X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/92a19c2e7757ba742846f83e56356de0a607bdc2..ec75509f94fb11322c1c69056d1ec2af8f041fe2:/contrib/src/mmedia/g721.cpp diff --git a/contrib/src/mmedia/g721.cpp b/contrib/src/mmedia/g721.cpp index bfc561a7a6..4068c5b85d 100644 --- a/contrib/src/mmedia/g721.cpp +++ b/contrib/src/mmedia/g721.cpp @@ -57,19 +57,19 @@ static short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400}; * Maps G.721 code word to reconstructed scale factor normalized log * magnitude values. */ -static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425, - 425, 373, 323, 273, 213, 135, 4, -2048}; +static short _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425, + 425, 373, 323, 273, 213, 135, 4, -2048}; /* Maps G.721 code word to log of scale factor multiplier. */ -static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122, - 1122, 355, 198, 112, 64, 41, 18, -12}; +static short _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122, + 1122, 355, 198, 112, 64, 41, 18, -12}; /* * Maps G.721 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ -static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, - 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0}; +static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, + 0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0}; /* * g721_encoder() @@ -79,50 +79,50 @@ static short _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00, */ int g721_encoder( - int sl, - int in_coding, - struct g72x_state *state_ptr) + int sl, + int in_coding, + struct g72x_state *state_ptr) { - short sezi, se, sez; /* ACCUM */ - short d; /* SUBTA */ - short sr; /* ADDB */ - short y; /* MIX */ - short dqsez; /* ADDC */ - short dq, i; - - switch (in_coding) { /* linearize input sample to 14-bit PCM */ - case AUDIO_ENCODING_ALAW: - sl = alaw2linear(sl) >> 2; - break; - case AUDIO_ENCODING_ULAW: - sl = ulaw2linear(sl) >> 2; - break; - case AUDIO_ENCODING_LINEAR: - sl = ((short)sl) >> 2; /* 14-bit dynamic range */ - break; - default: - return (-1); - } - - sezi = predictor_zero(state_ptr); - sez = sezi >> 1; - se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */ - - d = sl - se; /* estimation difference */ - - /* quantize the prediction difference */ - y = step_size(state_ptr); /* quantizer step size */ - i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */ - - dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */ - - sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */ - - dqsez = sr + sez - se; /* pole prediction diff. */ - - update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); - - return (i); + short sezi, se, sez; /* ACCUM */ + short d; /* SUBTA */ + short sr; /* ADDB */ + short y; /* MIX */ + short dqsez; /* ADDC */ + short dq, i; + + switch (in_coding) { /* linearize input sample to 14-bit PCM */ + case AUDIO_ENCODING_ALAW: + sl = alaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_ULAW: + sl = ulaw2linear(sl) >> 2; + break; + case AUDIO_ENCODING_LINEAR: + sl = ((short)sl) >> 2; /* 14-bit dynamic range */ + break; + default: + return (-1); + } + + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */ + + d = sl - se; /* estimation difference */ + + /* quantize the prediction difference */ + y = step_size(state_ptr); /* quantizer step size */ + i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */ + + dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */ + + sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */ + + dqsez = sr + sez - se; /* pole prediction diff. */ + + update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); + + return (i); } /* @@ -136,40 +136,40 @@ g721_encoder( */ int g721_decoder( - int i, - int out_coding, - struct g72x_state *state_ptr) + int i, + int out_coding, + struct g72x_state *state_ptr) { - short sezi, sei, sez, se; /* ACCUM */ - short y; /* MIX */ - short sr; /* ADDB */ - short dq; - short dqsez; - - i &= 0x0f; /* mask to get proper bits */ - sezi = predictor_zero(state_ptr); - sez = sezi >> 1; - sei = sezi + predictor_pole(state_ptr); - se = sei >> 1; /* se = estimated signal */ - - y = step_size(state_ptr); /* dynamic quantizer step size */ - - dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */ - - sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */ - - dqsez = sr - se + sez; /* pole prediction diff. */ - - update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); - - switch (out_coding) { - case AUDIO_ENCODING_ALAW: - return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721)); - case AUDIO_ENCODING_ULAW: - return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721)); - case AUDIO_ENCODING_LINEAR: - return (sr << 2); /* sr was 14-bit dynamic range */ - default: - return (-1); - } + short sezi, sei, sez, se; /* ACCUM */ + short y; /* MIX */ + short sr; /* ADDB */ + short dq; + short dqsez; + + i &= 0x0f; /* mask to get proper bits */ + sezi = predictor_zero(state_ptr); + sez = sezi >> 1; + sei = sezi + predictor_pole(state_ptr); + se = sei >> 1; /* se = estimated signal */ + + y = step_size(state_ptr); /* dynamic quantizer step size */ + + dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */ + + sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */ + + dqsez = sr - se + sez; /* pole prediction diff. */ + + update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr); + + switch (out_coding) { + case AUDIO_ENCODING_ALAW: + return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721)); + case AUDIO_ENCODING_ULAW: + return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721)); + case AUDIO_ENCODING_LINEAR: + return (sr << 2); /* sr was 14-bit dynamic range */ + default: + return (-1); + } }