X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/46dc76ba3573649a9ed7c7aff6dc677f533eee11..8e77fd8bca165aab9709649d79a7cbc6a172d4e1:/include/wx/matrix.h diff --git a/include/wx/matrix.h b/include/wx/matrix.h index 8969893444..da6c5da78f 100644 --- a/include/wx/matrix.h +++ b/include/wx/matrix.h @@ -1,22 +1,22 @@ ///////////////////////////////////////////////////////////////////////////// -// Name: matrix.h -// Purpose: wxTransformMatrix class. NOT YET USED -// Author: Chris Breeze, Julian Smart -// Modified by: -// Created: 01/02/97 -// RCS-ID: $Id$ -// Copyright: (c) Julian Smart and Markus Holzem -// Licence: wxWindows licence +// Name: wx/matrix.h +// Purpose: wxTransformMatrix class. NOT YET USED +// Author: Chris Breeze, Julian Smart +// Modified by: Klaas Holwerda +// Created: 01/02/97 +// RCS-ID: $Id$ +// Copyright: (c) Julian Smart, Chris Breeze +// Licence: wxWindows licence ///////////////////////////////////////////////////////////////////////////// -#ifndef __MATRIXH__ -#define __MATRIXH__ - -#ifdef __GNUG__ -#pragma interface "matrix.h" -#endif +#ifndef _WX_MATRIXH__ +#define _WX_MATRIXH__ +//! headerfiles="matrix.h wx/object.h" #include "wx/object.h" +#include "wx/math.h" + +//! codefiles="matrix.cpp" // A simple 3x3 matrix. This may be replaced by a more general matrix // class some day. @@ -24,121 +24,212 @@ // Note: this is intended to be used in wxDC at some point to replace // the current system of scaling/translation. It is not yet used. -class WXDLLEXPORT wxTransformMatrix: public wxObject +//:definition +// A 3x3 matrix to do 2D transformations. +// It can be used to map data to window coordinates, +// and also for manipulating your own data. +// For example drawing a picture (composed of several primitives) +// at a certain coordinate and angle within another parent picture. +// At all times m_isIdentity is set if the matrix itself is an Identity matrix. +// It is used where possible to optimize calculations. +class WXDLLIMPEXP_CORE wxTransformMatrix: public wxObject { public: - wxTransformMatrix(void); - wxTransformMatrix(const wxTransformMatrix& mat); - - double GetValue(int row, int col) const; - void SetValue(int row, int col, double value); - - void operator = (const wxTransformMatrix& mat); - bool operator == (const wxTransformMatrix& mat); - bool operator != (const wxTransformMatrix& mat); - - double& operator()(int row, int col); - double operator()(int row, int col) const; - - // Invert matrix - bool Invert(void); - - // Make into identity matrix - bool Identity(void); - - // Is the matrix the identity matrix? - // Only returns a flag, which is set whenever an operation - // is done. - inline bool IsIdentity(void) const { return m_isIdentity; }; - - // This does an actual check. - inline bool IsIdentity1(void) const ; - - // Isotropic scaling - bool Scale(double scale); - - // Translate - bool Translate(double x, double y); - - // Rotate - bool Rotate(double angle); + wxTransformMatrix(void); + wxTransformMatrix(const wxTransformMatrix& mat); + + //get the value in the matrix at col,row + //rows are horizontal (second index of m_matrix member) + //columns are vertical (first index of m_matrix member) + double GetValue(int col, int row) const; + + //set the value in the matrix at col,row + //rows are horizontal (second index of m_matrix member) + //columns are vertical (first index of m_matrix member) + void SetValue(int col, int row, double value); + + void operator = (const wxTransformMatrix& mat); + bool operator == (const wxTransformMatrix& mat) const; + bool operator != (const wxTransformMatrix& mat) const; + + //multiply every element by t + wxTransformMatrix& operator*=(const double& t); + //divide every element by t + wxTransformMatrix& operator/=(const double& t); + //add matrix m to this t + wxTransformMatrix& operator+=(const wxTransformMatrix& m); + //subtract matrix m from this + wxTransformMatrix& operator-=(const wxTransformMatrix& m); + //multiply matrix m with this + wxTransformMatrix& operator*=(const wxTransformMatrix& m); + + // constant operators + + //multiply every element by t and return result + wxTransformMatrix operator*(const double& t) const; + //divide this matrix by t and return result + wxTransformMatrix operator/(const double& t) const; + //add matrix m to this and return result + wxTransformMatrix operator+(const wxTransformMatrix& m) const; + //subtract matrix m from this and return result + wxTransformMatrix operator-(const wxTransformMatrix& m) const; + //multiply this by matrix m and return result + wxTransformMatrix operator*(const wxTransformMatrix& m) const; + wxTransformMatrix operator-() const; + + //rows are horizontal (second index of m_matrix member) + //columns are vertical (first index of m_matrix member) + double& operator()(int col, int row); + + //rows are horizontal (second index of m_matrix member) + //columns are vertical (first index of m_matrix member) + double operator()(int col, int row) const; + + // Invert matrix + bool Invert(void); + + // Make into identity matrix + bool Identity(void); + + // Is the matrix the identity matrix? + // Only returns a flag, which is set whenever an operation + // is done. + inline bool IsIdentity(void) const { return m_isIdentity; } + + // This does an actual check. + inline bool IsIdentity1(void) const ; + + //Scale by scale (isotropic scaling i.e. the same in x and y): + //!ex: + //!code: | scale 0 0 | + //!code: matrix' = | 0 scale 0 | x matrix + //!code: | 0 0 scale | + bool Scale(double scale); + + //Scale with center point and x/y scale + // + //!ex: + //!code: | xs 0 xc(1-xs) | + //!code: matrix' = | 0 ys yc(1-ys) | x matrix + //!code: | 0 0 1 | + wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc); + + // mirror a matrix in x, y + //!ex: + //!code: | -1 0 0 | + //!code: matrix' = | 0 -1 0 | x matrix + //!code: | 0 0 1 | + wxTransformMatrix& Mirror(bool x=true, bool y=false); + // Translate by dx, dy: + //!ex: + //!code: | 1 0 dx | + //!code: matrix' = | 0 1 dy | x matrix + //!code: | 0 0 1 | + bool Translate(double x, double y); + + // Rotate clockwise by the given number of degrees: + //!ex: + //!code: | cos sin 0 | + //!code: matrix' = | -sin cos 0 | x matrix + //!code: | 0 0 1 | + bool Rotate(double angle); + + //Rotate counter clockwise with point of rotation + // + //!ex: + //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)| + //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix + //!code: | 0 0 1 | + wxTransformMatrix& Rotate(const double &r, const double &x, const double &y); + + // Transform X value from logical to device + inline double TransformX(double x) const; + + // Transform Y value from logical to device + inline double TransformY(double y) const; + + // Transform a point from logical to device coordinates + bool TransformPoint(double x, double y, double& tx, double& ty) const; + + // Transform a point from device to logical coordinates. + // Example of use: + // wxTransformMatrix mat = dc.GetTransformation(); + // mat.Invert(); + // mat.InverseTransformPoint(x, y, x1, y1); + // OR (shorthand:) + // dc.LogicalToDevice(x, y, x1, y1); + // The latter is slightly less efficient if we're doing several + // conversions, since the matrix is inverted several times. + // N.B. 'this' matrix is the inverse at this point + bool InverseTransformPoint(double x, double y, double& tx, double& ty) const; + + double Get_scaleX(); + double Get_scaleY(); + double GetRotation(); + void SetRotation(double rotation); - // Transform X value from logical to device - inline double TransformX(double x) const; - - // Transform Y value from logical to device - inline double TransformY(double y) const; - - // Transform a point from logical to device coordinates - bool TransformPoint(double x, double y, double& tx, double& ty) const; - - // Transform a point from device to logical coordinates. - - // Example of use: - // wxTransformMatrix mat = dc.GetTransformation(); - // mat.Invert(); - // mat.InverseTransformPoint(x, y, x1, y1); - // OR (shorthand:) - // dc.LogicalToDevice(x, y, x1, y1); - // The latter is slightly less efficient if we're doing several - // conversions, since the matrix is inverted several times. - - // N.B. 'this' matrix is the inverse at this point - - bool InverseTransformPoint(double x, double y, double& tx, double& ty) const; public: - double m_matrix[3][3]; - bool m_isIdentity; -/* - double m11, m21, m31; - double m12, m22, m32; - double m13, m23, m33; -*/ + double m_matrix[3][3]; + bool m_isIdentity; }; /* -The code is wrong and doesn't compile. Chris Breeze als reported, that +Chris Breeze reported, that some functions of wxTransformMatrix cannot work because it is not known if he matrix has been inverted. Be careful when using it. +*/ // Transform X value from logical to device +// warning: this function can only be used for this purpose +// because no rotation is involved when mapping logical to device coordinates +// mirror and scaling for x and y will be part of the matrix +// if you have a matrix that is rotated, eg a shape containing a matrix to place +// it in the logical coordinate system, use TransformPoint inline double wxTransformMatrix::TransformX(double x) const { - return (m_isIdentity ? x : (x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0])); + //normally like this, but since no rotation is involved (only mirror and scale) + //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero + //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0])) + return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0])); } // Transform Y value from logical to device +// warning: this function can only be used for this purpose +// because no rotation is involved when mapping logical to device coordinates +// mirror and scaling for x and y will be part of the matrix +// if you have a matrix that is rotated, eg a shape containing a matrix to place +// it in the logical coordinate system, use TransformPoint inline double wxTransformMatrix::TransformY(double y) const { - return (m_isIdentity ? y : (x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1])); + //normally like this, but since no rotation is involved (only mirror and scale) + //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero + //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1])) + return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1])); } -*/ + // Is the matrix the identity matrix? -// Perhaps there's some kind of optimization we can do to make this -// a faster operation. E.g. each operation (scale, translate etc.) -// checks whether it's still the identity matrix and sets a flag. +// Each operation checks whether the result is still the identity matrix and sets a flag. inline bool wxTransformMatrix::IsIdentity1(void) const { - return - (m_matrix[0][0] == 1.0 && - m_matrix[1][1] == 1.0 && - m_matrix[2][2] == 1.0 && - m_matrix[1][0] == 0.0 && - m_matrix[2][0] == 0.0 && - m_matrix[0][1] == 0.0 && - m_matrix[2][1] == 0.0 && - m_matrix[0][2] == 0.0 && - m_matrix[1][2] == 0.0) ; + return + ( wxIsSameDouble(m_matrix[0][0], 1.0) && + wxIsSameDouble(m_matrix[1][1], 1.0) && + wxIsSameDouble(m_matrix[2][2], 1.0) && + wxIsSameDouble(m_matrix[1][0], 0.0) && + wxIsSameDouble(m_matrix[2][0], 0.0) && + wxIsSameDouble(m_matrix[0][1], 0.0) && + wxIsSameDouble(m_matrix[2][1], 0.0) && + wxIsSameDouble(m_matrix[0][2], 0.0) && + wxIsSameDouble(m_matrix[1][2], 0.0) ); } // Calculates the determinant of a 2 x 2 matrix inline double wxCalculateDet(double a11, double a21, double a12, double a22) { - return a11 * a22 - a12 * a21; + return a11 * a22 - a12 * a21; } -#endif - // __MATRIXH__ +#endif // _WX_MATRIXH__