X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/c801d85f158c4cba50b588807daabdcbd0ed3853..42497f30ebde52ebd530a3c252eec45791669287:/src/common/matrix.cpp?ds=sidebyside diff --git a/src/common/matrix.cpp b/src/common/matrix.cpp index 84beee3b61..d0d16755a3 100644 --- a/src/common/matrix.cpp +++ b/src/common/matrix.cpp @@ -1,15 +1,14 @@ -///////////////////////////////////////////////////////////////////////////// // Name: matrix.cpp // Purpose: wxTransformMatrix class // Author: Chris Breeze, Julian Smart -// Modified by: +// Modified by: Klaas Holwerda // Created: 01/02/97 // RCS-ID: $Id$ -// Copyright: (c) Julian Smart and Markus Holzem -// Licence: wxWindows licence +// Copyright: (c) Julian Smart +// Licence: wxWindows licence ///////////////////////////////////////////////////////////////////////////// -#ifdef __GNUG__ +#if defined(__GNUG__) && !defined(NO_GCC_PRAGMA) #pragma implementation "matrix.h" #endif @@ -30,135 +29,140 @@ #include "wx/matrix.h" #include -const double pi = 3.1415926535; +static const double pi = 3.1415926535; wxTransformMatrix::wxTransformMatrix(void) { - m_isIdentity = FALSE; + m_isIdentity = FALSE; - Identity(); + Identity(); } wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) + : wxObject() { - (*this) = mat; + (*this) = mat; } -double wxTransformMatrix::GetValue(int row, int col) const +double wxTransformMatrix::GetValue(int col, int row) const { - if (row < 0 || row > 2 || col < 0 || col > 2) - return 0.0; + if (row < 0 || row > 2 || col < 0 || col > 2) + return 0.0; - return m_matrix[row][col]; + return m_matrix[col][row]; } -void wxTransformMatrix::SetValue(int row, int col, double value) +void wxTransformMatrix::SetValue(int col, int row, double value) { - if (row < 0 || row > 2 || col < 0 || col > 2) - return; + if (row < 0 || row > 2 || col < 0 || col > 2) + return; - m_matrix[row][col] = value; + m_matrix[col][row] = value; + m_isIdentity = IsIdentity1(); } void wxTransformMatrix::operator = (const wxTransformMatrix& mat) { - int i, j; - for (i = 0; i < 3; i++) - { - for (j = 0; j < 3; j++) - { - m_matrix[i][j] = mat.m_matrix[i][j]; - } - } - m_isIdentity = mat.m_isIdentity; + int i, j; + for (i = 0; i < 3; i++) + { + for (j = 0; j < 3; j++) + { + m_matrix[i][j] = mat.m_matrix[i][j]; + } + } + m_isIdentity = mat.m_isIdentity; } bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) { - int i, j; - for (i = 0; i < 3; i++) - { - for (j = 0; j < 3; j++) - { - if (m_matrix[i][j] != mat.m_matrix[i][j]) - return FALSE; - } - } - return TRUE; + if (m_isIdentity==TRUE && mat.m_isIdentity==TRUE) + return TRUE; + + int i, j; + for (i = 0; i < 3; i++) + { + for (j = 0; j < 3; j++) + { + if (m_matrix[i][j] != mat.m_matrix[i][j]) + return FALSE; + } + } + return TRUE; } bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) { - return (! ((*this) == mat)); + return (! ((*this) == mat)); } -double& wxTransformMatrix::operator()(int row, int col) +double& wxTransformMatrix::operator()(int col, int row) { - if (row < 0 || row > 2 || col < 0 || col > 2) - return m_matrix[0][0]; + if (row < 0 || row > 2 || col < 0 || col > 2) + return m_matrix[0][0]; - return m_matrix[row][col]; + return m_matrix[col][row]; } -double wxTransformMatrix::operator()(int row, int col) const +double wxTransformMatrix::operator()(int col, int row) const { - if (row < 0 || row > 2 || col < 0 || col > 2) - return 0.0; + if (row < 0 || row > 2 || col < 0 || col > 2) + return 0.0; - return m_matrix[row][col]; + return m_matrix[col][row]; } // Invert matrix bool wxTransformMatrix::Invert(void) { - double inverseMatrix[3][3]; - - // calculate the adjoint - inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); - inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); - inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); - - inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); - inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); - inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); - - inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); - inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); - inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); - - // now divide by the determinant - double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; - if (det != 0.0) - { - inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; - inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; - inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; - - int i, j; - for (i = 0; i < 3; i++) - { - for (j = 0; j < 3; j++) - { - m_matrix[i][j] = inverseMatrix[i][j]; - } - } - m_isIdentity = IsIdentity1(); - return TRUE; - } - else - { - return FALSE; - } + double inverseMatrix[3][3]; + + // calculate the adjoint + inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); + inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); + inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); + + inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); + inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); + inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); + + inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); + inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); + inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); + + // now divide by the determinant + double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; + if (det != 0.0) + { + inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; + inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; + inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; + + int i, j; + for (i = 0; i < 3; i++) + { + for (j = 0; j < 3; j++) + { + m_matrix[i][j] = inverseMatrix[i][j]; + } + } + m_isIdentity = IsIdentity1(); + return TRUE; + } + else + { + return FALSE; + } } // Make into identity matrix bool wxTransformMatrix::Identity(void) { - m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; - m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; - m_isIdentity = TRUE; + m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; + m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; + m_isIdentity = TRUE; - return TRUE; + return TRUE; } // Scale by scale (isotropic scaling i.e. the same in x and y): @@ -168,17 +172,113 @@ bool wxTransformMatrix::Identity(void) // bool wxTransformMatrix::Scale(double scale) { - int i, j; - for (i = 0; i < 3; i++) - { - for (j = 0; j < 3; j++) - { - m_matrix[i][j] *= scale; - } - } - m_isIdentity = IsIdentity1(); + int i, j; + for (i = 0; i < 3; i++) + { + for (j = 0; j < 3; j++) + { + m_matrix[i][j] *= scale; + } + } + m_isIdentity = IsIdentity1(); + + return TRUE; +} + + +// scale a matrix in 2D +// +// xs 0 xc(1-xs) +// 0 ys yc(1-ys) +// 0 0 1 +// +wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) +{ + double r00,r10,r20,r01,r11,r21; + + if (m_isIdentity) + { + double tx =xc*(1-xs); + double ty =yc*(1-ys); + r00 = xs; + r10 = 0; + r20 = tx; + r01 = 0; + r11 = ys; + r21 = ty; + } + else if (xc!=0 || yc!=0) + { + double tx =xc*(1-xs); + double ty =yc*(1-ys); + r00 = xs * m_matrix[0][0]; + r10 = xs * m_matrix[1][0]; + r20 = xs * m_matrix[2][0] + tx; + r01 = ys * m_matrix[0][1]; + r11 = ys * m_matrix[1][1]; + r21 = ys * m_matrix[2][1] + ty; + } + else + { + r00 = xs * m_matrix[0][0]; + r10 = xs * m_matrix[1][0]; + r20 = xs * m_matrix[2][0]; + r01 = ys * m_matrix[0][1]; + r11 = ys * m_matrix[1][1]; + r21 = ys * m_matrix[2][1]; + } + + m_matrix[0][0] = r00; + m_matrix[1][0] = r10; + m_matrix[2][0] = r20; + m_matrix[0][1] = r01; + m_matrix[1][1] = r11; + m_matrix[2][1] = r21; + +/* or like this + // first translate to origin O + (*this).Translate(-x_cen, -y_cen); + + // now do the scaling + wxTransformMatrix scale; + scale.m_matrix[0][0] = x_fac; + scale.m_matrix[1][1] = y_fac; + scale.m_isIdentity = IsIdentity1(); + + *this = scale * (*this); + + // translate back from origin to x_cen, y_cen + (*this).Translate(x_cen, y_cen); +*/ + + m_isIdentity = IsIdentity1(); + + return *this; +} - return TRUE; + +// mirror a matrix in x, y +// +// -1 0 0 Y-mirror +// 0 -1 0 X-mirror +// 0 0 -1 Z-mirror +wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) +{ + wxTransformMatrix temp; + if (x) + { + temp.m_matrix[1][1] = -1; + temp.m_isIdentity=FALSE; + } + if (y) + { + temp.m_matrix[0][0] = -1; + temp.m_isIdentity=FALSE; + } + + *this = temp * (*this); + m_isIdentity = IsIdentity1(); + return *this; } // Translate by dx, dy: @@ -188,52 +288,109 @@ bool wxTransformMatrix::Scale(double scale) // bool wxTransformMatrix::Translate(double dx, double dy) { - int i; - for (i = 0; i < 3; i++) - m_matrix[i][0] += dx * m_matrix[i][2]; - for (i = 0; i < 3; i++) - m_matrix[i][1] += dy * m_matrix[i][2]; + int i; + for (i = 0; i < 3; i++) + m_matrix[i][0] += dx * m_matrix[i][2]; + for (i = 0; i < 3; i++) + m_matrix[i][1] += dy * m_matrix[i][2]; - m_isIdentity = IsIdentity1(); + m_isIdentity = IsIdentity1(); - return TRUE; + return TRUE; } -// Rotate by the given number of degrees: +// Rotate clockwise by the given number of degrees: // | cos sin 0 | // matrix' = | -sin cos 0 | x matrix // | 0 0 1 | -// bool wxTransformMatrix::Rotate(double degrees) { - double angle = degrees * pi / 180.0; - double s = sin(angle); - double c = cos(angle); - - m_matrix[0][0] = c * m_matrix[0][0] + s * m_matrix[0][1]; - m_matrix[1][0] = c * m_matrix[1][0] + s * m_matrix[1][1]; - m_matrix[2][0] = c * m_matrix[2][0] + s * m_matrix[2][1]; - m_matrix[0][2] = c * m_matrix[0][1] - s * m_matrix[0][0]; - m_matrix[1][2] = c * m_matrix[1][1] - s * m_matrix[1][0]; - m_matrix[2][2] = c * m_matrix[2][1] - s * m_matrix[2][0]; - - m_isIdentity = IsIdentity1(); + Rotate(-degrees,0,0); + return TRUE; +} - return TRUE; +// counter clockwise rotate around a point +// +// cos(r) -sin(r) x(1-cos(r))+y(sin(r) +// sin(r) cos(r) y(1-cos(r))-x(sin(r) +// 0 0 1 +wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) +{ + double angle = degrees * pi / 180.0; + double c = cos(angle); + double s = sin(angle); + double r00,r10,r20,r01,r11,r21; + + if (m_isIdentity) + { + double tx = x*(1-c)+y*s; + double ty = y*(1-c)-x*s; + r00 = c ; + r10 = -s; + r20 = tx; + r01 = s; + r11 = c; + r21 = ty; + } + else if (x!=0 || y!=0) + { + double tx = x*(1-c)+y*s; + double ty = y*(1-c)-x*s; + r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; + r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; + r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; + r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; + r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; + r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; + } + else + { + r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; + r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; + r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; + r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; + r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; + r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; + } + + m_matrix[0][0] = r00; + m_matrix[1][0] = r10; + m_matrix[2][0] = r20; + m_matrix[0][1] = r01; + m_matrix[1][1] = r11; + m_matrix[2][1] = r21; + +/* or like this + wxTransformMatrix rotate; + rotate.m_matrix[2][0] = tx; + rotate.m_matrix[2][1] = ty; + + rotate.m_matrix[0][0] = c; + rotate.m_matrix[0][1] = s; + + rotate.m_matrix[1][0] = -s; + rotate.m_matrix[1][1] = c; + + rotate.m_isIdentity=false; + *this = rotate * (*this); +*/ + m_isIdentity = IsIdentity1(); + + return *this; } // Transform a point from logical to device coordinates bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const { - if (IsIdentity()) - { - tx = x; ty = y; return TRUE; - } + if (IsIdentity()) + { + tx = x; ty = y; return TRUE; + } - tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; - ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; + tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; + ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; - return TRUE; + return TRUE; } // Transform a point from device to logical coordinates. @@ -246,22 +403,209 @@ bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& t // dc.LogicalToDevice(x, y, x1, y1); // The latter is slightly less efficient if we're doing several // conversions, since the matrix is inverted several times. - bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const { - if (IsIdentity()) - { - tx = x; ty = y; return TRUE; - } - - double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; - if (z == 0.0) - { -// z = 0.0000001; - return FALSE; - } - tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; - ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; - return TRUE; + if (IsIdentity()) + { + tx = x; ty = y; return TRUE; + } + + double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; + if (z == 0.0) + { +// z = 0.0000001; + return FALSE; + } + tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; + ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; + return TRUE; +} + +wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) +{ + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + m_matrix[i][j]*= t; + m_isIdentity = IsIdentity1(); + return *this; +} + +wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) +{ + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + m_matrix[i][j]/= t; + m_isIdentity = IsIdentity1(); + return *this; +} + +wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) +{ + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + m_matrix[i][j] += mat.m_matrix[i][j]; + m_isIdentity = IsIdentity1(); + return *this; +} + +wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) +{ + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + m_matrix[i][j] -= mat.m_matrix[i][j]; + m_isIdentity = IsIdentity1(); + return *this; +} + +wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) +{ + + if (mat.m_isIdentity) + return *this; + if (m_isIdentity) + { + *this = mat; + return *this; + } + else + { + wxTransformMatrix result; + for (int i = 0; i < 3; i++) + { + for (int j = 0; j < 3; j++) + { + double sum = 0; + for (int k = 0; k < 3; k++) + sum += m_matrix[k][i] * mat.m_matrix[j][k]; + result.m_matrix[j][i] = sum; + } + } + *this = result; + } + + m_isIdentity = IsIdentity1(); + return *this; +} + + +// constant operators +wxTransformMatrix wxTransformMatrix::operator*(const double& t) const +{ + wxTransformMatrix result = *this; + result *= t; + result.m_isIdentity = result.IsIdentity1(); + return result; +} + +wxTransformMatrix wxTransformMatrix::operator/(const double& t) const +{ + wxTransformMatrix result = *this; +// wxASSERT(t!=0); + result /= t; + result.m_isIdentity = result.IsIdentity1(); + return result; +} + +wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const +{ + wxTransformMatrix result = *this; + result += m; + result.m_isIdentity = result.IsIdentity1(); + return result; +} + +wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const +{ + wxTransformMatrix result = *this; + result -= m; + result.m_isIdentity = result.IsIdentity1(); + return result; +} + + +wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const +{ + wxTransformMatrix result = *this; + result *= m; + result.m_isIdentity = result.IsIdentity1(); + return result; +} + + +wxTransformMatrix wxTransformMatrix::operator-() const +{ + wxTransformMatrix result = *this; + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + result.m_matrix[i][j] = -(this->m_matrix[i][j]); + result.m_isIdentity = result.IsIdentity1(); + return result; +} + +static double CheckInt(double getal) +{ + // check if the number is very close to an integer + if ( (ceil(getal) - getal) < 0.0001) + return ceil(getal); + + else if ( (getal - floor(getal)) < 0.0001) + return floor(getal); + + return getal; + +} + +double wxTransformMatrix::Get_scaleX() +{ + double scale_factor; + double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); + if (rot_angle != 90 && rot_angle != -90) + scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); + else + scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! + + scale_factor = CheckInt(scale_factor); + if (scale_factor < 0) + scale_factor = -scale_factor; + + return scale_factor; +} + +double wxTransformMatrix::Get_scaleY() +{ + double scale_factor; + double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); + if (rot_angle != 90 && rot_angle != -90) + scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); + else + scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! + + scale_factor = CheckInt(scale_factor); + if (scale_factor < 0) + + scale_factor = -scale_factor; + + return scale_factor; + +} + +double wxTransformMatrix::GetRotation() +{ + double temp1 = GetValue(0,0); // for angle calculation + double temp2 = GetValue(0,1); // + + // Rotation + double rot_angle = atan2(temp2,temp1)*180/pi; + + rot_angle = CheckInt(rot_angle); + return rot_angle; +} + +void wxTransformMatrix::SetRotation(double rotation) +{ + double x=GetValue(2,0); + double y=GetValue(2,1); + Rotate(-GetRotation(), x, y); + Rotate(rotation, x, y); }