]> git.saurik.com Git - wxWidgets.git/blob - include/wx/thread.h
avoid causing idle event from GetValue(), fixes #11013
[wxWidgets.git] / include / wx / thread.h
1 /////////////////////////////////////////////////////////////////////////////
2 // Name: wx/thread.h
3 // Purpose: Thread API
4 // Author: Guilhem Lavaux
5 // Modified by: Vadim Zeitlin (modifications partly inspired by omnithreads
6 // package from Olivetti & Oracle Research Laboratory)
7 // Created: 04/13/98
8 // RCS-ID: $Id$
9 // Copyright: (c) Guilhem Lavaux
10 // Licence: wxWindows licence
11 /////////////////////////////////////////////////////////////////////////////
12
13 #ifndef _WX_THREAD_H_
14 #define _WX_THREAD_H_
15
16 // ----------------------------------------------------------------------------
17 // headers
18 // ----------------------------------------------------------------------------
19
20 // get the value of wxUSE_THREADS configuration flag
21 #include "wx/defs.h"
22
23 #if wxUSE_THREADS
24
25 // ----------------------------------------------------------------------------
26 // constants
27 // ----------------------------------------------------------------------------
28
29 enum wxMutexError
30 {
31 wxMUTEX_NO_ERROR = 0, // operation completed successfully
32 wxMUTEX_INVALID, // mutex hasn't been initialized
33 wxMUTEX_DEAD_LOCK, // mutex is already locked by the calling thread
34 wxMUTEX_BUSY, // mutex is already locked by another thread
35 wxMUTEX_UNLOCKED, // attempt to unlock a mutex which is not locked
36 wxMUTEX_TIMEOUT, // LockTimeout() has timed out
37 wxMUTEX_MISC_ERROR // any other error
38 };
39
40 enum wxCondError
41 {
42 wxCOND_NO_ERROR = 0,
43 wxCOND_INVALID,
44 wxCOND_TIMEOUT, // WaitTimeout() has timed out
45 wxCOND_MISC_ERROR
46 };
47
48 enum wxSemaError
49 {
50 wxSEMA_NO_ERROR = 0,
51 wxSEMA_INVALID, // semaphore hasn't been initialized successfully
52 wxSEMA_BUSY, // returned by TryWait() if Wait() would block
53 wxSEMA_TIMEOUT, // returned by WaitTimeout()
54 wxSEMA_OVERFLOW, // Post() would increase counter past the max
55 wxSEMA_MISC_ERROR
56 };
57
58 enum wxThreadError
59 {
60 wxTHREAD_NO_ERROR = 0, // No error
61 wxTHREAD_NO_RESOURCE, // No resource left to create a new thread
62 wxTHREAD_RUNNING, // The thread is already running
63 wxTHREAD_NOT_RUNNING, // The thread isn't running
64 wxTHREAD_KILLED, // Thread we waited for had to be killed
65 wxTHREAD_MISC_ERROR // Some other error
66 };
67
68 enum wxThreadKind
69 {
70 wxTHREAD_DETACHED,
71 wxTHREAD_JOINABLE
72 };
73
74 // defines the interval of priority
75 enum
76 {
77 WXTHREAD_MIN_PRIORITY = 0u,
78 WXTHREAD_DEFAULT_PRIORITY = 50u,
79 WXTHREAD_MAX_PRIORITY = 100u
80 };
81
82 // There are 2 types of mutexes: normal mutexes and recursive ones. The attempt
83 // to lock a normal mutex by a thread which already owns it results in
84 // undefined behaviour (it always works under Windows, it will almost always
85 // result in a deadlock under Unix). Locking a recursive mutex in such
86 // situation always succeeds and it must be unlocked as many times as it has
87 // been locked.
88 //
89 // However recursive mutexes have several important drawbacks: first, in the
90 // POSIX implementation, they're less efficient. Second, and more importantly,
91 // they CAN NOT BE USED WITH CONDITION VARIABLES under Unix! Using them with
92 // wxCondition will work under Windows and some Unices (notably Linux) but will
93 // deadlock under other Unix versions (e.g. Solaris). As it might be difficult
94 // to ensure that a recursive mutex is not used with wxCondition, it is a good
95 // idea to avoid using recursive mutexes at all. Also, the last problem with
96 // them is that some (older) Unix versions don't support this at all -- which
97 // results in a configure warning when building and a deadlock when using them.
98 enum wxMutexType
99 {
100 // normal mutex: try to always use this one
101 wxMUTEX_DEFAULT,
102
103 // recursive mutex: don't use these ones with wxCondition
104 wxMUTEX_RECURSIVE
105 };
106
107 // forward declarations
108 class WXDLLIMPEXP_FWD_BASE wxThreadHelper;
109 class WXDLLIMPEXP_FWD_BASE wxConditionInternal;
110 class WXDLLIMPEXP_FWD_BASE wxMutexInternal;
111 class WXDLLIMPEXP_FWD_BASE wxSemaphoreInternal;
112 class WXDLLIMPEXP_FWD_BASE wxThreadInternal;
113
114 // ----------------------------------------------------------------------------
115 // A mutex object is a synchronization object whose state is set to signaled
116 // when it is not owned by any thread, and nonsignaled when it is owned. Its
117 // name comes from its usefulness in coordinating mutually-exclusive access to
118 // a shared resource. Only one thread at a time can own a mutex object.
119 // ----------------------------------------------------------------------------
120
121 // you should consider wxMutexLocker whenever possible instead of directly
122 // working with wxMutex class - it is safer
123 class WXDLLIMPEXP_BASE wxMutex
124 {
125 public:
126 // constructor & destructor
127 // ------------------------
128
129 // create either default (always safe) or recursive mutex
130 wxMutex(wxMutexType mutexType = wxMUTEX_DEFAULT);
131
132 // destroys the mutex kernel object
133 ~wxMutex();
134
135 // test if the mutex has been created successfully
136 bool IsOk() const;
137
138 // mutex operations
139 // ----------------
140
141 // Lock the mutex, blocking on it until it is unlocked by the other thread.
142 // The result of locking a mutex already locked by the current thread
143 // depend on the mutex type.
144 //
145 // The caller must call Unlock() later if Lock() returned wxMUTEX_NO_ERROR.
146 wxMutexError Lock();
147
148 // Same as Lock() but return wxMUTEX_TIMEOUT if the mutex can't be locked
149 // during the given number of milliseconds
150 wxMutexError LockTimeout(unsigned long ms);
151
152 // Try to lock the mutex: if it is currently locked, return immediately
153 // with an error. Otherwise the caller must call Unlock().
154 wxMutexError TryLock();
155
156 // Unlock the mutex. It is an error to unlock an already unlocked mutex
157 wxMutexError Unlock();
158
159 protected:
160 wxMutexInternal *m_internal;
161
162 friend class wxConditionInternal;
163
164 wxDECLARE_NO_COPY_CLASS(wxMutex);
165 };
166
167 // a helper class which locks the mutex in the ctor and unlocks it in the dtor:
168 // this ensures that mutex is always unlocked, even if the function returns or
169 // throws an exception before it reaches the end
170 class WXDLLIMPEXP_BASE wxMutexLocker
171 {
172 public:
173 // lock the mutex in the ctor
174 wxMutexLocker(wxMutex& mutex)
175 : m_isOk(false), m_mutex(mutex)
176 { m_isOk = ( m_mutex.Lock() == wxMUTEX_NO_ERROR ); }
177
178 // returns true if mutex was successfully locked in ctor
179 bool IsOk() const
180 { return m_isOk; }
181
182 // unlock the mutex in dtor
183 ~wxMutexLocker()
184 { if ( IsOk() ) m_mutex.Unlock(); }
185
186 private:
187 // no assignment operator nor copy ctor
188 wxMutexLocker(const wxMutexLocker&);
189 wxMutexLocker& operator=(const wxMutexLocker&);
190
191 bool m_isOk;
192 wxMutex& m_mutex;
193 };
194
195 // ----------------------------------------------------------------------------
196 // Critical section: this is the same as mutex but is only visible to the
197 // threads of the same process. For the platforms which don't have native
198 // support for critical sections, they're implemented entirely in terms of
199 // mutexes.
200 //
201 // NB: wxCriticalSection object does not allocate any memory in its ctor
202 // which makes it possible to have static globals of this class
203 // ----------------------------------------------------------------------------
204
205 // in order to avoid any overhead under platforms where critical sections are
206 // just mutexes make all wxCriticalSection class functions inline
207 #if !defined(__WXMSW__)
208 #define wxCRITSECT_IS_MUTEX 1
209
210 #define wxCRITSECT_INLINE WXEXPORT inline
211 #else // MSW
212 #define wxCRITSECT_IS_MUTEX 0
213
214 #define wxCRITSECT_INLINE
215 #endif // MSW/!MSW
216
217 enum wxCriticalSectionType
218 {
219 // recursive critical section
220 wxCRITSEC_DEFAULT,
221
222 // non-recursive critical section
223 wxCRITSEC_NON_RECURSIVE
224 };
225
226 // you should consider wxCriticalSectionLocker whenever possible instead of
227 // directly working with wxCriticalSection class - it is safer
228 class WXDLLIMPEXP_BASE wxCriticalSection
229 {
230 public:
231 // ctor & dtor
232 wxCRITSECT_INLINE wxCriticalSection( wxCriticalSectionType critSecType = wxCRITSEC_DEFAULT );
233 wxCRITSECT_INLINE ~wxCriticalSection();
234 // enter the section (the same as locking a mutex)
235 wxCRITSECT_INLINE void Enter();
236
237 // leave the critical section (same as unlocking a mutex)
238 wxCRITSECT_INLINE void Leave();
239
240 private:
241 #if wxCRITSECT_IS_MUTEX
242 wxMutex m_mutex;
243 #elif defined(__WXMSW__)
244 // we can't allocate any memory in the ctor, so use placement new -
245 // unfortunately, we have to hardcode the sizeof() here because we can't
246 // include windows.h from this public header and we also have to use the
247 // union to force the correct (i.e. maximal) alignment
248 //
249 // if CRITICAL_SECTION size changes in Windows, you'll get an assert from
250 // thread.cpp and will need to increase the buffer size
251 //
252 // finally, we need this typedef instead of declaring m_buffer directly
253 // because otherwise the assert mentioned above wouldn't compile with some
254 // compilers (notably CodeWarrior 8)
255 #ifdef __WIN64__
256 typedef char wxCritSectBuffer[40];
257 #else // __WIN32__
258 typedef char wxCritSectBuffer[24];
259 #endif
260 union
261 {
262 unsigned long m_dummy1;
263 void *m_dummy2;
264
265 wxCritSectBuffer m_buffer;
266 };
267 #endif // Unix&OS2/Win32
268
269 wxDECLARE_NO_COPY_CLASS(wxCriticalSection);
270 };
271
272 #if wxCRITSECT_IS_MUTEX
273 // implement wxCriticalSection using mutexes
274 inline wxCriticalSection::wxCriticalSection( wxCriticalSectionType critSecType )
275 : m_mutex( critSecType == wxCRITSEC_DEFAULT ? wxMUTEX_RECURSIVE : wxMUTEX_DEFAULT ) { }
276 inline wxCriticalSection::~wxCriticalSection() { }
277
278 inline void wxCriticalSection::Enter() { (void)m_mutex.Lock(); }
279 inline void wxCriticalSection::Leave() { (void)m_mutex.Unlock(); }
280 #endif // wxCRITSECT_IS_MUTEX
281
282 #undef wxCRITSECT_INLINE
283 #undef wxCRITSECT_IS_MUTEX
284
285 // wxCriticalSectionLocker is the same to critical sections as wxMutexLocker is
286 // to mutexes
287 class WXDLLIMPEXP_BASE wxCriticalSectionLocker
288 {
289 public:
290 wxCriticalSectionLocker(wxCriticalSection& cs)
291 : m_critsect(cs)
292 {
293 m_critsect.Enter();
294 }
295
296 ~wxCriticalSectionLocker()
297 {
298 m_critsect.Leave();
299 }
300
301 private:
302 wxCriticalSection& m_critsect;
303
304 wxDECLARE_NO_COPY_CLASS(wxCriticalSectionLocker);
305 };
306
307 // ----------------------------------------------------------------------------
308 // wxCondition models a POSIX condition variable which allows one (or more)
309 // thread(s) to wait until some condition is fulfilled
310 // ----------------------------------------------------------------------------
311
312 class WXDLLIMPEXP_BASE wxCondition
313 {
314 public:
315 // Each wxCondition object is associated with a (single) wxMutex object.
316 // The mutex object MUST be locked before calling Wait()
317 wxCondition(wxMutex& mutex);
318
319 // dtor is not virtual, don't use this class polymorphically
320 ~wxCondition();
321
322 // return true if the condition has been created successfully
323 bool IsOk() const;
324
325 // NB: the associated mutex MUST be locked beforehand by the calling thread
326 //
327 // it atomically releases the lock on the associated mutex
328 // and starts waiting to be woken up by a Signal()/Broadcast()
329 // once its signaled, then it will wait until it can reacquire
330 // the lock on the associated mutex object, before returning.
331 wxCondError Wait();
332
333 // exactly as Wait() except that it may also return if the specified
334 // timeout elapses even if the condition hasn't been signalled: in this
335 // case, the return value is false, otherwise (i.e. in case of a normal
336 // return) it is true
337 //
338 // the timeout parameter specifies an interval that needs to be waited for
339 // in milliseconds
340 wxCondError WaitTimeout(unsigned long milliseconds);
341
342 // NB: the associated mutex may or may not be locked by the calling thread
343 //
344 // this method unblocks one thread if any are blocking on the condition.
345 // if no thread is blocking in Wait(), then the signal is NOT remembered
346 // The thread which was blocking on Wait() will then reacquire the lock
347 // on the associated mutex object before returning
348 wxCondError Signal();
349
350 // NB: the associated mutex may or may not be locked by the calling thread
351 //
352 // this method unblocks all threads if any are blocking on the condition.
353 // if no thread is blocking in Wait(), then the signal is NOT remembered
354 // The threads which were blocking on Wait() will then reacquire the lock
355 // on the associated mutex object before returning.
356 wxCondError Broadcast();
357
358
359 #if WXWIN_COMPATIBILITY_2_6
360 // deprecated version, don't use
361 wxDEPRECATED( bool Wait(unsigned long milliseconds) );
362 #endif // WXWIN_COMPATIBILITY_2_6
363
364 private:
365 wxConditionInternal *m_internal;
366
367 wxDECLARE_NO_COPY_CLASS(wxCondition);
368 };
369
370 #if WXWIN_COMPATIBILITY_2_6
371 inline bool wxCondition::Wait(unsigned long milliseconds)
372 { return WaitTimeout(milliseconds) == wxCOND_NO_ERROR; }
373 #endif // WXWIN_COMPATIBILITY_2_6
374
375 // ----------------------------------------------------------------------------
376 // wxSemaphore: a counter limiting the number of threads concurrently accessing
377 // a shared resource
378 // ----------------------------------------------------------------------------
379
380 class WXDLLIMPEXP_BASE wxSemaphore
381 {
382 public:
383 // specifying a maxcount of 0 actually makes wxSemaphore behave as if there
384 // is no upper limit, if maxcount is 1 the semaphore behaves as a mutex
385 wxSemaphore( int initialcount = 0, int maxcount = 0 );
386
387 // dtor is not virtual, don't use this class polymorphically
388 ~wxSemaphore();
389
390 // return true if the semaphore has been created successfully
391 bool IsOk() const;
392
393 // wait indefinitely, until the semaphore count goes beyond 0
394 // and then decrement it and return (this method might have been called
395 // Acquire())
396 wxSemaError Wait();
397
398 // same as Wait(), but does not block, returns wxSEMA_NO_ERROR if
399 // successful and wxSEMA_BUSY if the count is currently zero
400 wxSemaError TryWait();
401
402 // same as Wait(), but as a timeout limit, returns wxSEMA_NO_ERROR if the
403 // semaphore was acquired and wxSEMA_TIMEOUT if the timeout has elapsed
404 wxSemaError WaitTimeout(unsigned long milliseconds);
405
406 // increments the semaphore count and signals one of the waiting threads
407 wxSemaError Post();
408
409 private:
410 wxSemaphoreInternal *m_internal;
411
412 wxDECLARE_NO_COPY_CLASS(wxSemaphore);
413 };
414
415 // ----------------------------------------------------------------------------
416 // wxThread: class encapsulating a thread of execution
417 // ----------------------------------------------------------------------------
418
419 // there are two different kinds of threads: joinable and detached (default)
420 // ones. Only joinable threads can return a return code and only detached
421 // threads auto-delete themselves - the user should delete the joinable
422 // threads manually.
423
424 // NB: in the function descriptions the words "this thread" mean the thread
425 // created by the wxThread object while "main thread" is the thread created
426 // during the process initialization (a.k.a. the GUI thread)
427
428 // On VMS thread pointers are 64 bits (also needed for other systems???
429 #ifdef __VMS
430 typedef unsigned long long wxThreadIdType;
431 #else
432 typedef unsigned long wxThreadIdType;
433 #endif
434
435 class WXDLLIMPEXP_BASE wxThread
436 {
437 public:
438 // the return type for the thread function
439 typedef void *ExitCode;
440
441 // static functions
442 // Returns the wxThread object for the calling thread. NULL is returned
443 // if the caller is the main thread (but it's recommended to use
444 // IsMain() and only call This() for threads other than the main one
445 // because NULL is also returned on error). If the thread wasn't
446 // created with wxThread class, the returned value is undefined.
447 static wxThread *This();
448
449 // Returns true if current thread is the main thread.
450 //
451 // Notice that it also returns true if main thread id hadn't been
452 // initialized yet on the assumption that it's too early in wx startup
453 // process for any other threads to have been created in this case.
454 static bool IsMain()
455 {
456 return !ms_idMainThread || GetCurrentId() == ms_idMainThread;
457 }
458
459 // Return the main thread id
460 static wxThreadIdType GetMainId() { return ms_idMainThread; }
461
462 // Release the rest of our time slice letting the other threads run
463 static void Yield();
464
465 // Sleep during the specified period of time in milliseconds
466 //
467 // This is the same as wxMilliSleep().
468 static void Sleep(unsigned long milliseconds);
469
470 // get the number of system CPUs - useful with SetConcurrency()
471 // (the "best" value for it is usually number of CPUs + 1)
472 //
473 // Returns -1 if unknown, number of CPUs otherwise
474 static int GetCPUCount();
475
476 // Get the platform specific thread ID and return as a long. This
477 // can be used to uniquely identify threads, even if they are not
478 // wxThreads. This is used by wxPython.
479 static wxThreadIdType GetCurrentId();
480
481 // sets the concurrency level: this is, roughly, the number of threads
482 // the system tries to schedule to run in parallel. 0 means the
483 // default value (usually acceptable, but may not yield the best
484 // performance for this process)
485 //
486 // Returns true on success, false otherwise (if not implemented, for
487 // example)
488 static bool SetConcurrency(size_t level);
489
490 // constructor only creates the C++ thread object and doesn't create (or
491 // start) the real thread
492 wxThread(wxThreadKind kind = wxTHREAD_DETACHED);
493
494 // functions that change the thread state: all these can only be called
495 // from _another_ thread (typically the thread that created this one, e.g.
496 // the main thread), not from the thread itself
497
498 // create a new thread and optionally set the stack size on
499 // platforms that support that - call Run() to start it
500 // (special cased for watcom which won't accept 0 default)
501
502 wxThreadError Create(unsigned int stackSize = 0);
503
504 // starts execution of the thread - from the moment Run() is called
505 // the execution of wxThread::Entry() may start at any moment, caller
506 // shouldn't suppose that it starts after (or before) Run() returns.
507 wxThreadError Run();
508
509 // stops the thread if it's running and deletes the wxThread object if
510 // this is a detached thread freeing its memory - otherwise (for
511 // joinable threads) you still need to delete wxThread object
512 // yourself.
513 //
514 // this function only works if the thread calls TestDestroy()
515 // periodically - the thread will only be deleted the next time it
516 // does it!
517 //
518 // will fill the rc pointer with the thread exit code if it's !NULL
519 wxThreadError Delete(ExitCode *rc = NULL);
520
521 // waits for a joinable thread to finish and returns its exit code
522 //
523 // Returns (ExitCode)-1 on error (for example, if the thread is not
524 // joinable)
525 ExitCode Wait();
526
527 // kills the thread without giving it any chance to clean up - should
528 // not be used under normal circumstances, use Delete() instead.
529 // It is a dangerous function that should only be used in the most
530 // extreme cases!
531 //
532 // The wxThread object is deleted by Kill() if the thread is
533 // detachable, but you still have to delete it manually for joinable
534 // threads.
535 wxThreadError Kill();
536
537 // pause a running thread: as Delete(), this only works if the thread
538 // calls TestDestroy() regularly
539 wxThreadError Pause();
540
541 // resume a paused thread
542 wxThreadError Resume();
543
544 // priority
545 // Sets the priority to "prio": see WXTHREAD_XXX_PRIORITY constants
546 //
547 // NB: the priority can only be set before the thread is created
548 void SetPriority(unsigned int prio);
549
550 // Get the current priority.
551 unsigned int GetPriority() const;
552
553 // thread status inquiries
554 // Returns true if the thread is alive: i.e. running or suspended
555 bool IsAlive() const;
556 // Returns true if the thread is running (not paused, not killed).
557 bool IsRunning() const;
558 // Returns true if the thread is suspended
559 bool IsPaused() const;
560
561 // is the thread of detached kind?
562 bool IsDetached() const { return m_isDetached; }
563
564 // Get the thread ID - a platform dependent number which uniquely
565 // identifies a thread inside a process
566 wxThreadIdType GetId() const;
567
568 wxThreadKind GetKind() const
569 { return m_isDetached ? wxTHREAD_DETACHED : wxTHREAD_JOINABLE; }
570
571 // Returns true if the thread was asked to terminate: this function should
572 // be called by the thread from time to time, otherwise the main thread
573 // will be left forever in Delete()!
574 virtual bool TestDestroy();
575
576 // dtor is public, but the detached threads should never be deleted - use
577 // Delete() instead (or leave the thread terminate by itself)
578 virtual ~wxThread();
579
580 protected:
581 // exits from the current thread - can be called only from this thread
582 void Exit(ExitCode exitcode = 0);
583
584 // entry point for the thread - called by Run() and executes in the context
585 // of this thread.
586 virtual void *Entry() = 0;
587
588 private:
589 // no copy ctor/assignment operator
590 wxThread(const wxThread&);
591 wxThread& operator=(const wxThread&);
592
593 // called when the thread exits - in the context of this thread
594 //
595 // NB: this function will not be called if the thread is Kill()ed
596 virtual void OnExit() { }
597
598 friend class wxThreadInternal;
599 friend class wxThreadModule;
600
601
602 // the main thread identifier, should be set on startup
603 static wxThreadIdType ms_idMainThread;
604
605 // the (platform-dependent) thread class implementation
606 wxThreadInternal *m_internal;
607
608 // protects access to any methods of wxThreadInternal object
609 wxCriticalSection m_critsect;
610
611 // true if the thread is detached, false if it is joinable
612 bool m_isDetached;
613 };
614
615 // wxThreadHelperThread class
616 // --------------------------
617
618 class WXDLLIMPEXP_BASE wxThreadHelperThread : public wxThread
619 {
620 public:
621 // constructor only creates the C++ thread object and doesn't create (or
622 // start) the real thread
623 wxThreadHelperThread(wxThreadHelper& owner, wxThreadKind kind)
624 : wxThread(kind), m_owner(owner)
625 { }
626
627 protected:
628 // entry point for the thread -- calls Entry() in owner.
629 virtual void *Entry();
630
631 private:
632 // the owner of the thread
633 wxThreadHelper& m_owner;
634
635 // no copy ctor/assignment operator
636 wxThreadHelperThread(const wxThreadHelperThread&);
637 wxThreadHelperThread& operator=(const wxThreadHelperThread&);
638 };
639
640 // ----------------------------------------------------------------------------
641 // wxThreadHelper: this class implements the threading logic to run a
642 // background task in another object (such as a window). It is a mix-in: just
643 // derive from it to implement a threading background task in your class.
644 // ----------------------------------------------------------------------------
645
646 class WXDLLIMPEXP_BASE wxThreadHelper
647 {
648 private:
649 void KillThread()
650 {
651 // If wxThreadHelperThread is detached and is about to finish, it will
652 // set m_thread to NULL so don't delete it then.
653 // But if KillThread is called before wxThreadHelperThread (in detached mode)
654 // sets it to NULL, then the thread object still exists and can be killed
655 wxCriticalSectionLocker locker(m_critSection);
656
657 if ( m_thread )
658 {
659 m_thread->Kill();
660
661 if ( m_kind == wxTHREAD_JOINABLE )
662 delete m_thread;
663
664 m_thread = NULL;
665 }
666 }
667
668 public:
669 // constructor only initializes m_thread to NULL
670 wxThreadHelper(wxThreadKind kind = wxTHREAD_JOINABLE)
671 : m_thread(NULL), m_kind(kind) { }
672
673 // destructor deletes m_thread
674 virtual ~wxThreadHelper() { KillThread(); }
675
676 #if WXWIN_COMPATIBILITY_2_8
677 wxDEPRECATED( wxThreadError Create(unsigned int stackSize = 0) );
678 #endif
679
680 // create a new thread (and optionally set the stack size on platforms that
681 // support/need that), call Run() to start it
682 wxThreadError CreateThread(wxThreadKind kind = wxTHREAD_JOINABLE,
683 unsigned int stackSize = 0)
684 {
685 KillThread();
686
687 m_kind = kind;
688 m_thread = new wxThreadHelperThread(*this, m_kind);
689
690 return m_thread->Create(stackSize);
691 }
692
693 // entry point for the thread - called by Run() and executes in the context
694 // of this thread.
695 virtual void *Entry() = 0;
696
697 // returns a pointer to the thread which can be used to call Run()
698 wxThread *GetThread() const
699 {
700 wxCriticalSectionLocker locker((wxCriticalSection&)m_critSection);
701
702 wxThread* thread = m_thread;
703
704 return thread;
705 }
706
707 protected:
708 wxThread *m_thread;
709 wxThreadKind m_kind;
710 wxCriticalSection m_critSection; // To guard the m_thread variable
711
712 friend class wxThreadHelperThread;
713 };
714
715 #if WXWIN_COMPATIBILITY_2_8
716 inline wxThreadError wxThreadHelper::Create(unsigned int stackSize)
717 { return CreateThread(m_kind, stackSize); }
718 #endif
719
720 // call Entry() in owner, put it down here to avoid circular declarations
721 inline void *wxThreadHelperThread::Entry()
722 {
723 void * const result = m_owner.Entry();
724
725 wxCriticalSectionLocker locker(m_owner.m_critSection);
726
727 // Detached thread will be deleted after returning, so make sure
728 // wxThreadHelper::GetThread will not return an invalid pointer.
729 // And that wxThreadHelper::KillThread will not try to kill
730 // an already deleted thread
731 if ( m_owner.m_kind == wxTHREAD_DETACHED )
732 m_owner.m_thread = NULL;
733
734 return result;
735 }
736
737 // ----------------------------------------------------------------------------
738 // Automatic initialization
739 // ----------------------------------------------------------------------------
740
741 // GUI mutex handling.
742 void WXDLLIMPEXP_BASE wxMutexGuiEnter();
743 void WXDLLIMPEXP_BASE wxMutexGuiLeave();
744
745 // macros for entering/leaving critical sections which may be used without
746 // having to take them inside "#if wxUSE_THREADS"
747 #define wxENTER_CRIT_SECT(cs) (cs).Enter()
748 #define wxLEAVE_CRIT_SECT(cs) (cs).Leave()
749 #define wxCRIT_SECT_DECLARE(cs) static wxCriticalSection cs
750 #define wxCRIT_SECT_DECLARE_MEMBER(cs) wxCriticalSection cs
751 #define wxCRIT_SECT_LOCKER(name, cs) wxCriticalSectionLocker name(cs)
752
753 // function for checking if we're in the main thread which may be used whether
754 // wxUSE_THREADS is 0 or 1
755 inline bool wxIsMainThread() { return wxThread::IsMain(); }
756
757 #else // !wxUSE_THREADS
758
759 // no thread support
760 inline void wxMutexGuiEnter() { }
761 inline void wxMutexGuiLeave() { }
762
763 // macros for entering/leaving critical sections which may be used without
764 // having to take them inside "#if wxUSE_THREADS"
765 // (the implementation uses dummy structs to force semicolon after the macro;
766 // also notice that Watcom doesn't like declaring a struct as a member so we
767 // need to actually define it in wxCRIT_SECT_DECLARE_MEMBER)
768 #define wxENTER_CRIT_SECT(cs) do {} while (0)
769 #define wxLEAVE_CRIT_SECT(cs) do {} while (0)
770 #define wxCRIT_SECT_DECLARE(cs) struct wxDummyCS##cs
771 #define wxCRIT_SECT_DECLARE_MEMBER(cs) struct wxDummyCSMember##cs { }
772 #define wxCRIT_SECT_LOCKER(name, cs) struct wxDummyCSLocker##name
773
774 // if there is only one thread, it is always the main one
775 inline bool wxIsMainThread() { return true; }
776
777 #endif // wxUSE_THREADS/!wxUSE_THREADS
778
779 // mark part of code as being a critical section: this macro declares a
780 // critical section with the given name and enters it immediately and leaves
781 // it at the end of the current scope
782 //
783 // example:
784 //
785 // int Count()
786 // {
787 // static int s_counter = 0;
788 //
789 // wxCRITICAL_SECTION(counter);
790 //
791 // return ++s_counter;
792 // }
793 //
794 // this function is MT-safe in presence of the threads but there is no
795 // overhead when the library is compiled without threads
796 #define wxCRITICAL_SECTION(name) \
797 wxCRIT_SECT_DECLARE(s_cs##name); \
798 wxCRIT_SECT_LOCKER(cs##name##Locker, s_cs##name)
799
800 // automatically lock GUI mutex in ctor and unlock it in dtor
801 class WXDLLIMPEXP_BASE wxMutexGuiLocker
802 {
803 public:
804 wxMutexGuiLocker() { wxMutexGuiEnter(); }
805 ~wxMutexGuiLocker() { wxMutexGuiLeave(); }
806 };
807
808 // -----------------------------------------------------------------------------
809 // implementation only until the end of file
810 // -----------------------------------------------------------------------------
811
812 #if wxUSE_THREADS
813
814 #if defined(__WXMSW__) || defined(__OS2__) || defined(__EMX__)
815 // unlock GUI if there are threads waiting for and lock it back when
816 // there are no more of them - should be called periodically by the main
817 // thread
818 extern void WXDLLIMPEXP_BASE wxMutexGuiLeaveOrEnter();
819
820 // returns true if the main thread has GUI lock
821 extern bool WXDLLIMPEXP_BASE wxGuiOwnedByMainThread();
822
823 // wakes up the main thread if it's sleeping inside ::GetMessage()
824 extern void WXDLLIMPEXP_BASE wxWakeUpMainThread();
825
826 // return true if the main thread is waiting for some other to terminate:
827 // wxApp then should block all "dangerous" messages
828 extern bool WXDLLIMPEXP_BASE wxIsWaitingForThread();
829 #endif // MSW, OS/2
830
831 #endif // wxUSE_THREADS
832
833 #endif // _WX_THREAD_H_