X-Git-Url: https://git.saurik.com/wxWidgets.git/blobdiff_plain/069d0f27ef7d87fd337e6baad1c5f4c7223ed693..9453a61bd887cb6a9a5c08e80af2eba072516663:/src/common/image.cpp diff --git a/src/common/image.cpp b/src/common/image.cpp index 38d807f19e..e9435b5a46 100644 --- a/src/common/image.cpp +++ b/src/common/image.cpp @@ -30,6 +30,7 @@ // For memcpy #include +#include #ifdef __SALFORDC__ #undef FAR @@ -857,7 +858,7 @@ wxBitmap wxImage::ConvertToBitmap() const if( HasMask() ) { hbitmap = ::CreateBitmap( (WORD)width, (WORD)bmpHeight, 1, 1, NULL ); - ::SelectObject( memdc, hbitmap); + HGDIOBJ hbmpOld = ::SelectObject( memdc, hbitmap); if( numDIB == 1 ) height = bmpHeight; else height = sizeLimit/bytePerLine; lpDIBh->bmiHeader.biHeight = (DWORD)(-height); @@ -917,10 +918,11 @@ wxBitmap wxImage::ConvertToBitmap() const wxMask *mask = new wxMask( bitmap, colour ); bitmap.SetMask( mask ); */ + + ::SelectObject( memdc, hbmpOld ); } // free allocated resources - ::SelectObject( memdc, 0 ); ::DeleteDC( memdc ); ::ReleaseDC(NULL, hdc); free(lpDIBh); @@ -1290,6 +1292,8 @@ wxImage::wxImage( const wxBitmap &bitmap ) #include #endif +extern GtkWidget *wxRootWindow; + wxBitmap wxImage::ConvertToMonoBitmap( unsigned char red, unsigned char green, unsigned char blue ) { wxBitmap bitmap; @@ -1302,16 +1306,19 @@ wxBitmap wxImage::ConvertToMonoBitmap( unsigned char red, unsigned char green, u bitmap.SetHeight( height ); bitmap.SetWidth( width ); - bitmap.SetBitmap( gdk_pixmap_new( (GdkWindow*)&gdk_root_parent, width, height, 1 ) ); + bitmap.SetBitmap( gdk_pixmap_new( wxRootWindow->window, width, height, 1 ) ); bitmap.SetDepth( 1 ); + GdkVisual *visual = gdk_window_get_visual( wxRootWindow->window ); + wxASSERT( visual ); + // Create picture image unsigned char *data_data = (unsigned char*)malloc( ((width >> 3)+8) * height ); GdkImage *data_image = - gdk_image_new_bitmap( gdk_visual_get_system(), data_data, width, height ); + gdk_image_new_bitmap( visual, data_data, width, height ); // Create mask image @@ -1321,10 +1328,10 @@ wxBitmap wxImage::ConvertToMonoBitmap( unsigned char red, unsigned char green, u { unsigned char *mask_data = (unsigned char*)malloc( ((width >> 3)+8) * height ); - mask_image = gdk_image_new_bitmap( gdk_visual_get_system(), mask_data, width, height ); + mask_image = gdk_image_new_bitmap( visual, mask_data, width, height ); wxMask *mask = new wxMask(); - mask->m_bitmap = gdk_pixmap_new( (GdkWindow*)&gdk_root_parent, width, height, 1 ); + mask->m_bitmap = gdk_pixmap_new( wxRootWindow->window, width, height, 1 ); bitmap.SetMask( mask ); } @@ -1400,12 +1407,13 @@ wxBitmap wxImage::ConvertToBitmap() const bitmap.SetHeight( height ); bitmap.SetWidth( width ); - bitmap.SetPixmap( gdk_pixmap_new( (GdkWindow*)&gdk_root_parent, width, height, -1 ) ); + bitmap.SetPixmap( gdk_pixmap_new( wxRootWindow->window, width, height, -1 ) ); - // Retrieve depth + // Retrieve depth - GdkVisual *visual = gdk_window_get_visual( bitmap.GetPixmap() ); - if (visual == NULL) visual = gdk_visual_get_system(); + GdkVisual *visual = gdk_window_get_visual( wxRootWindow->window ); + wxASSERT( visual ); + int bpp = visual->depth; bitmap.SetDepth( bpp ); @@ -1445,7 +1453,7 @@ wxBitmap wxImage::ConvertToBitmap() const // Create picture image GdkImage *data_image = - gdk_image_new( GDK_IMAGE_FASTEST, gdk_visual_get_system(), width, height ); + gdk_image_new( GDK_IMAGE_FASTEST, visual, width, height ); // Create mask image @@ -1455,10 +1463,10 @@ wxBitmap wxImage::ConvertToBitmap() const { unsigned char *mask_data = (unsigned char*)malloc( ((width >> 3)+8) * height ); - mask_image = gdk_image_new_bitmap( gdk_visual_get_system(), mask_data, width, height ); + mask_image = gdk_image_new_bitmap( visual, mask_data, width, height ); wxMask *mask = new wxMask(); - mask->m_bitmap = gdk_pixmap_new( (GdkWindow*)&gdk_root_parent, width, height, 1 ); + mask->m_bitmap = gdk_pixmap_new( wxRootWindow->window, width, height, 1 ); bitmap.SetMask( mask ); } @@ -1470,7 +1478,6 @@ wxBitmap wxImage::ConvertToBitmap() const if (bpp >= 24) { - GdkVisual *visual = gdk_visual_get_system(); if ((visual->red_mask > visual->green_mask) && (visual->green_mask > visual->blue_mask)) b_o = RGB; else if ((visual->red_mask > visual->blue_mask) && (visual->blue_mask > visual->green_mask)) b_o = RGB; else if ((visual->blue_mask > visual->red_mask) && (visual->red_mask > visual->green_mask)) b_o = BRG; @@ -1646,7 +1653,7 @@ wxImage::wxImage( const wxBitmap &bitmap ) { GdkVisual *visual = gdk_window_get_visual( bitmap.GetPixmap() ); - if (visual == NULL) visual = gdk_window_get_visual( (GdkWindow*) &gdk_root_parent ); + if (visual == NULL) visual = gdk_window_get_visual( wxRootWindow->window ); bpp = visual->depth; if (bpp == 16) bpp = visual->red_prec + visual->green_prec + visual->blue_prec; red_shift_right = visual->red_shift; @@ -2676,4 +2683,198 @@ unsigned long wxImage::ComputeHistogram( wxHashTable &h ) return nentries; } +/* + * Rotation code by Carlos Moreno + */ + +struct wxRotationPixel +{ + unsigned char rgb[3]; +}; + +struct wxRotationPoint +{ + wxRotationPoint (double _x, double _y) : x(_x), y(_y) {} + wxRotationPoint (const wxPoint & p) : x(p.x), y(p.y) {} + double x, y; +}; + +static const wxRotationPixel gs_BlankPixel = {0,0,0}; +static const double gs_Epsilon = 1e-10; + +static inline int wxCint (double x) +{ + return (x > 0) ? (int) (x + 0.5) : (int) (x - 0.5); +} + + +// Auxiliary function to rotate a point (x,y) with respect to point p0 +// make it inline and use a straight return to facilitate optimization +// also, the function receives the sine and cosine of the angle to avoid +// repeating the time-consuming calls to these functions -- sin/cos can +// be computed and stored in the calling function. + +inline wxRotationPoint rotated_point (const wxRotationPoint & p, double cos_angle, double sin_angle, const wxRotationPoint & p0) +{ + return wxRotationPoint (p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle, + p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle); +} + +inline wxRotationPoint rotated_point (double x, double y, double cos_angle, double sin_angle, const wxRotationPoint & p0) +{ + return rotated_point (wxRotationPoint(x,y), cos_angle, sin_angle, p0); +} + +wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool interpolating, wxPoint * offset_after_rotation) const +{ + const wxImage& img = * this; + int i; + angle = -angle; // screen coordinates are a mirror image of "real" coordinates + + // Create pointer-based array to accelerate access to wxImage's data + wxRotationPixel ** data = new wxRotationPixel * [img.GetHeight()]; + + data[0] = (wxRotationPixel *) img.GetData(); + + for (i = 1; i < img.GetHeight(); i++) + { + data[i] = data[i - 1] + img.GetWidth(); + } + + // pre-compute coefficients for rotation formula (sine and cosine of the angle) + const double cos_angle = cos(angle); + const double sin_angle = sin(angle); + + // Create new Image to store the result + // First, find rectangle that covers the rotated image; to do that, + // rotate the four corners + + const wxRotationPoint p0 = centre_of_rotation; + + wxRotationPoint p1 = rotated_point (0, 0, cos_angle, sin_angle, p0); + wxRotationPoint p2 = rotated_point (0, img.GetHeight(), cos_angle, sin_angle, p0); + wxRotationPoint p3 = rotated_point (img.GetWidth(), 0, cos_angle, sin_angle, p0); + wxRotationPoint p4 = rotated_point (img.GetWidth(), img.GetHeight(), cos_angle, sin_angle, p0); + + int x1 = (int) floor (wxMin (wxMin(p1.x, p2.x), wxMin(p3.x, p4.x))); + int y1 = (int) floor (wxMin (wxMin(p1.y, p2.y), wxMin(p3.y, p4.y))); + + int x2 = (int) ceil (wxMax (wxMax(p1.x, p2.x), wxMax(p3.x, p4.x))); + int y2 = (int) ceil (wxMax (wxMax(p1.y, p2.y), wxMax(p3.y, p4.y))); + + wxImage rotated (x2 - x1 + 1, y2 - y1 + 1); + + if (offset_after_rotation != NULL) + { + *offset_after_rotation = wxPoint (x1, y1); + } + + + wxRotationPixel ** result_data = new wxRotationPixel * [rotated.GetHeight()]; + + result_data[0] = (wxRotationPixel *) rotated.GetData(); + + for (i = 1; i < rotated.GetHeight(); i++) + { + result_data[i] = result_data[i - 1] + rotated.GetWidth(); + } + + // Now, for each point of the rotated image, find where it came from, by + // performing an inverse rotation (a rotation of -angle) and getting the + // pixel at those coordinates + + int x; + for (x = 0; x < rotated.GetWidth(); x++) + { + for (int y = 0; y < rotated.GetHeight(); y++) + { + wxRotationPoint src = rotated_point (x + x1, y + y1, cos_angle, -sin_angle, p0); + + if (interpolating) + { + if (0 < src.x && src.x < img.GetWidth() - 1 && + 0 < src.y && src.y < img.GetHeight() - 1) + { + // interpolate using the 4 enclosing grid-points. Those + // points can be obtained using floor and ceiling of the + // exact coordinates of the point + + const int x1 = wxCint(floor(src.x)); + const int y1 = wxCint(floor(src.y)); + const int x2 = wxCint(ceil(src.x)); + const int y2 = wxCint(ceil(src.y)); + + // get four points and the distances (square of the distance, + // for efficiency reasons) for the interpolation formula + const wxRotationPixel & v1 = data[y1][x1]; + const wxRotationPixel & v2 = data[y1][x2]; + const wxRotationPixel & v3 = data[y2][x2]; + const wxRotationPixel & v4 = data[y2][x1]; + + const double d1 = (src.x - x1) * (src.x - x1) + (src.y - y1) * (src.y - y1); + const double d2 = (src.x - x2) * (src.x - x2) + (src.y - y1) * (src.y - y1); + const double d3 = (src.x - x2) * (src.x - x2) + (src.y - y2) * (src.y - y2); + const double d4 = (src.x - x1) * (src.x - x1) + (src.y - y2) * (src.y - y2); + + // Now interpolate as a weighted average of the four surrounding + // points, where the weights are the distances to each of those points + + // If the point is exactly at one point of the grid of the source + // image, then don't interpolate -- just assign the pixel + + if (d1 < gs_Epsilon) // d1,d2,d3,d4 are positive -- no need for abs() + { + result_data[y][x] = v1; + } + else if (d2 < gs_Epsilon) + { + result_data[y][x] = v2; + } + else if (d3 < gs_Epsilon) + { + result_data[y][x] = v3; + } + else if (d4 < gs_Epsilon) + { + result_data[y][x] = v4; + } + else + { + // weights for the weighted average are proportional to the inverse of the distance + const double w1 = 1/d1, w2 = 1/d2, w3 = 1/d3, w4 = 1/d4; + + for (int i = 0; i < 3; i++) // repeat calculation for R, G, and B + { + result_data[y][x].rgb[i] = + (unsigned char) ( (w1 * v1.rgb[i] + w2 * v2.rgb[i] + + w3 * v3.rgb[i] + w4 * v4.rgb[i]) / + (w1 + w2 + w3 + w4) ); + } + } + } + else + { + result_data[y][x] = gs_BlankPixel; + } + } + else + { + const int xs = wxCint (src.x); // wxCint performs rounding to the + const int ys = wxCint (src.y); // closest integer + + if (0 <= xs && xs < img.GetWidth() && + 0 <= ys && ys < img.GetHeight()) + { + result_data[y][x] = data[ys][xs]; + } + else + { + result_data[y][x] = gs_BlankPixel; + } + } + } + } + + return rotated; +}