};
+// Constants for wxImage::Scale() for determining the level of quality
+enum
+{
+ wxIMAGE_QUALITY_NORMAL = 0,
+ wxIMAGE_QUALITY_HIGH = 1
+};
+
//---------------------------------------------------------------------------
%newgroup
void SetExtension(const wxString& extension);
void SetType(long type);
void SetMimeType(const wxString& mimetype);
+
+ %property(Extension, GetExtension, SetExtension, doc="See `GetExtension` and `SetExtension`");
+ %property(MimeType, GetMimeType, SetMimeType, doc="See `GetMimeType` and `SetMimeType`");
+ %property(Name, GetName, SetName, doc="See `GetName` and `SetName`");
+ %property(Type, GetType, SetType, doc="See `GetType` and `SetType`");
};
DocDeclStr(
- wxImage , Scale( int width, int height ),
+ wxImage , Scale( int width, int height, int quality = wxIMAGE_QUALITY_NORMAL ),
"Returns a scaled version of the image. This is also useful for scaling
bitmaps in general as the only other way to scale bitmaps is to blit a
-`wx.MemoryDC` into another `wx.MemoryDC`.", "
+`wx.MemoryDC` into another `wx.MemoryDC`. The ``quality`` parameter
+specifies what method to use for resampling the image. It can be
+either wx.IMAGE_QUALITY_NORMAL, which uses the normal default scaling
+method of pixel replication, or wx.IMAGE_QUALITY_HIGH which uses
+bicubic and box averaging resampling methods for upsampling and
+downsampling respectively.", "
+
+It should be noted that although using wx.IMAGE_QUALITY_HIGH produces
+much nicer looking results it is a slower method. Downsampling will
+use the box averaging method which seems to operate very fast. If you
+are upsampling larger images using this method you will most likely
+notice that it is a bit slower and in extreme cases it will be quite
+substantially slower as the bicubic algorithm has to process a lot of
+data.
+
+It should also be noted that the high quality scaling may not work as
+expected when using a single mask colour for transparency, as the
+scaling will blur the image and will therefore remove the mask
+partially. Using the alpha channel will work.
:see: `Rescale`");
+
+
+ wxImage ResampleBox(int width, int height) const;
+ wxImage ResampleBicubic(int width, int height) const;
+
+ DocDeclStr(
+ wxImage , Blur(int radius),
+ "Blurs the image in both horizontal and vertical directions by the
+specified pixel ``radius``. This should not be used when using a
+single mask colour for transparency.", "");
+
+ DocDeclStr(
+ wxImage , BlurHorizontal(int radius),
+ "Blurs the image in the horizontal direction only. This should not be
+used when using a single mask colour for transparency.
+", "");
+
+ DocDeclStr(
+ wxImage , BlurVertical(int radius),
+ "Blurs the image in the vertical direction only. This should not be
+used when using a single mask colour for transparency.", "");
+
+
DocDeclStr(
wxImage , ShrinkBy( int xFactor , int yFactor ) const ,
"Return a version of the image scaled smaller by the given factors.", "");
DocDeclStr(
- wxImage& , Rescale(int width, int height),
+ wxImage& , Rescale(int width, int height, int quality = wxIMAGE_QUALITY_NORMAL),
"Changes the size of the image in-place by scaling it: after a call to
this function, the image will have the given width and height.
DocDeclStr(
- bool , Ok(),
+ bool , IsOk(),
"Returns true if image data is present.", "");
+ %pythoncode { Ok = IsOk }
DocDeclStr(
int , GetWidth(),
"Converts a color in HSV color space to RGB color space.", "");
- %pythoncode { def __nonzero__(self): return self.Ok() }
+ %pythoncode { def __nonzero__(self): return self.IsOk() }
+
+ %property(AlphaBuffer, GetAlphaBuffer, SetAlphaBuffer, doc="See `GetAlphaBuffer` and `SetAlphaBuffer`");
+ %property(AlphaData, GetAlphaData, SetAlphaData, doc="See `GetAlphaData` and `SetAlphaData`");
+ %property(Data, GetData, SetData, doc="See `GetData` and `SetData`");
+ %property(DataBuffer, GetDataBuffer, SetDataBuffer, doc="See `GetDataBuffer` and `SetDataBuffer`");
+ %property(Height, GetHeight, doc="See `GetHeight`");
+ %property(MaskBlue, GetMaskBlue, doc="See `GetMaskBlue`");
+ %property(MaskGreen, GetMaskGreen, doc="See `GetMaskGreen`");
+ %property(MaskRed, GetMaskRed, doc="See `GetMaskRed`");
+ %property(Width, GetWidth, doc="See `GetWidth`");
+
};
def ImageFromBuffer(width, height, dataBuffer, alphaBuffer=None):
"""
Creates a `wx.Image` from the data in dataBuffer. The dataBuffer
- parameter must be a Python object that implements the buffer interface, or
- is convertable to a buffer object, such as a string, array, etc. The
- dataBuffer object is expected to contain a series of RGB bytes and be
- width*height*3 bytes long. A buffer object can optionally be supplied for
- the image's alpha channel data, and it is expected to be width*height
- bytes long.
+ parameter must be a Python object that implements the buffer interface,
+ such as a string, array, etc. The dataBuffer object is expected to
+ contain a series of RGB bytes and be width*height*3 bytes long. A buffer
+ object can optionally be supplied for the image's alpha channel data, and
+ it is expected to be width*height bytes long.
The wx.Image will be created with its data and alpha pointers initialized
to the memory address pointed to by the buffer objects, thus saving the
the objects used for the data and alpha buffers in a way that would cause
them to change size.
"""
- if not isinstance(dataBuffer, buffer):
- dataBuffer = buffer(dataBuffer)
- if alphaBuffer is not None and not isinstance(alphaBuffer, buffer):
- alphaBuffer = buffer(alphaBuffer)
image = _core_._ImageFromBuffer(width, height, dataBuffer, alphaBuffer)
image._buffer = dataBuffer
image._alpha = alphaBuffer