]> git.saurik.com Git - apple/dyld.git/blob - include/objc-shared-cache.h
8d59bfb4a197f7682532fc57fb1afa0c0c4e6ec8
[apple/dyld.git] / include / objc-shared-cache.h
1 /*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 /*
25 Portions derived from:
26
27 --------------------------------------------------------------------
28 lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
29 hash(), hash2(), hash3, and mix() are externally useful functions.
30 Routines to test the hash are included if SELF_TEST is defined.
31 You can use this free for any purpose. It has no warranty.
32 --------------------------------------------------------------------
33
34 ------------------------------------------------------------------------------
35 perfect.c: code to generate code for a hash for perfect hashing.
36 (c) Bob Jenkins, September 1996, December 1999
37 You may use this code in any way you wish, and it is free. No warranty.
38 I hereby place this in the public domain.
39 Source is http://burtleburtle.net/bob/c/perfect.c
40 ------------------------------------------------------------------------------
41 */
42
43 /*
44 * objc-selopt.h
45 * Interface between libobjc and dyld
46 * for selector uniquing in the dyld shared cache.
47 *
48 * When building the shared cache, dyld locates all selectors and selector
49 * references in the cached images. It builds a perfect hash table out of
50 * them and writes the table into the shared cache copy of libobjc.
51 * libobjc then uses that table as the builtin selector list.
52 *
53 * Versioning
54 * The table has a version number. dyld and objc can both ignore the table
55 * if the other used the wrong version number.
56 *
57 * Completeness
58 * Not all libraries are in the shared cache. Libraries that are in the
59 * shared cache and were optimized are specially marked. Libraries on
60 * disk never include those marks.
61 *
62 * Coherency
63 * Libraries optimized in the shared cache can be replaced by unoptimized
64 * copies from disk when loaded. The copy from disk is not marked and will
65 * be fixed up by libobjc. The shared cache copy is still mapped into the
66 * process, so the table can point to cstring data in that library's part
67 * of the shared cache without trouble.
68 *
69 * Atomicity
70 * dyld writes the table itself last. If dyld marks some metadata as
71 * updated but then fails to write a table for some reason, libobjc
72 * fixes up all metadata as if it were not marked.
73 */
74
75 #ifndef _OBJC_SELOPT_H
76 #define _OBJC_SELOPT_H
77
78 /*
79 DO NOT INCLUDE ANY objc HEADERS HERE
80 dyld USES THIS FILE AND CANNOT SEE THEM
81 */
82 #include <stdint.h>
83 #include <stdlib.h>
84 #ifdef SELOPT_WRITE
85 #include <unordered_map>
86 #endif
87 /*
88 DO NOT INCLUDE ANY objc HEADERS HERE
89 dyld USES THIS FILE AND CANNOT SEE THEM
90 */
91
92 #ifndef STATIC_ASSERT
93 # define STATIC_ASSERT(x) _STATIC_ASSERT2(x, __LINE__)
94 # define _STATIC_ASSERT2(x, line) _STATIC_ASSERT3(x, line)
95 # define _STATIC_ASSERT3(x, line) \
96 typedef struct { \
97 int _static_assert[(x) ? 0 : -1]; \
98 } _static_assert_ ## line __attribute__((unavailable))
99 #endif
100
101 #define SELOPT_DEBUG 0
102
103 #define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
104 #define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
105
106 namespace objc_opt {
107
108 typedef int32_t objc_stringhash_offset_t;
109 typedef uint8_t objc_stringhash_check_t;
110
111 static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level);
112
113 #ifdef SELOPT_WRITE
114
115 // Perfect hash code is at the end of this file.
116
117 struct perfect_hash {
118 uint32_t capacity;
119 uint32_t occupied;
120 uint32_t shift;
121 uint32_t mask;
122 uint64_t salt;
123
124 uint32_t scramble[256];
125 uint8_t *tab; // count == mask+1; free with delete[]
126
127 perfect_hash() : tab(0) { }
128
129 ~perfect_hash() { if (tab) delete[] tab; }
130 };
131
132 struct eqstr {
133 bool operator()(const char* s1, const char* s2) const {
134 return strcmp(s1, s2) == 0;
135 }
136 };
137
138 struct hashstr {
139 size_t operator()(const char *s) const {
140 return (size_t)lookup8((uint8_t *)s, strlen(s), 0);
141 }
142 };
143
144 // cstring => cstring's vmaddress
145 // (used for selector names and class names)
146 typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> string_map;
147
148 // class name => (class vmaddress, header_info vmaddress)
149 typedef std::unordered_multimap<const char *, std::pair<uint64_t, uint64_t>, hashstr, eqstr> class_map;
150
151 static perfect_hash make_perfect(const string_map& strings);
152
153 #endif
154
155
156 // Precomputed perfect hash table of strings.
157 // Base class for precomputed selector table and class table.
158 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
159 struct objc_stringhash_t {
160 uint32_t capacity;
161 uint32_t occupied;
162 uint32_t shift;
163 uint32_t mask;
164 uint32_t zero;
165 uint32_t unused; // alignment pad
166 uint64_t salt;
167
168 uint32_t scramble[256];
169 uint8_t tab[0]; /* tab[mask+1] (always power-of-2) */
170 // uint8_t checkbytes[capacity]; /* check byte for each string */
171 // int32_t offsets[capacity]; /* offsets from &capacity to cstrings */
172
173 objc_stringhash_check_t *checkbytes() { return (objc_stringhash_check_t *)&tab[mask+1]; }
174 const objc_stringhash_check_t *checkbytes() const { return (const objc_stringhash_check_t *)&tab[mask+1]; }
175
176 objc_stringhash_offset_t *offsets() { return (objc_stringhash_offset_t *)&checkbytes()[capacity]; }
177 const objc_stringhash_offset_t *offsets() const { return (const objc_stringhash_offset_t *)&checkbytes()[capacity]; }
178
179 uint32_t hash(const char *key, size_t keylen) const
180 {
181 uint64_t val = lookup8((uint8_t*)key, keylen, salt);
182 uint32_t index = (uint32_t)(val>>shift) ^ scramble[tab[val&mask]];
183 return index;
184 }
185
186 uint32_t hash(const char *key) const
187 {
188 return hash(key, strlen(key));
189 }
190
191 // The check bytes areused to reject strings that aren't in the table
192 // without paging in the table's cstring data. This checkbyte calculation
193 // catches 4785/4815 rejects when launching Safari; a perfect checkbyte
194 // would catch 4796/4815.
195 objc_stringhash_check_t checkbyte(const char *key, size_t keylen) const
196 {
197 return
198 ((key[0] & 0x7) << 5)
199 |
200 ((uint8_t)keylen & 0x1f);
201 }
202
203 objc_stringhash_check_t checkbyte(const char *key) const
204 {
205 return checkbyte(key, strlen(key));
206 }
207
208
209 #define INDEX_NOT_FOUND (~(uint32_t)0)
210
211 uint32_t getIndex(const char *key) const
212 {
213 size_t keylen = strlen(key);
214 uint32_t h = hash(key, keylen);
215
216 // Use check byte to reject without paging in the table's cstrings
217 objc_stringhash_check_t h_check = checkbytes()[h];
218 objc_stringhash_check_t key_check = checkbyte(key, keylen);
219 bool check_fail = (h_check != key_check);
220 #if ! SELOPT_DEBUG
221 if (check_fail) return INDEX_NOT_FOUND;
222 #endif
223
224 // fixme change &zero to 0 in the next version-breaking update
225 objc_stringhash_offset_t offset = offsets()[h];
226 if (offset == offsetof(objc_stringhash_t,zero)) return INDEX_NOT_FOUND;
227 const char *result = (const char *)this + offset;
228 if (0 != strcmp(key, result)) return INDEX_NOT_FOUND;
229
230 #if SELOPT_DEBUG
231 if (check_fail) abort();
232 #endif
233
234 return h;
235 }
236
237 #ifdef SELOPT_WRITE
238
239 size_t size()
240 {
241 return sizeof(objc_stringhash_t)
242 + mask+1
243 + capacity * sizeof(objc_stringhash_check_t)
244 + capacity * sizeof(objc_stringhash_offset_t);
245 }
246
247 void byteswap(bool little_endian)
248 {
249 // tab and checkbytes are arrays of bytes, no swap needed
250 for (uint32_t i = 0; i < 256; i++) {
251 S32(scramble[i]);
252 }
253 objc_stringhash_offset_t *o = offsets();
254 for (uint32_t i = 0; i < capacity; i++) {
255 S32(o[i]);
256 }
257
258 S32(capacity);
259 S32(occupied);
260 S32(shift);
261 S32(mask);
262 S32(zero);
263 S64(salt);
264 }
265
266 const char *write(uint64_t base, size_t remaining, string_map& strings)
267 {
268 if (sizeof(objc_stringhash_t) > remaining) {
269 return "selector section too small (metadata not optimized)";
270 }
271
272 if (strings.size() == 0) {
273 bzero(this, sizeof(objc_stringhash_t));
274 return NULL;
275 }
276
277 perfect_hash phash = make_perfect(strings);
278 if (phash.capacity == 0) {
279 return "perfect hash failed (metadata not optimized)";
280 }
281
282 // Set header
283 capacity = phash.capacity;
284 occupied = phash.occupied;
285 shift = phash.shift;
286 mask = phash.mask;
287 zero = 0;
288 unused = 0;
289 salt = phash.salt;
290
291 if (size() > remaining) {
292 return "selector section too small (metadata not optimized)";
293 }
294
295 // Set hash data
296 for (uint32_t i = 0; i < 256; i++) {
297 scramble[i] = phash.scramble[i];
298 }
299 for (uint32_t i = 0; i < phash.mask+1; i++) {
300 tab[i] = phash.tab[i];
301 }
302
303 // Set offsets to ""
304 for (uint32_t i = 0; i < phash.capacity; i++) {
305 offsets()[i] =
306 (objc_stringhash_offset_t)offsetof(objc_stringhash_t, zero);
307 }
308 // Set checkbytes to 0
309 for (uint32_t i = 0; i < phash.capacity; i++) {
310 checkbytes()[i] = 0;
311 }
312
313 // Set real string offsets and checkbytes
314 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
315 string_map::const_iterator s;
316 for (s = strings.begin(); s != strings.end(); ++s) {
317 int64_t offset = s->second - base;
318 if ((offset<<SHIFT)>>SHIFT != offset) {
319 return "selector offset too big (metadata not optimized)";
320 }
321
322 uint32_t h = hash(s->first);
323 offsets()[h] = (objc_stringhash_offset_t)offset;
324 checkbytes()[h] = checkbyte(s->first);
325 }
326 # undef SHIFT
327
328 return NULL;
329 }
330
331 // SELOPT_WRITE
332 #endif
333 };
334
335
336 // Precomputed selector table.
337 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
338 struct objc_selopt_t : objc_stringhash_t {
339 const char *get(const char *key) const
340 {
341 uint32_t h = getIndex(key);
342 if (h == INDEX_NOT_FOUND) return NULL;
343
344 return (const char *)this + offsets()[h];
345 }
346 };
347
348 // Precomputed class list.
349 // Edit objc-sel-table.s and OPT_INITIALIZER if you change these structures.
350
351 struct objc_classheader_t {
352 objc_stringhash_offset_t clsOffset;
353 objc_stringhash_offset_t hiOffset;
354
355 // For duplicate class names:
356 // clsOffset = count<<1 | 1
357 // duplicated classes are duplicateOffsets[hiOffset..hiOffset+count-1]
358 bool isDuplicate() const { return clsOffset & 1; }
359 uint32_t duplicateCount() const { return clsOffset >> 1; }
360 uint32_t duplicateIndex() const { return hiOffset; }
361 };
362
363
364 struct objc_clsopt_t : objc_stringhash_t {
365 // ...objc_stringhash_t fields...
366 // objc_classheader_t classOffsets[capacity]; /* offsets from &capacity to class_t and header_info */
367 // uint32_t duplicateCount;
368 // objc_classheader_t duplicateOffsets[duplicatedClasses];
369
370 objc_classheader_t *classOffsets() { return (objc_classheader_t *)&offsets()[capacity]; }
371 const objc_classheader_t *classOffsets() const { return (const objc_classheader_t *)&offsets()[capacity]; }
372
373 uint32_t& duplicateCount() { return *(uint32_t *)&classOffsets()[capacity]; }
374 const uint32_t& duplicateCount() const { return *(const uint32_t *)&classOffsets()[capacity]; }
375
376 objc_classheader_t *duplicateOffsets() { return (objc_classheader_t *)(&duplicateCount()+1); }
377 const objc_classheader_t *duplicateOffsets() const { return (const objc_classheader_t *)(&duplicateCount()+1); }
378
379 // 0/NULL/NULL: not found
380 // 1/ptr/ptr: found exactly one
381 // n/NULL/NULL: found N - use getClassesAndHeaders() instead
382 uint32_t getClassAndHeader(const char *key, void*& cls, void*& hi) const
383 {
384 uint32_t h = getIndex(key);
385 if (h == INDEX_NOT_FOUND) {
386 cls = NULL;
387 hi = NULL;
388 return 0;
389 }
390
391 const objc_classheader_t& clshi = classOffsets()[h];
392 if (! clshi.isDuplicate()) {
393 // class appears in exactly one header
394 cls = (void *)((const char *)this + clshi.clsOffset);
395 hi = (void *)((const char *)this + clshi.hiOffset);
396 return 1;
397 }
398 else {
399 // class appears in more than one header - use getClassesAndHeaders
400 cls = NULL;
401 hi = NULL;
402 return clshi.duplicateCount();
403 }
404 }
405
406 void getClassesAndHeaders(const char *key, void **cls, void **hi) const
407 {
408 uint32_t h = getIndex(key);
409 if (h == INDEX_NOT_FOUND) return;
410
411 const objc_classheader_t& clshi = classOffsets()[h];
412 if (! clshi.isDuplicate()) {
413 // class appears in exactly one header
414 cls[0] = (void *)((const char *)this + clshi.clsOffset);
415 hi[0] = (void *)((const char *)this + clshi.hiOffset);
416 }
417 else {
418 // class appears in more than one header
419 uint32_t count = clshi.duplicateCount();
420 const objc_classheader_t *list =
421 &duplicateOffsets()[clshi.duplicateIndex()];
422 for (uint32_t i = 0; i < count; i++) {
423 cls[i] = (void *)((const char *)this + list[i].clsOffset);
424 hi[i] = (void *)((const char *)this + list[i].hiOffset);
425 }
426 }
427 }
428
429 #ifdef SELOPT_WRITE
430
431 size_t size()
432 {
433 return
434 objc_stringhash_t::size()
435 + capacity * sizeof(objc_classheader_t)
436 + sizeof(duplicateCount())
437 + duplicateCount() * sizeof(objc_classheader_t);
438 }
439
440 void byteswap(bool little_endian)
441 {
442 objc_classheader_t *o;
443
444 o = classOffsets();
445 for (uint32_t i = 0; i < capacity; i++) {
446 S32(o[i].clsOffset);
447 S32(o[i].hiOffset);
448 }
449
450 o = duplicateOffsets();
451 for (uint32_t i = 0; i < duplicateCount(); i++) {
452 S32(o[i].clsOffset);
453 S32(o[i].hiOffset);
454 }
455
456 S32(duplicateCount());
457
458 objc_stringhash_t::byteswap(little_endian);
459 }
460
461 const char *write(uint64_t base, size_t remaining,
462 string_map& strings, class_map& classes, bool verbose)
463 {
464 const char *err;
465 err = objc_stringhash_t::write(base, remaining, strings);
466 if (err) return err;
467
468 if (size() > remaining) {
469 return "selector section too small (metadata not optimized)";
470 }
471
472 // Set class offsets to &zero
473 objc_stringhash_offset_t zeroOffset =
474 (objc_stringhash_offset_t)offsetof(objc_stringhash_t, zero);
475 for (uint32_t i = 0; i < capacity; i++) {
476 classOffsets()[i].clsOffset = zeroOffset;
477 classOffsets()[i].hiOffset = zeroOffset;
478 }
479
480 // Set real class offsets
481 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
482 class_map::const_iterator c;
483 for (c = classes.begin(); c != classes.end(); ++c) {
484 uint32_t h = getIndex(c->first);
485 if (h == INDEX_NOT_FOUND) {
486 return "class list busted (metadata not optimized)";
487 }
488
489 if (classOffsets()[h].clsOffset != zeroOffset) {
490 // already did this class
491 continue;
492 }
493
494 uint32_t count = classes.count(c->first);
495 if (count == 1) {
496 // only one class with this name
497
498 int64_t coff = c->second.first - base;
499 int64_t hoff = c->second.second - base;
500 if ((coff<<SHIFT)>>SHIFT != coff) {
501 return "class offset too big (metadata not optimized)";
502 }
503 if ((hoff<<SHIFT)>>SHIFT != hoff) {
504 return "header offset too big (metadata not optimized)";
505 }
506
507 classOffsets()[h].clsOffset = (objc_stringhash_offset_t)coff;
508 classOffsets()[h].hiOffset = (objc_stringhash_offset_t)hoff;
509 }
510 else {
511 // class name has duplicates - write them all now
512 if (verbose) {
513 fprintf(stderr, "update_dyld_shared_cache: %u duplicates of Objective-C class %s\n", count, c->first);
514 }
515
516 uint32_t dest = duplicateCount();
517 duplicateCount() += count;
518 if (size() > remaining) {
519 return "selector section too small (metadata not optimized)";
520 }
521
522 // classOffsets() instead contains count and array index
523 classOffsets()[h].clsOffset = count*2 + 1;
524 classOffsets()[h].hiOffset = dest;
525
526 std::pair<class_map::const_iterator, class_map::const_iterator>
527 duplicates = classes.equal_range(c->first);
528 class_map::const_iterator dup;
529 for (dup = duplicates.first; dup != duplicates.second; ++dup) {
530 int64_t coff = dup->second.first - base;
531 int64_t hoff = dup->second.second - base;
532 if ((coff<<SHIFT)>>SHIFT != coff) {
533 return "class offset too big (metadata not optimized)";
534 }
535 if ((hoff<<SHIFT)>>SHIFT != hoff) {
536 return "header offset too big (metadata not optimized)";
537 }
538
539 duplicateOffsets()[dest].clsOffset = (objc_stringhash_offset_t)coff;
540 duplicateOffsets()[dest].hiOffset = (objc_stringhash_offset_t)hoff;
541 dest++;
542 }
543 }
544 }
545 # undef SHIFT
546
547 return NULL;
548 }
549
550 // SELOPT_WRITE
551 #endif
552 };
553
554 // Precomputed image list.
555 struct objc_headeropt_t;
556
557 // Precomputed class list.
558 struct objc_clsopt_t;
559
560 // Edit objc-sel-table.s if you change this value.
561 enum { VERSION = 12 };
562
563 // Top-level optimization structure.
564 // Edit objc-sel-table.s and OPT_INITIALIZER if you change this structure.
565 struct objc_opt_t {
566 uint32_t version;
567 int32_t selopt_offset;
568 int32_t headeropt_offset;
569 int32_t clsopt_offset;
570
571 const objc_selopt_t* selopt() const {
572 if (selopt_offset == 0) return NULL;
573 return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
574 }
575 objc_selopt_t* selopt() {
576 if (selopt_offset == 0) return NULL;
577 return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
578 }
579
580 struct objc_headeropt_t* headeropt() const {
581 if (headeropt_offset == 0) return NULL;
582 return (struct objc_headeropt_t *)((uint8_t *)this + headeropt_offset);
583 }
584
585 struct objc_clsopt_t* clsopt() const {
586 if (clsopt_offset == 0) return NULL;
587 return (objc_clsopt_t *)((uint8_t *)this + clsopt_offset);
588 }
589 };
590
591 // sizeof(objc_opt_t) must be pointer-aligned
592 STATIC_ASSERT(sizeof(objc_opt_t) % sizeof(void*) == 0);
593
594 // Initializer for empty opt of type uint32_t[].
595 #define X8(x) x, x, x, x, x, x, x, x
596 #define X64(x) X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x)
597 #define X256(x) X64(x), X64(x), X64(x), X64(x)
598 #define OPT_INITIALIZER { \
599 /* objc_opt_t */ \
600 objc_opt::VERSION, 16, 0, 0, \
601 /* objc_selopt_t */ \
602 4, 4, 63, 3, 0, 0, 0,0, X256(0), 0, 0, 16, 16, 16, 16 \
603 /* no objc_headeropt_t */ \
604 /* no objc_clsopt_t */ \
605 }
606
607
608 /*
609 --------------------------------------------------------------------
610 mix -- mix 3 64-bit values reversibly.
611 mix() takes 48 machine instructions, but only 24 cycles on a superscalar
612 machine (like Intel's new MMX architecture). It requires 4 64-bit
613 registers for 4::2 parallelism.
614 All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
615 (a,b,c), and all deltas of bottom bits were tested. All deltas were
616 tested both on random keys and on keys that were nearly all zero.
617 These deltas all cause every bit of c to change between 1/3 and 2/3
618 of the time (well, only 113/400 to 287/400 of the time for some
619 2-bit delta). These deltas all cause at least 80 bits to change
620 among (a,b,c) when the mix is run either forward or backward (yes it
621 is reversible).
622 This implies that a hash using mix64 has no funnels. There may be
623 characteristics with 3-bit deltas or bigger, I didn't test for
624 those.
625 --------------------------------------------------------------------
626 */
627 #define mix64(a,b,c) \
628 { \
629 a -= b; a -= c; a ^= (c>>43); \
630 b -= c; b -= a; b ^= (a<<9); \
631 c -= a; c -= b; c ^= (b>>8); \
632 a -= b; a -= c; a ^= (c>>38); \
633 b -= c; b -= a; b ^= (a<<23); \
634 c -= a; c -= b; c ^= (b>>5); \
635 a -= b; a -= c; a ^= (c>>35); \
636 b -= c; b -= a; b ^= (a<<49); \
637 c -= a; c -= b; c ^= (b>>11); \
638 a -= b; a -= c; a ^= (c>>12); \
639 b -= c; b -= a; b ^= (a<<18); \
640 c -= a; c -= b; c ^= (b>>22); \
641 }
642
643 /*
644 --------------------------------------------------------------------
645 hash() -- hash a variable-length key into a 64-bit value
646 k : the key (the unaligned variable-length array of bytes)
647 len : the length of the key, counting by bytes
648 level : can be any 8-byte value
649 Returns a 64-bit value. Every bit of the key affects every bit of
650 the return value. No funnels. Every 1-bit and 2-bit delta achieves
651 avalanche. About 41+5len instructions.
652
653 The best hash table sizes are powers of 2. There is no need to do
654 mod a prime (mod is sooo slow!). If you need less than 64 bits,
655 use a bitmask. For example, if you need only 10 bits, do
656 h = (h & hashmask(10));
657 In which case, the hash table should have hashsize(10) elements.
658
659 If you are hashing n strings (uint8_t **)k, do it like this:
660 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
661
662 By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may
663 use this code any way you wish, private, educational, or commercial,
664 but I would appreciate if you give me credit.
665
666 See http://burtleburtle.net/bob/hash/evahash.html
667 Use for hash table lookup, or anything where one collision in 2^^64
668 is acceptable. Do NOT use for cryptographic purposes.
669 --------------------------------------------------------------------
670 */
671
672 static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level)
673 // uint8_t *k; /* the key */
674 // uint64_t length; /* the length of the key */
675 // uint64_t level; /* the previous hash, or an arbitrary value */
676 {
677 uint64_t a,b,c;
678 size_t len;
679
680 /* Set up the internal state */
681 len = length;
682 a = b = level; /* the previous hash value */
683 c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
684
685 /*---------------------------------------- handle most of the key */
686 while (len >= 24)
687 {
688 a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
689 +((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
690 b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
691 +((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
692 c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
693 +((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
694 mix64(a,b,c);
695 k += 24; len -= 24;
696 }
697
698 /*------------------------------------- handle the last 23 bytes */
699 c += length;
700 switch(len) /* all the case statements fall through */
701 {
702 case 23: c+=((uint64_t)k[22]<<56);
703 case 22: c+=((uint64_t)k[21]<<48);
704 case 21: c+=((uint64_t)k[20]<<40);
705 case 20: c+=((uint64_t)k[19]<<32);
706 case 19: c+=((uint64_t)k[18]<<24);
707 case 18: c+=((uint64_t)k[17]<<16);
708 case 17: c+=((uint64_t)k[16]<<8);
709 /* the first byte of c is reserved for the length */
710 case 16: b+=((uint64_t)k[15]<<56);
711 case 15: b+=((uint64_t)k[14]<<48);
712 case 14: b+=((uint64_t)k[13]<<40);
713 case 13: b+=((uint64_t)k[12]<<32);
714 case 12: b+=((uint64_t)k[11]<<24);
715 case 11: b+=((uint64_t)k[10]<<16);
716 case 10: b+=((uint64_t)k[ 9]<<8);
717 case 9: b+=((uint64_t)k[ 8]);
718 case 8: a+=((uint64_t)k[ 7]<<56);
719 case 7: a+=((uint64_t)k[ 6]<<48);
720 case 6: a+=((uint64_t)k[ 5]<<40);
721 case 5: a+=((uint64_t)k[ 4]<<32);
722 case 4: a+=((uint64_t)k[ 3]<<24);
723 case 3: a+=((uint64_t)k[ 2]<<16);
724 case 2: a+=((uint64_t)k[ 1]<<8);
725 case 1: a+=((uint64_t)k[ 0]);
726 /* case 0: nothing left to add */
727 }
728 mix64(a,b,c);
729 /*-------------------------------------------- report the result */
730 return c;
731 }
732
733
734 #ifdef SELOPT_WRITE
735
736 /*
737 ------------------------------------------------------------------------------
738 This generates a minimal perfect hash function. That means, given a
739 set of n keys, this determines a hash function that maps each of
740 those keys into a value in 0..n-1 with no collisions.
741
742 The perfect hash function first uses a normal hash function on the key
743 to determine (a,b) such that the pair (a,b) is distinct for all
744 keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
745 tab[] is an array of 1-byte values and scramble[] is a 256-term array of
746 2-byte or 4-byte values. If there are n keys, the length of tab[] is a
747 power of two between n/3 and n.
748
749 I found the idea of computing distinct (a,b) values in "Practical minimal
750 perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
751 Communications of the ACM, January 1992. They found the idea in Chichelli
752 (CACM Jan 1980). Beyond that, our methods differ.
753
754 The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
755 0..*blen*-1. A fast hash function determines both a and b
756 simultaneously. Any decent hash function is likely to produce
757 hashes so that (a,b) is distinct for all pairs. I try the hash
758 using different values of *salt* until all pairs are distinct.
759
760 The final hash is (a XOR scramble[tab[b]]). *scramble* is a
761 predetermined mapping of 0..255 into 0..smax-1. *tab* is an
762 array that we fill in in such a way as to make the hash perfect.
763
764 First we fill in all values of *tab* that are used by more than one
765 key. We try all possible values for each position until one works.
766
767 This leaves m unmapped keys and m values that something could hash to.
768 If you treat unmapped keys as lefthand nodes and unused hash values
769 as righthand nodes, and draw a line connecting each key to each hash
770 value it could map to, you get a bipartite graph. We attempt to
771 find a perfect matching in this graph. If we succeed, we have
772 determined a perfect hash for the whole set of keys.
773
774 *scramble* is used because (a^tab[i]) clusters keys around *a*.
775 ------------------------------------------------------------------------------
776 */
777
778 typedef uint64_t ub8;
779 #define UB8MAXVAL 0xffffffffffffffffLL
780 #define UB8BITS 64
781 typedef uint32_t ub4;
782 #define UB4MAXVAL 0xffffffff
783 #define UB4BITS 32
784 typedef uint16_t ub2;
785 #define UB2MAXVAL 0xffff
786 #define UB2BITS 16
787 typedef uint8_t ub1;
788 #define UB1MAXVAL 0xff
789 #define UB1BITS 8
790
791 #define TRUE 1
792 #define FALSE 0
793
794 #define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
795 #define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
796 #define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
797
798
799 /* representation of a key */
800 struct key
801 {
802 ub1 *name_k; /* the actual key */
803 ub4 len_k; /* the length of the actual key */
804 ub4 hash_k; /* the initial hash value for this key */
805 /* beyond this point is mapping-dependent */
806 ub4 a_k; /* a, of the key maps to (a,b) */
807 ub4 b_k; /* b, of the key maps to (a,b) */
808 struct key *nextb_k; /* next key with this b */
809 };
810 typedef struct key key;
811
812 /* things indexed by b of original (a,b) pair */
813 struct bstuff
814 {
815 ub2 val_b; /* hash=a^tabb[b].val_b */
816 key *list_b; /* tabb[i].list_b is list of keys with b==i */
817 ub4 listlen_b; /* length of list_b */
818 ub4 water_b; /* high watermark of who has visited this map node */
819 };
820 typedef struct bstuff bstuff;
821
822 /* things indexed by final hash value */
823 struct hstuff
824 {
825 key *key_h; /* tabh[i].key_h is the key with a hash of i */
826 };
827 typedef struct hstuff hstuff;
828
829 /* things indexed by queue position */
830 struct qstuff
831 {
832 bstuff *b_q; /* b that currently occupies this hash */
833 ub4 parent_q; /* queue position of parent that could use this hash */
834 ub2 newval_q; /* what to change parent tab[b] to to use this hash */
835 ub2 oldval_q; /* original value of tab[b] */
836 };
837 typedef struct qstuff qstuff;
838
839
840 /*
841 ------------------------------------------------------------------------------
842 Find the mapping that will produce a perfect hash
843 ------------------------------------------------------------------------------
844 */
845
846 /* return the ceiling of the log (base 2) of val */
847 static ub4 log2u(ub4 val)
848 {
849 ub4 i;
850 for (i=0; ((ub4)1<<i) < val; ++i)
851 ;
852 return i;
853 }
854
855 /* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
856 /* permute(0)=0. This is intended and useful. */
857 static ub4 permute(ub4 x, ub4 nbits)
858 // ub4 x; /* input, a value in some range */
859 // ub4 nbits; /* input, number of bits in range */
860 {
861 int i;
862 int mask = ((ub4)1<<nbits)-1; /* all ones */
863 int const2 = 1+nbits/2;
864 int const3 = 1+nbits/3;
865 int const4 = 1+nbits/4;
866 int const5 = 1+nbits/5;
867 for (i=0; i<20; ++i)
868 {
869 x = (x+(x<<const2)) & mask;
870 x = (x^(x>>const3));
871 x = (x+(x<<const4)) & mask;
872 x = (x^(x>>const5));
873 }
874 return x;
875 }
876
877 /* initialize scramble[] with distinct random values in 0..smax-1 */
878 static void scrambleinit(ub4 *scramble, ub4 smax)
879 // ub4 *scramble; /* hash is a^scramble[tab[b]] */
880 // ub4 smax; /* scramble values should be in 0..smax-1 */
881 {
882 ub4 i;
883
884 /* fill scramble[] with distinct random integers in 0..smax-1 */
885 for (i=0; i<SCRAMBLE_LEN; ++i)
886 {
887 scramble[i] = permute(i, log2u(smax));
888 }
889 }
890
891
892 /*
893 * put keys in tabb according to key->b_k
894 * check if the initial hash might work
895 */
896 static int inittab(bstuff *tabb, ub4 blen, key *keys, ub4 nkeys, int complete)
897 // bstuff *tabb; /* output, list of keys with b for (a,b) */
898 // ub4 blen; /* length of tabb */
899 // key *keys; /* list of keys already hashed */
900 // int complete; /* TRUE means to complete init despite collisions */
901 {
902 int nocollision = TRUE;
903 ub4 i;
904
905 memset((void *)tabb, 0, (size_t)(sizeof(bstuff)*blen));
906
907 /* Two keys with the same (a,b) guarantees a collision */
908 for (i = 0; i < nkeys; i++) {
909 key *mykey = keys+i;
910 key *otherkey;
911
912 for (otherkey=tabb[mykey->b_k].list_b;
913 otherkey;
914 otherkey=otherkey->nextb_k)
915 {
916 if (mykey->a_k == otherkey->a_k)
917 {
918 nocollision = FALSE;
919 if (!complete)
920 return FALSE;
921 }
922 }
923 ++tabb[mykey->b_k].listlen_b;
924 mykey->nextb_k = tabb[mykey->b_k].list_b;
925 tabb[mykey->b_k].list_b = mykey;
926 }
927
928 /* no two keys have the same (a,b) pair */
929 return nocollision;
930 }
931
932
933 /* Do the initial hash for normal mode (use lookup and checksum) */
934 static void initnorm(key *keys, ub4 nkeys, ub4 alen, ub4 blen, ub4 smax, ub8 salt)
935 // key *keys; /* list of all keys */
936 // ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
937 // ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
938 // ub4 smax; /* maximum range of computable hash values */
939 // ub4 salt; /* used to initialize the hash function */
940 // gencode *final; /* output, code for the final hash */
941 {
942 ub4 loga = log2u(alen); /* log based 2 of blen */
943 ub4 i;
944 for (i = 0; i < nkeys; i++) {
945 key *mykey = keys+i;
946 ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
947 mykey->a_k = (loga > 0) ? hash>>(UB8BITS-loga) : 0;
948 mykey->b_k = (blen > 1) ? hash&(blen-1) : 0;
949 }
950 }
951
952
953 /* Try to apply an augmenting list */
954 static int apply(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 tail, int rollback)
955 // bstuff *tabb;
956 // hstuff *tabh;
957 // qstuff *tabq;
958 // ub4 blen;
959 // ub4 *scramble;
960 // ub4 tail;
961 // int rollback; /* FALSE applies augmenting path, TRUE rolls back */
962 {
963 ub4 hash;
964 key *mykey;
965 bstuff *pb;
966 ub4 child;
967 ub4 parent;
968 ub4 stabb; /* scramble[tab[b]] */
969
970 /* walk from child to parent */
971 for (child=tail-1; child; child=parent)
972 {
973 parent = tabq[child].parent_q; /* find child's parent */
974 pb = tabq[parent].b_q; /* find parent's list of siblings */
975
976 /* erase old hash values */
977 stabb = scramble[pb->val_b];
978 for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
979 {
980 hash = mykey->a_k^stabb;
981 if (mykey == tabh[hash].key_h)
982 { /* erase hash for all of child's siblings */
983 tabh[hash].key_h = (key *)0;
984 }
985 }
986
987 /* change pb->val_b, which will change the hashes of all parent siblings */
988 pb->val_b = (rollback ? tabq[child].oldval_q : tabq[child].newval_q);
989
990 /* set new hash values */
991 stabb = scramble[pb->val_b];
992 for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
993 {
994 hash = mykey->a_k^stabb;
995 if (rollback)
996 {
997 if (parent == 0) continue; /* root never had a hash */
998 }
999 else if (tabh[hash].key_h)
1000 {
1001 /* very rare: roll back any changes */
1002 apply(tabb, tabh, tabq, blen, scramble, tail, TRUE);
1003 return FALSE; /* failure, collision */
1004 }
1005 tabh[hash].key_h = mykey;
1006 }
1007 }
1008 return TRUE;
1009 }
1010
1011
1012 /*
1013 -------------------------------------------------------------------------------
1014 augment(): Add item to the mapping.
1015
1016 Construct a spanning tree of *b*s with *item* as root, where each
1017 parent can have all its hashes changed (by some new val_b) with
1018 at most one collision, and each child is the b of that collision.
1019
1020 I got this from Tarjan's "Data Structures and Network Algorithms". The
1021 path from *item* to a *b* that can be remapped with no collision is
1022 an "augmenting path". Change values of tab[b] along the path so that
1023 the unmapped key gets mapped and the unused hash value gets used.
1024
1025 Assuming 1 key per b, if m out of n hash values are still unused,
1026 you should expect the transitive closure to cover n/m nodes before
1027 an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
1028 this approach to take about nlogn time to map all single-key b's.
1029 -------------------------------------------------------------------------------
1030 */
1031 static int augment(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 smax, bstuff *item, ub4 nkeys,
1032 ub4 highwater)
1033 // bstuff *tabb; /* stuff indexed by b */
1034 // hstuff *tabh; /* which key is associated with which hash, indexed by hash */
1035 // qstuff *tabq; /* queue of *b* values, this is the spanning tree */
1036 // ub4 blen; /* length of tabb */
1037 // ub4 *scramble; /* final hash is a^scramble[tab[b]] */
1038 // ub4 smax; /* highest value in scramble */
1039 // bstuff *item; /* &tabb[b] for the b to be mapped */
1040 // ub4 nkeys; /* final hash must be in 0..nkeys-1 */
1041 // ub4 highwater; /* a value higher than any now in tabb[].water_b */
1042 {
1043 ub4 q; /* current position walking through the queue */
1044 ub4 tail; /* tail of the queue. 0 is the head of the queue. */
1045 ub4 limit=UB1MAXVAL+1;
1046 ub4 highhash = smax;
1047
1048 /* initialize the root of the spanning tree */
1049 tabq[0].b_q = item;
1050 tail = 1;
1051
1052 /* construct the spanning tree by walking the queue, add children to tail */
1053 for (q=0; q<tail; ++q)
1054 {
1055 bstuff *myb = tabq[q].b_q; /* the b for this node */
1056 ub4 i; /* possible value for myb->val_b */
1057
1058 if (q == 1)
1059 break; /* don't do transitive closure */
1060
1061 for (i=0; i<limit; ++i)
1062 {
1063 bstuff *childb = (bstuff *)0; /* the b that this i maps to */
1064 key *mykey; /* for walking through myb's keys */
1065
1066 for (mykey = myb->list_b; mykey; mykey=mykey->nextb_k)
1067 {
1068 key *childkey;
1069 ub4 hash = mykey->a_k^scramble[i];
1070
1071 if (hash >= highhash) break; /* out of bounds */
1072 childkey = tabh[hash].key_h;
1073
1074 if (childkey)
1075 {
1076 bstuff *hitb = &tabb[childkey->b_k];
1077
1078 if (childb)
1079 {
1080 if (childb != hitb) break; /* hit at most one child b */
1081 }
1082 else
1083 {
1084 childb = hitb; /* remember this as childb */
1085 if (childb->water_b == highwater) break; /* already explored */
1086 }
1087 }
1088 }
1089 if (mykey) continue; /* myb with i has multiple collisions */
1090
1091 /* add childb to the queue of reachable things */
1092 if (childb) childb->water_b = highwater;
1093 tabq[tail].b_q = childb;
1094 tabq[tail].newval_q = i; /* how to make parent (myb) use this hash */
1095 tabq[tail].oldval_q = myb->val_b; /* need this for rollback */
1096 tabq[tail].parent_q = q;
1097 ++tail;
1098
1099 if (!childb)
1100 { /* found an *i* with no collisions? */
1101 /* try to apply the augmenting path */
1102 if (apply(tabb, tabh, tabq, blen, scramble, tail, FALSE))
1103 return TRUE; /* success, item was added to the perfect hash */
1104
1105 --tail; /* don't know how to handle such a child! */
1106 }
1107 }
1108 }
1109 return FALSE;
1110 }
1111
1112
1113 /* find a mapping that makes this a perfect hash */
1114 static int perfect(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 smax, ub4 *scramble, ub4 nkeys)
1115 {
1116 ub4 maxkeys; /* maximum number of keys for any b */
1117 ub4 i, j;
1118
1119 #if SELOPT_DEBUG
1120 fprintf(stderr, " blen %d smax %d nkeys %d\n", blen, smax, nkeys);
1121 #endif
1122
1123 /* clear any state from previous attempts */
1124 memset((void *)tabh, 0, sizeof(hstuff)*smax);
1125 memset((void *)tabq, 0, sizeof(qstuff)*(blen+1));
1126
1127 for (maxkeys=0,i=0; i<blen; ++i)
1128 if (tabb[i].listlen_b > maxkeys)
1129 maxkeys = tabb[i].listlen_b;
1130
1131 /* In descending order by number of keys, map all *b*s */
1132 for (j=maxkeys; j>0; --j)
1133 for (i=0; i<blen; ++i)
1134 if (tabb[i].listlen_b == j)
1135 if (!augment(tabb, tabh, tabq, blen, scramble, smax, &tabb[i], nkeys,
1136 i+1))
1137 {
1138 return FALSE;
1139 }
1140
1141 /* Success! We found a perfect hash of all keys into 0..nkeys-1. */
1142 return TRUE;
1143 }
1144
1145
1146 /* guess initial values for alen and blen */
1147 static void initalen(ub4 *alen, ub4 *blen, ub4 smax, ub4 nkeys)
1148 // ub4 *alen; /* output, initial alen */
1149 // ub4 *blen; /* output, initial blen */
1150 // ub4 smax; /* input, power of two greater or equal to max hash value */
1151 // ub4 nkeys; /* number of keys being hashed */
1152 {
1153 /*
1154 * Find initial *alen, *blen
1155 * Initial alen and blen values were found empirically. Some factors:
1156 *
1157 * If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
1158 *
1159 * alen and blen must be powers of 2 because the values in 0..alen-1 and
1160 * 0..blen-1 are produced by applying a bitmask to the initial hash function.
1161 *
1162 * alen must be less than smax, in fact less than nkeys, because otherwise
1163 * there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
1164 * all the *a*s associated with a given *b*, so there would be no legal
1165 * value to assign to tab[b]. This only matters when we're doing a minimal
1166 * perfect hash.
1167 *
1168 * It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
1169 * and alen*blen = smax*smax/32.
1170 *
1171 * Values of blen less than smax/4 never work, and smax/2 always works.
1172 *
1173 * We want blen as small as possible because it is the number of bytes in
1174 * the huge array we must create for the perfect hash.
1175 *
1176 * When nkey <= smax*(5/8), blen=smax/4 works much more often with
1177 * alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
1178 * doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
1179 * has something to do with 5/8 = 1/8 * 5. For example examine 80000,
1180 * 85000, and 90000 keys with different values of alen. This only matters
1181 * if we're doing a minimal perfect hash.
1182 *
1183 * When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
1184 * Bigger than that it must produce two integers, which increases the
1185 * cost of the hash per character hashed.
1186 */
1187 *alen = smax; /* no reason to restrict alen to smax/2 */
1188 *blen = ((nkeys <= smax*0.6) ? smax/16 :
1189 (nkeys <= smax*0.8) ? smax/8 : smax/4);
1190
1191 if (*alen < 1) *alen = 1;
1192 if (*blen < 1) *blen = 1;
1193
1194 #if SELOPT_DEBUG
1195 fprintf(stderr, "alen %d blen %d smax %d nkeys %d\n", *alen, *blen, smax, nkeys);
1196 #endif
1197 }
1198
1199 /*
1200 ** Try to find a perfect hash function.
1201 ** Return the successful initializer for the initial hash.
1202 ** Return 0 if no perfect hash could be found.
1203 */
1204 static int findhash(bstuff **tabb, ub4 *alen, ub4 *blen, ub8 *salt,
1205 ub4 *scramble, ub4 smax, key *keys, ub4 nkeys)
1206 // bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
1207 // ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
1208 // ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
1209 // ub4 *salt; /* output, initializes initial hash */
1210 // ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
1211 // ub4 smax; /* input, scramble[i] in 0..smax-1 */
1212 // key *keys; /* input, keys to hash */
1213 // ub4 nkeys; /* input, number of keys being hashed */
1214 {
1215 ub4 bad_initkey; /* how many times did initkey fail? */
1216 ub4 bad_perfect; /* how many times did perfect fail? */
1217 ub4 si; /* trial initializer for initial hash */
1218 ub4 maxalen;
1219 hstuff *tabh; /* table of keys indexed by hash value */
1220 qstuff *tabq; /* table of stuff indexed by queue value, used by augment */
1221
1222 /* guess initial values for alen and blen */
1223 initalen(alen, blen, smax, nkeys);
1224
1225 scrambleinit(scramble, smax);
1226
1227 maxalen = smax;
1228
1229 /* allocate working memory */
1230 *tabb = new bstuff[*blen];
1231 tabq = new qstuff[*blen+1];
1232 tabh = new hstuff[smax];
1233
1234 /* Actually find the perfect hash */
1235 *salt = 0;
1236 bad_initkey = 0;
1237 bad_perfect = 0;
1238 for (si=1; ; ++si)
1239 {
1240 ub4 rslinit;
1241 /* Try to find distinct (A,B) for all keys */
1242 *salt = si * 0x9e3779b97f4a7c13LL; /* golden ratio (arbitrary value) */
1243 initnorm(keys, nkeys, *alen, *blen, smax, *salt);
1244 rslinit = inittab(*tabb, *blen, keys, nkeys, FALSE);
1245 if (rslinit == 0)
1246 {
1247 /* didn't find distinct (a,b) */
1248 if (++bad_initkey >= RETRY_INITKEY)
1249 {
1250 /* Try to put more bits in (A,B) to make distinct (A,B) more likely */
1251 if (*alen < maxalen)
1252 {
1253 *alen *= 2;
1254 }
1255 else if (*blen < smax)
1256 {
1257 *blen *= 2;
1258 delete[] tabq;
1259 delete[] *tabb;
1260 *tabb = new bstuff[*blen];
1261 tabq = new qstuff[*blen+1];
1262 }
1263 bad_initkey = 0;
1264 bad_perfect = 0;
1265 }
1266 continue; /* two keys have same (a,b) pair */
1267 }
1268
1269 /* Given distinct (A,B) for all keys, build a perfect hash */
1270 if (!perfect(*tabb, tabh, tabq, *blen, smax, scramble, nkeys))
1271 {
1272 if (++bad_perfect >= RETRY_PERFECT)
1273 {
1274 if (*blen < smax)
1275 {
1276 *blen *= 2;
1277 delete[] *tabb;
1278 delete[] tabq;
1279 *tabb = new bstuff[*blen];
1280 tabq = new qstuff[*blen+1];
1281 --si; /* we know this salt got distinct (A,B) */
1282 }
1283 else
1284 {
1285 return 0;
1286 }
1287 bad_perfect = 0;
1288 }
1289 continue;
1290 }
1291
1292 break;
1293 }
1294
1295 /* free working memory */
1296 delete[] tabh;
1297 delete[] tabq;
1298
1299 return 1;
1300 }
1301
1302 /*
1303 ------------------------------------------------------------------------------
1304 Input/output type routines
1305 ------------------------------------------------------------------------------
1306 */
1307
1308 /* get the list of keys */
1309 static void getkeys(key **keys, ub4 *nkeys, const string_map& strings)
1310 {
1311 key *buf = new key[strings.size()];
1312 size_t i;
1313 string_map::const_iterator s;
1314 for (i = 0, s = strings.begin(); s != strings.end(); ++s, ++i) {
1315 key *mykey = buf+i;
1316 mykey->name_k = (ub1 *)s->first;
1317 mykey->len_k = (ub4)strlen(s->first);
1318 }
1319 *keys = buf;
1320 *nkeys = strings.size();
1321 }
1322
1323
1324 static perfect_hash
1325 make_perfect(const string_map& strings)
1326 {
1327 ub4 nkeys; /* number of keys */
1328 key *keys; /* head of list of keys */
1329 bstuff *tab; /* table indexed by b */
1330 ub4 smax; /* scramble[] values in 0..smax-1, a power of 2 */
1331 ub4 alen; /* a in 0..alen-1, a power of 2 */
1332 ub4 blen; /* b in 0..blen-1, a power of 2 */
1333 ub8 salt; /* a parameter to the hash function */
1334 ub4 scramble[SCRAMBLE_LEN]; /* used in final hash function */
1335 int ok;
1336 int i;
1337 perfect_hash result;
1338
1339 /* read in the list of keywords */
1340 getkeys(&keys, &nkeys, strings);
1341
1342 /* find the hash */
1343 smax = ((ub4)1<<log2u(nkeys));
1344 ok = findhash(&tab, &alen, &blen, &salt,
1345 scramble, smax, keys, nkeys);
1346 if (!ok) {
1347 smax = 2 * ((ub4)1<<log2u(nkeys));
1348 ok = findhash(&tab, &alen, &blen, &salt,
1349 scramble, smax, keys, nkeys);
1350 }
1351 if (!ok) {
1352 bzero(&result, sizeof(result));
1353 } else {
1354 /* build the tables */
1355 result.capacity = smax;
1356 result.occupied = nkeys;
1357 result.shift = UB8BITS - log2u(alen);
1358 result.mask = blen - 1;
1359 result.salt = salt;
1360
1361 result.tab = new uint8_t[blen];
1362 for (i = 0; i < blen; i++) {
1363 result.tab[i] = tab[i].val_b;
1364 }
1365 for (i = 0; i < 256; i++) {
1366 result.scramble[i] = scramble[i];
1367 }
1368 }
1369
1370 delete[] keys;
1371 delete[] tab;
1372
1373 return result;
1374 }
1375
1376 // SELOPT_WRITE
1377 #endif
1378
1379 // namespace objc_selopt
1380 };
1381
1382 #undef S32
1383 #undef S64
1384
1385 #endif