]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jdcoefct.c | |
3 | * | |
4 | * Copyright (C) 1994-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains the coefficient buffer controller for decompression. | |
9 | * This controller is the top level of the JPEG decompressor proper. | |
10 | * The coefficient buffer lies between entropy decoding and inverse-DCT steps. | |
11 | * | |
12 | * In buffered-image mode, this controller is the interface between | |
13 | * input-oriented processing and output-oriented processing. | |
14 | * Also, the input side (only) is used when reading a file for transcoding. | |
15 | */ | |
16 | ||
17 | #define JPEG_INTERNALS | |
18 | #include "jinclude.h" | |
19 | #include "jpeglib.h" | |
20 | ||
21 | /* Block smoothing is only applicable for progressive JPEG, so: */ | |
22 | #ifndef D_PROGRESSIVE_SUPPORTED | |
23 | #undef BLOCK_SMOOTHING_SUPPORTED | |
24 | #endif | |
25 | ||
26 | /* Private buffer controller object */ | |
27 | ||
28 | typedef struct { | |
29 | struct jpeg_d_coef_controller pub; /* public fields */ | |
30 | ||
31 | /* These variables keep track of the current location of the input side. */ | |
32 | /* cinfo->input_iMCU_row is also used for this. */ | |
33 | JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ | |
34 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |
35 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |
36 | ||
37 | /* The output side's location is represented by cinfo->output_iMCU_row. */ | |
38 | ||
39 | /* In single-pass modes, it's sufficient to buffer just one MCU. | |
40 | * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, | |
41 | * and let the entropy decoder write into that workspace each time. | |
42 | * (On 80x86, the workspace is FAR even though it's not really very big; | |
43 | * this is to keep the module interfaces unchanged when a large coefficient | |
44 | * buffer is necessary.) | |
45 | * In multi-pass modes, this array points to the current MCU's blocks | |
46 | * within the virtual arrays; it is used only by the input side. | |
47 | */ | |
48 | JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; | |
49 | ||
50 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
51 | /* In multi-pass modes, we need a virtual block array for each component. */ | |
52 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |
53 | #endif | |
54 | ||
55 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
56 | /* When doing block smoothing, we latch coefficient Al values here */ | |
57 | int * coef_bits_latch; | |
58 | #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ | |
59 | #endif | |
60 | } my_coef_controller; | |
61 | ||
62 | typedef my_coef_controller * my_coef_ptr; | |
63 | ||
64 | /* Forward declarations */ | |
65 | METHODDEF(int) decompress_onepass | |
66 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |
67 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
68 | METHODDEF(int) decompress_data | |
69 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |
70 | #endif | |
71 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
72 | LOCAL(wxjpeg_boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); | |
73 | METHODDEF(int) decompress_smooth_data | |
74 | JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |
75 | #endif | |
76 | ||
77 | ||
78 | LOCAL(void) | |
79 | start_iMCU_row (j_decompress_ptr cinfo) | |
80 | /* Reset within-iMCU-row counters for a new row (input side) */ | |
81 | { | |
82 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
83 | ||
84 | /* In an interleaved scan, an MCU row is the same as an iMCU row. | |
85 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |
86 | * But at the bottom of the image, process only what's left. | |
87 | */ | |
88 | if (cinfo->comps_in_scan > 1) { | |
89 | coef->MCU_rows_per_iMCU_row = 1; | |
90 | } else { | |
91 | if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) | |
92 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |
93 | else | |
94 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |
95 | } | |
96 | ||
97 | coef->MCU_ctr = 0; | |
98 | coef->MCU_vert_offset = 0; | |
99 | } | |
100 | ||
101 | ||
102 | /* | |
103 | * Initialize for an input processing pass. | |
104 | */ | |
105 | ||
106 | METHODDEF(void) | |
107 | #if defined(__VISAGECPP__) | |
108 | start_input_pass2 (j_decompress_ptr cinfo) | |
109 | #else | |
110 | start_input_pass (j_decompress_ptr cinfo) | |
111 | #endif | |
112 | { | |
113 | cinfo->input_iMCU_row = 0; | |
114 | start_iMCU_row(cinfo); | |
115 | } | |
116 | ||
117 | /* | |
118 | * Initialize for an output processing pass. | |
119 | */ | |
120 | ||
121 | METHODDEF(void) | |
122 | start_output_pass (j_decompress_ptr cinfo) | |
123 | { | |
124 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
125 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
126 | ||
127 | /* If multipass, check to see whether to use block smoothing on this pass */ | |
128 | if (coef->pub.coef_arrays != NULL) { | |
129 | if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) | |
130 | coef->pub.decompress_data = decompress_smooth_data; | |
131 | else | |
132 | coef->pub.decompress_data = decompress_data; | |
133 | } | |
134 | #endif | |
135 | cinfo->output_iMCU_row = 0; | |
136 | } | |
137 | ||
138 | ||
139 | /* | |
140 | * Decompress and return some data in the single-pass case. | |
141 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | |
142 | * Input and output must run in lockstep since we have only a one-MCU buffer. | |
143 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |
144 | * | |
145 | * NB: output_buf contains a plane for each component in image, | |
146 | * which we index according to the component's SOF position. | |
147 | */ | |
148 | ||
149 | METHODDEF(int) | |
150 | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |
151 | { | |
152 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
153 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
154 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |
155 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
156 | int blkn, ci, xindex, yindex, yoffset, useful_width; | |
157 | JSAMPARRAY output_ptr; | |
158 | JDIMENSION start_col, output_col; | |
159 | jpeg_component_info *compptr; | |
160 | inverse_DCT_method_ptr inverse_DCT; | |
161 | ||
162 | /* Loop to process as much as one whole iMCU row */ | |
163 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
164 | yoffset++) { | |
165 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | |
166 | MCU_col_num++) { | |
167 | /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ | |
168 | jzero_far((void FAR *) coef->MCU_buffer[0], | |
169 | (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); | |
170 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | |
171 | /* Suspension forced; update state counters and exit */ | |
172 | coef->MCU_vert_offset = yoffset; | |
173 | coef->MCU_ctr = MCU_col_num; | |
174 | return JPEG_SUSPENDED; | |
175 | } | |
176 | /* Determine where data should go in output_buf and do the IDCT thing. | |
177 | * We skip dummy blocks at the right and bottom edges (but blkn gets | |
178 | * incremented past them!). Note the inner loop relies on having | |
179 | * allocated the MCU_buffer[] blocks sequentially. | |
180 | */ | |
181 | blkn = 0; /* index of current DCT block within MCU */ | |
182 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
183 | compptr = cinfo->cur_comp_info[ci]; | |
184 | /* Don't bother to IDCT an uninteresting component. */ | |
185 | if (! compptr->component_needed) { | |
186 | blkn += compptr->MCU_blocks; | |
187 | continue; | |
188 | } | |
189 | inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; | |
190 | useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |
191 | : compptr->last_col_width; | |
192 | output_ptr = output_buf[compptr->component_index] + | |
193 | yoffset * compptr->DCT_scaled_size; | |
194 | start_col = MCU_col_num * compptr->MCU_sample_width; | |
195 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
196 | if (cinfo->input_iMCU_row < last_iMCU_row || | |
197 | yoffset+yindex < compptr->last_row_height) { | |
198 | output_col = start_col; | |
199 | for (xindex = 0; xindex < useful_width; xindex++) { | |
200 | (*inverse_DCT) (cinfo, compptr, | |
201 | (JCOEFPTR) coef->MCU_buffer[blkn+xindex], | |
202 | output_ptr, output_col); | |
203 | output_col += compptr->DCT_scaled_size; | |
204 | } | |
205 | } | |
206 | blkn += compptr->MCU_width; | |
207 | output_ptr += compptr->DCT_scaled_size; | |
208 | } | |
209 | } | |
210 | } | |
211 | /* Completed an MCU row, but perhaps not an iMCU row */ | |
212 | coef->MCU_ctr = 0; | |
213 | } | |
214 | /* Completed the iMCU row, advance counters for next one */ | |
215 | cinfo->output_iMCU_row++; | |
216 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | |
217 | start_iMCU_row(cinfo); | |
218 | return JPEG_ROW_COMPLETED; | |
219 | } | |
220 | /* Completed the scan */ | |
221 | (*cinfo->inputctl->finish_input_pass) (cinfo); | |
222 | return JPEG_SCAN_COMPLETED; | |
223 | } | |
224 | ||
225 | ||
226 | /* | |
227 | * Dummy consume-input routine for single-pass operation. | |
228 | */ | |
229 | ||
230 | METHODDEF(int) | |
231 | dummy_consume_data (j_decompress_ptr cinfo) | |
232 | { | |
233 | return JPEG_SUSPENDED; /* Always indicate nothing was done */ | |
234 | } | |
235 | ||
236 | ||
237 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
238 | ||
239 | /* | |
240 | * Consume input data and store it in the full-image coefficient buffer. | |
241 | * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | |
242 | * ie, v_samp_factor block rows for each component in the scan. | |
243 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |
244 | */ | |
245 | ||
246 | METHODDEF(int) | |
247 | consume_data (j_decompress_ptr cinfo) | |
248 | { | |
249 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
250 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
251 | int blkn, ci, xindex, yindex, yoffset; | |
252 | JDIMENSION start_col; | |
253 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |
254 | JBLOCKROW buffer_ptr; | |
255 | jpeg_component_info *compptr; | |
256 | ||
257 | /* Align the virtual buffers for the components used in this scan. */ | |
258 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
259 | compptr = cinfo->cur_comp_info[ci]; | |
260 | buffer[ci] = (*cinfo->mem->access_virt_barray) | |
261 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |
262 | cinfo->input_iMCU_row * compptr->v_samp_factor, | |
263 | (JDIMENSION) compptr->v_samp_factor, TRUE); | |
264 | /* Note: entropy decoder expects buffer to be zeroed, | |
265 | * but this is handled automatically by the memory manager | |
266 | * because we requested a pre-zeroed array. | |
267 | */ | |
268 | } | |
269 | ||
270 | /* Loop to process one whole iMCU row */ | |
271 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
272 | yoffset++) { | |
273 | for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | |
274 | MCU_col_num++) { | |
275 | /* Construct list of pointers to DCT blocks belonging to this MCU */ | |
276 | blkn = 0; /* index of current DCT block within MCU */ | |
277 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
278 | compptr = cinfo->cur_comp_info[ci]; | |
279 | start_col = MCU_col_num * compptr->MCU_width; | |
280 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
281 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |
282 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |
283 | coef->MCU_buffer[blkn++] = buffer_ptr++; | |
284 | } | |
285 | } | |
286 | } | |
287 | /* Try to fetch the MCU. */ | |
288 | if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | |
289 | /* Suspension forced; update state counters and exit */ | |
290 | coef->MCU_vert_offset = yoffset; | |
291 | coef->MCU_ctr = MCU_col_num; | |
292 | return JPEG_SUSPENDED; | |
293 | } | |
294 | } | |
295 | /* Completed an MCU row, but perhaps not an iMCU row */ | |
296 | coef->MCU_ctr = 0; | |
297 | } | |
298 | /* Completed the iMCU row, advance counters for next one */ | |
299 | if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | |
300 | start_iMCU_row(cinfo); | |
301 | return JPEG_ROW_COMPLETED; | |
302 | } | |
303 | /* Completed the scan */ | |
304 | (*cinfo->inputctl->finish_input_pass) (cinfo); | |
305 | return JPEG_SCAN_COMPLETED; | |
306 | } | |
307 | ||
308 | ||
309 | /* | |
310 | * Decompress and return some data in the multi-pass case. | |
311 | * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | |
312 | * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |
313 | * | |
314 | * NB: output_buf contains a plane for each component in image. | |
315 | */ | |
316 | ||
317 | METHODDEF(int) | |
318 | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |
319 | { | |
320 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
321 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
322 | JDIMENSION block_num; | |
323 | int ci, block_row, block_rows; | |
324 | JBLOCKARRAY buffer; | |
325 | JBLOCKROW buffer_ptr; | |
326 | JSAMPARRAY output_ptr; | |
327 | JDIMENSION output_col; | |
328 | jpeg_component_info *compptr; | |
329 | inverse_DCT_method_ptr inverse_DCT; | |
330 | ||
331 | /* Force some input to be done if we are getting ahead of the input. */ | |
332 | while (cinfo->input_scan_number < cinfo->output_scan_number || | |
333 | (cinfo->input_scan_number == cinfo->output_scan_number && | |
334 | cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | |
335 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | |
336 | return JPEG_SUSPENDED; | |
337 | } | |
338 | ||
339 | /* OK, output from the virtual arrays. */ | |
340 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
341 | ci++, compptr++) { | |
342 | /* Don't bother to IDCT an uninteresting component. */ | |
343 | if (! compptr->component_needed) | |
344 | continue; | |
345 | /* Align the virtual buffer for this component. */ | |
346 | buffer = (*cinfo->mem->access_virt_barray) | |
347 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
348 | cinfo->output_iMCU_row * compptr->v_samp_factor, | |
349 | (JDIMENSION) compptr->v_samp_factor, FALSE); | |
350 | /* Count non-dummy DCT block rows in this iMCU row. */ | |
351 | if (cinfo->output_iMCU_row < last_iMCU_row) | |
352 | block_rows = compptr->v_samp_factor; | |
353 | else { | |
354 | /* NB: can't use last_row_height here; it is input-side-dependent! */ | |
355 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
356 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
357 | } | |
358 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; | |
359 | output_ptr = output_buf[ci]; | |
360 | /* Loop over all DCT blocks to be processed. */ | |
361 | for (block_row = 0; block_row < block_rows; block_row++) { | |
362 | buffer_ptr = buffer[block_row]; | |
363 | output_col = 0; | |
364 | for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { | |
365 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, | |
366 | output_ptr, output_col); | |
367 | buffer_ptr++; | |
368 | output_col += compptr->DCT_scaled_size; | |
369 | } | |
370 | output_ptr += compptr->DCT_scaled_size; | |
371 | } | |
372 | } | |
373 | ||
374 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | |
375 | return JPEG_ROW_COMPLETED; | |
376 | return JPEG_SCAN_COMPLETED; | |
377 | } | |
378 | ||
379 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
380 | ||
381 | ||
382 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
383 | ||
384 | /* | |
385 | * This code applies interblock smoothing as described by section K.8 | |
386 | * of the JPEG standard: the first 5 AC coefficients are estimated from | |
387 | * the DC values of a DCT block and its 8 neighboring blocks. | |
388 | * We apply smoothing only for progressive JPEG decoding, and only if | |
389 | * the coefficients it can estimate are not yet known to full precision. | |
390 | */ | |
391 | ||
392 | /* Natural-order array positions of the first 5 zigzag-order coefficients */ | |
393 | #define Q01_POS 1 | |
394 | #define Q10_POS 8 | |
395 | #define Q20_POS 16 | |
396 | #define Q11_POS 9 | |
397 | #define Q02_POS 2 | |
398 | ||
399 | /* | |
400 | * Determine whether block smoothing is applicable and safe. | |
401 | * We also latch the current states of the coef_bits[] entries for the | |
402 | * AC coefficients; otherwise, if the input side of the decompressor | |
403 | * advances into a new scan, we might think the coefficients are known | |
404 | * more accurately than they really are. | |
405 | */ | |
406 | ||
407 | LOCAL(wxjpeg_boolean) | |
408 | smoothing_ok (j_decompress_ptr cinfo) | |
409 | { | |
410 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
411 | wxjpeg_boolean smoothing_useful = FALSE; | |
412 | int ci, coefi; | |
413 | jpeg_component_info *compptr; | |
414 | JQUANT_TBL * qtable; | |
415 | int * coef_bits; | |
416 | int * coef_bits_latch; | |
417 | ||
418 | if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) | |
419 | return FALSE; | |
420 | ||
421 | /* Allocate latch area if not already done */ | |
422 | if (coef->coef_bits_latch == NULL) | |
423 | coef->coef_bits_latch = (int *) | |
424 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
425 | cinfo->num_components * | |
426 | (SAVED_COEFS * SIZEOF(int))); | |
427 | coef_bits_latch = coef->coef_bits_latch; | |
428 | ||
429 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
430 | ci++, compptr++) { | |
431 | /* All components' quantization values must already be latched. */ | |
432 | if ((qtable = compptr->quant_table) == NULL) | |
433 | return FALSE; | |
434 | /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ | |
435 | if (qtable->quantval[0] == 0 || | |
436 | qtable->quantval[Q01_POS] == 0 || | |
437 | qtable->quantval[Q10_POS] == 0 || | |
438 | qtable->quantval[Q20_POS] == 0 || | |
439 | qtable->quantval[Q11_POS] == 0 || | |
440 | qtable->quantval[Q02_POS] == 0) | |
441 | return FALSE; | |
442 | /* DC values must be at least partly known for all components. */ | |
443 | coef_bits = cinfo->coef_bits[ci]; | |
444 | if (coef_bits[0] < 0) | |
445 | return FALSE; | |
446 | /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ | |
447 | for (coefi = 1; coefi <= 5; coefi++) { | |
448 | coef_bits_latch[coefi] = coef_bits[coefi]; | |
449 | if (coef_bits[coefi] != 0) | |
450 | smoothing_useful = TRUE; | |
451 | } | |
452 | coef_bits_latch += SAVED_COEFS; | |
453 | } | |
454 | ||
455 | return smoothing_useful; | |
456 | } | |
457 | ||
458 | ||
459 | /* | |
460 | * Variant of decompress_data for use when doing block smoothing. | |
461 | */ | |
462 | ||
463 | METHODDEF(int) | |
464 | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |
465 | { | |
466 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
467 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
468 | JDIMENSION block_num, last_block_column; | |
469 | int ci, block_row, block_rows, access_rows; | |
470 | JBLOCKARRAY buffer; | |
471 | JBLOCKROW buffer_ptr, prev_block_row, next_block_row; | |
472 | JSAMPARRAY output_ptr; | |
473 | JDIMENSION output_col; | |
474 | jpeg_component_info *compptr; | |
475 | inverse_DCT_method_ptr inverse_DCT; | |
476 | wxjpeg_boolean first_row, last_row; | |
477 | JBLOCK workspace; | |
478 | int *coef_bits; | |
479 | JQUANT_TBL *quanttbl; | |
480 | JPEG_INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; | |
481 | int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; | |
482 | int Al, pred; | |
483 | ||
484 | /* Force some input to be done if we are getting ahead of the input. */ | |
485 | while (cinfo->input_scan_number <= cinfo->output_scan_number && | |
486 | ! cinfo->inputctl->eoi_reached) { | |
487 | if (cinfo->input_scan_number == cinfo->output_scan_number) { | |
488 | /* If input is working on current scan, we ordinarily want it to | |
489 | * have completed the current row. But if input scan is DC, | |
490 | * we want it to keep one row ahead so that next block row's DC | |
491 | * values are up to date. | |
492 | */ | |
493 | JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; | |
494 | if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) | |
495 | break; | |
496 | } | |
497 | if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | |
498 | return JPEG_SUSPENDED; | |
499 | } | |
500 | ||
501 | /* OK, output from the virtual arrays. */ | |
502 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
503 | ci++, compptr++) { | |
504 | /* Don't bother to IDCT an uninteresting component. */ | |
505 | if (! compptr->component_needed) | |
506 | continue; | |
507 | /* Count non-dummy DCT block rows in this iMCU row. */ | |
508 | if (cinfo->output_iMCU_row < last_iMCU_row) { | |
509 | block_rows = compptr->v_samp_factor; | |
510 | access_rows = block_rows * 2; /* this and next iMCU row */ | |
511 | last_row = FALSE; | |
512 | } else { | |
513 | /* NB: can't use last_row_height here; it is input-side-dependent! */ | |
514 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
515 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
516 | access_rows = block_rows; /* this iMCU row only */ | |
517 | last_row = TRUE; | |
518 | } | |
519 | /* Align the virtual buffer for this component. */ | |
520 | if (cinfo->output_iMCU_row > 0) { | |
521 | access_rows += compptr->v_samp_factor; /* prior iMCU row too */ | |
522 | buffer = (*cinfo->mem->access_virt_barray) | |
523 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
524 | (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, | |
525 | (JDIMENSION) access_rows, FALSE); | |
526 | buffer += compptr->v_samp_factor; /* point to current iMCU row */ | |
527 | first_row = FALSE; | |
528 | } else { | |
529 | buffer = (*cinfo->mem->access_virt_barray) | |
530 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
531 | (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); | |
532 | first_row = TRUE; | |
533 | } | |
534 | /* Fetch component-dependent info */ | |
535 | coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); | |
536 | quanttbl = compptr->quant_table; | |
537 | Q00 = quanttbl->quantval[0]; | |
538 | Q01 = quanttbl->quantval[Q01_POS]; | |
539 | Q10 = quanttbl->quantval[Q10_POS]; | |
540 | Q20 = quanttbl->quantval[Q20_POS]; | |
541 | Q11 = quanttbl->quantval[Q11_POS]; | |
542 | Q02 = quanttbl->quantval[Q02_POS]; | |
543 | inverse_DCT = cinfo->idct->inverse_DCT[ci]; | |
544 | output_ptr = output_buf[ci]; | |
545 | /* Loop over all DCT blocks to be processed. */ | |
546 | for (block_row = 0; block_row < block_rows; block_row++) { | |
547 | buffer_ptr = buffer[block_row]; | |
548 | if (first_row && block_row == 0) | |
549 | prev_block_row = buffer_ptr; | |
550 | else | |
551 | prev_block_row = buffer[block_row-1]; | |
552 | if (last_row && block_row == block_rows-1) | |
553 | next_block_row = buffer_ptr; | |
554 | else | |
555 | next_block_row = buffer[block_row+1]; | |
556 | /* We fetch the surrounding DC values using a sliding-register approach. | |
557 | * Initialize all nine here so as to do the right thing on narrow pics. | |
558 | */ | |
559 | DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; | |
560 | DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; | |
561 | DC7 = DC8 = DC9 = (int) next_block_row[0][0]; | |
562 | output_col = 0; | |
563 | last_block_column = compptr->width_in_blocks - 1; | |
564 | for (block_num = 0; block_num <= last_block_column; block_num++) { | |
565 | /* Fetch current DCT block into workspace so we can modify it. */ | |
566 | jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); | |
567 | /* Update DC values */ | |
568 | if (block_num < last_block_column) { | |
569 | DC3 = (int) prev_block_row[1][0]; | |
570 | DC6 = (int) buffer_ptr[1][0]; | |
571 | DC9 = (int) next_block_row[1][0]; | |
572 | } | |
573 | /* Compute coefficient estimates per K.8. | |
574 | * An estimate is applied only if coefficient is still zero, | |
575 | * and is not known to be fully accurate. | |
576 | */ | |
577 | /* AC01 */ | |
578 | if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { | |
579 | num = 36 * Q00 * (DC4 - DC6); | |
580 | if (num >= 0) { | |
581 | pred = (int) (((Q01<<7) + num) / (Q01<<8)); | |
582 | if (Al > 0 && pred >= (1<<Al)) | |
583 | pred = (1<<Al)-1; | |
584 | } else { | |
585 | pred = (int) (((Q01<<7) - num) / (Q01<<8)); | |
586 | if (Al > 0 && pred >= (1<<Al)) | |
587 | pred = (1<<Al)-1; | |
588 | pred = -pred; | |
589 | } | |
590 | workspace[1] = (JCOEF) pred; | |
591 | } | |
592 | /* AC10 */ | |
593 | if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { | |
594 | num = 36 * Q00 * (DC2 - DC8); | |
595 | if (num >= 0) { | |
596 | pred = (int) (((Q10<<7) + num) / (Q10<<8)); | |
597 | if (Al > 0 && pred >= (1<<Al)) | |
598 | pred = (1<<Al)-1; | |
599 | } else { | |
600 | pred = (int) (((Q10<<7) - num) / (Q10<<8)); | |
601 | if (Al > 0 && pred >= (1<<Al)) | |
602 | pred = (1<<Al)-1; | |
603 | pred = -pred; | |
604 | } | |
605 | workspace[8] = (JCOEF) pred; | |
606 | } | |
607 | /* AC20 */ | |
608 | if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { | |
609 | num = 9 * Q00 * (DC2 + DC8 - 2*DC5); | |
610 | if (num >= 0) { | |
611 | pred = (int) (((Q20<<7) + num) / (Q20<<8)); | |
612 | if (Al > 0 && pred >= (1<<Al)) | |
613 | pred = (1<<Al)-1; | |
614 | } else { | |
615 | pred = (int) (((Q20<<7) - num) / (Q20<<8)); | |
616 | if (Al > 0 && pred >= (1<<Al)) | |
617 | pred = (1<<Al)-1; | |
618 | pred = -pred; | |
619 | } | |
620 | workspace[16] = (JCOEF) pred; | |
621 | } | |
622 | /* AC11 */ | |
623 | if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { | |
624 | num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); | |
625 | if (num >= 0) { | |
626 | pred = (int) (((Q11<<7) + num) / (Q11<<8)); | |
627 | if (Al > 0 && pred >= (1<<Al)) | |
628 | pred = (1<<Al)-1; | |
629 | } else { | |
630 | pred = (int) (((Q11<<7) - num) / (Q11<<8)); | |
631 | if (Al > 0 && pred >= (1<<Al)) | |
632 | pred = (1<<Al)-1; | |
633 | pred = -pred; | |
634 | } | |
635 | workspace[9] = (JCOEF) pred; | |
636 | } | |
637 | /* AC02 */ | |
638 | if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { | |
639 | num = 9 * Q00 * (DC4 + DC6 - 2*DC5); | |
640 | if (num >= 0) { | |
641 | pred = (int) (((Q02<<7) + num) / (Q02<<8)); | |
642 | if (Al > 0 && pred >= (1<<Al)) | |
643 | pred = (1<<Al)-1; | |
644 | } else { | |
645 | pred = (int) (((Q02<<7) - num) / (Q02<<8)); | |
646 | if (Al > 0 && pred >= (1<<Al)) | |
647 | pred = (1<<Al)-1; | |
648 | pred = -pred; | |
649 | } | |
650 | workspace[2] = (JCOEF) pred; | |
651 | } | |
652 | /* OK, do the IDCT */ | |
653 | (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, | |
654 | output_ptr, output_col); | |
655 | /* Advance for next column */ | |
656 | DC1 = DC2; DC2 = DC3; | |
657 | DC4 = DC5; DC5 = DC6; | |
658 | DC7 = DC8; DC8 = DC9; | |
659 | buffer_ptr++, prev_block_row++, next_block_row++; | |
660 | output_col += compptr->DCT_scaled_size; | |
661 | } | |
662 | output_ptr += compptr->DCT_scaled_size; | |
663 | } | |
664 | } | |
665 | ||
666 | if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | |
667 | return JPEG_ROW_COMPLETED; | |
668 | return JPEG_SCAN_COMPLETED; | |
669 | } | |
670 | ||
671 | #endif /* BLOCK_SMOOTHING_SUPPORTED */ | |
672 | ||
673 | ||
674 | /* | |
675 | * Initialize coefficient buffer controller. | |
676 | */ | |
677 | ||
678 | GLOBAL(void) | |
679 | jinit_d_coef_controller (j_decompress_ptr cinfo, wxjpeg_boolean need_full_buffer) | |
680 | { | |
681 | my_coef_ptr coef; | |
682 | ||
683 | coef = (my_coef_ptr) | |
684 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
685 | SIZEOF(my_coef_controller)); | |
686 | cinfo->coef = (struct jpeg_d_coef_controller *) coef; | |
687 | #if defined(__VISAGECPP__) | |
688 | coef->pub.start_input_pass2 = start_input_pass2; | |
689 | #else | |
690 | coef->pub.start_input_pass = start_input_pass; | |
691 | #endif | |
692 | ||
693 | coef->pub.start_output_pass = start_output_pass; | |
694 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
695 | coef->coef_bits_latch = NULL; | |
696 | #endif | |
697 | ||
698 | /* Create the coefficient buffer. */ | |
699 | if (need_full_buffer) { | |
700 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
701 | /* Allocate a full-image virtual array for each component, */ | |
702 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ | |
703 | /* Note we ask for a pre-zeroed array. */ | |
704 | int ci, access_rows; | |
705 | jpeg_component_info *compptr; | |
706 | ||
707 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
708 | ci++, compptr++) { | |
709 | access_rows = compptr->v_samp_factor; | |
710 | #ifdef BLOCK_SMOOTHING_SUPPORTED | |
711 | /* If block smoothing could be used, need a bigger window */ | |
712 | if (cinfo->progressive_mode) | |
713 | access_rows *= 3; | |
714 | #endif | |
715 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |
716 | ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, | |
717 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, | |
718 | (long) compptr->h_samp_factor), | |
719 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, | |
720 | (long) compptr->v_samp_factor), | |
721 | (JDIMENSION) access_rows); | |
722 | } | |
723 | coef->pub.consume_data = consume_data; | |
724 | coef->pub.decompress_data = decompress_data; | |
725 | coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ | |
726 | #else | |
727 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
728 | #endif | |
729 | } else { | |
730 | /* We only need a single-MCU buffer. */ | |
731 | JBLOCKROW buffer; | |
732 | int i; | |
733 | ||
734 | buffer = (JBLOCKROW) | |
735 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
736 | D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |
737 | for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | |
738 | coef->MCU_buffer[i] = buffer + i; | |
739 | } | |
740 | coef->pub.consume_data = dummy_consume_data; | |
741 | coef->pub.decompress_data = decompress_onepass; | |
742 | coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ | |
743 | } | |
744 | } | |
745 |