uint64_t base
, size_t remaining
,
462 string_map
& strings
, class_map
& classes
, bool verbose
)
465 err
= objc_stringhash_t::write(base
, remaining
, strings
);
468 if (size() > remaining
) {
469 return "selector section too small (metadata not optimized)";
472 // Set class offsets to 0
473 for (uint32_t i
= 0; i
< capacity
; i
++) {
474 classOffsets()[i
].clsOffset
= 0;
475 classOffsets()[i
].hiOffset
= 0;
478 // Set real class offsets
479 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
480 class_map::const_iterator c
;
481 for (c
= classes
.begin(); c
!= classes
.end(); ++c
) {
482 uint32_t h
= getIndex(c
->first
);
483 if (h
== INDEX_NOT_FOUND
) {
484 return "class list busted (metadata not optimized)";
487 if (classOffsets()[h
].clsOffset
!= 0) {
488 // already did this class
492 uint32_t count
= classes
.count(c
->first
);
494 // only one class with this name
496 int64_t coff
= c
->second
.first
- base
;
497 int64_t hoff
= c
->second
.second
- base
;
498 if ((coff
<<SHIFT
)>>SHIFT
!= coff
) {
499 return "class offset too big (metadata not optimized)";
501 if ((hoff
<<SHIFT
)>>SHIFT
!= hoff
) {
502 return "header offset too big (metadata not optimized)";
505 classOffsets()[h
].clsOffset
= (objc_stringhash_offset_t
)coff
;
506 classOffsets()[h
].hiOffset
= (objc_stringhash_offset_t
)hoff
;
509 // class name has duplicates - write them all now
511 fprintf(stderr
, "update_dyld_shared_cache: %u duplicates of Objective-C class %s\n", count
, c
->first
);
514 uint32_t dest
= duplicateCount();
515 duplicateCount() += count
;
516 if (size() > remaining
) {
517 return "selector section too small (metadata not optimized)";
520 // classOffsets() instead contains count and array index
521 classOffsets()[h
].clsOffset
= count
*2 + 1;
522 classOffsets()[h
].hiOffset
= dest
;
524 std::pair
<class_map::const_iterator
, class_map::const_iterator
>
525 duplicates
= classes
.equal_range(c
->first
);
526 class_map::const_iterator dup
;
527 for (dup
= duplicates
.first
; dup
!= duplicates
.second
; ++dup
) {
528 int64_t coff
= dup
->second
.first
- base
;
529 int64_t hoff
= dup
->second
.second
- base
;
530 if ((coff
<<SHIFT
)>>SHIFT
!= coff
) {
531 return "class offset too big (metadata not optimized)";
533 if ((hoff
<<SHIFT
)>>SHIFT
!= hoff
) {
534 return "header offset too big (metadata not optimized)";
537 duplicateOffsets()[dest
].clsOffset
= (objc_stringhash_offset_t
)coff
;
538 duplicateOffsets()[dest
].hiOffset
= (objc_stringhash_offset_t
)hoff
;
554 struct objc_protocolopt_t
: objc_stringhash_t
{
555 // ...objc_stringhash_t fields...
556 // uint32_t protocolOffsets[capacity]; /* offsets from &capacity to protocol_t */
558 objc_stringhash_offset_t
*protocolOffsets() { return (objc_stringhash_offset_t
*)&offsets()[capacity
]; }
559 const objc_stringhash_offset_t
*protocolOffsets() const { return (const objc_stringhash_offset_t
*)&offsets()[capacity
]; }
561 void* getProtocol(const char *key
) const
563 uint32_t h
= getIndex(key
);
564 if (h
== INDEX_NOT_FOUND
) {
568 return (void *)((const char *)this + protocolOffsets()[h
]);
576 objc_stringhash_t::size() + capacity
* sizeof(objc_stringhash_offset_t
);
579 void byteswap(bool little_endian
)
581 objc_stringhash_offset_t
*o
;
583 o
= protocolOffsets();
584 for (objc_stringhash_offset_t i
= 0; i
< capacity
; i
++) {
588 objc_stringhash_t::byteswap(little_endian
);
591 const char *write(uint64_t base
, size_t remaining
,
592 string_map
& strings
, protocol_map
& protocols
,
596 err
= objc_stringhash_t::write(base
, remaining
, strings
);
599 if (size() > remaining
) {
600 return "selector section too small (metadata not optimized)";
603 // Set protocol offsets to 0
604 for (uint32_t i
= 0; i
< capacity
; i
++) {
605 protocolOffsets()[i
] = 0;
608 // Set real protocol offsets
609 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
610 protocol_map::const_iterator c
;
611 for (c
= protocols
.begin(); c
!= protocols
.end(); ++c
) {
612 uint32_t h
= getIndex(c
->first
);
613 if (h
== INDEX_NOT_FOUND
) {
614 return "protocol list busted (metadata not optimized)";
617 int64_t offset
= c
->second
- base
;
618 if ((offset
<<SHIFT
)>>SHIFT
!= offset
) {
619 return "protocol offset too big (metadata not optimized)";
622 protocolOffsets()[h
] = (objc_stringhash_offset_t
)offset
;
634 // Precomputed image list.
635 struct objc_headeropt_t
;
637 // Precomputed class list.
638 struct objc_clsopt_t
;
640 // Edit objc-sel-table.s if you change this value.
641 enum { VERSION
= 13 };
643 // Top-level optimization structure.
644 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
645 struct alignas(alignof(void*)) objc_opt_t
{
647 int32_t selopt_offset
;
648 int32_t headeropt_offset
;
649 int32_t clsopt_offset
;
650 int32_t protocolopt_offset
;
652 const objc_selopt_t
* selopt() const {
653 if (selopt_offset
== 0) return NULL
;
654 return (objc_selopt_t
*)((uint8_t *)this + selopt_offset
);
656 objc_selopt_t
* selopt() {
657 if (selopt_offset
== 0) return NULL
;
658 return (objc_selopt_t
*)((uint8_t *)this + selopt_offset
);
661 struct objc_headeropt_t
* headeropt() const {
662 if (headeropt_offset
== 0) return NULL
;
663 return (struct objc_headeropt_t
*)((uint8_t *)this + headeropt_offset
);
666 struct objc_clsopt_t
* clsopt() const {
667 if (clsopt_offset
== 0) return NULL
;
668 return (objc_clsopt_t
*)((uint8_t *)this + clsopt_offset
);
671 struct objc_protocolopt_t
* protocolopt() const {
672 if (protocolopt_offset
== 0) return NULL
;
673 return (objc_protocolopt_t
*)((uint8_t *)this + protocolopt_offset
);
677 // sizeof(objc_opt_t) must be pointer-aligned
678 STATIC_ASSERT(sizeof(objc_opt_t
) % sizeof(void*) == 0);
680 // Initializer for empty opt of type uint32_t[].
681 #define X8(x) x, x, x, x, x, x, x, x
682 #define X64(x) X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x)
683 #define X256(x) X64(x), X64(x), X64(x), X64(x)
684 #define OPT_INITIALIZER { \
686 objc_opt::VERSION, 16, 0, 0, \
687 /* objc_selopt_t */ \
688 4, 4, 63, 3, 0, 0, 0,0, X256(0), 0, 0, 16, 16, 16, 16 \
689 /* no objc_headeropt_t */ \
690 /* no objc_clsopt_t */ \
691 /* no objc_protocolopt_t */ \
695 // List of offsets in libobjc that the shared cache optimization needs to use.
696 template <typename T
>
697 struct objc_opt_pointerlist_tt
{
700 typedef struct objc_opt_pointerlist_tt
<uintptr_t> objc_opt_pointerlist_t
;
704 --------------------------------------------------------------------
705 mix -- mix 3 64-bit values reversibly.
706 mix() takes 48 machine instructions, but only 24 cycles on a superscalar
707 machine (like Intel's new MMX architecture). It requires 4 64-bit
708 registers for 4::2 parallelism.
709 All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
710 (a,b,c), and all deltas of bottom bits were tested. All deltas were
711 tested both on random keys and on keys that were nearly all zero.
712 These deltas all cause every bit of c to change between 1/3 and 2/3
713 of the time (well, only 113/400 to 287/400 of the time for some
714 2-bit delta). These deltas all cause at least 80 bits to change
715 among (a,b,c) when the mix is run either forward or backward (yes it
717 This implies that a hash using mix64 has no funnels. There may be
718 characteristics with 3-bit deltas or bigger, I didn't test for
720 --------------------------------------------------------------------
722 #define mix64(a,b,c) \
724 a -= b; a -= c; a ^= (c>>43); \
725 b -= c; b -= a; b ^= (a<<9); \
726 c -= a; c -= b; c ^= (b>>8); \
727 a -= b; a -= c; a ^= (c>>38); \
728 b -= c; b -= a; b ^= (a<<23); \
729 c -= a; c -= b; c ^= (b>>5); \
730 a -= b; a -= c; a ^= (c>>35); \
731 b -= c; b -= a; b ^= (a<<49); \
732 c -= a; c -= b; c ^= (b>>11); \
733 a -= b; a -= c; a ^= (c>>12); \
734 b -= c; b -= a; b ^= (a<<18); \
735 c -= a; c -= b; c ^= (b>>22); \
739 --------------------------------------------------------------------
740 hash() -- hash a variable-length key into a 64-bit value
741 k : the key (the unaligned variable-length array of bytes)
742 len : the length of the key, counting by bytes
743 level : can be any 8-byte value
744 Returns a 64-bit value. Every bit of the key affects every bit of
745 the return value. No funnels. Every 1-bit and 2-bit delta achieves
746 avalanche. About 41+5len instructions.
748 The best hash table sizes are powers of 2. There is no need to do
749 mod a prime (mod is sooo slow!). If you need less than 64 bits,
750 use a bitmask. For example, if you need only 10 bits, do
751 h = (h & hashmask(10));
752 In which case, the hash table should have hashsize(10) elements.
754 If you are hashing n strings (uint8_t **)k, do it like this:
755 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
757 By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may
758 use this code any way you wish, private, educational, or commercial,
759 but I would appreciate if you give me credit.
761 See http://burtleburtle.net/bob/hash/evahash.html
762 Use for hash table lookup, or anything where one collision in 2^^64
763 is acceptable. Do NOT use for cryptographic purposes.
764 --------------------------------------------------------------------
767 static uint64_t lookup8( uint8_t *k
, size_t length
, uint64_t level
)
768 // uint8_t *k; /* the key */
769 // uint64_t length; /* the length of the key */
770 // uint64_t level; /* the previous hash, or an arbitrary value */
775 /* Set up the internal state */
777 a
= b
= level
; /* the previous hash value */
778 c
= 0x9e3779b97f4a7c13LL
; /* the golden ratio; an arbitrary value */
780 /*---------------------------------------- handle most of the key */
783 a
+= (k
[0] +((uint64_t)k
[ 1]<< 8)+((uint64_t)k
[ 2]<<16)+((uint64_t)k
[ 3]<<24)
784 +((uint64_t)k
[4 ]<<32)+((uint64_t)k
[ 5]<<40)+((uint64_t)k
[ 6]<<48)+((uint64_t)k
[ 7]<<56));
785 b
+= (k
[8] +((uint64_t)k
[ 9]<< 8)+((uint64_t)k
[10]<<16)+((uint64_t)k
[11]<<24)
786 +((uint64_t)k
[12]<<32)+((uint64_t)k
[13]<<40)+((uint64_t)k
[14]<<48)+((uint64_t)k
[15]<<56));
787 c
+= (k
[16] +((uint64_t)k
[17]<< 8)+((uint64_t)k
[18]<<16)+((uint64_t)k
[19]<<24)
788 +((uint64_t)k
[20]<<32)+((uint64_t)k
[21]<<40)+((uint64_t)k
[22]<<48)+((uint64_t)k
[23]<<56));
793 /*------------------------------------- handle the last 23 bytes */
795 switch(len
) /* all the case statements fall through */
797 case 23: c
+=((uint64_t)k
[22]<<56);
798 case 22: c
+=((uint64_t)k
[21]<<48);
799 case 21: c
+=((uint64_t)k
[20]<<40);
800 case 20: c
+=((uint64_t)k
[19]<<32);
801 case 19: c
+=((uint64_t)k
[18]<<24);
802 case 18: c
+=((uint64_t)k
[17]<<16);
803 case 17: c
+=((uint64_t)k
[16]<<8);
804 /* the first byte of c is reserved for the length */
805 case 16: b
+=((uint64_t)k
[15]<<56);
806 case 15: b
+=((uint64_t)k
[14]<<48);
807 case 14: b
+=((uint64_t)k
[13]<<40);
808 case 13: b
+=((uint64_t)k
[12]<<32);
809 case 12: b
+=((uint64_t)k
[11]<<24);
810 case 11: b
+=((uint64_t)k
[10]<<16);
811 case 10: b
+=((uint64_t)k
[ 9]<<8);
812 case 9: b
+=((uint64_t)k
[ 8]);
813 case 8: a
+=((uint64_t)k
[ 7]<<56);
814 case 7: a
+=((uint64_t)k
[ 6]<<48);
815 case 6: a
+=((uint64_t)k
[ 5]<<40);
816 case 5: a
+=((uint64_t)k
[ 4]<<32);
817 case 4: a
+=((uint64_t)k
[ 3]<<24);
818 case 3: a
+=((uint64_t)k
[ 2]<<16);
819 case 2: a
+=((uint64_t)k
[ 1]<<8);
820 case 1: a
+=((uint64_t)k
[ 0]);
821 /* case 0: nothing left to add */
824 /*-------------------------------------------- report the result */
832 ------------------------------------------------------------------------------
833 This generates a minimal perfect hash function. That means, given a
834 set of n keys, this determines a hash function that maps each of
835 those keys into a value in 0..n-1 with no collisions.
837 The perfect hash function first uses a normal hash function on the key
838 to determine (a,b) such that the pair (a,b) is distinct for all
839 keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
840 tab[] is an array of 1-byte values and scramble[] is a 256-term array of
841 2-byte or 4-byte values. If there are n keys, the length of tab[] is a
842 power of two between n/3 and n.
844 I found the idea of computing distinct (a,b) values in "Practical minimal
845 perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
846 Communications of the ACM, January 1992. They found the idea in Chichelli
847 (CACM Jan 1980). Beyond that, our methods differ.
849 The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
850 0..*blen*-1. A fast hash function determines both a and b
851 simultaneously. Any decent hash function is likely to produce
852 hashes so that (a,b) is distinct for all pairs. I try the hash
853 using different values of *salt* until all pairs are distinct.
855 The final hash is (a XOR scramble[tab[b]]). *scramble* is a
856 predetermined mapping of 0..255 into 0..smax-1. *tab* is an
857 array that we fill in in such a way as to make the hash perfect.
859 First we fill in all values of *tab* that are used by more than one
860 key. We try all possible values for each position until one works.
862 This leaves m unmapped keys and m values that something could hash to.
863 If you treat unmapped keys as lefthand nodes and unused hash values
864 as righthand nodes, and draw a line connecting each key to each hash
865 value it could map to, you get a bipartite graph. We attempt to
866 find a perfect matching in this graph. If we succeed, we have
867 determined a perfect hash for the whole set of keys.
869 *scramble* is used because (a^tab[i]) clusters keys around *a*.
870 ------------------------------------------------------------------------------
873 typedef uint64_t ub8
;
874 #define UB8MAXVAL 0xffffffffffffffffLL
876 typedef uint32_t ub4
;
877 #define UB4MAXVAL 0xffffffff
879 typedef uint16_t ub2
;
880 #define UB2MAXVAL 0xffff
883 #define UB1MAXVAL 0xff
889 #define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
890 #define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
891 #define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
894 /* representation of a key */
897 ub1
*name_k
; /* the actual key */
898 ub4 len_k
; /* the length of the actual key */
899 ub4 hash_k
; /* the initial hash value for this key */
900 /* beyond this point is mapping-dependent */
901 ub4 a_k
; /* a, of the key maps to (a,b) */
902 ub4 b_k
; /* b, of the key maps to (a,b) */
903 struct key
*nextb_k
; /* next key with this b */
905 typedef struct key key
;
907 /* things indexed by b of original (a,b) pair */
910 ub2 val_b
; /* hash=a^tabb[b].val_b */
911 key
*list_b
; /* tabb[i].list_b is list of keys with b==i */
912 ub4 listlen_b
; /* length of list_b */
913 ub4 water_b
; /* high watermark of who has visited this map node */
915 typedef struct bstuff bstuff
;
917 /* things indexed by final hash value */
920 key
*key_h
; /* tabh[i].key_h is the key with a hash of i */
922 typedef struct hstuff hstuff
;
924 /* things indexed by queue position */
927 bstuff
*b_q
; /* b that currently occupies this hash */
928 ub4 parent_q
; /* queue position of parent that could use this hash */
929 ub2 newval_q
; /* what to change parent tab[b] to to use this hash */
930 ub2 oldval_q
; /* original value of tab[b] */
932 typedef struct qstuff qstuff
;
936 ------------------------------------------------------------------------------
937 Find the mapping that will produce a perfect hash
938 ------------------------------------------------------------------------------
941 /* return the ceiling of the log (base 2) of val */
942 static ub4
log2u(ub4 val
)
945 for (i
=0; ((ub4
)1<<i
) < val
; ++i
)
950 /* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
951 /* permute(0)=0. This is intended and useful. */
952 static ub4
permute(ub4 x
, ub4 nbits
)
953 // ub4 x; /* input, a value in some range */
954 // ub4 nbits; /* input, number of bits in range */
957 int mask
= ((ub4
)1<<nbits
)-1; /* all ones */
958 int const2
= 1+nbits
/2;
959 int const3
= 1+nbits
/3;
960 int const4
= 1+nbits
/4;
961 int const5
= 1+nbits
/5;
964 x
= (x
+(x
<<const2
)) & mask
;
966 x
= (x
+(x
<<const4
)) & mask
;
972 /* initialize scramble[] with distinct random values in 0..smax-1 */
973 static void scrambleinit(ub4
*scramble
, ub4 smax
)
974 // ub4 *scramble; /* hash is a^scramble[tab[b]] */
975 // ub4 smax; /* scramble values should be in 0..smax-1 */
979 /* fill scramble[] with distinct random integers in 0..smax-1 */
980 for (i
=0; i
<SCRAMBLE_LEN
; ++i
)
982 scramble
[i
] = permute(i
, log2u(smax
));
988 * put keys in tabb according to key->b_k
989 * check if the initial hash might work
991 static int inittab(bstuff
*tabb
, ub4 blen
, key
*keys
, ub4 nkeys
, int complete
)
992 // bstuff *tabb; /* output, list of keys with b for (a,b) */
993 // ub4 blen; /* length of tabb */
994 // key *keys; /* list of keys already hashed */
995 // int complete; /* TRUE means to complete init despite collisions */
997 int nocollision
= TRUE
;
1000 memset((void *)tabb
, 0, (size_t)(sizeof(bstuff
)*blen
));
1002 /* Two keys with the same (a,b) guarantees a collision */
1003 for (i
= 0; i
< nkeys
; i
++) {
1004 key
*mykey
= keys
+i
;
1007 for (otherkey
=tabb
[mykey
->b_k
].list_b
;
1009 otherkey
=otherkey
->nextb_k
)
1011 if (mykey
->a_k
== otherkey
->a_k
)
1013 nocollision
= FALSE
;
1018 ++tabb
[mykey
->b_k
].listlen_b
;
1019 mykey
->nextb_k
= tabb
[mykey
->b_k
].list_b
;
1020 tabb
[mykey
->b_k
].list_b
= mykey
;
1023 /* no two keys have the same (a,b) pair */
1028 /* Do the initial hash for normal mode (use lookup and checksum) */
1029 static void initnorm(key
*keys
, ub4 nkeys
, ub4 alen
, ub4 blen
, ub4 smax
, ub8 salt
)
1030 // key *keys; /* list of all keys */
1031 // ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
1032 // ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
1033 // ub4 smax; /* maximum range of computable hash values */
1034 // ub4 salt; /* used to initialize the hash function */
1035 // gencode *final; /* output, code for the final hash */
1037 ub4 loga
= log2u(alen
); /* log based 2 of blen */
1039 for (i
= 0; i
< nkeys
; i
++) {
1040 key
*mykey
= keys
+i
;
1041 ub8 hash
= lookup8(mykey
->name_k
, mykey
->len_k
, salt
);
1042 mykey
->a_k
= (loga
> 0) ? hash
>>(UB8BITS
-loga
) : 0;
1043 mykey
->b_k
= (blen
> 1) ? hash
&(blen
-1) : 0;
1048 /* Try to apply an augmenting list */
1049 static int apply(bstuff
*tabb
, hstuff
*tabh
, qstuff
*tabq
, ub4 blen
, ub4
*scramble
, ub4 tail
, int rollback
)
1056 // int rollback; /* FALSE applies augmenting path, TRUE rolls back */
1063 ub4 stabb
; /* scramble[tab[b]] */
1065 /* walk from child to parent */
1066 for (child
=tail
-1; child
; child
=parent
)
1068 parent
= tabq
[child
].parent_q
; /* find child's parent */
1069 pb
= tabq
[parent
].b_q
; /* find parent's list of siblings */
1071 /* erase old hash values */
1072 stabb
= scramble
[pb
->val_b
];
1073 for (mykey
=pb
->list_b
; mykey
; mykey
=mykey
->nextb_k
)
1075 hash
= mykey
->a_k
^stabb
;
1076 if (mykey
== tabh
[hash
].key_h
)
1077 { /* erase hash for all of child's siblings */
1078 tabh
[hash
].key_h
= (key
*)0;
1082 /* change pb->val_b, which will change the hashes of all parent siblings */
1083 pb
->val_b
= (rollback
? tabq
[child
].oldval_q
: tabq
[child
].newval_q
);
1085 /* set new hash values */
1086 stabb
= scramble
[pb
->val_b
];
1087 for (mykey
=pb
->list_b
; mykey
; mykey
=mykey
->nextb_k
)
1089 hash
= mykey
->a_k
^stabb
;
1092 if (parent
== 0) continue; /* root never had a hash */
1094 else if (tabh
[hash
].key_h
)
1096 /* very rare: roll back any changes */
1097 apply(tabb
, tabh
, tabq
, blen
, scramble
, tail
, TRUE
);
1098 return FALSE
; /* failure, collision */
1100 tabh
[hash
].key_h
= mykey
;
1108 -------------------------------------------------------------------------------
1109 augment(): Add item to the mapping.
1111 Construct a spanning tree of *b*s with *item* as root, where each
1112 parent can have all its hashes changed (by some new val_b) with
1113 at most one collision, and each child is the b of that collision.
1115 I got this from Tarjan's "Data Structures and Network Algorithms". The
1116 path from *item* to a *b* that can be remapped with no collision is
1117 an "augmenting path". Change values of tab[b] along the path so that
1118 the unmapped key gets mapped and the unused hash value gets used.
1120 Assuming 1 key per b, if m out of n hash values are still unused,
1121 you should expect the transitive closure to cover n/m nodes before
1122 an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
1123 this approach to take about nlogn time to map all single-key b's.
1124 -------------------------------------------------------------------------------
1126 static int augment(bstuff
*tabb
, hstuff
*tabh
, qstuff
*tabq
, ub4 blen
, ub4
*scramble
, ub4 smax
, bstuff
*item
, ub4 nkeys
,
1128 // bstuff *tabb; /* stuff indexed by b */
1129 // hstuff *tabh; /* which key is associated with which hash, indexed by hash */
1130 // qstuff *tabq; /* queue of *b* values, this is the spanning tree */
1131 // ub4 blen; /* length of tabb */
1132 // ub4 *scramble; /* final hash is a^scramble[tab[b]] */
1133 // ub4 smax; /* highest value in scramble */
1134 // bstuff *item; /* &tabb[b] for the b to be mapped */
1135 // ub4 nkeys; /* final hash must be in 0..nkeys-1 */
1136 // ub4 highwater; /* a value higher than any now in tabb[].water_b */
1138 ub4 q
; /* current position walking through the queue */
1139 ub4 tail
; /* tail of the queue. 0 is the head of the queue. */
1140 ub4 limit
=UB1MAXVAL
+1;
1141 ub4 highhash
= smax
;
1143 /* initialize the root of the spanning tree */
1147 /* construct the spanning tree by walking the queue, add children to tail */
1148 for (q
=0; q
<tail
; ++q
)
1150 bstuff
*myb
= tabq
[q
].b_q
; /* the b for this node */
1151 ub4 i
; /* possible value for myb->val_b */
1154 break; /* don't do transitive closure */
1156 for (i
=0; i
<limit
; ++i
)
1158 bstuff
*childb
= (bstuff
*)0; /* the b that this i maps to */
1159 key
*mykey
; /* for walking through myb's keys */
1161 for (mykey
= myb
->list_b
; mykey
; mykey
=mykey
->nextb_k
)
1164 ub4 hash
= mykey
->a_k
^scramble
[i
];
1166 if (hash
>= highhash
) break; /* out of bounds */
1167 childkey
= tabh
[hash
].key_h
;
1171 bstuff
*hitb
= &tabb
[childkey
->b_k
];
1175 if (childb
!= hitb
) break; /* hit at most one child b */
1179 childb
= hitb
; /* remember this as childb */
1180 if (childb
->water_b
== highwater
) break; /* already explored */
1184 if (mykey
) continue; /* myb with i has multiple collisions */
1186 /* add childb to the queue of reachable things */
1187 if (childb
) childb
->water_b
= highwater
;
1188 tabq
[tail
].b_q
= childb
;
1189 tabq
[tail
].newval_q
= i
; /* how to make parent (myb) use this hash */
1190 tabq
[tail
].oldval_q
= myb
->val_b
; /* need this for rollback */
1191 tabq
[tail
].parent_q
= q
;
1195 { /* found an *i* with no collisions? */
1196 /* try to apply the augmenting path */
1197 if (apply(tabb
, tabh
, tabq
, blen
, scramble
, tail
, FALSE
))
1198 return TRUE
; /* success, item was added to the perfect hash */
1200 --tail
; /* don't know how to handle such a child! */
1208 /* find a mapping that makes this a perfect hash */
1209 static int perfect(bstuff
*tabb
, hstuff
*tabh
, qstuff
*tabq
, ub4 blen
, ub4 smax
, ub4
*scramble
, ub4 nkeys
)
1211 ub4 maxkeys
; /* maximum number of keys for any b */
1215 fprintf(stderr
, " blen %d smax %d nkeys %d\n", blen
, smax
, nkeys
);
1218 /* clear any state from previous attempts */
1219 memset((void *)tabh
, 0, sizeof(hstuff
)*smax
);
1220 memset((void *)tabq
, 0, sizeof(qstuff
)*(blen
+1));
1222 for (maxkeys
=0,i
=0; i
<blen
; ++i
)
1223 if (tabb
[i
].listlen_b
> maxkeys
)
1224 maxkeys
= tabb
[i
].listlen_b
;
1226 /* In descending order by number of keys, map all *b*s */
1227 for (j
=maxkeys
; j
>0; --j
)
1228 for (i
=0; i
<blen
; ++i
)
1229 if (tabb
[i
].listlen_b
== j
)
1230 if (!augment(tabb
, tabh
, tabq
, blen
, scramble
, smax
, &tabb
[i
], nkeys
,
1236 /* Success! We found a perfect hash of all keys into 0..nkeys-1. */
1241 /* guess initial values for alen and blen */
1242 static void initalen(ub4
*alen
, ub4
*blen
, ub4 smax
, ub4 nkeys
)
1243 // ub4 *alen; /* output, initial alen */
1244 // ub4 *blen; /* output, initial blen */
1245 // ub4 smax; /* input, power of two greater or equal to max hash value */
1246 // ub4 nkeys; /* number of keys being hashed */
1249 * Find initial *alen, *blen
1250 * Initial alen and blen values were found empirically. Some factors:
1252 * If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
1254 * alen and blen must be powers of 2 because the values in 0..alen-1 and
1255 * 0..blen-1 are produced by applying a bitmask to the initial hash function.
1257 * alen must be less than smax, in fact less than nkeys, because otherwise
1258 * there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
1259 * all the *a*s associated with a given *b*, so there would be no legal
1260 * value to assign to tab[b]. This only matters when we're doing a minimal
1263 * It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
1264 * and alen*blen = smax*smax/32.
1266 * Values of blen less than smax/4 never work, and smax/2 always works.
1268 * We want blen as small as possible because it is the number of bytes in
1269 * the huge array we must create for the perfect hash.
1271 * When nkey <= smax*(5/8), blen=smax/4 works much more often with
1272 * alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
1273 * doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
1274 * has something to do with 5/8 = 1/8 * 5. For example examine 80000,
1275 * 85000, and 90000 keys with different values of alen. This only matters
1276 * if we're doing a minimal perfect hash.
1278 * When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
1279 * Bigger than that it must produce two integers, which increases the
1280 * cost of the hash per character hashed.
1282 *alen
= smax
; /* no reason to restrict alen to smax/2 */
1283 *blen
= ((nkeys
<= smax
*0.6) ? smax
/16 :
1284 (nkeys
<= smax
*0.8) ? smax
/8 : smax
/4);
1286 if (*alen
< 1) *alen
= 1;
1287 if (*blen
< 1) *blen
= 1;
1290 fprintf(stderr
, "alen %d blen %d smax %d nkeys %d\n", *alen
, *blen
, smax
, nkeys
);
1295 ** Try to find a perfect hash function.
1296 ** Return the successful initializer for the initial hash.
1297 ** Return 0 if no perfect hash could be found.
1299 static int findhash(bstuff
**tabb
, ub4
*alen
, ub4
*blen
, ub8
*salt
,
1300 ub4
*scramble
, ub4 smax
, key
*keys
, ub4 nkeys
)
1301 // bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
1302 // ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
1303 // ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
1304 // ub4 *salt; /* output, initializes initial hash */
1305 // ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
1306 // ub4 smax; /* input, scramble[i] in 0..smax-1 */
1307 // key *keys; /* input, keys to hash */
1308 // ub4 nkeys; /* input, number of keys being hashed */
1310 ub4 bad_initkey
; /* how many times did initkey fail? */
1311 ub4 bad_perfect
; /* how many times did perfect fail? */
1312 ub4 si
; /* trial initializer for initial hash */
1314 hstuff
*tabh
; /* table of keys indexed by hash value */
1315 qstuff
*tabq
; /* table of stuff indexed by queue value, used by augment */
1317 /* guess initial values for alen and blen */
1318 initalen(alen
, blen
, smax
, nkeys
);
1320 scrambleinit(scramble
, smax
);
1324 /* allocate working memory */
1325 *tabb
= new bstuff
[*blen
];
1326 tabq
= new qstuff
[*blen
+1];
1327 tabh
= new hstuff
[smax
];
1329 /* Actually find the perfect hash */
1336 /* Try to find distinct (A,B) for all keys */
1337 *salt
= si
* 0x9e3779b97f4a7c13LL
; /* golden ratio (arbitrary value) */
1338 initnorm(keys
, nkeys
, *alen
, *blen
, smax
, *salt
);
1339 rslinit
= inittab(*tabb
, *blen
, keys
, nkeys
, FALSE
);
1342 /* didn't find distinct (a,b) */
1343 if (++bad_initkey
>= RETRY_INITKEY
)
1345 /* Try to put more bits in (A,B) to make distinct (A,B) more likely */
1346 if (*alen
< maxalen
)
1350 else if (*blen
< smax
)
1355 *tabb
= new bstuff
[*blen
];
1356 tabq
= new qstuff
[*blen
+1];
1361 continue; /* two keys have same (a,b) pair */
1364 /* Given distinct (A,B) for all keys, build a perfect hash */
1365 if (!perfect(*tabb
, tabh
, tabq
, *blen
, smax
, scramble
, nkeys
))
1367 if (++bad_perfect
>= RETRY_PERFECT
)
1374 *tabb
= new bstuff
[*blen
];
1375 tabq
= new qstuff
[*blen
+1];
1376 --si
; /* we know this salt got distinct (A,B) */
1390 /* free working memory */
1398 ------------------------------------------------------------------------------
1399 Input/output type routines
1400 ------------------------------------------------------------------------------
1403 /* get the list of keys */
1404 static void getkeys(key
**keys
, ub4
*nkeys
, const string_map
& strings
)
1406 key
*buf
= new key
[strings
.size()];
1408 string_map::const_iterator s
;
1409 for (i
= 0, s
= strings
.begin(); s
!= strings
.end(); ++s
, ++i
) {
1411 mykey
->name_k
= (ub1
*)s
->first
;
1412 mykey
->len_k
= (ub4
)strlen(s
->first
);
1415 *nkeys
= strings
.size();
1420 make_perfect(const string_map
& strings
)
1422 ub4 nkeys
; /* number of keys */
1423 key
*keys
; /* head of list of keys */
1424 bstuff
*tab
; /* table indexed by b */
1425 ub4 smax
; /* scramble[] values in 0..smax-1, a power of 2 */
1426 ub4 alen
; /* a in 0..alen-1, a power of 2 */
1427 ub4 blen
; /* b in 0..blen-1, a power of 2 */
1428 ub8 salt
; /* a parameter to the hash function */
1429 ub4 scramble
[SCRAMBLE_LEN
]; /* used in final hash function */
1432 perfect_hash result
;
1434 /* read in the list of keywords */
1435 getkeys(&keys
, &nkeys
, strings
);
1438 smax
= ((ub4
)1<<log2u(nkeys
));
1439 ok
= findhash(&tab
, &alen
, &blen
, &salt
,
1440 scramble
, smax
, keys
, nkeys
);
1442 smax
= 2 * ((ub4
)1<<log2u(nkeys
));
1443 ok
= findhash(&tab
, &alen
, &blen
, &salt
,
1444 scramble
, smax
, keys
, nkeys
);
1447 bzero(&result
, sizeof(result
));
1449 /* build the tables */
1450 result
.capacity
= smax
;
1451 result
.occupied
= nkeys
;
1452 result
.shift
= UB8BITS
- log2u(alen
);
1453 result
.mask
= blen
- 1;
1456 result
.tab
= new uint8_t[blen
];
1457 for (i
= 0; i
< blen
; i
++) {
1458 result
.tab
[i
] = tab
[i
].val_b
;
1460 for (i
= 0; i
< 256; i
++) {
1461 result
.scramble
[i
] = scramble
[i
];
1474 // namespace objc_selopt