X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/07aaa1a4b853b64e61c01a9daf8a322d3896c36b..80a779275ae04443c568dca919adb26cf6f5002c:/src/common/image.cpp?ds=inline diff --git a/src/common/image.cpp b/src/common/image.cpp index a4a74d45ef..a2674529de 100644 --- a/src/common/image.cpp +++ b/src/common/image.cpp @@ -30,10 +30,7 @@ #include "wx/filefn.h" #include "wx/wfstream.h" - -#if wxUSE_XPM - #include "wx/xpmdecod.h" -#endif +#include "wx/xpmdecod.h" // For memcpy #include @@ -51,6 +48,10 @@ #endif // wxUSE_FILE/wxUSE_FFILE #endif // HAS_FILE_STREAMS +#if wxUSE_VARIANT +IMPLEMENT_VARIANT_OBJECT_EXPORTED(wxImage,WXDLLEXPORT) +#endif + //----------------------------------------------------------------------------- // wxImage //----------------------------------------------------------------------------- @@ -161,17 +162,12 @@ wxImage::wxImage( wxInputStream& stream, const wxString& mimetype, int index ) } #endif // wxUSE_STREAMS -wxImage::wxImage( const char** xpmData ) +wxImage::wxImage(const char* const* xpmData) { Create(xpmData); } -wxImage::wxImage( char** xpmData ) -{ - Create((const char**) xpmData); -} - -bool wxImage::Create( const char** xpmData ) +bool wxImage::Create(const char* const* xpmData) { #if wxUSE_XPM UnRef(); @@ -429,22 +425,25 @@ wxImage wxImage::Scale( int width, int height, int quality ) const wxCHECK_MSG( (old_height > 0) && (old_width > 0), image, wxT("invalid old image size") ); - // If the image's new width and height are the same as the original, no need to waste time or CPU cycles - if(old_width == width && old_height == height) + // If the image's new width and height are the same as the original, no + // need to waste time or CPU cycles + if ( old_width == width && old_height == height ) return *this; - // Scale the image (...or more appropriately, resample the image) using either the high-quality or normal method as specified - if(quality == wxIMAGE_QUALITY_HIGH) + // Scale the image (...or more appropriately, resample the image) using + // either the high-quality or normal method as specified + if ( quality == wxIMAGE_QUALITY_HIGH ) { // We need to check whether we are downsampling or upsampling the image - if(width < old_width && height < old_height) + if ( width < old_width && height < old_height ) { // Downsample the image using the box averaging method for best results image = ResampleBox(width, height); } else { - // For upsampling or other random/wierd image dimensions we'll use a bicubic b-spline scaling method + // For upsampling or other random/wierd image dimensions we'll use + // a bicubic b-spline scaling method image = ResampleBicubic(width, height); } } @@ -466,13 +465,7 @@ wxImage wxImage::Scale( int width, int height, int quality ) const unsigned char *source_alpha = 0 ; unsigned char *target_alpha = 0 ; - if (M_IMGDATA->m_hasMask) - { - image.SetMaskColour( M_IMGDATA->m_maskRed, - M_IMGDATA->m_maskGreen, - M_IMGDATA->m_maskBlue ); - } - else + if ( !M_IMGDATA->m_hasMask ) { source_alpha = M_IMGDATA->m_alpha ; if ( source_alpha ) @@ -511,6 +504,14 @@ wxImage wxImage::Scale( int width, int height, int quality ) const } } + // If the original image has a mask, apply the mask to the new image + if (M_IMGDATA->m_hasMask) + { + image.SetMaskColour( M_IMGDATA->m_maskRed, + M_IMGDATA->m_maskGreen, + M_IMGDATA->m_maskBlue ); + } + // In case this is a cursor, make sure the hotspot is scaled accordingly: if ( HasOption(wxIMAGE_OPTION_CUR_HOTSPOT_X) ) image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, @@ -524,59 +525,66 @@ wxImage wxImage::Scale( int width, int height, int quality ) const wxImage wxImage::ResampleBox(int width, int height) const { - // This function implements a simple pre-blur/box averaging method for downsampling that gives reasonably smooth results - // To scale the image down we will need to gather a grid of pixels of the size of the scale factor in each direction - // and then do an averaging of the pixels. + // This function implements a simple pre-blur/box averaging method for + // downsampling that gives reasonably smooth results To scale the image + // down we will need to gather a grid of pixels of the size of the scale + // factor in each direction and then do an averaging of the pixels. wxImage ret_image(width, height, false); - double scale_factor_x = double(M_IMGDATA->m_width) / width; - double scale_factor_y = double(M_IMGDATA->m_height) / height; + const double scale_factor_x = double(M_IMGDATA->m_width) / width; + const double scale_factor_y = double(M_IMGDATA->m_height) / height; + + const int scale_factor_x_2 = (int)(scale_factor_x / 2); + const int scale_factor_y_2 = (int)(scale_factor_y / 2); // If we want good-looking results we need to pre-blur the image a bit first wxImage src_image(*this); - src_image = src_image.BlurHorizontal(scale_factor_x / 2); - src_image = src_image.BlurVertical(scale_factor_y / 2); + src_image = src_image.BlurHorizontal(scale_factor_x_2); + src_image = src_image.BlurVertical(scale_factor_y_2); unsigned char* src_data = src_image.GetData(); unsigned char* src_alpha = src_image.GetAlpha(); unsigned char* dst_data = ret_image.GetData(); unsigned char* dst_alpha = NULL; - if(src_alpha) + if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } - int x, y, i, j; - int averaged_pixels, src_pixel_index, src_x, src_y; + int averaged_pixels, src_pixel_index; double sum_r, sum_g, sum_b, sum_a; - for(y = 0; y < height; y++) // Destination image - Y direction + for ( int y = 0; y < height; y++ ) // Destination image - Y direction { // Source pixel in the Y direction - src_y = y * scale_factor_y; + int src_y = (int)(y * scale_factor_y); - for(x = 0; x < width; x++) // Destination image - X direction + for ( int x = 0; x < width; x++ ) // Destination image - X direction { // Source pixel in the X direction - src_x = x * scale_factor_x; + int src_x = (int)(x * scale_factor_x); // Box of pixels to average averaged_pixels = 0; sum_r = sum_g = sum_b = sum_a = 0.0; - for(j = src_y - scale_factor_y / 2 + 1; j <= int(src_y + scale_factor_y / 2); j++) // Y direction + for ( int j = int(src_y - scale_factor_y/2.0 + 1); + j <= int(src_y + scale_factor_y_2); + j++ ) { // We don't care to average pixels that don't exist (edges) - if(j < 0 || j > M_IMGDATA->m_height) + if ( j < 0 || j > M_IMGDATA->m_height ) continue; - for(i = src_x - scale_factor_x / 2 + 1; i <= int(src_x + scale_factor_x / 2); i++) // X direction + for ( int i = int(src_x - scale_factor_x/2.0 + 1); + i <= src_x + scale_factor_x_2; + i++ ) { // Don't average edge pixels - if(i < 0 || i > M_IMGDATA->m_width) + if ( i < 0 || i > M_IMGDATA->m_width ) continue; // Calculate the actual index in our source pixels @@ -585,7 +593,7 @@ wxImage wxImage::ResampleBox(int width, int height) const sum_r += src_data[src_pixel_index * 3 + 0]; sum_g += src_data[src_pixel_index * 3 + 1]; sum_b += src_data[src_pixel_index * 3 + 2]; - if(src_alpha) + if ( src_alpha ) sum_a += src_alpha[src_pixel_index]; averaged_pixels++; @@ -593,19 +601,20 @@ wxImage wxImage::ResampleBox(int width, int height) const } // Calculate the average from the sum and number of averaged pixels - dst_data[0] = int(sum_r / averaged_pixels); - dst_data[1] = int(sum_g / averaged_pixels); - dst_data[2] = int(sum_b / averaged_pixels); + dst_data[0] = (unsigned char)(sum_r / averaged_pixels); + dst_data[1] = (unsigned char)(sum_g / averaged_pixels); + dst_data[2] = (unsigned char)(sum_b / averaged_pixels); dst_data += 3; - if(src_alpha) - *dst_alpha++ = sum_a / averaged_pixels; + if ( src_alpha ) + *dst_alpha++ = (unsigned char)(sum_a / averaged_pixels); } } return ret_image; } -// The following two local functions are for the B-spline weighting of the bicubic sampling algorithm +// The following two local functions are for the B-spline weighting of the +// bicubic sampling algorithm static inline double spline_cube(double value) { return value <= 0.0 ? 0.0 : value * value * value; @@ -613,27 +622,40 @@ static inline double spline_cube(double value) static inline double spline_weight(double value) { - return (spline_cube(value + 2) - 4 * spline_cube(value + 1) + 6 * spline_cube(value) - 4 * spline_cube(value - 1)) / 6; + return (spline_cube(value + 2) - + 4 * spline_cube(value + 1) + + 6 * spline_cube(value) - + 4 * spline_cube(value - 1)) / 6; } // This is the bicubic resampling algorithm wxImage wxImage::ResampleBicubic(int width, int height) const { - // This function implements a Bicubic B-Spline algorithm for resampling. This method is certainly a little slower than wxImage's default - // pixel replication method, however for most reasonably sized images not being upsampled too much on a fairly average CPU this - // difference is hardly noticeable and the results are far more pleasing to look at. + // This function implements a Bicubic B-Spline algorithm for resampling. + // This method is certainly a little slower than wxImage's default pixel + // replication method, however for most reasonably sized images not being + // upsampled too much on a fairly average CPU this difference is hardly + // noticeable and the results are far more pleasing to look at. // - // This particular bicubic algorithm does pixel weighting according to a B-Spline that basically implements a Gaussian bell-like - // weighting kernel. Because of this method the results may appear a bit blurry when upsampling by large factors. This is basically - // because a slight gaussian blur is being performed to get the smooth look of the upsampled image. + // This particular bicubic algorithm does pixel weighting according to a + // B-Spline that basically implements a Gaussian bell-like weighting + // kernel. Because of this method the results may appear a bit blurry when + // upsampling by large factors. This is basically because a slight + // gaussian blur is being performed to get the smooth look of the upsampled + // image. // Edge pixels: 3-4 possible solutions - // - (Wrap/tile) Wrap the image, take the color value from the opposite side of the image. - // - (Mirror) Duplicate edge pixels, so that pixel at coordinate (2, n), where n is nonpositive, will have the value of (2, 1). - // - (Ignore) Simply ignore the edge pixels and apply the kernel only to pixels which do have all neighbours. - // - (Clamp) Choose the nearest pixel along the border. This takes the border pixels and extends them out to infinity. + // - (Wrap/tile) Wrap the image, take the color value from the opposite + // side of the image. + // - (Mirror) Duplicate edge pixels, so that pixel at coordinate (2, n), + // where n is nonpositive, will have the value of (2, 1). + // - (Ignore) Simply ignore the edge pixels and apply the kernel only to + // pixels which do have all neighbours. + // - (Clamp) Choose the nearest pixel along the border. This takes the + // border pixels and extends them out to infinity. // - // NOTE: below the y_offset and x_offset variables are being set for edge pixels using the "Mirror" method mentioned above + // NOTE: below the y_offset and x_offset variables are being set for edge + // pixels using the "Mirror" method mentioned above wxImage ret_image; @@ -644,70 +666,76 @@ wxImage wxImage::ResampleBicubic(int width, int height) const unsigned char* dst_data = ret_image.GetData(); unsigned char* dst_alpha = NULL; - if(src_alpha) + if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } - int k, i; - double srcpixx, srcpixy, dx, dy; - int dstx, dsty; - double sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; // Sums for each color channel - int x_offset = 0, y_offset = 0; - double pixel_weight; - long src_pixel_index; - - for(dsty = 0; dsty < height; dsty++) + for ( int dsty = 0; dsty < height; dsty++ ) { // We need to calculate the source pixel to interpolate from - Y-axis - srcpixy = double(dsty) * M_IMGDATA->m_height / height; - dy = srcpixy - (int)srcpixy; + double srcpixy = dsty * M_IMGDATA->m_height / height; + double dy = srcpixy - (int)srcpixy; - for(dstx = 0; dstx < width; dstx++) + for ( int dstx = 0; dstx < width; dstx++ ) { // X-axis of pixel to interpolate from - srcpixx = double(dstx) * M_IMGDATA->m_width / width; - dx = srcpixx - (int)srcpixx; + double srcpixx = dstx * M_IMGDATA->m_width / width; + double dx = srcpixx - (int)srcpixx; - // Clear all the RGBA sum values - sum_r = sum_g = sum_b = sum_a = 0; + // Sums for each color channel + double sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; // Here we actually determine the RGBA values for the destination pixel - for(k = -1; k <= 2; k++) + for ( int k = -1; k <= 2; k++ ) { // Y offset - y_offset = srcpixy + double(k) < 0.0 ? 0 : (srcpixy + double(k) >= M_IMGDATA->m_height ? M_IMGDATA->m_height - 1 : srcpixy + k); + int y_offset = srcpixy + k < 0.0 + ? 0 + : srcpixy + k >= M_IMGDATA->m_height + ? M_IMGDATA->m_height - 1 + : (int)(srcpixy + k); // Loop across the X axis - for(i = -1; i <= 2; i++) + for ( int i = -1; i <= 2; i++ ) { // X offset - x_offset = srcpixx + double(i) < 0.0 ? 0 : (srcpixx + double(i) >= M_IMGDATA->m_width ? M_IMGDATA->m_width - 1 : srcpixx + i); - - // Calculate the exact position where the source data should be pulled from based on the x_offset and y_offset - src_pixel_index = (y_offset * M_IMGDATA->m_width) + x_offset; - - // Calculate the weight for the specified pixel according to the bicubic b-spline kernel we're using for interpolation - pixel_weight = spline_weight(double(i) - dx) * spline_weight(double(k) - dy); - - // Create a sum of all velues for each color channel adjusted for the pixel's calculated weight - sum_r += double(src_data[src_pixel_index * 3 + 0]) * pixel_weight; - sum_g += double(src_data[src_pixel_index * 3 + 1]) * pixel_weight; - sum_b += double(src_data[src_pixel_index * 3 + 2]) * pixel_weight; - if(src_alpha) - sum_a += double(src_alpha[src_pixel_index]) * pixel_weight; + int x_offset = srcpixx + i < 0.0 + ? 0 + : srcpixx + i >= M_IMGDATA->m_width + ? M_IMGDATA->m_width - 1 + : (int)(srcpixx + i); + + // Calculate the exact position where the source data + // should be pulled from based on the x_offset and y_offset + int src_pixel_index = y_offset*M_IMGDATA->m_width + x_offset; + + // Calculate the weight for the specified pixel according + // to the bicubic b-spline kernel we're using for + // interpolation + double + pixel_weight = spline_weight(i - dx)*spline_weight(k - dy); + + // Create a sum of all velues for each color channel + // adjusted for the pixel's calculated weight + sum_r += src_data[src_pixel_index * 3 + 0] * pixel_weight; + sum_g += src_data[src_pixel_index * 3 + 1] * pixel_weight; + sum_b += src_data[src_pixel_index * 3 + 2] * pixel_weight; + if ( src_alpha ) + sum_a += src_alpha[src_pixel_index] * pixel_weight; } } - // Put the data into the destination image. The summed values are of double data type and are rounded here for accuracy - dst_data[0] = int(sum_r + 0.5); - dst_data[1] = int(sum_g + 0.5); - dst_data[2] = int(sum_b + 0.5); + // Put the data into the destination image. The summed values are + // of double data type and are rounded here for accuracy + dst_data[0] = (unsigned char)(sum_r + 0.5); + dst_data[1] = (unsigned char)(sum_g + 0.5); + dst_data[2] = (unsigned char)(sum_b + 0.5); dst_data += 3; - if(src_alpha) - *dst_alpha++ = sum_a; + if ( src_alpha ) + *dst_alpha++ = (unsigned char)sum_a; } } @@ -726,79 +754,106 @@ wxImage wxImage::BlurHorizontal(int blurRadius) unsigned char* dst_alpha = NULL; // Check for a mask or alpha - if(M_IMGDATA->m_hasMask) - ret_image.SetMaskColour(M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue); + if ( M_IMGDATA->m_hasMask ) + { + ret_image.SetMaskColour(M_IMGDATA->m_maskRed, + M_IMGDATA->m_maskGreen, + M_IMGDATA->m_maskBlue); + } else - if(src_alpha) + { + if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } + } - // Variables used in the blurring algorithm - int x, y; - int kernel_x; - long sum_r, sum_g, sum_b, sum_a; - long pixel_idx; + // number of pixels we average over + const int blurArea = blurRadius*2 + 1; - // Horizontal blurring algorithm - average all pixels in the specified blur radius in the X or horizontal direction - for(y = 0; y < M_IMGDATA->m_height; y++) + // Horizontal blurring algorithm - average all pixels in the specified blur + // radius in the X or horizontal direction + for ( int y = 0; y < M_IMGDATA->m_height; y++ ) { - sum_r = sum_g = sum_b = sum_a = 0; + // Variables used in the blurring algorithm + long sum_r = 0, + sum_g = 0, + sum_b = 0, + sum_a = 0; + + long pixel_idx; + const unsigned char *src; + unsigned char *dst; - // Calculate the average of all pixels in the blur radius for the first pixel of the row - for(kernel_x = -blurRadius; kernel_x <= blurRadius; kernel_x++) + // Calculate the average of all pixels in the blur radius for the first + // pixel of the row + for ( int kernel_x = -blurRadius; kernel_x <= blurRadius; kernel_x++ ) { - // To deal with the pixels at the start of a row so it's not grabbing GOK values from memory at negative indices of the image's data or grabbing from the previous row - if(kernel_x < 0) + // To deal with the pixels at the start of a row so it's not + // grabbing GOK values from memory at negative indices of the + // image's data or grabbing from the previous row + if ( kernel_x < 0 ) pixel_idx = y * M_IMGDATA->m_width; else pixel_idx = kernel_x + y * M_IMGDATA->m_width; - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; } - dst_data[y * M_IMGDATA->m_width * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[y * M_IMGDATA->m_width * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[y * M_IMGDATA->m_width * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[y * M_IMGDATA->m_width] = sum_a / (blurRadius * 2 + 1); - - // Now average the values of the rest of the pixels by just moving the blur radius box along the row - for(x = 1; x < M_IMGDATA->m_width; x++) + + dst = dst_data + y * M_IMGDATA->m_width*3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); + + // Now average the values of the rest of the pixels by just moving the + // blur radius box along the row + for ( int x = 1; x < M_IMGDATA->m_width; x++ ) { - // Take care of edge pixels on the left edge by essentially duplicating the edge pixel - if(x - blurRadius - 1 < 0) + // Take care of edge pixels on the left edge by essentially + // duplicating the edge pixel + if ( x - blurRadius - 1 < 0 ) pixel_idx = y * M_IMGDATA->m_width; else pixel_idx = (x - blurRadius - 1) + y * M_IMGDATA->m_width; - // Subtract the value of the pixel at the left side of the blur radius box - sum_r -= src_data[pixel_idx * 3 + 0]; - sum_g -= src_data[pixel_idx * 3 + 1]; - sum_b -= src_data[pixel_idx * 3 + 2]; - sum_a -= src_alpha ? src_alpha[pixel_idx] : 0; + // Subtract the value of the pixel at the left side of the blur + // radius box + src = src_data + pixel_idx*3; + sum_r -= src[0]; + sum_g -= src[1]; + sum_b -= src[2]; + if ( src_alpha ) + sum_a -= src_alpha[pixel_idx]; // Take care of edge pixels on the right edge - if(x + blurRadius > M_IMGDATA->m_width - 1) + if ( x + blurRadius > M_IMGDATA->m_width - 1 ) pixel_idx = M_IMGDATA->m_width - 1 + y * M_IMGDATA->m_width; else pixel_idx = x + blurRadius + y * M_IMGDATA->m_width; // Add the value of the pixel being added to the end of our box - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; // Save off the averaged data - dst_data[x * 3 + y * M_IMGDATA->m_width * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[x * 3 + y * M_IMGDATA->m_width * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[x * 3 + y * M_IMGDATA->m_width * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[x + y * M_IMGDATA->m_width] = sum_a / (blurRadius * 2 + 1); + dst = dst_data + x*3 + y*M_IMGDATA->m_width*3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[x + y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); } } @@ -817,79 +872,106 @@ wxImage wxImage::BlurVertical(int blurRadius) unsigned char* dst_alpha = NULL; // Check for a mask or alpha - if(M_IMGDATA->m_hasMask) - ret_image.SetMaskColour(M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue); + if ( M_IMGDATA->m_hasMask ) + { + ret_image.SetMaskColour(M_IMGDATA->m_maskRed, + M_IMGDATA->m_maskGreen, + M_IMGDATA->m_maskBlue); + } else - if(src_alpha) + { + if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } + } - // Variables used in the blurring algorithm - int x, y; - int kernel_y; - long sum_r, sum_g, sum_b, sum_a; - long pixel_idx; + // number of pixels we average over + const int blurArea = blurRadius*2 + 1; - // Vertical blurring algorithm - same as horizontal but switched the opposite direction - for(x = 0; x < M_IMGDATA->m_width; x++) + // Vertical blurring algorithm - same as horizontal but switched the + // opposite direction + for ( int x = 0; x < M_IMGDATA->m_width; x++ ) { - sum_r = sum_g = sum_b = sum_a = 0; + // Variables used in the blurring algorithm + long sum_r = 0, + sum_g = 0, + sum_b = 0, + sum_a = 0; + + long pixel_idx; + const unsigned char *src; + unsigned char *dst; - // Calculate the average of all pixels in our blur radius box for the first pixel of the column - for(kernel_y = -blurRadius; kernel_y <= blurRadius; kernel_y++) + // Calculate the average of all pixels in our blur radius box for the + // first pixel of the column + for ( int kernel_y = -blurRadius; kernel_y <= blurRadius; kernel_y++ ) { - // To deal with the pixels at the start of a column so it's not grabbing GOK values from memory at negative indices of the image's data or grabbing from the previous column - if(kernel_y < 0) + // To deal with the pixels at the start of a column so it's not + // grabbing GOK values from memory at negative indices of the + // image's data or grabbing from the previous column + if ( kernel_y < 0 ) pixel_idx = x; else pixel_idx = x + kernel_y * M_IMGDATA->m_width; - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; } - dst_data[x * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[x * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[x * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[x] = sum_a / (blurRadius * 2 + 1); - - // Now average the values of the rest of the pixels by just moving the box along the column from top to bottom - for(y = 1; y < M_IMGDATA->m_height; y++) + + dst = dst_data + x*3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[x] = (unsigned char)(sum_a / blurArea); + + // Now average the values of the rest of the pixels by just moving the + // box along the column from top to bottom + for ( int y = 1; y < M_IMGDATA->m_height; y++ ) { - // Take care of pixels that would be beyond the top edge by duplicating the top edge pixel for the column - if(y - blurRadius - 1 < 0) + // Take care of pixels that would be beyond the top edge by + // duplicating the top edge pixel for the column + if ( y - blurRadius - 1 < 0 ) pixel_idx = x; else pixel_idx = x + (y - blurRadius - 1) * M_IMGDATA->m_width; // Subtract the value of the pixel at the top of our blur radius box - sum_r -= src_data[pixel_idx * 3 + 0]; - sum_g -= src_data[pixel_idx * 3 + 1]; - sum_b -= src_data[pixel_idx * 3 + 2]; - sum_a -= src_alpha ? src_alpha[pixel_idx] : 0; - - // Take care of the pixels that would be beyond the bottom edge of the image similar to the top edge - if(y + blurRadius > M_IMGDATA->m_height - 1) + src = src_data + pixel_idx*3; + sum_r -= src[0]; + sum_g -= src[1]; + sum_b -= src[2]; + if ( src_alpha ) + sum_a -= src_alpha[pixel_idx]; + + // Take care of the pixels that would be beyond the bottom edge of + // the image similar to the top edge + if ( y + blurRadius > M_IMGDATA->m_height - 1 ) pixel_idx = x + (M_IMGDATA->m_height - 1) * M_IMGDATA->m_width; else pixel_idx = x + (blurRadius + y) * M_IMGDATA->m_width; // Add the value of the pixel being added to the end of our box - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; // Save off the averaged data - dst_data[(x + y * M_IMGDATA->m_width) * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[(x + y * M_IMGDATA->m_width) * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[(x + y * M_IMGDATA->m_width) * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[x + y * M_IMGDATA->m_width] = sum_a / (blurRadius * 2 + 1); + dst = dst_data + (x + y * M_IMGDATA->m_width) * 3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[x + y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); } } @@ -1229,8 +1311,8 @@ void wxImage::Paste( const wxImage &image, int x, int y ) { for (int i = 0; i < width; i+=3) { - if ((source_data[i] != r) && - (source_data[i+1] != g) && + if ((source_data[i] != r) || + (source_data[i+1] != g) || (source_data[i+2] != b)) { memcpy( target_data+i, source_data+i, 3 ); @@ -1462,7 +1544,7 @@ unsigned char wxImage::GetBlue( int x, int y ) const return M_IMGDATA->m_data[pos+2]; } -bool wxImage::Ok() const +bool wxImage::IsOk() const { // image of 0 width or height can't be considered ok - at least because it // causes crashes in ConvertToBitmap() if we don't catch it in time