| 1 | /////////////////////////////////////////////////////////////////////////////// |
| 2 | // Name: matrix.cpp |
| 3 | // Purpose: wxTransformMatrix class |
| 4 | // Author: Chris Breeze, Julian Smart |
| 5 | // Modified by: Klaas Holwerda |
| 6 | // Created: 01/02/97 |
| 7 | // RCS-ID: $Id$ |
| 8 | // Copyright: (c) Julian Smart |
| 9 | // Licence: wxWindows licence |
| 10 | /////////////////////////////////////////////////////////////////////////////// |
| 11 | |
| 12 | #if defined(__GNUG__) && !defined(NO_GCC_PRAGMA) |
| 13 | #pragma implementation "matrix.h" |
| 14 | #endif |
| 15 | |
| 16 | // Note: this is intended to be used in wxDC at some point to replace |
| 17 | // the current system of scaling/translation. It is not yet used. |
| 18 | |
| 19 | // For compilers that support precompilation, includes "wx.h". |
| 20 | #include "wx/wxprec.h" |
| 21 | |
| 22 | #ifdef __BORLANDC__ |
| 23 | #pragma hdrstop |
| 24 | #endif |
| 25 | |
| 26 | #ifndef WX_PRECOMP |
| 27 | #include "wx/defs.h" |
| 28 | #include "wx/math.h" |
| 29 | #endif |
| 30 | |
| 31 | #include "wx/matrix.h" |
| 32 | |
| 33 | static const double pi = M_PI; |
| 34 | |
| 35 | wxTransformMatrix::wxTransformMatrix(void) |
| 36 | { |
| 37 | m_isIdentity = false; |
| 38 | |
| 39 | Identity(); |
| 40 | } |
| 41 | |
| 42 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) |
| 43 | : wxObject() |
| 44 | { |
| 45 | (*this) = mat; |
| 46 | } |
| 47 | |
| 48 | double wxTransformMatrix::GetValue(int col, int row) const |
| 49 | { |
| 50 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 51 | return 0.0; |
| 52 | |
| 53 | return m_matrix[col][row]; |
| 54 | } |
| 55 | |
| 56 | void wxTransformMatrix::SetValue(int col, int row, double value) |
| 57 | { |
| 58 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 59 | return; |
| 60 | |
| 61 | m_matrix[col][row] = value; |
| 62 | m_isIdentity = IsIdentity1(); |
| 63 | } |
| 64 | |
| 65 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) |
| 66 | { |
| 67 | int i, j; |
| 68 | for (i = 0; i < 3; i++) |
| 69 | { |
| 70 | for (j = 0; j < 3; j++) |
| 71 | { |
| 72 | m_matrix[i][j] = mat.m_matrix[i][j]; |
| 73 | } |
| 74 | } |
| 75 | m_isIdentity = mat.m_isIdentity; |
| 76 | } |
| 77 | |
| 78 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) |
| 79 | { |
| 80 | if (m_isIdentity==true && mat.m_isIdentity==true) |
| 81 | return true; |
| 82 | |
| 83 | int i, j; |
| 84 | for (i = 0; i < 3; i++) |
| 85 | { |
| 86 | for (j = 0; j < 3; j++) |
| 87 | { |
| 88 | if (m_matrix[i][j] != mat.m_matrix[i][j]) |
| 89 | return false; |
| 90 | } |
| 91 | } |
| 92 | return true; |
| 93 | } |
| 94 | |
| 95 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) |
| 96 | { |
| 97 | return (! ((*this) == mat)); |
| 98 | } |
| 99 | |
| 100 | double& wxTransformMatrix::operator()(int col, int row) |
| 101 | { |
| 102 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 103 | return m_matrix[0][0]; |
| 104 | |
| 105 | return m_matrix[col][row]; |
| 106 | } |
| 107 | |
| 108 | double wxTransformMatrix::operator()(int col, int row) const |
| 109 | { |
| 110 | if (row < 0 || row > 2 || col < 0 || col > 2) |
| 111 | return 0.0; |
| 112 | |
| 113 | return m_matrix[col][row]; |
| 114 | } |
| 115 | |
| 116 | // Invert matrix |
| 117 | bool wxTransformMatrix::Invert(void) |
| 118 | { |
| 119 | double inverseMatrix[3][3]; |
| 120 | |
| 121 | // calculate the adjoint |
| 122 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); |
| 123 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); |
| 124 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); |
| 125 | |
| 126 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); |
| 127 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); |
| 128 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); |
| 129 | |
| 130 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); |
| 131 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); |
| 132 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); |
| 133 | |
| 134 | // now divide by the determinant |
| 135 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; |
| 136 | if (det != 0.0) |
| 137 | { |
| 138 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; |
| 139 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; |
| 140 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; |
| 141 | |
| 142 | int i, j; |
| 143 | for (i = 0; i < 3; i++) |
| 144 | { |
| 145 | for (j = 0; j < 3; j++) |
| 146 | { |
| 147 | m_matrix[i][j] = inverseMatrix[i][j]; |
| 148 | } |
| 149 | } |
| 150 | m_isIdentity = IsIdentity1(); |
| 151 | return true; |
| 152 | } |
| 153 | else |
| 154 | { |
| 155 | return false; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | // Make into identity matrix |
| 160 | bool wxTransformMatrix::Identity(void) |
| 161 | { |
| 162 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; |
| 163 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; |
| 164 | m_isIdentity = true; |
| 165 | |
| 166 | return true; |
| 167 | } |
| 168 | |
| 169 | // Scale by scale (isotropic scaling i.e. the same in x and y): |
| 170 | // | scale 0 0 | |
| 171 | // matrix' = | 0 scale 0 | x matrix |
| 172 | // | 0 0 scale | |
| 173 | // |
| 174 | bool wxTransformMatrix::Scale(double scale) |
| 175 | { |
| 176 | int i, j; |
| 177 | for (i = 0; i < 3; i++) |
| 178 | { |
| 179 | for (j = 0; j < 3; j++) |
| 180 | { |
| 181 | m_matrix[i][j] *= scale; |
| 182 | } |
| 183 | } |
| 184 | m_isIdentity = IsIdentity1(); |
| 185 | |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | |
| 190 | // scale a matrix in 2D |
| 191 | // |
| 192 | // xs 0 xc(1-xs) |
| 193 | // 0 ys yc(1-ys) |
| 194 | // 0 0 1 |
| 195 | // |
| 196 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) |
| 197 | { |
| 198 | double r00,r10,r20,r01,r11,r21; |
| 199 | |
| 200 | if (m_isIdentity) |
| 201 | { |
| 202 | double tx =xc*(1-xs); |
| 203 | double ty =yc*(1-ys); |
| 204 | r00 = xs; |
| 205 | r10 = 0; |
| 206 | r20 = tx; |
| 207 | r01 = 0; |
| 208 | r11 = ys; |
| 209 | r21 = ty; |
| 210 | } |
| 211 | else if (xc!=0 || yc!=0) |
| 212 | { |
| 213 | double tx =xc*(1-xs); |
| 214 | double ty =yc*(1-ys); |
| 215 | r00 = xs * m_matrix[0][0]; |
| 216 | r10 = xs * m_matrix[1][0]; |
| 217 | r20 = xs * m_matrix[2][0] + tx; |
| 218 | r01 = ys * m_matrix[0][1]; |
| 219 | r11 = ys * m_matrix[1][1]; |
| 220 | r21 = ys * m_matrix[2][1] + ty; |
| 221 | } |
| 222 | else |
| 223 | { |
| 224 | r00 = xs * m_matrix[0][0]; |
| 225 | r10 = xs * m_matrix[1][0]; |
| 226 | r20 = xs * m_matrix[2][0]; |
| 227 | r01 = ys * m_matrix[0][1]; |
| 228 | r11 = ys * m_matrix[1][1]; |
| 229 | r21 = ys * m_matrix[2][1]; |
| 230 | } |
| 231 | |
| 232 | m_matrix[0][0] = r00; |
| 233 | m_matrix[1][0] = r10; |
| 234 | m_matrix[2][0] = r20; |
| 235 | m_matrix[0][1] = r01; |
| 236 | m_matrix[1][1] = r11; |
| 237 | m_matrix[2][1] = r21; |
| 238 | |
| 239 | /* or like this |
| 240 | // first translate to origin O |
| 241 | (*this).Translate(-x_cen, -y_cen); |
| 242 | |
| 243 | // now do the scaling |
| 244 | wxTransformMatrix scale; |
| 245 | scale.m_matrix[0][0] = x_fac; |
| 246 | scale.m_matrix[1][1] = y_fac; |
| 247 | scale.m_isIdentity = IsIdentity1(); |
| 248 | |
| 249 | *this = scale * (*this); |
| 250 | |
| 251 | // translate back from origin to x_cen, y_cen |
| 252 | (*this).Translate(x_cen, y_cen); |
| 253 | */ |
| 254 | |
| 255 | m_isIdentity = IsIdentity1(); |
| 256 | |
| 257 | return *this; |
| 258 | } |
| 259 | |
| 260 | |
| 261 | // mirror a matrix in x, y |
| 262 | // |
| 263 | // -1 0 0 Y-mirror |
| 264 | // 0 -1 0 X-mirror |
| 265 | // 0 0 -1 Z-mirror |
| 266 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) |
| 267 | { |
| 268 | wxTransformMatrix temp; |
| 269 | if (x) |
| 270 | { |
| 271 | temp.m_matrix[1][1] = -1; |
| 272 | temp.m_isIdentity=false; |
| 273 | } |
| 274 | if (y) |
| 275 | { |
| 276 | temp.m_matrix[0][0] = -1; |
| 277 | temp.m_isIdentity=false; |
| 278 | } |
| 279 | |
| 280 | *this = temp * (*this); |
| 281 | m_isIdentity = IsIdentity1(); |
| 282 | return *this; |
| 283 | } |
| 284 | |
| 285 | // Translate by dx, dy: |
| 286 | // | 1 0 dx | |
| 287 | // matrix' = | 0 1 dy | x matrix |
| 288 | // | 0 0 1 | |
| 289 | // |
| 290 | bool wxTransformMatrix::Translate(double dx, double dy) |
| 291 | { |
| 292 | int i; |
| 293 | for (i = 0; i < 3; i++) |
| 294 | m_matrix[i][0] += dx * m_matrix[i][2]; |
| 295 | for (i = 0; i < 3; i++) |
| 296 | m_matrix[i][1] += dy * m_matrix[i][2]; |
| 297 | |
| 298 | m_isIdentity = IsIdentity1(); |
| 299 | |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | // Rotate clockwise by the given number of degrees: |
| 304 | // | cos sin 0 | |
| 305 | // matrix' = | -sin cos 0 | x matrix |
| 306 | // | 0 0 1 | |
| 307 | bool wxTransformMatrix::Rotate(double degrees) |
| 308 | { |
| 309 | Rotate(-degrees,0,0); |
| 310 | return true; |
| 311 | } |
| 312 | |
| 313 | // counter clockwise rotate around a point |
| 314 | // |
| 315 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) |
| 316 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) |
| 317 | // 0 0 1 |
| 318 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) |
| 319 | { |
| 320 | double angle = degrees * pi / 180.0; |
| 321 | double c = cos(angle); |
| 322 | double s = sin(angle); |
| 323 | double r00,r10,r20,r01,r11,r21; |
| 324 | |
| 325 | if (m_isIdentity) |
| 326 | { |
| 327 | double tx = x*(1-c)+y*s; |
| 328 | double ty = y*(1-c)-x*s; |
| 329 | r00 = c ; |
| 330 | r10 = -s; |
| 331 | r20 = tx; |
| 332 | r01 = s; |
| 333 | r11 = c; |
| 334 | r21 = ty; |
| 335 | } |
| 336 | else if (x!=0 || y!=0) |
| 337 | { |
| 338 | double tx = x*(1-c)+y*s; |
| 339 | double ty = y*(1-c)-x*s; |
| 340 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; |
| 341 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; |
| 342 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; |
| 343 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; |
| 344 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; |
| 345 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; |
| 346 | } |
| 347 | else |
| 348 | { |
| 349 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; |
| 350 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; |
| 351 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; |
| 352 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; |
| 353 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; |
| 354 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; |
| 355 | } |
| 356 | |
| 357 | m_matrix[0][0] = r00; |
| 358 | m_matrix[1][0] = r10; |
| 359 | m_matrix[2][0] = r20; |
| 360 | m_matrix[0][1] = r01; |
| 361 | m_matrix[1][1] = r11; |
| 362 | m_matrix[2][1] = r21; |
| 363 | |
| 364 | /* or like this |
| 365 | wxTransformMatrix rotate; |
| 366 | rotate.m_matrix[2][0] = tx; |
| 367 | rotate.m_matrix[2][1] = ty; |
| 368 | |
| 369 | rotate.m_matrix[0][0] = c; |
| 370 | rotate.m_matrix[0][1] = s; |
| 371 | |
| 372 | rotate.m_matrix[1][0] = -s; |
| 373 | rotate.m_matrix[1][1] = c; |
| 374 | |
| 375 | rotate.m_isIdentity=false; |
| 376 | *this = rotate * (*this); |
| 377 | */ |
| 378 | m_isIdentity = IsIdentity1(); |
| 379 | |
| 380 | return *this; |
| 381 | } |
| 382 | |
| 383 | // Transform a point from logical to device coordinates |
| 384 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const |
| 385 | { |
| 386 | if (IsIdentity()) |
| 387 | { |
| 388 | tx = x; ty = y; return true; |
| 389 | } |
| 390 | |
| 391 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; |
| 392 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; |
| 393 | |
| 394 | return true; |
| 395 | } |
| 396 | |
| 397 | // Transform a point from device to logical coordinates. |
| 398 | |
| 399 | // Example of use: |
| 400 | // wxTransformMatrix mat = dc.GetTransformation(); |
| 401 | // mat.Invert(); |
| 402 | // mat.InverseTransformPoint(x, y, x1, y1); |
| 403 | // OR (shorthand:) |
| 404 | // dc.LogicalToDevice(x, y, x1, y1); |
| 405 | // The latter is slightly less efficient if we're doing several |
| 406 | // conversions, since the matrix is inverted several times. |
| 407 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const |
| 408 | { |
| 409 | if (IsIdentity()) |
| 410 | { |
| 411 | tx = x; ty = y; return true; |
| 412 | } |
| 413 | |
| 414 | double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; |
| 415 | if (z == 0.0) |
| 416 | { |
| 417 | // z = 0.0000001; |
| 418 | return false; |
| 419 | } |
| 420 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; |
| 421 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; |
| 422 | return true; |
| 423 | } |
| 424 | |
| 425 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) |
| 426 | { |
| 427 | for (int i = 0; i < 3; i++) |
| 428 | for (int j = 0; j < 3; j++) |
| 429 | m_matrix[i][j]*= t; |
| 430 | m_isIdentity = IsIdentity1(); |
| 431 | return *this; |
| 432 | } |
| 433 | |
| 434 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) |
| 435 | { |
| 436 | for (int i = 0; i < 3; i++) |
| 437 | for (int j = 0; j < 3; j++) |
| 438 | m_matrix[i][j]/= t; |
| 439 | m_isIdentity = IsIdentity1(); |
| 440 | return *this; |
| 441 | } |
| 442 | |
| 443 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) |
| 444 | { |
| 445 | for (int i = 0; i < 3; i++) |
| 446 | for (int j = 0; j < 3; j++) |
| 447 | m_matrix[i][j] += mat.m_matrix[i][j]; |
| 448 | m_isIdentity = IsIdentity1(); |
| 449 | return *this; |
| 450 | } |
| 451 | |
| 452 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) |
| 453 | { |
| 454 | for (int i = 0; i < 3; i++) |
| 455 | for (int j = 0; j < 3; j++) |
| 456 | m_matrix[i][j] -= mat.m_matrix[i][j]; |
| 457 | m_isIdentity = IsIdentity1(); |
| 458 | return *this; |
| 459 | } |
| 460 | |
| 461 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) |
| 462 | { |
| 463 | |
| 464 | if (mat.m_isIdentity) |
| 465 | return *this; |
| 466 | if (m_isIdentity) |
| 467 | { |
| 468 | *this = mat; |
| 469 | return *this; |
| 470 | } |
| 471 | else |
| 472 | { |
| 473 | wxTransformMatrix result; |
| 474 | for (int i = 0; i < 3; i++) |
| 475 | { |
| 476 | for (int j = 0; j < 3; j++) |
| 477 | { |
| 478 | double sum = 0; |
| 479 | for (int k = 0; k < 3; k++) |
| 480 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; |
| 481 | result.m_matrix[j][i] = sum; |
| 482 | } |
| 483 | } |
| 484 | *this = result; |
| 485 | } |
| 486 | |
| 487 | m_isIdentity = IsIdentity1(); |
| 488 | return *this; |
| 489 | } |
| 490 | |
| 491 | |
| 492 | // constant operators |
| 493 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const |
| 494 | { |
| 495 | wxTransformMatrix result = *this; |
| 496 | result *= t; |
| 497 | result.m_isIdentity = result.IsIdentity1(); |
| 498 | return result; |
| 499 | } |
| 500 | |
| 501 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const |
| 502 | { |
| 503 | wxTransformMatrix result = *this; |
| 504 | // wxASSERT(t!=0); |
| 505 | result /= t; |
| 506 | result.m_isIdentity = result.IsIdentity1(); |
| 507 | return result; |
| 508 | } |
| 509 | |
| 510 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const |
| 511 | { |
| 512 | wxTransformMatrix result = *this; |
| 513 | result += m; |
| 514 | result.m_isIdentity = result.IsIdentity1(); |
| 515 | return result; |
| 516 | } |
| 517 | |
| 518 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const |
| 519 | { |
| 520 | wxTransformMatrix result = *this; |
| 521 | result -= m; |
| 522 | result.m_isIdentity = result.IsIdentity1(); |
| 523 | return result; |
| 524 | } |
| 525 | |
| 526 | |
| 527 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const |
| 528 | { |
| 529 | wxTransformMatrix result = *this; |
| 530 | result *= m; |
| 531 | result.m_isIdentity = result.IsIdentity1(); |
| 532 | return result; |
| 533 | } |
| 534 | |
| 535 | |
| 536 | wxTransformMatrix wxTransformMatrix::operator-() const |
| 537 | { |
| 538 | wxTransformMatrix result = *this; |
| 539 | for (int i = 0; i < 3; i++) |
| 540 | for (int j = 0; j < 3; j++) |
| 541 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); |
| 542 | result.m_isIdentity = result.IsIdentity1(); |
| 543 | return result; |
| 544 | } |
| 545 | |
| 546 | static double CheckInt(double getal) |
| 547 | { |
| 548 | // check if the number is very close to an integer |
| 549 | if ( (ceil(getal) - getal) < 0.0001) |
| 550 | return ceil(getal); |
| 551 | |
| 552 | else if ( (getal - floor(getal)) < 0.0001) |
| 553 | return floor(getal); |
| 554 | |
| 555 | return getal; |
| 556 | |
| 557 | } |
| 558 | |
| 559 | double wxTransformMatrix::Get_scaleX() |
| 560 | { |
| 561 | double scale_factor; |
| 562 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); |
| 563 | if (rot_angle != 90 && rot_angle != -90) |
| 564 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); |
| 565 | else |
| 566 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! |
| 567 | |
| 568 | scale_factor = CheckInt(scale_factor); |
| 569 | if (scale_factor < 0) |
| 570 | scale_factor = -scale_factor; |
| 571 | |
| 572 | return scale_factor; |
| 573 | } |
| 574 | |
| 575 | double wxTransformMatrix::Get_scaleY() |
| 576 | { |
| 577 | double scale_factor; |
| 578 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); |
| 579 | if (rot_angle != 90 && rot_angle != -90) |
| 580 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); |
| 581 | else |
| 582 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! |
| 583 | |
| 584 | scale_factor = CheckInt(scale_factor); |
| 585 | if (scale_factor < 0) |
| 586 | |
| 587 | scale_factor = -scale_factor; |
| 588 | |
| 589 | return scale_factor; |
| 590 | |
| 591 | } |
| 592 | |
| 593 | double wxTransformMatrix::GetRotation() |
| 594 | { |
| 595 | double temp1 = GetValue(0,0); // for angle calculation |
| 596 | double temp2 = GetValue(0,1); // |
| 597 | |
| 598 | // Rotation |
| 599 | double rot_angle = atan2(temp2,temp1)*180/pi; |
| 600 | |
| 601 | rot_angle = CheckInt(rot_angle); |
| 602 | return rot_angle; |
| 603 | } |
| 604 | |
| 605 | void wxTransformMatrix::SetRotation(double rotation) |
| 606 | { |
| 607 | double x=GetValue(2,0); |
| 608 | double y=GetValue(2,1); |
| 609 | Rotate(-GetRotation(), x, y); |
| 610 | Rotate(rotation, x, y); |
| 611 | } |
| 612 | |