X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/e8482f24cfc00645607f8526fde38d39e0dcaa63..7b25d8e7bd0eca9f0f6efe62b3721d14c394dac9:/contrib/src/mmedia/g723_40.cpp diff --git a/contrib/src/mmedia/g723_40.cpp b/contrib/src/mmedia/g723_40.cpp index e736a5c249..30c5b431d6 100644 --- a/contrib/src/mmedia/g723_40.cpp +++ b/contrib/src/mmedia/g723_40.cpp @@ -45,36 +45,36 @@ * the name of the module which it is implementing. * */ -#include +#include "wx/wxprec.h" #include "wx/mmedia/internal/g72x.h" /* * Maps G.723_40 code word to ructeconstructed scale factor normalized log * magnitude values. */ -static short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318, - 358, 395, 429, 459, 488, 514, 539, 566, - 566, 539, 514, 488, 459, 429, 395, 358, - 318, 274, 224, 169, 104, 28, -66, -2048}; +static short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318, + 358, 395, 429, 459, 488, 514, 539, 566, + 566, 539, 514, 488, 459, 429, 395, 358, + 318, 274, 224, 169, 104, 28, -66, -2048}; /* Maps G.723_40 code word to log of scale factor multiplier. */ -static short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200, - 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, - 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, - 3200, 1856, 1312, 1280, 1248, 768, 448, 448}; +static short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200, + 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, + 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, + 3200, 1856, 1312, 1280, 1248, 768, 448, 448}; /* * Maps G.723_40 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ -static short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200, - 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, - 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, - 0x200, 0x200, 0x200, 0, 0, 0, 0, 0}; +static short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200, + 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, + 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, + 0x200, 0x200, 0x200, 0, 0, 0, 0, 0}; static short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339, - 378, 413, 445, 475, 502, 528, 553}; + 378, 413, 445, 475, 502, 528, 553}; /* * g723_40_encoder() @@ -85,51 +85,51 @@ static short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339, */ int g723_40_encoder( - int sl, - int in_coding, - struct g72x_state *state_ptr) + int sl, + int in_coding, + struct g72x_state *state_ptr) { - short sei, sezi, se, sez; /* ACCUM */ - short d; /* SUBTA */ - short y; /* MIX */ - short sr; /* ADDB */ - short dqsez; /* ADDC */ - short dq, i; - - switch (in_coding) { /* linearize input sample to 14-bit PCM */ - case AUDIO_ENCODING_ALAW: - sl = alaw2linear(sl) >> 2; - break; - case AUDIO_ENCODING_ULAW: - sl = ulaw2linear(sl) >> 2; - break; - case AUDIO_ENCODING_LINEAR: - sl = ((short) sl) >> 2; /* sl of 14-bit dynamic range */ - break; - default: - return (-1); - } - - sezi = predictor_zero(state_ptr); - sez = sezi >> 1; - sei = sezi + predictor_pole(state_ptr); - se = sei >> 1; /* se = estimated signal */ - - d = sl - se; /* d = estimation difference */ - - /* quantize prediction difference */ - y = step_size(state_ptr); /* adaptive quantizer step size */ - i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */ - - dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */ - - sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */ - - dqsez = sr + sez - se; /* dqsez = pole prediction diff. */ - - update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); - - return (i); + short sei, sezi, se, sez; /* ACCUM */ + short d; /* SUBTA */ + short y; /* MIX */ + short sr; /* ADDB */ + short dqsez; /* ADDC */ + short dq, i; + + switch (in_coding) { /* linearize input sample to 14-bit PCM */ + case AUDIO_ENCODING_ALAW: + sl = alaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_ULAW: + sl = ulaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_LINEAR: + sl = ((short) sl) >> 2; /* sl of 14-bit dynamic range */ + break; + default: + return (-1); + } + + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + d = sl - se; /* d = estimation difference */ + + /* quantize prediction difference */ + y = step_size(state_ptr); /* adaptive quantizer step size */ + i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */ + + dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */ + + sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */ + + dqsez = sr + sez - se; /* dqsez = pole prediction diff. */ + + update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); + + return (i); } /* @@ -141,39 +141,39 @@ g723_40_encoder( */ int g723_40_decoder( - int i, - int out_coding, - struct g72x_state *state_ptr) + int i, + int out_coding, + struct g72x_state *state_ptr) { - short sezi, sei, sez, se; /* ACCUM */ - short y; /* MIX */ - short sr; /* ADDB */ - short dq; - short dqsez; - - i &= 0x1f; /* mask to get proper bits */ - sezi = predictor_zero(state_ptr); - sez = sezi >> 1; - sei = sezi + predictor_pole(state_ptr); - se = sei >> 1; /* se = estimated signal */ - - y = step_size(state_ptr); /* adaptive quantizer step size */ - dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */ - - sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */ - - dqsez = sr - se + sez; /* pole prediction diff. */ - - update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); - - switch (out_coding) { - case AUDIO_ENCODING_ALAW: - return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40)); - case AUDIO_ENCODING_ULAW: - return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40)); - case AUDIO_ENCODING_LINEAR: - return (sr << 2); /* sr was of 14-bit dynamic range */ - default: - return (-1); - } + short sezi, sei, sez, se; /* ACCUM */ + short y; /* MIX */ + short sr; /* ADDB */ + short dq; + short dqsez; + + i &= 0x1f; /* mask to get proper bits */ + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + y = step_size(state_ptr); /* adaptive quantizer step size */ + dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */ + + sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */ + + dqsez = sr - se + sez; /* pole prediction diff. */ + + update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); + + switch (out_coding) { + case AUDIO_ENCODING_ALAW: + return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40)); + case AUDIO_ENCODING_ULAW: + return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40)); + case AUDIO_ENCODING_LINEAR: + return (sr << 2); /* sr was of 14-bit dynamic range */ + default: + return (-1); + } }