X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/07aaa1a4b853b64e61c01a9daf8a322d3896c36b..1e510b1e2d0270caf227c3fc0cf34ae2e7dd6794:/src/common/image.cpp diff --git a/src/common/image.cpp b/src/common/image.cpp index a4a74d45ef..9436fdd28e 100644 --- a/src/common/image.cpp +++ b/src/common/image.cpp @@ -30,10 +30,7 @@ #include "wx/filefn.h" #include "wx/wfstream.h" - -#if wxUSE_XPM - #include "wx/xpmdecod.h" -#endif +#include "wx/xpmdecod.h" // For memcpy #include @@ -51,6 +48,10 @@ #endif // wxUSE_FILE/wxUSE_FFILE #endif // HAS_FILE_STREAMS +#if wxUSE_VARIANT +IMPLEMENT_VARIANT_OBJECT_EXPORTED_SHALLOWCMP(wxImage,WXDLLEXPORT) +#endif + //----------------------------------------------------------------------------- // wxImage //----------------------------------------------------------------------------- @@ -161,17 +162,12 @@ wxImage::wxImage( wxInputStream& stream, const wxString& mimetype, int index ) } #endif // wxUSE_STREAMS -wxImage::wxImage( const char** xpmData ) +wxImage::wxImage(const char* const* xpmData) { Create(xpmData); } -wxImage::wxImage( char** xpmData ) -{ - Create((const char**) xpmData); -} - -bool wxImage::Create( const char** xpmData ) +bool wxImage::Create(const char* const* xpmData) { #if wxUSE_XPM UnRef(); @@ -429,22 +425,25 @@ wxImage wxImage::Scale( int width, int height, int quality ) const wxCHECK_MSG( (old_height > 0) && (old_width > 0), image, wxT("invalid old image size") ); - // If the image's new width and height are the same as the original, no need to waste time or CPU cycles - if(old_width == width && old_height == height) + // If the image's new width and height are the same as the original, no + // need to waste time or CPU cycles + if ( old_width == width && old_height == height ) return *this; - // Scale the image (...or more appropriately, resample the image) using either the high-quality or normal method as specified - if(quality == wxIMAGE_QUALITY_HIGH) + // Scale the image (...or more appropriately, resample the image) using + // either the high-quality or normal method as specified + if ( quality == wxIMAGE_QUALITY_HIGH ) { // We need to check whether we are downsampling or upsampling the image - if(width < old_width && height < old_height) + if ( width < old_width && height < old_height ) { // Downsample the image using the box averaging method for best results image = ResampleBox(width, height); } else { - // For upsampling or other random/wierd image dimensions we'll use a bicubic b-spline scaling method + // For upsampling or other random/wierd image dimensions we'll use + // a bicubic b-spline scaling method image = ResampleBicubic(width, height); } } @@ -466,13 +465,7 @@ wxImage wxImage::Scale( int width, int height, int quality ) const unsigned char *source_alpha = 0 ; unsigned char *target_alpha = 0 ; - if (M_IMGDATA->m_hasMask) - { - image.SetMaskColour( M_IMGDATA->m_maskRed, - M_IMGDATA->m_maskGreen, - M_IMGDATA->m_maskBlue ); - } - else + if ( !M_IMGDATA->m_hasMask ) { source_alpha = M_IMGDATA->m_alpha ; if ( source_alpha ) @@ -511,6 +504,14 @@ wxImage wxImage::Scale( int width, int height, int quality ) const } } + // If the original image has a mask, apply the mask to the new image + if (M_IMGDATA->m_hasMask) + { + image.SetMaskColour( M_IMGDATA->m_maskRed, + M_IMGDATA->m_maskGreen, + M_IMGDATA->m_maskBlue ); + } + // In case this is a cursor, make sure the hotspot is scaled accordingly: if ( HasOption(wxIMAGE_OPTION_CUR_HOTSPOT_X) ) image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, @@ -524,59 +525,66 @@ wxImage wxImage::Scale( int width, int height, int quality ) const wxImage wxImage::ResampleBox(int width, int height) const { - // This function implements a simple pre-blur/box averaging method for downsampling that gives reasonably smooth results - // To scale the image down we will need to gather a grid of pixels of the size of the scale factor in each direction - // and then do an averaging of the pixels. + // This function implements a simple pre-blur/box averaging method for + // downsampling that gives reasonably smooth results To scale the image + // down we will need to gather a grid of pixels of the size of the scale + // factor in each direction and then do an averaging of the pixels. wxImage ret_image(width, height, false); - double scale_factor_x = double(M_IMGDATA->m_width) / width; - double scale_factor_y = double(M_IMGDATA->m_height) / height; + const double scale_factor_x = double(M_IMGDATA->m_width) / width; + const double scale_factor_y = double(M_IMGDATA->m_height) / height; + + const int scale_factor_x_2 = (int)(scale_factor_x / 2); + const int scale_factor_y_2 = (int)(scale_factor_y / 2); // If we want good-looking results we need to pre-blur the image a bit first wxImage src_image(*this); - src_image = src_image.BlurHorizontal(scale_factor_x / 2); - src_image = src_image.BlurVertical(scale_factor_y / 2); + src_image = src_image.BlurHorizontal(scale_factor_x_2); + src_image = src_image.BlurVertical(scale_factor_y_2); unsigned char* src_data = src_image.GetData(); unsigned char* src_alpha = src_image.GetAlpha(); unsigned char* dst_data = ret_image.GetData(); unsigned char* dst_alpha = NULL; - if(src_alpha) + if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } - int x, y, i, j; - int averaged_pixels, src_pixel_index, src_x, src_y; + int averaged_pixels, src_pixel_index; double sum_r, sum_g, sum_b, sum_a; - for(y = 0; y < height; y++) // Destination image - Y direction + for ( int y = 0; y < height; y++ ) // Destination image - Y direction { // Source pixel in the Y direction - src_y = y * scale_factor_y; + int src_y = (int)(y * scale_factor_y); - for(x = 0; x < width; x++) // Destination image - X direction + for ( int x = 0; x < width; x++ ) // Destination image - X direction { // Source pixel in the X direction - src_x = x * scale_factor_x; + int src_x = (int)(x * scale_factor_x); // Box of pixels to average averaged_pixels = 0; sum_r = sum_g = sum_b = sum_a = 0.0; - for(j = src_y - scale_factor_y / 2 + 1; j <= int(src_y + scale_factor_y / 2); j++) // Y direction + for ( int j = int(src_y - scale_factor_y/2.0 + 1); + j <= int(src_y + scale_factor_y_2); + j++ ) { // We don't care to average pixels that don't exist (edges) - if(j < 0 || j > M_IMGDATA->m_height) + if ( j < 0 || j > M_IMGDATA->m_height ) continue; - for(i = src_x - scale_factor_x / 2 + 1; i <= int(src_x + scale_factor_x / 2); i++) // X direction + for ( int i = int(src_x - scale_factor_x/2.0 + 1); + i <= src_x + scale_factor_x_2; + i++ ) { // Don't average edge pixels - if(i < 0 || i > M_IMGDATA->m_width) + if ( i < 0 || i > M_IMGDATA->m_width ) continue; // Calculate the actual index in our source pixels @@ -585,7 +593,7 @@ wxImage wxImage::ResampleBox(int width, int height) const sum_r += src_data[src_pixel_index * 3 + 0]; sum_g += src_data[src_pixel_index * 3 + 1]; sum_b += src_data[src_pixel_index * 3 + 2]; - if(src_alpha) + if ( src_alpha ) sum_a += src_alpha[src_pixel_index]; averaged_pixels++; @@ -593,19 +601,20 @@ wxImage wxImage::ResampleBox(int width, int height) const } // Calculate the average from the sum and number of averaged pixels - dst_data[0] = int(sum_r / averaged_pixels); - dst_data[1] = int(sum_g / averaged_pixels); - dst_data[2] = int(sum_b / averaged_pixels); + dst_data[0] = (unsigned char)(sum_r / averaged_pixels); + dst_data[1] = (unsigned char)(sum_g / averaged_pixels); + dst_data[2] = (unsigned char)(sum_b / averaged_pixels); dst_data += 3; - if(src_alpha) - *dst_alpha++ = sum_a / averaged_pixels; + if ( src_alpha ) + *dst_alpha++ = (unsigned char)(sum_a / averaged_pixels); } } return ret_image; } -// The following two local functions are for the B-spline weighting of the bicubic sampling algorithm +// The following two local functions are for the B-spline weighting of the +// bicubic sampling algorithm static inline double spline_cube(double value) { return value <= 0.0 ? 0.0 : value * value * value; @@ -613,27 +622,40 @@ static inline double spline_cube(double value) static inline double spline_weight(double value) { - return (spline_cube(value + 2) - 4 * spline_cube(value + 1) + 6 * spline_cube(value) - 4 * spline_cube(value - 1)) / 6; + return (spline_cube(value + 2) - + 4 * spline_cube(value + 1) + + 6 * spline_cube(value) - + 4 * spline_cube(value - 1)) / 6; } // This is the bicubic resampling algorithm wxImage wxImage::ResampleBicubic(int width, int height) const { - // This function implements a Bicubic B-Spline algorithm for resampling. This method is certainly a little slower than wxImage's default - // pixel replication method, however for most reasonably sized images not being upsampled too much on a fairly average CPU this - // difference is hardly noticeable and the results are far more pleasing to look at. + // This function implements a Bicubic B-Spline algorithm for resampling. + // This method is certainly a little slower than wxImage's default pixel + // replication method, however for most reasonably sized images not being + // upsampled too much on a fairly average CPU this difference is hardly + // noticeable and the results are far more pleasing to look at. // - // This particular bicubic algorithm does pixel weighting according to a B-Spline that basically implements a Gaussian bell-like - // weighting kernel. Because of this method the results may appear a bit blurry when upsampling by large factors. This is basically - // because a slight gaussian blur is being performed to get the smooth look of the upsampled image. + // This particular bicubic algorithm does pixel weighting according to a + // B-Spline that basically implements a Gaussian bell-like weighting + // kernel. Because of this method the results may appear a bit blurry when + // upsampling by large factors. This is basically because a slight + // gaussian blur is being performed to get the smooth look of the upsampled + // image. // Edge pixels: 3-4 possible solutions - // - (Wrap/tile) Wrap the image, take the color value from the opposite side of the image. - // - (Mirror) Duplicate edge pixels, so that pixel at coordinate (2, n), where n is nonpositive, will have the value of (2, 1). - // - (Ignore) Simply ignore the edge pixels and apply the kernel only to pixels which do have all neighbours. - // - (Clamp) Choose the nearest pixel along the border. This takes the border pixels and extends them out to infinity. + // - (Wrap/tile) Wrap the image, take the color value from the opposite + // side of the image. + // - (Mirror) Duplicate edge pixels, so that pixel at coordinate (2, n), + // where n is nonpositive, will have the value of (2, 1). + // - (Ignore) Simply ignore the edge pixels and apply the kernel only to + // pixels which do have all neighbours. + // - (Clamp) Choose the nearest pixel along the border. This takes the + // border pixels and extends them out to infinity. // - // NOTE: below the y_offset and x_offset variables are being set for edge pixels using the "Mirror" method mentioned above + // NOTE: below the y_offset and x_offset variables are being set for edge + // pixels using the "Mirror" method mentioned above wxImage ret_image; @@ -644,70 +666,76 @@ wxImage wxImage::ResampleBicubic(int width, int height) const unsigned char* dst_data = ret_image.GetData(); unsigned char* dst_alpha = NULL; - if(src_alpha) + if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } - int k, i; - double srcpixx, srcpixy, dx, dy; - int dstx, dsty; - double sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; // Sums for each color channel - int x_offset = 0, y_offset = 0; - double pixel_weight; - long src_pixel_index; - - for(dsty = 0; dsty < height; dsty++) + for ( int dsty = 0; dsty < height; dsty++ ) { // We need to calculate the source pixel to interpolate from - Y-axis - srcpixy = double(dsty) * M_IMGDATA->m_height / height; - dy = srcpixy - (int)srcpixy; + double srcpixy = dsty * M_IMGDATA->m_height / height; + double dy = srcpixy - (int)srcpixy; - for(dstx = 0; dstx < width; dstx++) + for ( int dstx = 0; dstx < width; dstx++ ) { // X-axis of pixel to interpolate from - srcpixx = double(dstx) * M_IMGDATA->m_width / width; - dx = srcpixx - (int)srcpixx; + double srcpixx = dstx * M_IMGDATA->m_width / width; + double dx = srcpixx - (int)srcpixx; - // Clear all the RGBA sum values - sum_r = sum_g = sum_b = sum_a = 0; + // Sums for each color channel + double sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; // Here we actually determine the RGBA values for the destination pixel - for(k = -1; k <= 2; k++) + for ( int k = -1; k <= 2; k++ ) { // Y offset - y_offset = srcpixy + double(k) < 0.0 ? 0 : (srcpixy + double(k) >= M_IMGDATA->m_height ? M_IMGDATA->m_height - 1 : srcpixy + k); + int y_offset = srcpixy + k < 0.0 + ? 0 + : srcpixy + k >= M_IMGDATA->m_height + ? M_IMGDATA->m_height - 1 + : (int)(srcpixy + k); // Loop across the X axis - for(i = -1; i <= 2; i++) + for ( int i = -1; i <= 2; i++ ) { // X offset - x_offset = srcpixx + double(i) < 0.0 ? 0 : (srcpixx + double(i) >= M_IMGDATA->m_width ? M_IMGDATA->m_width - 1 : srcpixx + i); - - // Calculate the exact position where the source data should be pulled from based on the x_offset and y_offset - src_pixel_index = (y_offset * M_IMGDATA->m_width) + x_offset; - - // Calculate the weight for the specified pixel according to the bicubic b-spline kernel we're using for interpolation - pixel_weight = spline_weight(double(i) - dx) * spline_weight(double(k) - dy); - - // Create a sum of all velues for each color channel adjusted for the pixel's calculated weight - sum_r += double(src_data[src_pixel_index * 3 + 0]) * pixel_weight; - sum_g += double(src_data[src_pixel_index * 3 + 1]) * pixel_weight; - sum_b += double(src_data[src_pixel_index * 3 + 2]) * pixel_weight; - if(src_alpha) - sum_a += double(src_alpha[src_pixel_index]) * pixel_weight; + int x_offset = srcpixx + i < 0.0 + ? 0 + : srcpixx + i >= M_IMGDATA->m_width + ? M_IMGDATA->m_width - 1 + : (int)(srcpixx + i); + + // Calculate the exact position where the source data + // should be pulled from based on the x_offset and y_offset + int src_pixel_index = y_offset*M_IMGDATA->m_width + x_offset; + + // Calculate the weight for the specified pixel according + // to the bicubic b-spline kernel we're using for + // interpolation + double + pixel_weight = spline_weight(i - dx)*spline_weight(k - dy); + + // Create a sum of all velues for each color channel + // adjusted for the pixel's calculated weight + sum_r += src_data[src_pixel_index * 3 + 0] * pixel_weight; + sum_g += src_data[src_pixel_index * 3 + 1] * pixel_weight; + sum_b += src_data[src_pixel_index * 3 + 2] * pixel_weight; + if ( src_alpha ) + sum_a += src_alpha[src_pixel_index] * pixel_weight; } } - // Put the data into the destination image. The summed values are of double data type and are rounded here for accuracy - dst_data[0] = int(sum_r + 0.5); - dst_data[1] = int(sum_g + 0.5); - dst_data[2] = int(sum_b + 0.5); + // Put the data into the destination image. The summed values are + // of double data type and are rounded here for accuracy + dst_data[0] = (unsigned char)(sum_r + 0.5); + dst_data[1] = (unsigned char)(sum_g + 0.5); + dst_data[2] = (unsigned char)(sum_b + 0.5); dst_data += 3; - if(src_alpha) - *dst_alpha++ = sum_a; + if ( src_alpha ) + *dst_alpha++ = (unsigned char)sum_a; } } @@ -726,79 +754,103 @@ wxImage wxImage::BlurHorizontal(int blurRadius) unsigned char* dst_alpha = NULL; // Check for a mask or alpha - if(M_IMGDATA->m_hasMask) - ret_image.SetMaskColour(M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue); - else - if(src_alpha) - { - ret_image.SetAlpha(); - dst_alpha = ret_image.GetAlpha(); - } + if ( src_alpha ) + { + ret_image.SetAlpha(); + dst_alpha = ret_image.GetAlpha(); + } + else if ( M_IMGDATA->m_hasMask ) + { + ret_image.SetMaskColour(M_IMGDATA->m_maskRed, + M_IMGDATA->m_maskGreen, + M_IMGDATA->m_maskBlue); + } - // Variables used in the blurring algorithm - int x, y; - int kernel_x; - long sum_r, sum_g, sum_b, sum_a; - long pixel_idx; + // number of pixels we average over + const int blurArea = blurRadius*2 + 1; - // Horizontal blurring algorithm - average all pixels in the specified blur radius in the X or horizontal direction - for(y = 0; y < M_IMGDATA->m_height; y++) + // Horizontal blurring algorithm - average all pixels in the specified blur + // radius in the X or horizontal direction + for ( int y = 0; y < M_IMGDATA->m_height; y++ ) { - sum_r = sum_g = sum_b = sum_a = 0; + // Variables used in the blurring algorithm + long sum_r = 0, + sum_g = 0, + sum_b = 0, + sum_a = 0; + + long pixel_idx; + const unsigned char *src; + unsigned char *dst; - // Calculate the average of all pixels in the blur radius for the first pixel of the row - for(kernel_x = -blurRadius; kernel_x <= blurRadius; kernel_x++) + // Calculate the average of all pixels in the blur radius for the first + // pixel of the row + for ( int kernel_x = -blurRadius; kernel_x <= blurRadius; kernel_x++ ) { - // To deal with the pixels at the start of a row so it's not grabbing GOK values from memory at negative indices of the image's data or grabbing from the previous row - if(kernel_x < 0) + // To deal with the pixels at the start of a row so it's not + // grabbing GOK values from memory at negative indices of the + // image's data or grabbing from the previous row + if ( kernel_x < 0 ) pixel_idx = y * M_IMGDATA->m_width; else pixel_idx = kernel_x + y * M_IMGDATA->m_width; - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; } - dst_data[y * M_IMGDATA->m_width * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[y * M_IMGDATA->m_width * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[y * M_IMGDATA->m_width * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[y * M_IMGDATA->m_width] = sum_a / (blurRadius * 2 + 1); - - // Now average the values of the rest of the pixels by just moving the blur radius box along the row - for(x = 1; x < M_IMGDATA->m_width; x++) + + dst = dst_data + y * M_IMGDATA->m_width*3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); + + // Now average the values of the rest of the pixels by just moving the + // blur radius box along the row + for ( int x = 1; x < M_IMGDATA->m_width; x++ ) { - // Take care of edge pixels on the left edge by essentially duplicating the edge pixel - if(x - blurRadius - 1 < 0) + // Take care of edge pixels on the left edge by essentially + // duplicating the edge pixel + if ( x - blurRadius - 1 < 0 ) pixel_idx = y * M_IMGDATA->m_width; else pixel_idx = (x - blurRadius - 1) + y * M_IMGDATA->m_width; - // Subtract the value of the pixel at the left side of the blur radius box - sum_r -= src_data[pixel_idx * 3 + 0]; - sum_g -= src_data[pixel_idx * 3 + 1]; - sum_b -= src_data[pixel_idx * 3 + 2]; - sum_a -= src_alpha ? src_alpha[pixel_idx] : 0; + // Subtract the value of the pixel at the left side of the blur + // radius box + src = src_data + pixel_idx*3; + sum_r -= src[0]; + sum_g -= src[1]; + sum_b -= src[2]; + if ( src_alpha ) + sum_a -= src_alpha[pixel_idx]; // Take care of edge pixels on the right edge - if(x + blurRadius > M_IMGDATA->m_width - 1) + if ( x + blurRadius > M_IMGDATA->m_width - 1 ) pixel_idx = M_IMGDATA->m_width - 1 + y * M_IMGDATA->m_width; else pixel_idx = x + blurRadius + y * M_IMGDATA->m_width; // Add the value of the pixel being added to the end of our box - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; // Save off the averaged data - dst_data[x * 3 + y * M_IMGDATA->m_width * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[x * 3 + y * M_IMGDATA->m_width * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[x * 3 + y * M_IMGDATA->m_width * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[x + y * M_IMGDATA->m_width] = sum_a / (blurRadius * 2 + 1); + dst = dst_data + x*3 + y*M_IMGDATA->m_width*3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[x + y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); } } @@ -817,79 +869,103 @@ wxImage wxImage::BlurVertical(int blurRadius) unsigned char* dst_alpha = NULL; // Check for a mask or alpha - if(M_IMGDATA->m_hasMask) - ret_image.SetMaskColour(M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue); - else - if(src_alpha) - { - ret_image.SetAlpha(); - dst_alpha = ret_image.GetAlpha(); - } + if ( src_alpha ) + { + ret_image.SetAlpha(); + dst_alpha = ret_image.GetAlpha(); + } + else if ( M_IMGDATA->m_hasMask ) + { + ret_image.SetMaskColour(M_IMGDATA->m_maskRed, + M_IMGDATA->m_maskGreen, + M_IMGDATA->m_maskBlue); + } - // Variables used in the blurring algorithm - int x, y; - int kernel_y; - long sum_r, sum_g, sum_b, sum_a; - long pixel_idx; + // number of pixels we average over + const int blurArea = blurRadius*2 + 1; - // Vertical blurring algorithm - same as horizontal but switched the opposite direction - for(x = 0; x < M_IMGDATA->m_width; x++) + // Vertical blurring algorithm - same as horizontal but switched the + // opposite direction + for ( int x = 0; x < M_IMGDATA->m_width; x++ ) { - sum_r = sum_g = sum_b = sum_a = 0; + // Variables used in the blurring algorithm + long sum_r = 0, + sum_g = 0, + sum_b = 0, + sum_a = 0; - // Calculate the average of all pixels in our blur radius box for the first pixel of the column - for(kernel_y = -blurRadius; kernel_y <= blurRadius; kernel_y++) + long pixel_idx; + const unsigned char *src; + unsigned char *dst; + + // Calculate the average of all pixels in our blur radius box for the + // first pixel of the column + for ( int kernel_y = -blurRadius; kernel_y <= blurRadius; kernel_y++ ) { - // To deal with the pixels at the start of a column so it's not grabbing GOK values from memory at negative indices of the image's data or grabbing from the previous column - if(kernel_y < 0) + // To deal with the pixels at the start of a column so it's not + // grabbing GOK values from memory at negative indices of the + // image's data or grabbing from the previous column + if ( kernel_y < 0 ) pixel_idx = x; else pixel_idx = x + kernel_y * M_IMGDATA->m_width; - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; } - dst_data[x * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[x * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[x * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[x] = sum_a / (blurRadius * 2 + 1); - - // Now average the values of the rest of the pixels by just moving the box along the column from top to bottom - for(y = 1; y < M_IMGDATA->m_height; y++) + + dst = dst_data + x*3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[x] = (unsigned char)(sum_a / blurArea); + + // Now average the values of the rest of the pixels by just moving the + // box along the column from top to bottom + for ( int y = 1; y < M_IMGDATA->m_height; y++ ) { - // Take care of pixels that would be beyond the top edge by duplicating the top edge pixel for the column - if(y - blurRadius - 1 < 0) + // Take care of pixels that would be beyond the top edge by + // duplicating the top edge pixel for the column + if ( y - blurRadius - 1 < 0 ) pixel_idx = x; else pixel_idx = x + (y - blurRadius - 1) * M_IMGDATA->m_width; // Subtract the value of the pixel at the top of our blur radius box - sum_r -= src_data[pixel_idx * 3 + 0]; - sum_g -= src_data[pixel_idx * 3 + 1]; - sum_b -= src_data[pixel_idx * 3 + 2]; - sum_a -= src_alpha ? src_alpha[pixel_idx] : 0; - - // Take care of the pixels that would be beyond the bottom edge of the image similar to the top edge - if(y + blurRadius > M_IMGDATA->m_height - 1) + src = src_data + pixel_idx*3; + sum_r -= src[0]; + sum_g -= src[1]; + sum_b -= src[2]; + if ( src_alpha ) + sum_a -= src_alpha[pixel_idx]; + + // Take care of the pixels that would be beyond the bottom edge of + // the image similar to the top edge + if ( y + blurRadius > M_IMGDATA->m_height - 1 ) pixel_idx = x + (M_IMGDATA->m_height - 1) * M_IMGDATA->m_width; else pixel_idx = x + (blurRadius + y) * M_IMGDATA->m_width; // Add the value of the pixel being added to the end of our box - sum_r += src_data[pixel_idx * 3 + 0]; - sum_g += src_data[pixel_idx * 3 + 1]; - sum_b += src_data[pixel_idx * 3 + 2]; - sum_a += src_alpha ? src_alpha[pixel_idx] : 0; + src = src_data + pixel_idx*3; + sum_r += src[0]; + sum_g += src[1]; + sum_b += src[2]; + if ( src_alpha ) + sum_a += src_alpha[pixel_idx]; // Save off the averaged data - dst_data[(x + y * M_IMGDATA->m_width) * 3 + 0] = sum_r / (blurRadius * 2 + 1); - dst_data[(x + y * M_IMGDATA->m_width) * 3 + 1] = sum_g / (blurRadius * 2 + 1); - dst_data[(x + y * M_IMGDATA->m_width) * 3 + 2] = sum_b / (blurRadius * 2 + 1); - if(src_alpha) - dst_alpha[x + y * M_IMGDATA->m_width] = sum_a / (blurRadius * 2 + 1); + dst = dst_data + (x + y * M_IMGDATA->m_width) * 3; + dst[0] = (unsigned char)(sum_r / blurArea); + dst[1] = (unsigned char)(sum_g / blurArea); + dst[2] = (unsigned char)(sum_b / blurArea); + if ( src_alpha ) + dst_alpha[x + y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); } } @@ -1229,8 +1305,8 @@ void wxImage::Paste( const wxImage &image, int x, int y ) { for (int i = 0; i < width; i+=3) { - if ((source_data[i] != r) && - (source_data[i+1] != g) && + if ((source_data[i] != r) || + (source_data[i+1] != g) || (source_data[i+2] != b)) { memcpy( target_data+i, source_data+i, 3 ); @@ -1462,7 +1538,7 @@ unsigned char wxImage::GetBlue( int x, int y ) const return M_IMGDATA->m_data[pos+2]; } -bool wxImage::Ok() const +bool wxImage::IsOk() const { // image of 0 width or height can't be considered ok - at least because it // causes crashes in ConvertToBitmap() if we don't catch it in time @@ -2699,18 +2775,7 @@ unsigned long wxImage::ComputeHistogram( wxImageHistogram &h ) const * Rotation code by Carlos Moreno */ -// GRG: I've removed wxRotationPoint - we already have wxRealPoint which -// does exactly the same thing. And I also got rid of wxRotationPixel -// bacause of potential problems in architectures where alignment -// is an issue, so I had to rewrite parts of the code. - -static const double gs_Epsilon = 1e-10; - -static inline int wxCint (double x) -{ - return (x > 0) ? (int) (x + 0.5) : (int) (x - 0.5); -} - +static const double wxROTATE_EPSILON = 1e-10; // Auxiliary function to rotate a point (x,y) with respect to point p0 // make it inline and use a straight return to facilitate optimization @@ -2718,42 +2783,53 @@ static inline int wxCint (double x) // repeating the time-consuming calls to these functions -- sin/cos can // be computed and stored in the calling function. -inline wxRealPoint rotated_point (const wxRealPoint & p, double cos_angle, double sin_angle, const wxRealPoint & p0) +static inline wxRealPoint +wxRotatePoint(const wxRealPoint& p, double cos_angle, double sin_angle, + const wxRealPoint& p0) { - return wxRealPoint (p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle, - p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle); + return wxRealPoint(p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle, + p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle); } -inline wxRealPoint rotated_point (double x, double y, double cos_angle, double sin_angle, const wxRealPoint & p0) +static inline wxRealPoint +wxRotatePoint(double x, double y, double cos_angle, double sin_angle, + const wxRealPoint & p0) { - return rotated_point (wxRealPoint(x,y), cos_angle, sin_angle, p0); + return wxRotatePoint (wxRealPoint(x,y), cos_angle, sin_angle, p0); } -wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool interpolating, wxPoint * offset_after_rotation) const +wxImage wxImage::Rotate(double angle, + const wxPoint& centre_of_rotation, + bool interpolating, + wxPoint *offset_after_rotation) const { - int i; - angle = -angle; // screen coordinates are a mirror image of "real" coordinates + // screen coordinates are a mirror image of "real" coordinates + angle = -angle; + + const bool has_alpha = HasAlpha(); + + const int w = GetWidth(); + const int h = GetHeight(); - bool has_alpha = HasAlpha(); + int i; // Create pointer-based array to accelerate access to wxImage's data - unsigned char ** data = new unsigned char * [GetHeight()]; + unsigned char ** data = new unsigned char * [h]; data[0] = GetData(); - for (i = 1; i < GetHeight(); i++) - data[i] = data[i - 1] + (3 * GetWidth()); + for (i = 1; i < h; i++) + data[i] = data[i - 1] + (3 * w); // Same for alpha channel unsigned char ** alpha = NULL; if (has_alpha) { - alpha = new unsigned char * [GetHeight()]; + alpha = new unsigned char * [h]; alpha[0] = GetAlpha(); - for (i = 1; i < GetHeight(); i++) - alpha[i] = alpha[i - 1] + GetWidth(); + for (i = 1; i < h; i++) + alpha[i] = alpha[i - 1] + w; } // precompute coefficients for rotation formula - // (sine and cosine of the angle) const double cos_angle = cos(angle); const double sin_angle = sin(angle); @@ -2763,10 +2839,10 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i const wxRealPoint p0(centre_of_rotation.x, centre_of_rotation.y); - wxRealPoint p1 = rotated_point (0, 0, cos_angle, sin_angle, p0); - wxRealPoint p2 = rotated_point (0, GetHeight(), cos_angle, sin_angle, p0); - wxRealPoint p3 = rotated_point (GetWidth(), 0, cos_angle, sin_angle, p0); - wxRealPoint p4 = rotated_point (GetWidth(), GetHeight(), cos_angle, sin_angle, p0); + wxRealPoint p1 = wxRotatePoint (0, 0, cos_angle, sin_angle, p0); + wxRealPoint p2 = wxRotatePoint (0, h, cos_angle, sin_angle, p0); + wxRealPoint p3 = wxRotatePoint (w, 0, cos_angle, sin_angle, p0); + wxRealPoint p4 = wxRotatePoint (w, h, cos_angle, sin_angle, p0); int x1a = (int) floor (wxMin (wxMin(p1.x, p2.x), wxMin(p3.x, p4.x))); int y1a = (int) floor (wxMin (wxMin(p1.y, p2.y), wxMin(p3.y, p4.y))); @@ -2784,19 +2860,14 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i *offset_after_rotation = wxPoint (x1a, y1a); } - // GRG: The rotated (destination) image is always accessed - // sequentially, so there is no need for a pointer-based - // array here (and in fact it would be slower). - // - unsigned char * dst = rotated.GetData(); + // the rotated (destination) image is always accessed sequentially via this + // pointer, there is no need for pointer-based arrays here + unsigned char *dst = rotated.GetData(); - unsigned char * alpha_dst = NULL; - if (has_alpha) - alpha_dst = rotated.GetAlpha(); + unsigned char *alpha_dst = has_alpha ? rotated.GetAlpha() : NULL; - // GRG: if the original image has a mask, use its RGB values - // as the blank pixel, else, fall back to default (black). - // + // if the original image has a mask, use its RGB values as the blank pixel, + // else, fall back to default (black). unsigned char blank_r = 0; unsigned char blank_g = 0; unsigned char blank_b = 0; @@ -2813,44 +2884,45 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i // performing an inverse rotation (a rotation of -angle) and getting the // pixel at those coordinates - // GRG: I've taken the (interpolating) test out of the loops, so that - // it is done only once, instead of repeating it for each pixel. + const int rH = rotated.GetHeight(); + const int rW = rotated.GetWidth(); - int x; + // do the (interpolating) test outside of the loops, so that it is done + // only once, instead of repeating it for each pixel. if (interpolating) { - for (int y = 0; y < rotated.GetHeight(); y++) + for (int y = 0; y < rH; y++) { - for (x = 0; x < rotated.GetWidth(); x++) + for (int x = 0; x < rW; x++) { - wxRealPoint src = rotated_point (x + x1a, y + y1a, cos_angle, -sin_angle, p0); + wxRealPoint src = wxRotatePoint (x + x1a, y + y1a, cos_angle, -sin_angle, p0); - if (-0.25 < src.x && src.x < GetWidth() - 0.75 && - -0.25 < src.y && src.y < GetHeight() - 0.75) + if (-0.25 < src.x && src.x < w - 0.75 && + -0.25 < src.y && src.y < h - 0.75) { // interpolate using the 4 enclosing grid-points. Those // points can be obtained using floor and ceiling of the // exact coordinates of the point int x1, y1, x2, y2; - if (0 < src.x && src.x < GetWidth() - 1) + if (0 < src.x && src.x < w - 1) { - x1 = wxCint(floor(src.x)); - x2 = wxCint(ceil(src.x)); + x1 = wxRound(floor(src.x)); + x2 = wxRound(ceil(src.x)); } else // else means that x is near one of the borders (0 or width-1) { - x1 = x2 = wxCint (src.x); + x1 = x2 = wxRound (src.x); } - if (0 < src.y && src.y < GetHeight() - 1) + if (0 < src.y && src.y < h - 1) { - y1 = wxCint(floor(src.y)); - y2 = wxCint(ceil(src.y)); + y1 = wxRound(floor(src.y)); + y2 = wxRound(ceil(src.y)); } else { - y1 = y2 = wxCint (src.y); + y1 = y2 = wxRound (src.y); } // get four points and the distances (square of the distance, @@ -2859,7 +2931,7 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i // GRG: Do not calculate the points until they are // really needed -- this way we can calculate // just one, instead of four, if d1, d2, d3 - // or d4 are < gs_Epsilon + // or d4 are < wxROTATE_EPSILON const double d1 = (src.x - x1) * (src.x - x1) + (src.y - y1) * (src.y - y1); const double d2 = (src.x - x2) * (src.x - x2) + (src.y - y1) * (src.y - y1); @@ -2872,7 +2944,8 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i // If the point is exactly at one point of the grid of the source // image, then don't interpolate -- just assign the pixel - if (d1 < gs_Epsilon) // d1,d2,d3,d4 are positive -- no need for abs() + // d1,d2,d3,d4 are positive -- no need for abs() + if (d1 < wxROTATE_EPSILON) { unsigned char *p = data[y1] + (3 * x1); *(dst++) = *(p++); @@ -2882,7 +2955,7 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i if (has_alpha) *(alpha_dst++) = *(alpha[y1] + x1); } - else if (d2 < gs_Epsilon) + else if (d2 < wxROTATE_EPSILON) { unsigned char *p = data[y1] + (3 * x2); *(dst++) = *(p++); @@ -2892,7 +2965,7 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i if (has_alpha) *(alpha_dst++) = *(alpha[y1] + x2); } - else if (d3 < gs_Epsilon) + else if (d3 < wxROTATE_EPSILON) { unsigned char *p = data[y2] + (3 * x2); *(dst++) = *(p++); @@ -2902,7 +2975,7 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i if (has_alpha) *(alpha_dst++) = *(alpha[y2] + x2); } - else if (d4 < gs_Epsilon) + else if (d4 < wxROTATE_EPSILON) { unsigned char *p = data[y2] + (3 * x1); *(dst++) = *(p++); @@ -2963,19 +3036,18 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i } } } - else // not interpolating + else // not interpolating { - for (int y = 0; y < rotated.GetHeight(); y++) + for (int y = 0; y < rH; y++) { - for (x = 0; x < rotated.GetWidth(); x++) + for (int x = 0; x < rW; x++) { - wxRealPoint src = rotated_point (x + x1a, y + y1a, cos_angle, -sin_angle, p0); + wxRealPoint src = wxRotatePoint (x + x1a, y + y1a, cos_angle, -sin_angle, p0); - const int xs = wxCint (src.x); // wxCint rounds to the - const int ys = wxCint (src.y); // closest integer + const int xs = wxRound (src.x); // wxRound rounds to the + const int ys = wxRound (src.y); // closest integer - if (0 <= xs && xs < GetWidth() && - 0 <= ys && ys < GetHeight()) + if (0 <= xs && xs < w && 0 <= ys && ys < h) { unsigned char *p = data[ys] + (3 * xs); *(dst++) = *(p++); @@ -2999,9 +3071,7 @@ wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool i } delete [] data; - - if (has_alpha) - delete [] alpha; + delete [] alpha; return rotated; } @@ -3019,8 +3089,8 @@ class wxImageModule: public wxModule DECLARE_DYNAMIC_CLASS(wxImageModule) public: wxImageModule() {} - bool OnInit() { wxImage::InitStandardHandlers(); return true; }; - void OnExit() { wxImage::CleanUpHandlers(); }; + bool OnInit() { wxImage::InitStandardHandlers(); return true; } + void OnExit() { wxImage::CleanUpHandlers(); } }; IMPLEMENT_DYNAMIC_CLASS(wxImageModule, wxModule)