X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/15b6757b26a0277472a4f6b071b52050abd922da..7df4c51f6021fbf1b204db918a1cc5c4ddff31cc:/docs/doxygen/overviews/unicode.h diff --git a/docs/doxygen/overviews/unicode.h b/docs/doxygen/overviews/unicode.h index 810d17d55c..6573680581 100644 --- a/docs/doxygen/overviews/unicode.h +++ b/docs/doxygen/overviews/unicode.h @@ -1,200 +1,207 @@ ///////////////////////////////////////////////////////////////////////////// -// Name: unicode +// Name: unicode.h // Purpose: topic overview // Author: wxWidgets team // RCS-ID: $Id$ // Licence: wxWindows license ///////////////////////////////////////////////////////////////////////////// -/*! - - @page unicode_overview Unicode support in wxWidgets - - This section briefly describes the state of the Unicode support in wxWidgets. - Read it if you want to know more about how to write programs able to work with - characters from languages other than English. - @ref whatisunicode_overview - @ref unicodeandansi_overview - @ref unicodeinsidewxw_overview - @ref unicodeoutsidewxw_overview - @ref unicodesettings_overview - @ref topic8_overview - - - @section whatisunicode What is Unicode? - - wxWidgets has support for compiling in Unicode mode - on the platforms which support it. Unicode is a standard for character - encoding which addresses the shortcomings of the previous, 8 bit standards, by - using at least 16 (and possibly 32) bits for encoding each character. This - allows to have at least 65536 characters (what is called the BMP, or basic - multilingual plane) and possible 2^32 of them instead of the usual 256 and - is sufficient to encode all of the world languages at once. More details about - Unicode may be found at #http://www.unicode.org. - As this solution is obviously preferable to the previous ones (think of - incompatible encodings for the same language, locale chaos and so on), many - modern operating systems support it. The probably first example is Windows NT - which uses only Unicode internally since its very first version. - Writing internationalized programs is much easier with Unicode and, as the - support for it improves, it should become more and more so. Moreover, in the - Windows NT/2000 case, even the program which uses only standard ASCII can profit - from using Unicode because they will work more efficiently - there will be no - need for the system to convert all strings the program uses to/from Unicode - each time a system call is made. - - @section unicodeandansi Unicode and ANSI modes - - As not all platforms supported by wxWidgets support Unicode (fully) yet, in - many cases it is unwise to write a program which can only work in Unicode - environment. A better solution is to write programs in such way that they may - be compiled either in ANSI (traditional) mode or in the Unicode one. - This can be achieved quite simply by using the means provided by wxWidgets. - Basically, there are only a few things to watch out for: - - - Character type (@c char or @c wchar_t) - Literal strings (i.e. @c "Hello, world!" or @c '*') - String functions (@c strlen(), @c strcpy(), ...) - Special preprocessor tokens (@c __FILE__, @c __DATE__ - and @c __TIME__) - - - Let's look at them in order. First of all, each character in an Unicode - program takes 2 bytes instead of usual one, so another type should be used to - store the characters (@c char only holds 1 byte usually). This type is - called @c wchar_t which stands for @e wide-character type. - Also, the string and character constants should be encoded using wide - characters (@c wchar_t type) which typically take 2 or 4 bytes instead - of @c char which only takes one. This is achieved by using the standard C - (and C++) way: just put the letter @c 'L' after any string constant and it - becomes a @e long constant, i.e. a wide character one. To make things a bit - more readable, you are also allowed to prefix the constant with @c 'L' - instead of putting it after it. - Of course, the usual standard C functions don't work with @c wchar_t - strings, so another set of functions exists which do the same thing but accept - @c wchar_t * instead of @c char *. For example, a function to get the - length of a wide-character string is called @c wcslen() (compare with - @c strlen() - you see that the only difference is that the "str" prefix - standing for "string" has been replaced with "wcs" standing for "wide-character - string"). - And finally, the standard preprocessor tokens enumerated above expand to ANSI - strings but it is more likely that Unicode strings are wanted in the Unicode - build. wxWidgets provides the macros @c __TFILE__, @c __TDATE__ - and @c __TTIME__ which behave exactly as the standard ones except that - they produce ANSI strings in ANSI build and Unicode ones in the Unicode build. - To summarize, here is a brief example of how a program which can be compiled - in both ANSI and Unicode modes could look like: - - @code - #ifdef __UNICODE__ - wchar_t wch = L'*'; - const wchar_t *ws = L"Hello, world!"; - int len = wcslen(ws); - - wprintf(L"Compiled at %s\n", __TDATE__); - #else // ANSI - char ch = '*'; - const char *s = "Hello, world!"; - int len = strlen(s); - - printf("Compiled at %s\n", __DATE__); - #endif // Unicode/ANSI - @endcode - - Of course, it would be nearly impossibly to write such programs if it had to - be done this way (try to imagine the number of @c #ifdef UNICODE an average - program would have had!). Luckily, there is another way - see the next - section. - - @section unicodeinsidewxw Unicode support in wxWidgets - - In wxWidgets, the code fragment from above should be written instead: - - @code - wxChar ch = wxT('*'); - wxString s = wxT("Hello, world!"); - int len = s.Len(); - @endcode - - What happens here? First of all, you see that there are no more @c #ifdefs - at all. Instead, we define some types and macros which behave differently in - the Unicode and ANSI builds and allow us to avoid using conditional - compilation in the program itself. - We have a @c wxChar type which maps either on @c char or @c wchar_t - depending on the mode in which program is being compiled. There is no need for - a separate type for strings though, because the standard - #wxString supports Unicode, i.e. it stores either ANSI or - Unicode strings depending on the compile mode. - Finally, there is a special #wxT() macro which should enclose all - literal strings in the program. As it is easy to see comparing the last - fragment with the one above, this macro expands to nothing in the (usual) ANSI - mode and prefixes @c 'L' to its argument in the Unicode mode. - The important conclusion is that if you use @c wxChar instead of - @c char, avoid using C style strings and use @c wxString instead and - don't forget to enclose all string literals inside #wxT() macro, your - program automatically becomes (almost) Unicode compliant! - Just let us state once again the rules: - - - Always use @c wxChar instead of @c char - Always enclose literal string constants in #wxT() macro - unless they're already converted to the right representation (another standard - wxWidgets macro #_() does it, for example, so there is no - need for @c wxT() in this case) or you intend to pass the constant directly - to an external function which doesn't accept wide-character strings. - Use @c wxString instead of C style strings. - - - - @section unicodeoutsidewxw Unicode and the outside world - - We have seen that it was easy to write Unicode programs using wxWidgets types - and macros, but it has been also mentioned that it isn't quite enough. - Although everything works fine inside the program, things can get nasty when - it tries to communicate with the outside world which, sadly, often expects - ANSI strings (a notable exception is the entire Win32 API which accepts either - Unicode or ANSI strings and which thus makes it unnecessary to ever perform - any conversions in the program). GTK 2.0 only accepts UTF-8 strings. - To get an ANSI string from a wxString, you may use the - mb_str() function which always returns an ANSI - string (independently of the mode - while the usual - #c_str() returns a pointer to the internal - representation which is either ASCII or Unicode). More rarely used, but still - useful, is wc_str() function which always returns - the Unicode string. - Sometimes it is also necessary to go from ANSI strings to wxStrings. - In this case, you can use the converter-constructor, as follows: - - - @code - const char* ascii_str = "Some text"; - wxString str(ascii_str, wxConvUTF8); - @endcode - - This code also compiles fine under a non-Unicode build of wxWidgets, - but in that case the converter is ignored. - For more information about converters and Unicode see - the @ref mbconvclasses_overview. - - @section unicodesettings Unicode-related compilation settings - - You should define @c wxUSE_UNICODE to 1 to compile your program in - Unicode mode. This currently works for wxMSW, wxGTK, wxMac and wxX11. If you - compile your program in ANSI mode you can still define @c wxUSE_WCHAR_T - to get some limited support for @c wchar_t type. - This will allow your program to perform conversions between Unicode strings and - ANSI ones (using @ref mbconvclasses_overview) - and construct wxString objects from Unicode strings (presumably read - from some external file or elsewhere). - - @section topic8 Traps for the unwary - - - - Casting c_str() to void* is now char*, not wxChar* - Passing c_str(), mb_str() or wc_str() to variadic functions - doesn't work - - */ - - +/** + +@page overview_unicode Unicode Support in wxWidgets + +This section briefly describes the state of the Unicode support in wxWidgets. +Read it if you want to know more about how to write programs able to work with +characters from languages other than English. + +@li @ref overview_unicode_what +@li @ref overview_unicode_ansi +@li @ref overview_unicode_supportin +@li @ref overview_unicode_supportout +@li @ref overview_unicode_settings +@li @ref overview_unicode_traps + + +