| 1 | /* |
| 2 | * jfdctint.c |
| 3 | * |
| 4 | * Copyright (C) 1991-1996, Thomas G. Lane. |
| 5 | * This file is part of the Independent JPEG Group's software. |
| 6 | * For conditions of distribution and use, see the accompanying README file. |
| 7 | * |
| 8 | * This file contains a slow-but-accurate integer implementation of the |
| 9 | * forward DCT (Discrete Cosine Transform). |
| 10 | * |
| 11 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
| 12 | * on each column. Direct algorithms are also available, but they are |
| 13 | * much more complex and seem not to be any faster when reduced to code. |
| 14 | * |
| 15 | * This implementation is based on an algorithm described in |
| 16 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
| 17 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
| 18 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
| 19 | * The primary algorithm described there uses 11 multiplies and 29 adds. |
| 20 | * We use their alternate method with 12 multiplies and 32 adds. |
| 21 | * The advantage of this method is that no data path contains more than one |
| 22 | * multiplication; this allows a very simple and accurate implementation in |
| 23 | * scaled fixed-point arithmetic, with a minimal number of shifts. |
| 24 | */ |
| 25 | |
| 26 | #define JPEG_INTERNALS |
| 27 | #include "jinclude.h" |
| 28 | #include "jpeglib.h" |
| 29 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
| 30 | |
| 31 | #ifdef DCT_ISLOW_SUPPORTED |
| 32 | |
| 33 | |
| 34 | /* |
| 35 | * This module is specialized to the case DCTSIZE = 8. |
| 36 | */ |
| 37 | |
| 38 | #if DCTSIZE != 8 |
| 39 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
| 40 | #endif |
| 41 | |
| 42 | |
| 43 | /* |
| 44 | * The poop on this scaling stuff is as follows: |
| 45 | * |
| 46 | * Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
| 47 | * larger than the true DCT outputs. The final outputs are therefore |
| 48 | * a factor of N larger than desired; since N=8 this can be cured by |
| 49 | * a simple right shift at the end of the algorithm. The advantage of |
| 50 | * this arrangement is that we save two multiplications per 1-D DCT, |
| 51 | * because the y0 and y4 outputs need not be divided by sqrt(N). |
| 52 | * In the IJG code, this factor of 8 is removed by the quantization step |
| 53 | * (in jcdctmgr.c), NOT in this module. |
| 54 | * |
| 55 | * We have to do addition and subtraction of the integer inputs, which |
| 56 | * is no problem, and multiplication by fractional constants, which is |
| 57 | * a problem to do in integer arithmetic. We multiply all the constants |
| 58 | * by CONST_SCALE and convert them to integer constants (thus retaining |
| 59 | * CONST_BITS bits of precision in the constants). After doing a |
| 60 | * multiplication we have to divide the product by CONST_SCALE, with proper |
| 61 | * rounding, to produce the correct output. This division can be done |
| 62 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
| 63 | * as long as possible so that partial sums can be added together with |
| 64 | * full fractional precision. |
| 65 | * |
| 66 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
| 67 | * they are represented to better-than-integral precision. These outputs |
| 68 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
| 69 | * with the recommended scaling. (For 12-bit sample data, the intermediate |
| 70 | * array is INT32 anyway.) |
| 71 | * |
| 72 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
| 73 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
| 74 | * shows that the values given below are the most effective. |
| 75 | */ |
| 76 | |
| 77 | #if BITS_IN_JSAMPLE == 8 |
| 78 | #define CONST_BITS 13 |
| 79 | #define PASS1_BITS 2 |
| 80 | #else |
| 81 | #define CONST_BITS 13 |
| 82 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
| 83 | #endif |
| 84 | |
| 85 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
| 86 | * causing a lot of useless floating-point operations at run time. |
| 87 | * To get around this we use the following pre-calculated constants. |
| 88 | * If you change CONST_BITS you may want to add appropriate values. |
| 89 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
| 90 | */ |
| 91 | |
| 92 | #if CONST_BITS == 13 |
| 93 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
| 94 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
| 95 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
| 96 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
| 97 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
| 98 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
| 99 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
| 100 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
| 101 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
| 102 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
| 103 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
| 104 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
| 105 | #else |
| 106 | #define FIX_0_298631336 FIX(0.298631336) |
| 107 | #define FIX_0_390180644 FIX(0.390180644) |
| 108 | #define FIX_0_541196100 FIX(0.541196100) |
| 109 | #define FIX_0_765366865 FIX(0.765366865) |
| 110 | #define FIX_0_899976223 FIX(0.899976223) |
| 111 | #define FIX_1_175875602 FIX(1.175875602) |
| 112 | #define FIX_1_501321110 FIX(1.501321110) |
| 113 | #define FIX_1_847759065 FIX(1.847759065) |
| 114 | #define FIX_1_961570560 FIX(1.961570560) |
| 115 | #define FIX_2_053119869 FIX(2.053119869) |
| 116 | #define FIX_2_562915447 FIX(2.562915447) |
| 117 | #define FIX_3_072711026 FIX(3.072711026) |
| 118 | #endif |
| 119 | |
| 120 | |
| 121 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
| 122 | * For 8-bit samples with the recommended scaling, all the variable |
| 123 | * and constant values involved are no more than 16 bits wide, so a |
| 124 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
| 125 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
| 126 | */ |
| 127 | |
| 128 | #if BITS_IN_JSAMPLE == 8 |
| 129 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
| 130 | #else |
| 131 | #define MULTIPLY(var,const) ((var) * (const)) |
| 132 | #endif |
| 133 | |
| 134 | |
| 135 | /* |
| 136 | * Perform the forward DCT on one block of samples. |
| 137 | */ |
| 138 | |
| 139 | GLOBAL(void) |
| 140 | jpeg_fdct_islow (DCTELEM * data) |
| 141 | { |
| 142 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 143 | INT32 tmp10, tmp11, tmp12, tmp13; |
| 144 | INT32 z1, z2, z3, z4, z5; |
| 145 | DCTELEM *dataptr; |
| 146 | int ctr; |
| 147 | SHIFT_TEMPS |
| 148 | |
| 149 | /* Pass 1: process rows. */ |
| 150 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 151 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 152 | |
| 153 | dataptr = data; |
| 154 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 155 | tmp0 = dataptr[0] + dataptr[7]; |
| 156 | tmp7 = dataptr[0] - dataptr[7]; |
| 157 | tmp1 = dataptr[1] + dataptr[6]; |
| 158 | tmp6 = dataptr[1] - dataptr[6]; |
| 159 | tmp2 = dataptr[2] + dataptr[5]; |
| 160 | tmp5 = dataptr[2] - dataptr[5]; |
| 161 | tmp3 = dataptr[3] + dataptr[4]; |
| 162 | tmp4 = dataptr[3] - dataptr[4]; |
| 163 | |
| 164 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 165 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 166 | */ |
| 167 | |
| 168 | tmp10 = tmp0 + tmp3; |
| 169 | tmp13 = tmp0 - tmp3; |
| 170 | tmp11 = tmp1 + tmp2; |
| 171 | tmp12 = tmp1 - tmp2; |
| 172 | |
| 173 | dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); |
| 174 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
| 175 | |
| 176 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 177 | dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
| 178 | CONST_BITS-PASS1_BITS); |
| 179 | dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
| 180 | CONST_BITS-PASS1_BITS); |
| 181 | |
| 182 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 183 | * cK represents cos(K*pi/16). |
| 184 | * i0..i3 in the paper are tmp4..tmp7 here. |
| 185 | */ |
| 186 | |
| 187 | z1 = tmp4 + tmp7; |
| 188 | z2 = tmp5 + tmp6; |
| 189 | z3 = tmp4 + tmp6; |
| 190 | z4 = tmp5 + tmp7; |
| 191 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
| 192 | |
| 193 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
| 194 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
| 195 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
| 196 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
| 197 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
| 198 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
| 199 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
| 200 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
| 201 | |
| 202 | z3 += z5; |
| 203 | z4 += z5; |
| 204 | |
| 205 | dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); |
| 206 | dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); |
| 207 | dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); |
| 208 | dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); |
| 209 | |
| 210 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 211 | } |
| 212 | |
| 213 | /* Pass 2: process columns. |
| 214 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 215 | * by an overall factor of 8. |
| 216 | */ |
| 217 | |
| 218 | dataptr = data; |
| 219 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 220 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
| 221 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
| 222 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
| 223 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
| 224 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
| 225 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
| 226 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
| 227 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
| 228 | |
| 229 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 230 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 231 | */ |
| 232 | |
| 233 | tmp10 = tmp0 + tmp3; |
| 234 | tmp13 = tmp0 - tmp3; |
| 235 | tmp11 = tmp1 + tmp2; |
| 236 | tmp12 = tmp1 - tmp2; |
| 237 | |
| 238 | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); |
| 239 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); |
| 240 | |
| 241 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 242 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
| 243 | CONST_BITS+PASS1_BITS); |
| 244 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
| 245 | CONST_BITS+PASS1_BITS); |
| 246 | |
| 247 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 248 | * cK represents cos(K*pi/16). |
| 249 | * i0..i3 in the paper are tmp4..tmp7 here. |
| 250 | */ |
| 251 | |
| 252 | z1 = tmp4 + tmp7; |
| 253 | z2 = tmp5 + tmp6; |
| 254 | z3 = tmp4 + tmp6; |
| 255 | z4 = tmp5 + tmp7; |
| 256 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
| 257 | |
| 258 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
| 259 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
| 260 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
| 261 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
| 262 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
| 263 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
| 264 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
| 265 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
| 266 | |
| 267 | z3 += z5; |
| 268 | z4 += z5; |
| 269 | |
| 270 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, |
| 271 | CONST_BITS+PASS1_BITS); |
| 272 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, |
| 273 | CONST_BITS+PASS1_BITS); |
| 274 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, |
| 275 | CONST_BITS+PASS1_BITS); |
| 276 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, |
| 277 | CONST_BITS+PASS1_BITS); |
| 278 | |
| 279 | dataptr++; /* advance pointer to next column */ |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | #endif /* DCT_ISLOW_SUPPORTED */ |